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ABSTRACT. In the stable homotopy groups of spheres, we have Greek letter elements
due to J. F. Adams [2], L. Smith [12] and H. Toda [13]. Here we study the non-
triviality of certain products of the first alpha element, the first and the second beta
elements and a gamma element in the homotopy groups.

1. Introduction

Let ¥, denote the stable homotopy category of spectra localized at a
prime number p > 5, and S° € Sy be the sphere spectrum localized at p.
Since S° is a generator of Y1) in a sense, the homotopy groups 7.(S%) play
an important role in understanding the category %(,). The homotopy groups
7.(S%) form a commutative graded algebra with multiplication given by com-
position. Unfortunately, the structure of 7,(S°) is little known. G. Nishida
showed that every element in 7;(S°) for ¢ > 0 is nilpotent. We have generators
of the groups called Greek letter elements. In this paper, we study whether
or not a product of the Greek letter elements o) € 7, 1(S°), B € mpy—2(SP),
Ba € Tapr1)g—2(S°) and 9, € w2 1)prr-2)g-3(S?) for t>1 is trivial. Here-
after, we put ¢ = 2p — 2 as usual.

In [1], M. Aubry determined the homotopy groups 7.(S°) through total
degree less than (3p? +4p)g. In particular, we have the following:

TueoreM 1.1 ([1)). wifyy, and Bifyy, for r < p are non-trivial, and
o f1frys = 0.

X. Liu showed the following theorems:
THEOREM 1.2 ([5]). The products o1f,y, are non-trivial for 2 < s < p.
THEOREM 1.3 ([14]). The products o1f,,y, are non-trivial for 2 < s < p.

2010 Mathematics Subject Classification. Primary 55Q45, Secondary 55T15, 55Q51.
Key words and phrases. stable homotopy groups of spheres, Greek letter elements.



304 Hiroki OkayiMA and Katsumi SHIMOMURA

These two theorems are shown by use of the classical Adams spectral
sequence. Thus, the subscript s of y, must be greater than two.

Consider the Adams-Novikov spectral sequence {E**(X)} converging to
the homotopy groups 7.(X) of a spectrum X, and let

meEy!(SY),  BeE™(SY),  peEy s and
7, € E23s(lPZJF(f*l)PH*z)fI(SO) (t>1)

be the elements detecting the Greek letter elements o, f;, f, and y,, respec-
tively. Observing products of these elements in the E>-term, we obtained the
following theorems:

Tueorem 1.4 ([11, Th. L.1]). The products oif(y,,., #0 if 1<t<
t+u<pand r<p-2

Tueorem 1.5 ([3, Th. 1.4]). Let t be a positive integer with p y t(t> —1).
Then, By, # 0 € 7. (S°).

C.-N. Lee showed that

THEOREM 1.6 ([4, Th. 4.1, Th. 44]). Let p>7. The products piy, and
1By, are non-trivial if 0 <t<p and r<p—1. The product afi}y, is
non-trivial if 2<t<p and r < p—2.

By using the result g7 _zﬁzyz # 0 of Lee [4], we deduce the non-triviality
of the product ﬂlp_zﬁzypﬂz

THEOREM 1.7. Let t be an integer with 1 <t < p or t = p+2. Then, the
products f{fy, are non-trivial for 0 <r < p—2.

Consider the spectra V(2), for k>1 characterized by the Brown-
Peterson homology BP.(V(2),) = BP./(p,v1,v5) (see (2.6)). The spectrum
V(2) = V(2), is the second Smith-Toda spectrum. It is well known that
71 =1, 1, and so @7, =0 as well as oy, =0. If r1=p,p+1, then , =
0eEj’(’pzﬂ’*l)pﬂfz)q(V(2)) (see (3.5), ¢f. [4, Lemma 4.3]).

For products &pf,y, in the Adams-Novikov E,-term for computing
7.(V(2)), we have

THEOREM 1.8. &f,7, =0¢€ E267("’2+(’+1)p+’>q(V(2)) for t > p.

By use of the May and the Novikov spectral sequences together with
Toda’s calculation [13] on the May E)-term, we show the non-triviality of an
element &, 5,7,,, #0 € ESWP 242 ) in Lemma 2.20. From this, we
extend non-triviality of products of Theorems 1.1 and 1.2 to the following:
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THEOREM 1.9. Let t be an integer with 1 <t<p or t=p+2. Then,
afyy, #0€ n*(SO)~

In the next section, we study the Adams-Novikov E>-term by use of the
May and the Novikov spectral sequences with Toda’s calculation [13] on the
May Ej-term. We then show the non-triviality of o1f,7,,, in Theorem 1.9
and the triviality of the products in Theorem 1.8 in Section 3. The last section
is devoted to the proof of the non-triviality of the composite 7 _zﬂzyp 4o In
Theorem 1.7.

