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ABSTRACT. We give a necessary and sufficient condition for orbits of commutative
Hermann actions and actions of the direct product of two symmetric subgroups on
compact Lie groups to be biharmonic in terms of symmetric triad with multiplicities.
By this criterion, we determine all the proper biharmonic orbits of these Lie group
actions under some additional settings. As a consequence, we obtain many examples
of proper biharmonic homogeneous submanifolds in compact symmetric spaces and
compact Lie groups.

1. Introduction

Study of harmonic maps, which are critical points of the energy func-
tional, is one of the central problems in differential geometry including minimal
submanifolds. The Euler-Lagrange equation is given by the vanishing of the
tension field. In 1983, J. Eells and L. Lemaire ([EL]) proposed to study
biharmonic maps, which are critical points of the bienergy functional, by
definition, half of the integral of square of the norm of tension field z(¢p) for
a smooth map ¢ of a Riemannian manifold (M,g) into another Riemannian
manifold (N, /). After a pioneering work of G. Y. Jiang [J], several geometers
have studied biharmonic maps (see [CMP], [IIU1], [1IU2], [1I], [LO], [MO],
[OT2], [S], etc.). Notice that harmonic maps are always biharmonic. One of
central problems is to ask whether the converse is true. B.-Y. Chen’s conjec-
ture is to ask whether every biharmonic submanifold of the Euclidean space IR”
must be harmonic, i.e., minimal ([C]). There are many works supporting this
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conjecture ([D], [HV], [KU], [AM]). However, B.-Y. Chen’s conjecture is still
open in a general setting. Moreover, R. Caddeo, S. Montaldo, P. Piu ((CMP])
and C. Oniciuc ([On]) raised the generalized B.-Y. Chen’s conjecture to ask
whether each biharmonic submanifold in a Riemannian manifold (N, /) of non-
positive sectional curvature must be harmonic (minimal). For the generalized
Chen’s conjecture, Y.-L. Ou and L. Tang gave ([OT1], [OT2]) a counter exam-
ple in some Riemannian manifold of negative sectional curvature. However,
it is also known (cf. [NU1], [NU2|, [NUG]) that every biharmonic map of
a complete Riemannian manifold into another Riemannian manifold of non-
positive sectional curvature with finite energy and finite bienergy must be
harmonic.

On the contrary, for the target Riemannian manifold (N,4) of non-
negative sectional curvature, theories of biharmonic maps and/or biharmonic
immersions seems to be quite different from the case (N,%4) of non-positive
sectional curvature. Indeed, there exist biharmonic submanifolds which are
not harmonic in the sphere S”.

In 2015, we characterized the biharmonic property of isometric immersions
into Einstein manifolds whose tension fields are parallel with respect to the
normal connections in terms of the second fundamental forms and the cur-
vature tensors, and determined all the biharmonic hypersurfaces in irreducible
symmetric spaces of compact type which are regular orbits of commutative
Hermann actions of cohomogeneity one (cf. [OSU]). For this purpose, we
used the description of second fundamental forms of orbits of commutative
Hermann actions in terms of symmetric triad with multiplicities, which was
given by O. Ikawa ([I1]). Recently, the first author (JOhl]) applied the method
of symmetric triad to study the geometry of orbits of actions of the direct
product of two symmetric subgroups on compact Lie groups, which are asso-
ciated to commutative Hermann actions.

In this paper, we characterize the biharmonic property of orbits of
commutative Hermann actions and the actions of the direct product of two
symmetric subgroups on compact Lie groups in terms of symmetric triad
with multiplicities (cf. Theorems 6 and 7). By this characterization, we
give a complete table of all the proper biharmonic singular orbits of
commutative Hermann actions of cohomogeneity two (cf. Theorem 8), and
also we give a complete list of all the proper biharmonic regular orbits of
(K> x Kj)-actions of cohomogeneity one on G for a commutative compact
symmetric triad (G, Kj, K>) (cf. Theorem 9). We note that recently J.
Inoguchi and T. Sasahara ([IS]) also investigated biharmonic homogeneous
hypersurfaces in compact symmetric spaces, and the first author studied
biharmonic orbits of isotropy representations of symmetric spaces in the sphere
([0n2)).



