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ABSTRACT. For a positive integer d, the d-dimensional Chebyshev-Frolov lattice is the
Z-lattice in IRY generated by the Vandermonde matrix associated to the roots of the
d-dimensional Chebyshev polynomial. It is important to enumerate the points from
the Chebyshev-Frolov lattices in axis-parallel boxes when ¢ = 2" for a non-negative
integer n, since the points are used as the nodes of Frolov’s cubature formula, which
achieves the optimal rate of convergence for many spaces of functions with bounded
mixed derivatives and compact support. Kacwin, Oettershagen and Ullrich suggested
an enumeration algorithm for such points and later Kacwin improved it, which are
claimed to be efficient up to dimension d = 16. In this paper we suggest a new
algorithm which enumerates such points in realistic time for d = 2", up to d = 32. Our
algorithm is faster than theirs by a constant factor.

1. Introduction

Let d be a positive integer and X € R be a d-dimensional lattice, i.e.,
there exists an invertible d x d matrix 7 over IR such that

X =T7(Z% = {Tk|ke Z"}.
The lattice X is said to be admissible if

d

p(X) = inf{ [ I

i=1

(x1,...,xq) € X\{0} p > 0.

Thus, for an admissible lattice X, the region |x...x4| < p(X) contains no
lattice points other than the origin. Using an admissible lattice X = T/(Z),
Frolov’s cubature formula approximates the integral

1(f) =

S (x)dx

J[—l/z,l/z]“
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of a function f:[—1/2,1/2]Y = R by

Oy 17(f) == |det(a™'T)| > f(x)  for a=>1. (1)

xea-'XN[-1/2,1/2]¢

Thus the nodes are the shrunk lattice points ¢~'X inside the box [—1/2,1 /Z}d.
Frolov’s cubature formula was first proposed by Frolov [4] and has been
studied in many papers, see [1, 2, 3, 8, 10, 11, 12, 13, 14, 15]. One prominent
feature of the formula is that it achieves the optimal rate of convergence
for various spaces of functions with bounded mixed derivatives and compact
support. This means that the approximation is automatically good, even
without knowing specific information about the integrands. The constraint
of compact supportness can be removed using some modification, see [9].

The implementation of Frolov’s cubature formula requires one to enu-
merate the points in the set a~'X N [=1/2,1/2]%, or equivalently, the points
in the set X N[—a/2,a/2]?. However, the enumeration is a difficult task even
in moderate dimensions. Recently, an efficient enumeration algorithm for the
so-called Chebyshev-Frolov lattices up to d = 16 was proposed by Kacwin,
Oettershagen and Ullrich [7]. Since such lattices are admissible when d = 2",
it is possible to implement Frolov’s cubature formula for d = 2", up to d = 16.
Based on the algorithm, numerical experiments to measure the performance
of Frolov’s cubature formula are given in [5] and the recent preprint [6].
Our contribution in this paper is to suggest a new efficient enumeration
algorithm for the Chebyshev-Frolov lattices for d = 2". 1t is efficient up to
d=32.

The Chebyshev-Frolov lattices for d = 2" are examples of admissible lat-
tices, suggested by Temlyakov [11, IV.4]. Let P, be a rescaled d-dimensional
Chebyshev polynomial defined by

P4(x) = 2 cos(d arccos(x/2)) for |x| < 2. (2)

Its roots are given by

Cn$k2cos(%), k=1,...,2" (3)

With these roots, we define a Vandermonde matrix 7 by
i—1\d
T= (CZL,I‘ )i,j:l'

Now the d-dimensional Chebyshev-Frolov lattice is defined as the lattice
T(Z?%). 1t is known that the lattice T(Z?) is admissible if and only if
d =2". This is a special case of a general construction method for admissible
lattices for any d elaborated in [11], see also Section 2. An advantage of the
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Chebyshev-Frolov lattices is that the generating matrices are explicitly given.
Using other kinds of Chebyshev polynomials, we can similarly construct admis-
sible lattices for d with d +1 or 2d + 1 being prime. However, this is out of
the scope of this paper.