2. The Adams-Novikov FE>-terms

We fix a prime number p > 7. Let BP denote the Brown-Peterson spec-
trum at the prime p, and we have a Hopf algebroid

(BP*7 BP*(BP)) = (Z(m [1)1, U2, .. .}, BP*[tl, i, .. ])

with structure maps: the left and the right units #,,n : BP. — BP.(BP), the
coproduct 4 : BP.(BP) — BP.(BP) ®gp BP.(BP), the counit ¢: BP.(BP) —
BP, and the conjugation c¢: BP,(BP) — BP.(BP). Here, v; and ¢; are gen-
erators of degree 2p’ — 2 = e(i)q for e(i) = ‘;’:11 and ¢ =2p —2. We notice
here the following action of the structure maps on the generators:

n—1
Nr(n) = vy +vprt] —v? 1y mod I, (n>2),
2 2
nr(v3) = v3 +oatf” + 0125 — ting(vy) + viwi(v2) — v 1 mod (p),
3 2 2
Nr(vs) = vs + v3t 4+ 02t — np(v))ty — v} 1, mod b,

(2.1) At)= 3" @1 +vbiaamod, (n=1),

A(ty) = Zj:o i ® l4pil- + v3b1,2 + v2by 1 mod I,
() = -1, ct)=t"""—n,  and
A(e(x)) = (¢ ® ¢)T4(x) for x € BP.(BP).

(¢f [10, Ch. 4]). Here, T : BP,(BP)® BP,(BP) — BP.(BP) @ BP,(BP) de-
notes the switching map given by T(x® y) = y ® x, I,_; denotes the invari-
ant ideal of BP. generated by n— 1 elements vy = p, vi,...,0,-2 (lp =0),
W](Uz) = (Uf + l)lplfz — Uipzl‘fJ - (Uz + Ull‘f) - Uf)l‘l)p)/p, and bl,k> b ;. and b3,k €
BP,.(BP) ®pp, BP.(BP) for k>0 are the elements fitting in the following
equalities
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k+1 k+1 k+1 k+2 k+1 k+1
: ditf )=pbik, dty )=-tf @t —vf by +pbyx and
(2.2 '
k+1 k+1 k+2 k+1 k+3 k+1 k+1 k+1 k+1
iy )=-1f ®1 —17 @t —vy by —vf by, +pbsx,

in which d(x) =1® x+x® 1 — 4(x) € BP,(BP) ®pp. BP.(BP). By the defi-
nition (2.2) and the formulas on A4(#) and A4(z;) in (2.1), we see that

dbr)=b1 @’ =" @by for i>0,  and
(2.3)

d(bso) =b1,0® tzpz — ! ®by1+ by ® tf3 — 15 ® b1,» mod (p).
We have the Adams-Novikov spectral sequence:
Ey'(W) = Extyy, pp) (BP., BP.(W)) = mi—y(W)

for a spectrum W. In this paper, we use the cobar complex Q**BP.(W)
for studying elements of the Er-term: Ey (W)= H*'(BP.(W)) (cf. [7], [4]).
Here,

(2.4) H*'(M) = Extyy, pp (BP., M)

for a BP.(BP)-comodule M. Furthermore, we consider the k-th Smith-Toda
spectrum V' (k) for k=0,1,2 defined by the cofiber sequences

SO 80 Lyoy LSt zr) S vo) s va) L zetp(o)
(2.5)

and iy Loy 2 o) B sehetp )
for the maps p, « and S, which induces a multiplication by p, v; and v, on
the BP.-homologies, respectively ([2], [12], ¢f- [10]). We also consider similar
spectra V' (2), for k > 2 defined by the cofiber sequences

k 3 :
(2.6) skeay ) Loy ) & ), & skeret iy,

We notice that 17(2), is a ring spectrum if k& < (p —2)/2 ([9, Lemma 4.1],
where it is denoted by L;). Note that BP.(V(k)) = BP./Ir11, and BP,(V(2),)
= BP*/(p,vl,vé‘).

Consider a Hopf algebra 7 = Z/p|t1,t2,...] = BP.(BP)/(p,vi,v2,...) with
structure maps obtained from BP.(BP) under the projection BP.(BP) — 7.
May [6] constructed spectral sequences:

o) E =H*(V(L)= H*(7) and
' Ey = P(b;) @ H*(U(L)) = H*(V(L)).

Here, L denotes the restricted Lie algebra associated to the Hopf algebra 7~
and U(L) and V(L) = U(L)/(&(x) — x?) are the enveloping algebras of L
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(¢ is the “p operation”™). The bidegree of the generator b;; is (2, p/le(i)g),
and b, ;’s correspond to those given above for i=1,2,3. The cohomology
H*(U(L)) is isomorphic to the cohomology of the exterior complex E(t;; :
i>1,j>0) over generators #;; with bidegree (1, p/e(i)q) along with the dif-
ferential given by

i—1
(28) d(l,‘J) = Z Lick,j+klk,j-
k=1

In [13], Toda determined H*/(U(L)) for t—s < (p*+3p>+2p+1)qg—4,
which is additively generated by the unit element 1 and the elements in the
table:

ho hi 90 ko koho ha

1 p p+2 2p+1 2p+2 p?

haho g h b hiy ki
pP+1 pr+2p PP+ +3 | pr4+3p+1 pPr4+3p+3 202+ p

L kil Ly my myhy Iy

202+ p+2 2% 4+ 2p 202 4+2p+3 | 202 +4p+2 | 2P +4p+3 | p2P4+2p+1

Iahg Ishy l4g0 lsko lakohy h3

3p24+2p4+2 | 3pP+3p+1 3p2+3p+3 | 3pr+4p+2 | 3p2+4p+3 P’

h3hg hyhy h3go hsko hykoho 92
pP+1 pP+p pPPHp+2 pP+2p+1 pP+2p+2 p?+2p?