We now briefly recall results in [5] and [7]. The paper [7] established an
enumeration algorithm of the lattice points in [—a/2,a/2], for any orthog-
onal lattices. The approach is as follows. The enumeration of the lattice
points T(Z9) N [~a/2,a/2]" with a d x d matrix T is equivalent to the enu-
meration of the points Z¢ N T-'([—a/2,a/2]?). They used a “bounding set”
B> T7'([—a/2,a/2)") which allows for an easy enumeration. Since different
T may give the same lattice points, we need to choose 7' carefully. The idea is
that if 7' is orthogonal then we can take a comparably small bounding set; for
the sphere S of radius a\/d/2 with center at origin, which includes [—a/2,a/2] ‘l,
we can take the ellipsoid 77!(S) as a bounding set. Since all the axes of the
ellipsoid are aligned with the coordinate axes, it allows for an easy enumer-
ation. They further discovered that Chebyshev-Frolov lattices are orthogonal,
hence this approach is applicable to the desired enumeration. They claimed
that it is efficient up to d = 16. It is improved in the master thesis of Kacwin
[5, Algorithm 2] by taking a reduced bounding set.

Our algorithms are based on another property particular to the Chebyshev-
Frolov lattices. Our key observation is that the 2”-dimensional Chebyshev-
Frolov lattice with a certain permutation of coordinates is generated by a
matrix A4, which satisfies a recursive property as in formula (4) in Section 3.
This property reduces the 2"-dimensional enumeration to a number of 2"~!-
dimensional enumerations as in Lemma 2. This recursion implies Algorithm 1.
By applying this repeatedly, eventually the enumeration is reduced to nested
1-dimensional enumerations, which can be implemented as 2”-nested for-loops,
see Theorem 3 and Algorithm 2. In other words, we do not need a bounding
set: The set 4, '([—a/2,a/2]") already allows for an easy enumeration. This
strongly supports the fastness of our algorithm. We will describe our algo-
rithms in Section 3.

Let us compare the pros and cons of the algorithms in [5, 7] and our
Algorithm 2. Firstly, their algorithms are more widely applicable. They are
applicable to any orthogonal lattices, and in particular to the construction
of Frolov cubature rules not only for the dimension d = 2" but also for d with
2d +1 or d + 1 being prime, whereas our algorithm is only for the dimension
d =2". Secondly, our algorithm is faster than theirs. As far as we observed,
the execution time of both algorithms linearly depends on the scaling pa-
rameter N and exponentially depends on the dimension d. We observed that
our algorithm is faster by a constant factor for a given d, which is about
10,6,8,10%,6 x 103 for d = 2,4,8,16, 32, respectively. Hence our algorithm is
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much better when d = 16,32. All results of our experiments are written in
Section 5. Thirdly, another advantage of our algorithm is that it can enu-
merate the Chebyshev-Frolov lattice points in arbitrary axis-parallel boxes.
This helps us to implement not only Frolov’s cubature formula but also its
randomization. Randomized Frolov’s cubature formula was introduced by
Krieg and Novak [8] and studied further by Ullrich [14]. It inherits the
prominent convergence behavior of the deterministic version as well as it is
unbiased. Further it also has the optimal order of convergence in the ran-
domized sense for Sobolev spaces with isotropic and mixed smoothness. We
will explain how to enumerate the integration nodes of the deterministic and
randomized versions with our algorithm in Section 4.

Throughout this paper we use the following notation. The symbols N,
Z, Q and R denote the set of non-negative integers, integers, rational numbers
and real numbers, respectively. For xi,x; eRY, (x1;x2) e R¥ denotes the
vector where x; and x; are vertically concatenated. We denote by SL,(Z) the
special linear group of degree d over Z, i.e., the set of matrices over Z whose

determinant is 1. For xj,...,x; € R, diag(xi,...,x;) denotes the diagonal
matrix with (xj,...,x,) at the diagonal. For a vector b = (by,... ,bd)T e R?
and ¢=(c1,...,cq) € RY we define [b,¢] := H;il[b,,ci} and max(b,c) :=

(max(l)i,c,'))i‘l:1 e RY, and write b < ¢ if b; < ¢; holds for all 1 <i<d.

2. Construction method of admissible lattices

One general construction scheme for admissible lattices is the one studied
in Temlyakov [11, TV.4]. Let py(x) € Z[x] be a d-dimensional polynomial
with integer coefficients satisfying the following three properties: (i) its lead-
ing coefficient is 1, (ii) it is irreducible over @, (iii) it has d distinct real roots,
say (i,...,{; € R. With these roots, we define a Vandermonde matrix 7'
by

T = (C;’_l)f,-:]-
Then the lattice T(Z“) generated by 7 is admissible. Frolov used ¢4(x) =
-1+ H_/-d:](x —2j+ 1) in his paper [4]. Note that he originally used the lat-
tice made from ¢4(x) not for T in (1) but for its dual lattice. However, later
it was shown that 7'(Z“) itself is admissible if and only if its dual lattice is
admissible, see [10, Lemma 3.1] and also [15, Lemma 2.1] for a Vandermonde
matrix. One disadvantage of the choice of g, is that its roots are not given
explicitly.

In [11] Temlyakov proposed to use the rescaled Chebyshev polynomials
P; as in (2) when d =2" for a non-negative integer n. It is shown that Py
satisfies the conditions (i) and (iii), and its roots are given as in (3). Further
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P, is irreducible if and only if d = 2". Thus the Chebyshev-Frolov lattice, i.c.,
the lattice constructed as above using P,(x), is admissible if and only if d = 2".
It is also known that Chebyshev-Frolov lattices are orthogonal.

THeorREM 1 ([7, Theorem 1.1]). For any positive integer d, the
d-dimensional Chebyshev-Frolov lattice T(Z?) is orthogonal. In particular,
there exists a lattice representation T = TS with some S € SLy(Z) such that

e For each component t;; of T, it holds that |t; ;| <2,

o T'T =diag(d,2d,...,2d).

3. Enumeration of the Chebyshev-Frolov lattice points

3.1. Recursive property of generating matrices. We consider coordinate-
permuted Chebyshev-Frolov lattices. We define a(k) € Z for k € N recursively
by o(1) =1 and

a(k) =2"" + 1 — gk —2")

for k with 2" +1 <k <2™!', neN. For all ne N, the map o(-) is a per-

mutation on {1,...,2"}, which is shown by induction on n as follows. The
case n =0 is trivial. We assume this holds for n. By the definition of (k)
and induction assumption, o¢(-) is a permutation on {1,...,2"} and also a per-

mutation on {2"+1,...,2""1}. This proves the result for n+ 1.
Let ne N and put d =2". We now define &, € R by

fnyk:2cos(%) for k=1,....,d,
and consider a Vandermonde matrix V, € R defined by
1 & fﬁl
d—1
— (éi;l)ijzl _ 1 5,1:_2 e e
i 5}; J 3::]1

Comparing &, ,’s and {,;’s defined as in (3), we find that &, ,’s are also
the roots of P,(x) since o(-) is a permutation on {1,...,d}. Thus the
lattice V,(Z¢) is a coordinate permutation of the usual Chebyshev-Frolov
lattice.

Further we define a diagonal matrix D, € R by

Dn = diag(élﬁ»l,la ceey él’H’l‘d)'
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We are now ready to define a matrix 4, € R recursively by 49 =1 and

An  DyAy
A = . 4
e (An _DnAn) ( )
The following lemma shows that 4, can be used as a generating matrix of the
Chebyshev-Frolov lattices, i.e., V,(Z9) = A,(Z7).

LEMMA 1. For all ne N, there exists S, € Z*"*" such that det S, = +1
and V,S,, = A,.

Proor. We prove the lemma by induction on n. The case n = 0 is trivial
since Vo = Ay =1. Now we assume that the assertion holds for » and prove
it for n+1. Putd=2". Define a matrix V., € R*** obtained by column
swapping of Vi as

2 2(d—1) 3 2d—1
1 Spt1,1 70 5n+1,1 ottt S én+1,1
2 2(d-1) 3 2d—1
r 1 n+1,2 é/n+1,2 éﬂJﬁl,Z én+lﬁ2 n+1,2
n+l —
2 2d—1) 3 2d—1
L &ioa fn+1,2d Sntl,2d fn+1,2d “ Spyl,2d

Since ¥V, is obtained by column swapping of V., there exists W, | € Z2<2d
such that det W,y; = £1 and V, | = Vi1 Wiy
Define U, = (u,-,j)lf""j:1 e Z by

i J—1
uij = (=2) (i_l)

where ({) is a binomial coefficient and is defined to be zero if i > j. Since
U, is upper-triangular and all the diagonal entries are 1, U, € SL;(Z) holds.

u, 0 . . .
We now compute V”’H< 0” U )7 where 0 e R is the zero matrix. First
n

we note that we have &, 40 = —&,uq; for 1 <i<d by using cos(0+n) =

—cos . Hence, denoting by V, the d x d upper-left submatrix of V' ., we

n+1»
have
(2
vV, —-D,V,

Further, using the formula cos 20 =2 cos? 0 — 1, we have &,; = &7, —2 for

1 <i<d and thus & . = (52 - 2)/ for all /e N. Thus, using the binomial

n,i n+l,i -
expansion of this equality, we have V,U, = V,. Therefore we have

, (Ui 0N _ (V, DV, U 0\ (V. DV,
ntl 0 l]n N 17” —DnI}” 0 Un B Vn _DnVn .