g2ho Is ) m; Is My
P22 +1 | pPP+2pP+3p lj:;;%f: If;ile PP+ +p pj;ip;

Table 2.9

Here, the integer under each element is the degree of it divided by g,
and

hi = [t1,1], gi = [t,ita,i] ki = [t iv1t2,4] (i =0);

(2.10) I = [t3,0t2,0t1,0], b =[t1tot1,1], I3 = [t3,0t121,0],

Iy = [t3,012,11,2], Is = [t3112,111,1]), le = [t22t2,111 2);
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my = [t3,0t2,112,011,1), my = [t4,013,0t2,01,0)

m3 = [t31t2,1t2,011,1), and my = [t2213,011,21,0)

LeMMA 2.11. The cohomology H>(W' 3% t3rtOa( ) iy a subquotient of
Z/p{lshshy}, and H> (P’ +30*+4+24(77) = 0,

ProoF. We consider the May spectral sequences (2.7). The module
(E(1;)))>" for t = (p>+3p>+ap+a—2) with a=3 or a=4 is generated
by the monomials of the form

€1,0 6],] €1,2 61,3 €20 €21 €22 €30 €31 €40
Lot ot shob 1300100

with ¢; ; € {0,1} satisfying equations

S=eotetearteaszteaotear+tarteaoteteao, (1)

I =¢13+é,2+¢631+ 0, (2)
3=¢e12+ 61 +e+e30+ 831+ 840, (3)
a=¢1+&,0+ &1 +630+8E31+ o and 4)
a—2=z¢10+&,0+ &0+ 40 (5)

These equations implies

d=c¢ro+e1+e2+e0+e1+80 by (1) and (2), (6)
2=¢0+e1 +ens+ e by (1) and (3), (7)
2=¢e12+&1+&0—¢83 by (2) and (3), and (8)
2=¢1+te1te1—¢e0 by (4) and (5). )

The case for e3 | = 0: In this case, we see that ¢; 1 = &1 =1 and ¢ 9 =0

by (9). Then,
2=¢e.2+&0+e,0 by (6) and e3+eo=1 by (7).

e If gg3=1, then & =0, and so &, =¢&,0=1, and obtain a
monomial #; 16,171 2t3,011,3 at degree (p* + 3p? + 3p + 1)g, which
yields the element /4 hs.

o If &,3 = 0, then &0 = 1, and so &1,2 + &30 = 1.

— If ¢, =1, then the monomial has a factor ¢ 1t 1t2,0t1,2 of
degree (2p*+3p+1)q, and so we obtain
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1,1, 10,0t1,202,2 at a= 3, and
1,1, 10,0t1,2t40 at a= 4.

The first monomial gives us the element hgy = ko€
H>%(U(L)). We name the second monomial xi.

— If &,,=0, then &¢=1, and the monomial has a factor
t1,1t,1t2,0t3,0 of degree (2p2 +4p +2)q, and so the monomial
is 11102 102.0t3.0t2,2 at degree (p* +3p> +4p +2)g. We name
it Xx;.

The case for &3 = 1: In this case, ¢ 3 =&, =¢&,0=0 by (2). By (9),
l=¢1+¢&1—¢0.

e If g0=1, then &, =¢ =1, and the monomial has a factor
tiotiit itz of degree (p? +2p?+3p+1). Therefore, we have
monomials tiot, 1,111,231 at a = 3 and t,0t1,102,113,013,1 at a = 4.
The first monomial corresponds /shyhy. By Table 2.9, we see that
Ishp = 0 and the monomial yields nothing. We name the second
one Xxj.

o If £,0=0, then 1 =¢1+¢&,;. This together with (6) implies
3= 1,2 + &,0 + €3,0, and we obtain &, = &0 =280 = 1. By (8),
&1 ZO, and so &1,1 = 1. Therefore, we have 11,10,202,013,013,1 at
degree (p* +3p> +4p +2)q. We name it x4.

Now put

X1 = 11,112,112,0t1,213,111,0 and Xo = 11,112,112,011,211,313,0-

Then,
dxi)=X1+%, dx)=-X, d)=-X
and d(x4) = —X1 + X2,
and
dtiinatolae) =—x1—x3—xy  and  d(Babob061) = —x2 + X3 — X

Thus, the elements x; for i=1,2,3,4 vyield no element of
HS (P30 +4p+2)4(U(L)).  We also have

d(ti1t,1t1,2t,0 — a0t 11,213,1)
= —t1t1t,2(83 11,0 + 2,2t2,0 + 11383,0)
— 1, 1h,0t, 1t 283,1 + B2 002,121,202, 2811

= —2hg, + L1hsh.



310 Hiroki OkayiMA and Katsumi SHIMOMURA

H>4(V(L)) for t=(p*+3p>+ap+a—2) with a=3 or 4 also con-
tains elements obtained from the FEj-term of the May spectral sequence
(2.7):

bioH>"{(U(L)) for t' =t—p=(p>+3p*+(a—1)p+a—2), and
bf’OHl*”'q(U(L)) for " =t—2p=(p>+3p*+(a—2)p+a-2).

The latter module is trivial. We have a monomial of the complex
(E(t,) ™"

1,113.0t4,0 (' =p*+3p>+3p+2),

on which the differential acts by d(l2ﬁ1l3,ol4‘0) = N1 ol 2l40 + -+ F 0, and
this monomial yields no element of H>"¢(U(L)). Thus there is no element
in these modules.

From Table 2.9, we find no element of the form xb; ;by; or xb;; for
xe H*(U(L)) in our degree. O

In order to study the Adams-Novikov E,-term, we consider the Novikov
spectral sequences

(2.12) E| = Exts(Z/p,0) = E;"(V(0))

(¢f [1, Lemme in p. 61]) and

(2.13)  E1=Z/p[va] ® Exts(Z/p,Q(n+1)) = Exts(Z/p, Q(n))
(¢f [1, (1.4.3)]). Here,

(2.14) Q=2Z/plvr,v2,..] and  QO(n) =0Q/(v1,...,00-1)

are comodules with coactions given by

(2.15) n(on) = vitd .
i=0

We note that
Ext-(Z/p,Q(5)) = H*(7)

in our range.
Among the generators (2.10) of H*(U(L)), the elements g; and k; for
i20, b, Iy and [ survive to the Adams-Novikov Ex-term, E;(V(2),) by the
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Massey products
gi = <hiy hihig1), ki = highivr, higt),
b = <ho, hy, 91>, ly = —=2<hy, hy, hy, ko » and  lg = <h1,hy,92).

These satisfy

(2.16)

gi = <hiv1, hiy hi, 2g; = —<hi higr, hiy
and  2k; = =Dy, hiy hia

(2.17)

for i>0. By a juggling theorem of the Massey products, we also see
that

higi = 0, hiv19; = hik; and gihizs = 0.

We moreover have elements of the E,"(V(2),):

—b
(2.18) U3h2 = <l)2,h2,/’l2> and XbZ,O = <X, (hl,hz), ( b ! >>
0
for an element x e Ey"(V(2),) with xhj =0 = xhy. Hereafter, we write b;
for the homology class of b; ; (see also (3.3)). For example, x = hy, /2, 9> and
klbz. Indeed, klbzhl = g1h2b2 = g1h3b1 =0.

Lemma 2.19.  For the spectra V(2), in (2.6), some of the Adams-Novikov
Es-terms are given as follows:

N 2
E23-,(2p +p>q(V(2)3) = Z/p{hbr.0} and E221'~(3p +p)q(V(2) ) =0.

p—1
Proor. For ¢<2p>+3p+2, Ey“(V(2),) is a subquotient of
Z/plv2,v3) ® H*(J) by the spectral sequences (2.12) and (2.13), and H*(7)
is a subquotient of P(b; ;) ® H*(U(L)) by the May spectral sequence.
We pick generators with given bidegrees out of the module Z/p[v,, v3] ®
P(b; ;) ® H*(U(L)) as in the following table, where a,b € {0,1,2} and xe
H**(U(L)).

bidegree a, b dim x | x | generators

(3,(2p2 + p)g) vvbx | a=b=0 3 — —

vé’v_;bxbi,j a=b=0 1 /12 h2b2=0

By (2.18), the element hyb, ¢ yields an element of the Adams-Novikov E-
term. We easily find only one element k; of bidegree (2,(2p>+ p)g) in
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Z/plv,v3) ® P(b; ;) ® H*(U(L)). This is an element of EZZ’(2p2+p>q(V(2)3),
and no differential hit /b, ¢ in any above spectral sequences. Therefore,
haby o survives to the Ep-term E;’(zpzﬂ’)q(V(Z)Q.

Turn to the second. A monomial of bidegree (2p,(3p>+ p)q) of
Z/pva,v3] ® P(b; ;) @ H*(U(L)) has one of the forms v§vyxb3 ,bi, 2-(1/2) dim x

a.b p—2—(1/2) dim x 2 1. p—2—(1/2) dim x p—1-(1/2) dim x
v§vyxba 0b1,1b7 , vsvbxbi bl 0 ,  v§vbxby 0bi o
1-(1/2) dim » ~(1/2) di
v§vixby 1b{’ (127 dimxand pevbxb? (1P 9™ The degrees of these elements
are
monomials degrees

—2—(1/2) dim x
bl[TO 1m

v§olxh q((p+ Da+ (p*>+ p+1)b+deg x +3p*> — £ dim x)

vé‘vé’xb;obl‘lb%z*(l/z) dim x q((p+Da+ (p> + p+ 1)b+deg x + 3p> — p — & dim x)

Lé’v;’th‘lbl‘faz_“m dim x g((p+1)a+ (p*>+p+ 1)b+degx+3p* —2p — & dim x)

v§olxby gb !y (/P dm q((p+Da+ (p*+ p+ 1)b + deg x + 2p* — £ dim x)

p—1—(1/2) dim x

vivdxby 1 bY g q((p+Da+ (p> + p+ )b +deg x + 2p*> — p — £ dim x)

vsvdxbl, (1/2) dim x q((p+ Da+ (p* + p+ 1)b+ deg x + p? — 4 dim x)