Enumeration of the Chebyshev-Frolov lattice points 145

By induction assumption, there exists S, € Z9*¢ such that det S, = +1 and
V.S, = A,. Hence

Vn Dl1 Vn Sn 0 _ Al‘l DnAn _ A
Vn _DnVn 0 Sn B An _DnAn -

Thus we have shown that V,,S,.1 = 4,41 with

u, 0 S, 0
St = W”*‘( 0 Un><0 Sn>'
This shows that the assertion holds for n + 1. O

3.2. Recursive enumeration. In this subsection we give a recursive algorithm
to obtain the Chebyshev-Frolov lattice points A,(Z)N[b,c] = {4,k |keZ",
b< Ak <c}forb,ce RY. We start with the definition of functions which are
used to state Lemma 2. Then we reduce a 2”"t!-dimensional enumeration to
2"-dimensional enumerations.

DEerFINITION 1. Let neN and d:=2". Let al,bl,bz,cl,qe]Rd and
b= (b;by), ¢:=(c1;¢;) e R*.  We define functions p,(b), ¢,(a;,b,¢) and
w,(a1,b,¢c) by

pn(b) = (b1 + bz)/z € IRd,
o,(ar,b,c) = D;l max(b, —a;,—¢; +ay) € RY,
w,(a1,b,¢) = D, min(e; —a;,—by + a1) e R™.

LEMMA 2. Let neN and put d =2". Let by, b, c1,¢,x1,x € RY and
define b,c,x e R* by b= (by;by), ¢ := (c1;¢2) and x := (x1;x5). Then the in-
equality b < A,1x < ¢ is equivalent to the simultaneous inequalities

pn(b) < Anx1 =< pn(c)7 (5)
¢,(A,x1,b,¢) < Ayxy <y, (A,x1,b,¢). (6)

Proor. From (4), b < A,;1x < ¢ is equivalent to

bl < Anxl + DnAan <c,
b, < A,x1 — D,A,x; < c5.

By adding the inequalities in (7) we have

Pu(b) < Apx1 < py(c). ®)



146 Kosuke Suzuki and Takehito YOSHIKI

On the other hand, (7) is equivalent to

{bl - Anxl < DnAan <c - Anxh
-+ Anxl < DnAan < *b2 + Anx17
which is equivalent to
max(b1 —Aux1,—c + A,,xl) < D,A,x; < min(c1 — Anxl, —b, + A,,xl).

Since D, is a diagonal matrix whose diagonal entries are positive, this in-
equality is equivalent to

$,(Ayx1,b,¢) < Ayxy < p,(Anx1, b, ). ©)
Thus we have
(7)  (7) and (8) < (9) and (8),
which is what we desired to prove. O
Let neN, d:=2" and b,ce RY. We define
Pu(b,c) = {keZ|b< Ak < c}.
Lemma 2 implies the following theorem that utilizes the definition of Z2,(b,c).

THEOREM 2. Let neN, d:=2" and b,c€ R*. Then we have
k ke 2, b),p, ,
P11 (b,¢) {(kl) _ | 1 € 2(0,(8).p,(0)) }
2

ky e g}n(¢n(Al’lkla ba C)v V/n(Aﬂkla ba C))

This theorem reduces an enumeration in dimension 2"*! to enumerations
in dimension 2”. Further the case n = 0 is easy to solve, since k € 2,(b, ¢) for
keZ and b,ceR is equivalent to b <k <c. This justifies Algorithm 1,
which gives the set %,(b, c).

3.3. Sequential enumeration. One disadvantage of Algorithm 1 is that it
requires a large amount of memory. That is, while expanding recursions in
Algorithm 1, all of SET(n,b,c) have to be memorized. In this subsection, to
overcome this disadvantage we derive simultancous inequalities equivalent to
b < A,x < ¢ by applying Lemma 2 repeatedly and then we give a sequential
enumeration algorithm.

We begin with an illustration for the case n=2. Fix b,ce R* and let
x = (x1;X2;x3;x4). Our aim is to obtain simultaneous inequalities which are
equivalent to b < Aox <¢. From Lemma 2, it is reduced to

{ﬂl,l < Ar(x;x) <y, (10)
Bra < Ai(x35x4) <9y (11)
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Algorithm 1 Recursive algorithm to obtain the set %,(b,c¢)

1: procedure ALGORITHMI (1, b, ¢) > Output the set %,(b,c)
2: SET(n, b, ¢)
3: end procedure

4: function SET(n,b,c¢) > Output the set %,(b,c)
S if n=0 then

6 return {keZ|[b] <k < |c|} > In this case b and c¢ are scalar
7: else

8: P — empty set > Initialize P as the empty set
9 for all k; € SEr(n—1,p,_(b),p,_(c)) do