Since the degree is (3p>+ p)g, we see that deg x/q = —a—bmod p, and
deduce that ¢« =b=0. Indeed, degx/g=dmod p with 0<d <3, 0<a<

p—1and 0<b <2 Thus, x=gp, ki, and we have a candidate g1b2 ob” 2
for a generator. Note that d2p,1(glb2_,0b10 )—glhzblp_o —h1k1b10 in the
second May spectral sequence in (2.7). Since hk; #0 by Table 2.9, we
have no generator at the degree. O

Lemma -~ 2.20. We  have  a  non-zero  element v3vibobi €
E26,~(17 +3p +4p+2)q(V(2)3)'

PrOOF. Put 19 = p*+3p? +4p+2. We consider the element v3v)bb} €
E6”°‘7(V(2)3) by the spectral sequences (2.7), (2.12) and (2.13). For this
sake, we compute the Ext group E = Ext5 “Z/p,Q ( )) for the comodule
0(2) in (2.14). We study whether or not the element v3v)bob? is in the image
of a differential of the spectral sequences, and so it suffices to consider the
modules

M(a,b,¢) = (o$03ugH>* (V(L))*9 C (P(e2, v3,00)/(63) @ H** (V (L))",

We read off from Table 2.9 and Lemma 2.11, the module
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Z/p{vabb,} (a,b,c) =(0,0,1)
Z/p{v3v4h2b3, U3U4h1b0b1} (a, b7 C) = (0, 1, 1)
Z/p{vzmhzbobz’o, Uzv4h1b1b2,0} (a, b, C) = (1, 0, 1)
Z/p{v3lzb271} (a,b,c) = (O, 1,0)
Z/P{Uzv3h3b%,o, 0203h1b2,0b2, 1, V203K 1 b,
1)21)3/’11[?1[)3.’0, 1)21)3/12[)0]7370} (a, b C) = (1, 1, O)
M(a,b,c) C Z/p{v§h3b0b270,1)32/’11])2}72’0,032/’11[)0[)2,’1} (a,b C) (0 2 O)
Z/p{vavlhob3 o} (a,b,¢)=(1,p,0)
Z/p{vzv3 hoboby, v3vihi b7} (a,b,c) = (2, p,0)
Z/p{vi” hobobz’o} (a,b,c) = (0,p+1,0)
Z/p{valshshi } (a,b,c) = (1,0,0)
Z/p{v%lgbo,U%k1h1b2717l]§h2b3_0b2_0} (a,b,c) (2 O, O)
0 otherwise.

Here, we write A C B if 4 is a subquotient of B. Let E(a,b,c) denote a
submodule of E generated by the elements detected by some elements of
M(a,b,c). We first verify which of the elements on the right hand side of the
above relation yields an element of M (a,b,c), and then evaluate E(a,b,c) by
the spectral sequences (2.13).

We consider the second spectral sequence (2.7). Note that the May filtra-
tion of the elements 4; ; and b; ; are 2i — 1 and p(2i — 1), respectively. Then,
the May differential d5,_; : Ezsp 1 — Eg;f’ll"‘*z]’ﬂ of the spectral sequence acts
as

drp—1(b2,i) = b1,ihiss — hiz1by, it for i >0, and
drp—1(b3,0) = —hiba 1 + b2 oh3

(2.21)

by (2.3).
We start from the modules M (0,1,1), M(1,0,1), M(1,1,0) and M (2, p,0).
By (2.21), hzbg = hlbobl, hzbob;o = hlblbz,o and hzbobl = hlblz in H*(V(L)),
and
d2p—l(h3b§"0) = —2h3(b1,0hy — h1b1,1)b2,0 = 2h3h1by,1b2 0,
dap—1(h1b2,0b2 1) = —hi(b1,0hy — hby,1)ba 1 — hibao(b1,1h3 — haby 2)
= h3h1 by 1b2,0,
drp—1 (b1 1b30) = —h1by 1 (—hiba1 + b oh3) = hshiby 12,0,
dap—1(haby,0b3,0) = —haby o(—hiba1 + b2 oh3) =0, and
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dyp—1(b2,0b3,0) = (b1,0h2 — h1by1,1)b3.0 + bao(—hibo1 + by oh3)
= hyby 0b3.0 — hib1,1b3.0 — Mibaoba 1 + h3b§‘0~

These differentials imply that the rank of the module M(1,1,0) is not
greater than three. Therefore, M(0,1,1) C Z/p{vsvahb3}, M(1,0,1) C
Z/p{l)21)4h2b2 ()bo} (1 1 O) |: UzU3Z/p{h2b0b3 (),//l b2 0[)2 1 — h b b3 (),k h bz}
and M(2,p,0) C Z/p{viv)hbob;}. Furthermore, we have dy, 3(/hbi obs o) =
—haby o(br,oh2,2 — ho1b12) = —gabi o + kibyobi 2, and dap—3(h1b2,ob2 1 —
h1b171b370) = hlbl,l(b1’0h2’2 — h2,1b1,2) = gzbfo — glbl,lb1,2~ Therefore, we ob-
tain M(l, 1,0) C Z/p{l)21)3k1/11b2}.