10: for all ky € SET(n — 1,¢,_,(Au_1k1, b, ¢),w,_, (Au_1ki,b,c)) do

11: append (k;;k;) to P > Append a point to the set P
12: end for

13: end for

14: return P

15: end if

16: end function

where we put By | := py(b), 71,1 = pi(€), 12 = ¢ (A1(x15x2),b,¢) and p, 5 =
w1 (A1(x15x2),b,¢). Whereas f§; , and p; , are not determined until x; and x;
are fixed, #,, and p, , are determined using only b and ¢. Hence we first
consider (10). Again from Lemma 2, (10) is reduced to

{ﬁo‘l < Aox1 <71, (12)
Po.2 < Aoxa < 9.2, (13)

where we put S :=po(B11); 701 :=Po(21.1)> Boo = Po(Aox1,By 1,711) and
0.2 = Wo(Aox1, By 1,71.1). Whereas f;, and y,, are not determined until x;

is fixed, B, and y,; are determined using only b and ¢. Thus we can fix x|
satisfying (12). Once x; is fixed, f, , and 7, , are determined and thus we can
fix x, with (13). Once x; is fixed, then f, , and y, , are determined, and again
from Lemma 2, Inequality (11) is reduced to

{50,3 < Aoxz < 7.3 (14)
Bo.a < Aoxa <70 45 (15)

where we put S 3:=po(B12), 70,3 :=Po(21.2)> Boa = bo(Aoxs, By 2, 712) and
V0.4 := Wo(AoX3,B1 2,712). Now f 5 and y, 5 are determined and we can fix
x3 with (14).  Once x3 is fixed, f3, 4 and y, 4 are determined and thus we can fix
x4 with (15). In this way, we have shown that b < 4,x < c¢ is equivalent to the
simultaneous inequalities (12)—(15), where f, ; and y,, are already determined
and fB, ; and y, ; are determined when xi,...,x; | are fixed (i =2,3,4). This
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equivalence allows us to implement the enumeration of the vectors k € Z* with
b < Ak < ¢ by 4-nested for-loops or an equivalent tail recursion.

We now generalize the procedure to any n e IN. Hereafter, to clarify
which coordinates we consider, we use the following notation.

DEFINITION 2. Let n,L,ae Nwith0 <L <n, 1 <a<2" ! and b, ce R
We define

L T 2L
XLa = (Xgo1)2tgls - Xpor) E€EZ™,
L
ay q ‘= ALxL,a € IRZ .

Put d:=2" and fix b,ce RY. Our aim is to reduce b < Apx, 1 < c to
simultaneous 1-dimensional inequalities. Put f,,:=5 and p,, :=¢. From
Lemma 2, for all 0 < L <n and 1 <a < 2", an inequality Bro<Arxp.<
PL.q 18 reduced to

{ﬁL—l,za—l < Ar-1X-12a-1 < V11,2415

Bri2a < Ar1X1-12a < V11200

where B .74 € R>" are defined by

Br12a1=pr1(BLa), (16)
Yr-1,2a—-1 :pL—l(YL,a)7 (17)
ﬂL—lﬁZa = ¢L—l(aL—l,2a—1,ﬂL,a7J)L,a)v (18)
Y124 = '//L—l(aLflﬂafhﬂL,a’yLﬁa)' (19)

We have seen that az ,’s, B, ,’s and y; ,’s depend on each other and some of

them are not determined until some of x;’s are fixed. The dependency between
. . L

a; .’s is given as follows. For aj,a; € R?", define

Tr+] (al,llz) = (al + Dyay;a; — DLaz) (S ]RZLH.
Then for 1 <L <n and 1 <a<2"L it follows from (4) that
ar o =T0(Ar-1,2a-1,00-124)- (20)

We now study how those values are determined. We define the sets of
indices .o7; and #; for ie N, 0 <i <2" by

of; ={(L,a) e N x (N\{0}) |2La < i},

B = {(L,a) e N x (N\{0})|25(a - 1) < i}.
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Hence we have
=,  HBo:={(,1]|jeN,0<j<n},

and, for i =2"p where re N and p is an odd integer,

A\Ai1 = {(L,a) e N x (N\{0})[2"a = i}
={(,.2"p)|jeN,0<j<r},
B\Bi1 = {(L,a) e N x (N\{0}) [2"(a — 1) = i}
={(.2"7p+1)]jeN,0<j<r}

The following lemmas show that these sets control the determination of the
values and that we can compute the determined values efficiently.

LEmMMA 3. Let ieN, 0<i<2" Let xy,...,x; be fixed If (L,a)e <
holds, then ar , is determined.

ProoF. We prove the lemma by induction on i. If i=0, we have
nothing to prove. Now let i =2"p >0 where r € N and p is an odd integer

and assume that the result holds for i—1. Let xj,...,x; be fixed. By
induction assumption, for all (L,a) € «Z;_; the value a, , is determined. Thus
it remains to show the assertion for (L,a)e .o/;\.«Z;_;. Since x; is fixed,

ap, 2, = x; is determined. Further, by induction assumption, for all 0 < j <
r we have (j,2"/p — 1) € pry_»; C i1 and thus @; 5r-j,_; is determined. By
using these results and applying (20) with (L,a) = (j,2"7/p) for j=1,...,r,
a; 2 18 sequentially determined for all 0 < j <r. This proves the result for i.

O

We remark that the lemma is directly shown as follows: The condition
that xj,...,x; are fixed implies that x; , is fixed for all (L,a) € .o/ and thus
ar = Arxp o is determined. The procedure shown in the proof, however, can
save the cost to compute the values in the similar way that the fast Fourier
transform does.

LEmMA 4. Let ieN, 0<i<2" Let x1,...,x; be fixed If (L,a)e R
holds, then B , and y, , are determined.

Proor. We prove the lemma by induction on i. First assume i =0, i.e.,
none of x; are fixed for 1 < j <2". Even then, 8, | and y, , are determined as
B,1=>band y,, =c. Hence, using (16) and (17) repeatedly, g; | and y; | are
determined for all 0 < j <n. This proves the result for i = 0.
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Now we assume that the lemma holds for i — 1. Let xp,...,x; be fixed.
By induction assumption, f; , and y, , are determined for all (L,a) € %;_;.
Thus it remains to show the assertion for (L,a) € #\%,;_;. We decompose i
as i =2"p where re N and p is an odd integer. Lemma 3 implies that a,
is determined. Further, by induction assumption we have (r+1,(p+1)/2) €
PBor(p-1) C Bi—1 and thus B, (1), and p,.q (pi1)2 are determined. Then
B, and y, ., are determined from these results, (18) and (19). Thus, by
using (16) and (17) with (L,a) = (r—j,2/p+1) for j=0,....,r =1, B,_; 5,41
and y,_; 5,4 are sequentially determined for all 1 < j<r. This proves the
result for i. (]

Since (0,i+ 1) € #;, Lemma 4 implies that §, ;,, and y, ;;,, are determined
when xp,...,x; are fixed. Thus we have shown the following equivalence in
summary.

THEOREM 3. The inequality b < A,x < ¢ is equivalent to 2" simultaneous
inequalities

Boi<xi<py; for1<i<2"

where By | and py | are already determined and B ; and y, ; are determined when
Xl,...,Xi_1 are fixed, as in Lemmas 3 and 4.

Lemmas 3-4 and Theorem 3 justify Algorithm 2, a tail recursive enu-
meration of all the Chebyshev-Frolov lattice points 4,k with k € Z*" in the
box [b,c]. Algorithm 2 is equivalent to 2"-nested for-loops. We remark
that this theorem implies that the set A, '([b,c]) already allows for an easy
enumeration.

ReMARK 1. If your task is only to approximate the integration value,
replace Line 21 in Algorithm 2 by the evaluation of the integrand. You do not
need to store any of the Chebyshev-Frolov lattice points.

4. Frolov’s cubature formula and its randomization

In this section we revisit Frolov’s cubature formula and its randomiza-
tion, and in particular we show how to enumerate the integration nodes using
Algorithm 2.

Let ve RY and take a matrix 7 € RY*? which generates an admissible
lattice T(Z%). We define the set

X(T,v) :={T(k+v)|keZ'}n[-1/2,1/2)¢
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Algorithm 2 Enumerate the lattice points in the box [b, ¢|

10:
11:

25:
26:
27:
28:
29:
30:

31:
32:
33:
34:
35:
36:
37:
38:

1
2
3
4:
5:
6.
7
8
9

: procedure ALGORITHM2(n, b, ¢)
for i=1 to 2" do
store r(i), p(i) e N as i = 2"0p(j)
end for
Boi—b
In— €
for j=n—1 to 0 do
ﬂj,l — Pj(ﬁjﬂ,l)
i = P(7jn,1)
end for
Exum(1)
. end procedure