Consider the spectral sequence (2.13). The differentials of the spectral
sequences are read off from the structure map (2.15). For example, d)(vs) =
v3hs for n =3 and d(v3) = vl for n=2. For M(O, 1,1), noticing that vsh,
is represented by a cocycle 04112 + v3e(d) )Jrvztp ¥ in the cobar complex
0(2) ® 7, we compute

2 2 2 2
d(vat]” + vse(t] ) + vatl 1))

3 2 2 2 2 2 3 2
=ut] @1 [+t @1 ,+unt] @c(if)—vt] @1,

2 2 2 2 2 3
ot @1 — vl @1, — 0l @1 — vt @
& 2% o P
=20t ® t2 —unh" ®f

in which the underlined terms with a subscript cancel each other out. The
cocycle 217 '® 5 g IIZP '® tf ’ appearing in the right hand side of the above
computation represents 2g, # 0 € Exts(Z/p, 0(3)) (see (2.14) for Q(3)). It
follows that vshy does not survive to Exts(Z/p,Q(2)) in (2.13). Thus,
E0,1,1)=0.

For M(1,0,1), we compute

-b
(2.22) h3haby o = h3<h2, (h1, h), ( bol >>

-b
= (<ha ha, by, <h3,hz7hz>)( bol ) = g2bo

by the juggling theorem in the E,-term of the second spectral sequence in (2.7)
by (2.18) and (2.17). We also note that {/3,/,, ) =0 by considering d(z}).
Therefore, d)(vahabs 0bo) = v3g2b§ in the spectral sequence (2.13) for n = 3, and
E(1,0,1) =0 follows.
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In the spectral sequence (2.13) for n =2, we compute
dl (U%glbz) = 20203h2g1b2 = 20203k1h1b2 and
dl(Uzv§)+lbob1) = U%vfhzbobl,

where we use the well known relation gihy; = hky. Therefore, the triviality
of E£(1,1,0) and E(2,p,0) follows.
Since Ayl =0 = h3l, by Table 2.9, we see that

—b
leZ,l = <127 <h21h3)a ( b12)>

in H*(V(L)) in the same manner as (2.18). Note that {/,h,hy) = 2l4h; and
{hyybhyhsy =0 in H*(V(L)). Therefore, in the spectral sequence (2.13) for
n =2, we compute dj(v3hbsy 1) = —2v2l4sh1b, #0 and so E(0,1,0) =0.

Since d2p—1(b3,0b1,0> = (—h1b211 + b2701’l3)b110 and

drp—1(M1ba 1b1,0) = —hi(b1,1hs — habi 2)b1 o = —h3hiby 1D 0,
we see that M(0,2,0) C Z/p{vihbsoby}. In the spectral sequence (2.13) for
n=2,

-b
dy(V3h1b0) = 20203h2<h1» (h1,ha), ( bol >>

—b
= 2vv3{ha, I, (hl,h2)>< bol ) = 2003(g1b1 — 2k1bo)

by (2.17) and (2.18). It follows that E(0,2,0) = 0.

In the spectral sequence in (2.7), dy,—1(kib30) = ki(—hiby 1+ b2 oh3) =
—klijlbz,l and kihby 1 =0e H*(V(L)). By (2.3), we compute the differential
d(t]” ® byo ® b39) in the cobar complex for computing H*(V (L)), and deduce
that

dap—3(hab2.0b30) = haba o (b1 0h2,2 — h2,101,2) = g2b2 01,0 — k1b1,2b2 0

in the spectral sequence. Here, xb,o for x =g, kib, are given in (2.18).
Thus, M (2,0,0) C Z/p{v3isho}.
We have M(1,p,0) =0 and M(0,p+1,0) =0, since

drp—1(hob2o) = —ho(b1,0ha — h1b1 1) = hahoby .

Therefore, E(1,p,0) =0 and E(0,p+1,0) =0.
Hence, Ext};"(Z/p, Q(2)) is a subquotient of the module

Z/p{1)412b1 5 1)214/13/’11 s U%ld?o}.
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We consider the element vsh. By (2.16), h e E;*(V(2),). Let /> denote a
cocycle representing 5, in the cobar complex for computing E;"*(V(2),). By
Table 2.9 together with (2.16), we see that syl =0 and /3l =0, and so we
have cochains y; such that d(y;) = ¢/ '®1, for i= 0,3 in the cobar complex.
Then,

— 3 — — 2 - 2
d(val —v3ys +viyo) =vst] @bL—viti @ L+ vt L — vt ® ys
—U3tf73®72+v§711®1_2
2 - 2

=0t} ®hL -1 ® y3) mod (p,v1,03).

Since ) ’ ®hL— tf ’ ® y; represents an element of the Massey product
(hy, hs, by, which belongs to H* (P’ +2+3»+14(y(L)). Therefore, we deduce
that <y, h3,L) =0 by Table 2.9, and so we have a cochain z such that d(z) =
lfz ®L— t{’z ® y3. Now the element vshb; yields an element of E;"(V(2),)
represented by (v4ly — v33 + v yo — 0122) ® by 1.