. function ENuM(7)
for ki = [fy ;] to [y ;] do
if i # 2" then
UPDATEALPHA(7)
UPDATEBETAGAMMA (7)
EnuMm(i + 1)
else
UPDATEALPHA(2")
Output a,
end if
end for
: end function

function UPDATEALPHA (i)
ap ; < ki
for j=1 to r(i) do
O 2ri-ip(i) < T/(aj—l,Z’W’/“p(i)—l > aj—l.Z’(')’/“p(i))
end for
end function

function UPDATEBETAGAMMA (i)
Brio. o1 = 81 (@), p(iys By 1.0 +1) /2 Prtiy 41, o) +1)/2)
Pr(i). i1 Wt (@i o) Brtye1.(p+1)/23 V(1. p(0)+1)/2)
for j=r(i)—1 to 0 do
ﬂj,zrm Ip(i)+1 pj(ﬂj+l,2'(’> J 'p(i)+1)
Vi 2r=ip(iy+1 < pj(7/+1,2"(”’/"p(i)+])
end for
end function

> Give the lattice points in the box

> Preparation for updating

> Finish preparation
> Update f, , and y, , with %

> Finish updating

> Enumerate the i-th coordinate k;

> That is, if i =2"

> a,1 = A,k is a lattice point

> Update a; , with .o/

> Update f; , and y; , with #
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and the cubature rule for a function f(x) on [—1/2,1/2] as

Oro(f)=Idet T| Y f(x).

xeX(T,v)

As mentioned in the introduction, Frolov’s cubature formula is of the form
Qu17.0(f) for a> 1. For the number of integration nodes, it is known from
[10] that
lim det(a™'T)|X(a"'T,0)| = 1. (21)
a— oo
We roughly explain the error analysis of Frolov’s cubature formula

O.,17.0(f). Let H}, be the Sobolev space of mixed smoothness on [0, l]d
equipped with the norm

. 12
I llomic = > ID*1Z,
(l:(otl,...,%d)GNd
Y<s

where D* stands for the usual partial derivative operator. Let fe HY, . We
denote by f the Fourier transform of f (here f is extended by zero to RY).
Then it follows from Poisson summation formula that

Qa*lT,O(f) = Z f(x)v (22)

xeaT-T(Z)

where T~ is the inverse of the transpose of 7. We note that a7~ (Z) is the
dual lattice of «~'T(Z?) and that having 7" admissible implies that 7~ is also
admissible. From (22) the integration error is bounded as

(/) = Qarro(/)] < > @l (23)

xeaT-T(Z)\{0}

An important fact is, roughly speaking, that |f(x)| is small if Hld: L x] s
large. Recalling that an admissible lattice have no lattice points other than the
origin with small T[], |x;|, we can show that the right hand side of (23) is
small. More precisely we have

S 1) < Coaa(log @)V £, e

xeaT~T(Z)\{0}

for large enough a, where C,, is a constant depending only on s and d. This
means that the convergence rate of the integration error with respect to the
number of the nodes is O(n—*(log n)*~"/%), which is shown to be optimal. It
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is shown that Frolov’s cubature formula Q,-17¢(f) also achieves the optimal
rate of convergence in Besov-Triebel-Lizorkin spaces.

Following [7], we use scaled (and coordinate-permuted) Chebyshev-Frolov
lattices as admissible lattices for Frolov’s cubature formula. Let n € IN and let
A, be defined as in (4). For a scaling parameter N € R with N > 0, we define
the value s(N) := (|det(4,)|N) "¢ and the matrix

An,N = S(N)Am

which satisfies |det(A4, v)| = 1/N. From (21), N is an approximation for the
number of the nodes. From Theorem 1, we have |det(4,)| = (2d)d/2/\/§.
We consider Frolov’s cubature formula Q,-17¢(f) for N e N. To find the
integration nodes, we can use Algorithm 2 and the bijection

{A,k|keZYN[b,c] = X (A, n,0),  x— s(N)x,

where b:= —s(N)'(1/2,...,1/2)" and ¢:=—-b=s(N)"'(1/2,...,1/2)".
Randomized Frolov’s cubature formula was introduced by Krieg and
Novak [8], and studied further by Ullrich [14]. Our algorithm introduced
below follows the exposition in [14], but note that A4, y in this paper corre-
sponds to By in [14]. Let u and v be two independent random vectors that
are uniformly distributed in [1/2,3/2]¢ and [0,1]9, respectively. Let U :=
diag(u). We define randomized Frolov’s cubature formula My using 4, xy by

My(f) = QU*IA,,“,V,U(f)'
How can we enumerate the nodes of the formula My (f)? We have
xeX(U 4y y,v) & x=U"4, y(k+v)e[-1/2,1/2]"
& Ayk es(N) ' U[-1/2,1/2]7 — A,w.

Hence, defining h:=(1/2,...,1/2)" e RY b= —s(N) 'Uh— A, and ¢=
s(N )_th — A,v, we have the following bijective map

{Ak|keZ)N b, — X(U 4, n,0), x—s(N)U (x+ A,).