The other generators of the module are represented by the Massey
products

—202{ha, o, o, ko Yhshy and  v3<hy, ha, g2 bo

in the Adams-Novikov E,-term E; “(V(2);) (¢f. (2.16)). Therefore, the differ-
entials of (2.12) on these generators act trivially, and v3vyhob? is not in the
image of any differentials of the spectral sequences. O

3. On the product o15,7,,,

We recall the definition of the Greek letter elements. The Greek letter
elements in the homotopy groups 7.(S°) are defined by composites

(3.1) ay = jo'i,  By=jnp'hi  and oy = jiipyihii

for the maps in (2.5) and the map y: £ 7*D4y(2) — 1(2) inducing a mul-
tiplication by v; on BP,-homologies given by Toda [13]. We notice that
(1A V(0))a’i = v{ € BP./(p), p'iii= (A V(l))vseBP,/I, and (1A V(2))y*iriri
= 0§ € BP./I; for the unit map 1: S® — BP of the ring spectrum BP. Then
by the Geometric Boundary Theorem (¢f [10, Th. 2.3.4]), the Greek letter
elements (3.1) are detected by those in the Adams-Novikov E>-term defined
by

O_Cs :50(”{) eEzlﬁsq(SO)V ﬁ_s :5051(05) €E227(Sp+sil>‘1(So) and
(3.2)
,}_)5 = 505]52(1}‘3?) c E23‘(Sp2+(5*1)P+S72)q(SO).
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Here 0; : E;*(V(k)) — E;™*(V(k — 1)) denotes the connecting homomor-
phism associated to the cofiber sequences in (2.5) (V' (—1) = §°). Traditionally
we put

i+1

(3.3) hi=["1e ENP'(SY)  and b= [b ) e EX?"I(SY),

where [c] denotes the cohomology class of a cocycle ¢ € Q“*BP,. We note
that /; corresponds to /4; in Table 2.9. Then, by definition, we have well
known relations (cf. [4], [10]):

(3.4) o = ho, By = by and By = 2v2bg + ko mod I

in the E,-term. Furthermore, it is also showen in [4, Lemma 4.3] that

t ¢
(3.5) 7= 2(2) v hoby g + 3 (3) vy mod I = (p, vy, v2)

in E23’(tp2+<’_l)p+t_2)q(50) = {30+ =Dp+t=24(BP)  where hybyo and Iy are
given in (2.18) and (2.16). By Lemma 2.19, we have

LEMMA 3.6. 7, = 2haby g # 0 € Ex Py (2),).

LemMmA 3.7. The element 7,., GE;‘(p3+3pz+2p)q(S°) satisfies that 7, ., =
vyy, mod(p, v1,v3).

Proor. The relation 7,,, = v{7, follows from computation:
62(v"?) = v§62(v3) mod(v5).
0102 (V1) = 61 (0292 (03) + v3x) = 006102 (v3) mod(v?, v}).
000102 (V1 7?) = 00(0§6102(3) + v}y + v3z) = 0§609102(v3) mod(p, vy, v3),
for elements x e Ey*(V (1)), and y,z e E;*(V(0)). O
LemMa 3.8.  For the spectrum V(2)y in (2.6), we have
hokog, = 0 € ES 424 (2) ),

Proor. By the juggling Theorem of the Massey products, (2.18) and
Lemma 3.6, we compute

—b
hokoy, = goh17, = 2g0(<{hi, ha, i), <h1,h2,h2>)( bol)

= 4gog1b1 + 2goki1b1 = 0

in ESCr ¥4 0) ) Indeed, (hy,ha, by = —2g1 by (2.17), and gogi = 0 =
gok1. Therefore, the lemma follows. ]
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LeMmA 3.9. In the Adams-Novikov E,-term,
%1527, = 4uhoby € B (1(2),).

Proor. By (3.4) and Lemma 3.8, we see that &;5,7, = 20,4 3,7,, which
is congruent to 4v2hobohabr ¢ modulo (p,vl,vg) by Lemma 3.6. We compute

1 _ —b
— 0201 17y = v2hobo( ha, (hi, ha), :
4 by

—b
= hobo<v2, hy, (h17h2)>< bol )

—b
- hobo(<vz,hz,h1>,<v2,h2,h2>)( bol)

= hobo(—<v2, hy, hy Yby + {va, hy, hy Yby)
= —vy{ha, iy, ho Yboby + {va, ha, hy Yhobobg
= 03bob} + v3hahob}.

Here, the differential d(c(z3)) (see (2.1)) gives us a relation {hy,hi,hyy =
v,b; mod I, in the E,-term. We further see that hzhobg =0e H*(V(L)), since
drp—1(hob1,0b20) = hohzblz_o in the May spectral sequence. O

THEOREM 3.10. 51,7, # 0 € ES (30 H4+2)0(g0)

ProoF. By Lemma 3.7, we have 7,,, = 01, € E;"("3+3”2+2")q(V(2)3), and
S0

_ 5= _ 5 6,(p3+3p2+4p+2
D17y n = 151 foy = Av3ufbobt € By 1Ty (2),)
by Lemma 3.9. Now the theorem follows from Lemma 2.20. O

PrOOF OF THEOREM 1.8. For r=p and = p+1, 5, =0 by (3.5), and so
the proposition holds in these cases. Suppose now ¢> p+2. Note that
By = ko] = ko and 7, = 2(5)v§ 2haby o + 3(5)vs 3l for t>2 in E;(V(2)) by
(3.4) and (3.5) (cf. [4, p. 234], [4, Lemma 4.3]). Here, BP.(V(2)) = BP./Iz and
Iy denotes the generator given in [13, p. 55]. This implies that 7, = v Vi—p for
t>p+2in E;(V(2)), and we also see vihy=uvshs in EJ(V(2)) by d(va),
where ;€ E;”(V(2)) is an element represented by a cocycle ¢/". There-
fore, @f3,7, is represented by v§7p72h3k0(2(§)03h2b2‘,0+3(§)l4). Here, we see
that h3k0h2b2ﬁ0 = k0g2b170 by (222) We also see that hskyly = h3hom; for the
generators in Toda’s calculation [13, p. 55]. Since both of kog, and h3h, are
zero by Toda’s calculation (see Table 2.9), these imply the triviality of &;/,7,
for t = p+2. ]
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4. Non-triviality of f{°f,7,.,