Thus we can use Algorithm 2 to enumerate the nodes of randomized Frolov’s
cubature formula. We remark that the vector 4,v can be quickly computed,
as with the computation of a, ;.

5. Numerical efficiency of the algorithm

In this section we numerically show the efficiency of our Algorithm 2.
We counted the number of the nodes of Frolov’s cubature formula using
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the Chebyshev-Frolov lattices, for dimensions d = 2,4,8,16,32 and for the
scaling parameter N =2 with m=1,...,30, based on our Algorithm 2 and
Kacwin’s algorithm [5, Algorithm 2]. More precisely, for our algorithm
we replaced Line 21 in Algorithm 2 by incrementing a counter for the number
of the nodes'. For Kacwin’s algorithm, he kindly shared his codes with us
and we used it with a slight modification. We conducted the experiments
on an HPC cloud environment? provided by Information Media Center,
Hiroshima University. We used an Intel Xeon E5-2697 v3 2.6GHz 8 cores
CPU. Our codes are implemented in C and Kacwin’s ones are in C++.
They are compiled by GCC 4.4.7 with —O3 optimization flag. We used
the function clock_gettime in C standard library for obtaining the execution
time.

The result is summarized in Tables 1 and 2. Table 1 shows the number
of the nodes. Table 2 shows the execution time of both algorithms. In
Table 2, “Error” means that an error of type ‘class std::bad_alloc’ occurred,
which would be due to our modification, and the blanks mean that we did
not conduct the computation due to time constraint. We can see that, for
a fixed dimension d, the execution time of both algorithms increases linearly
with respect to the scaling parameter N. Our algorithm is faster by a con-
stant factor than Kacwin’s as far as we observed. For d =2,4,8,16,32,
the constant factor is about 10,6,8,10%,6 x 10°, respectively. Hence our
algorithm is much faster when d > 16. For a fixed N, the execution time
increases rapidly with respect to d. We can also see that the scaling pa-
rameter N does not well approximate the number of nodes when d = 32, for
N < 2%,

We remark on the accuracy of Algorithm 2. It requires many floating-
point arithmetic operations, so it might have some errors. The following ob-
servations and experiments, however, support that our algorithm is sufficiently
accurate in practical use. Firstly, We confirm that the number of the enum-
erated points given in Table 1 coincide with the result in [7, Appendix], which
gives those for d =2,4,8,16 and N =4 with 3 <m < 10. Secondly, Kac-
win’s algorithm also enumerates the same number of points as far as we
observed as in Table 2. Thirdly, we also conducted our experiment with
quadruple-precision arithmetic. We confirmed that for d =32 and N <27
with 1 <m <23, we obtained the same number of points as those given in
Table 1. Thus we can conclude that our algorithm is sufficiently accurate in
practical use.

!The code we used can be found at https://github.com/tttyoyoyttt/the_Chebyshev_Frolov
_lattice_points.
2 https://www.media.hiroshima-u.ac.jp/services/hpc/hpce
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Table 1. The number of the nodes of Chebyshev-Frolov’s cubature formula
for N=2" with m=1,...,30 and d =2,4,8,16,32 is given.

m d=2 d=4 d=28 d=16 d=32
1 3 5 19 77 3377
2 5 5 19 127 4105
3 7 11 23 151 5041
4 15 15 27 223 6371
5 31 31 45 295 8915
6 65 71 79 423 11867
7 131 123 167 539 15291
8 257 261 271 967 20651
9 513 513 529 1377 29215

10 1027 1025 1067 2043 42323

11 2049 2049 2107 3503 61997

12 4095 4099 4113 5835 88645

13 8191 8201 8283 10451 128269

14 16383 16385 16413 18901 186749

15 32767 32775 32823 36085 278961

16 65539 65533 65645 69353 430037

17 131075 131095 131183 136839 679287

18 262145 262143 262263 267257 1102547

19 524289 524281 524341 530333 1799443

20 1048579 1048609 1048779 1054837 2990409

21 2097153 2097143 2097107 2106165 5079585

22 4194307 4194355 4194399 4207997 8757305

23 8388611 8388589 8388843 8402385 15442557

24 16777215 16777221 16777535 16797845 27637841

25 33554429 33554439 33554807 33577467 50306689

26 67108861 67108867 67108777 67135425 92921093

27 134217727 134217723 134217783 134246629 173897749

28 268435457 268435461 268435889 268458047 328647641

29 536870913 536870913 536871467 536891351 627372745

30 | 1073741827 | 1073741807 | 1073742019 | 1073829043 | 1208920345
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