We begin with a recollection of some results from [4]: Q**BP.{a} de-
notes a quotient complex of the cobar complex Q"*BP, by a subcomplex
generated by monomials m ® ' @ --- ® t with > | E; > (a,0,...). Here,
£ for a sequence E = (ej,e,...) denotes the monomial #{'z;*... € BP,(BP),
and the set of sequences admits the lexicographical ordering (cf. [4, p. 235]).

Then, the gamma elements 7, for # > 2 in the Adams-Novikov E>-term are
represented by a cocycle

(4.1) 5, = —1w! v e ® 1 mod J3 = (p, vy, 00 7")

in Q¥ +=Dpt=24pp 152 1Y (cf [4, p. 239]). In this section, we consider
a spectrum V(2), | in (2.6). Note that BP.(V(2), ;) = BP./J5.

THEOREM 4.2. Bl 7°fy7,., # 0 € E511(S) for t=p* +4p> +2p + 1.

PrOOF. Let Ge C = Q¥ ““BP, be a cocycle representing the element

3 B17, 5. Then, G =v{G,modJs for a cochain

Gy = —20§ Pvsko ® 1y ® (2v2b1,0 + ko) ® BT

in C=Q¥LCGriapp {p2 4 2} by (3.4) and (4.1). Note that G, is the
cochain Z of [4, p. 240] for ¢ = 2, which is shown not to be a coboundary in
C/J;. We claim that

(4.3) G has no term with vs as a factor modulo Js.

Indeed, if G =v{Gs+vgw+w' mod J3 for w,w' e Q*BP./(J3+ (v4)), then,
applying the differential d to the equality, we obtain 0 = v{d(G>) + d(vs) ®
w+ vad(w) + d(w'). Since d(G2), d(vs) and d(w) have no term with vy, we
deduce that d(w)=0. Therefore, [w] e Ey" Gr* ”)q(V(Z)p_]), which is zero
by Lemma 2.19. It follows that there is a cochain w such that w = d(w).
So replace vaw by d(vs) ® w so that G has no term with factor v4 modulo
J3.

Suppose that there is a cocycle y € Q¥ BP, such that d(y)=G in C.
Put y =y +ogyr +0vfys+z for y; = Za_bvg’vé’y,-,a‘,b (i=1,2,3) with y;,p€
Q*BP,/Is and ze J;Q%7*BP,. By a similar argument showing 4.3), we
replace v4y, by a linear combination of terms without factor vs. Thus we
may put y = y; +oly;+z By (2.1), we see that d(t;) e Q*BP./J3{p> + 2}
has the only one term v;b;; if i =3, and b, if i =4 with factors v, and
v3. It follows that for xe Q*"“BP,/Is with u<t d(x)e(Z/p){l,1}®
QHLMBp, /Is{p> +2} by degree reason. Indeed, v3b}, = 0e Q**ipp,/
L{p*>+2} and v3b3 | has an internal degree greater than 7¢. Since d(v?) =
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bvzvé’*ltl”2 in QV*BP,/J3{p>+2} by (2.1), we see that
d(y) = d(y) + vfd(ys) = v{ G2 € Q¥+ MBP, | J3{p* + 2}.

Here, we notice that d(z) = 0 mod J3, since J3 is an invariant ideal. From the
equality, we see that d(y;)=0 and d(y;) =G, in Q¥+.Cr*»+lapp
J3{p*+2}. Thus, Go(=2 in [4, p. 240]) is a coboundary in the complex.
This contradicts to the conclusion of the proof of [4, Th. 4.1]. O

COROLLARY 4.4. ﬁf’_zﬁzsz # 0 € 73149212503 (S).

Proor. By virtue of Theorem 4.2, it suffices to show that there is
no element x e Ey"9(5% such that dy, | (x) =B Br7,s, in the Adams-
Novikov spectral sequence. In [7, Th. 2.6], it is shown that the E,-term
Ezz’*(SO) is generated by the elements ﬁsP%kH for integers pfs>1, i,k >0,
j =1, subject to j < p'if s=1, p¥|j<a,x and a; 41 < j if p*'|j, where
ay=1, a,=p"+p" ' —1 for n>1. The internal degree of the element
Bypijjk1 is (sp'(p+1) — j)g, and we have an equation 7 —1=sp'(p+1)—j
to find the element x. Note that sp’ — j >0, and we have 2p> > sp’*! and
so i <2. Thus, we obtain the only solution (i,j,s)=(1,p,p+3) of the
equation. In this case, k=0 by the relation p*|j<a; 4. The element

Bip+3)p/p(= B(p+3)p/p,1) i @ permanent cycle by [8]. Thus, we have no such
element x, and hence S/ 72ﬁ297p +» Is not in the image of the differential d»,_
of the spectral sequence. ]
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