Biharmonic homogeneous submanifolds 49

2. Biharmonic isometric immersions

We first recall the definition and fundamentals of harmonic maps
and biharmonic maps. Let ¢:(M,g) — (N,h) be a smooth map from an
m-dimensional compact Riemannian manifold (M,g) into an n-dimensional
Riemannian manifold (N,%). Then ¢ is said to be harmonic if it is a critical
point of the energy functional defined by

1
E(p) =3 | 1o,

That is, for any variation {¢,} of ¢ with ¢, =g,

d
dt

E(p) =—j h(x(p), Vv, = 0. (1)

=0 M

Here V eI'(p~!TN) is a variation vector field along ¢ which is given by
Vix)=4 ‘I:ngf(x) € TywN (xe€ M), and t(p) is the tension field of ¢ which is
given by t(p) =", B,(ei,e;) € (9~ TN), where {¢;}", is a locally defined
orthonormal frame field on (M, g), and B, is the second fundamental form of ¢
defined by

B(ﬂ(Xv Y) = (ﬁ d¢)(X7 Y)
(

for all vector fields X,Y € ¥(M). Here we denote by V and V” the Levi-
Civita connections on TM, TN of (M,g), (N,h), and by V and V the induced
connections on ¢ '!TN and T*M ® ¢~ 'TN, respectively. By (1), ¢ is har-
monic if and only if 7(p) =0. We note that if ¢: M — N is an isometric
immersion, then the tension field 7(¢p) coincides with the mean curvature vector
field of ¢, hence ¢ is harmonic if and only if ¢ is a minimal immersion.

J. Eells and L. Lemaire [EL] proposed the notion of biharmonic maps, and
G. Y. Jiang [J] studied the first and second variation formulas of biharmonic
maps. Let us consider the bienergy functional defined by

Exo) =5 | TP,

where |V|*> =h(V,V) for Ve I'(p'TN). The first variation formula of the
bienergy functional is given by

dt

Ex(p,) = _J h(za(9), V)”g?

t=0 M
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where 7,(p) is called the bitension field of ¢ which is defined by
©2(p) 1= J(x(p)) = A(x(p)) — R(x(0)):
Here J is the Jacobi operator acting on I'(p~'TN) given by
J(V) =4V - R(V),

where AV =V*VV = -3 " {V, V.,V —Vy,, V} is the rough Laplacian and Z is
the linear operator on I'(¢p~! TN) defined by #(V) =", R"(V, dgp( ))dgo( i),
where R” is the curvature tensor of (N, k) given by R"(U, V)W =V (V]iW) —
viwvhiw) - V’}, W for U,V, W e X¥(N). A smooth map ¢ of (M,g) into
(N,h) is said to be biharmonic if t,(¢) =0. By definition, every harmonic
map is biharmonic. We say that a smooth map ¢ : (M,g) — (N,h) is proper
biharmonic if it is biharmonic but not harmonic.

Now we give a characterization theorem for an isometric immersion ¢ of a
Riemannian manifold (M,g) into another Riemannian manifold (N,/) whose
tension field 7(¢p) satisfies Vi 7(p) = 0 for all X € X(M) to be biharmonic, where
V4 is the normal connection on the normal bundle 7M. From Jiang’s
theorem ([J]), we showed the following theorem.

THEOREM 1 ([OSU]). Let ¢:(M,g) — (N,h) be an isometric immersion
which satisfies that Vit(p) =0 for all X € X(M). Then ¢ is biharmonic if and
only if

" RUelp). dolen))dpler) = S hx(p). Byley ) Byleper)  (2)
= J=

holds.
The condition (2) is equivalent to the following equation.

m

ZR (t(p), dp(e;))do(e;) ZB 0)€i> i) (3)

i=1

3. Hermann actions and associated (K, x Kj)-actions

3.1. Hermann actions and symmetric triads. O. Ikawa ([I1]) introduced the
notion of symmetric triad as a generalization of irreducible root system. He
described the second fundamental forms of orbits of commutative Hermann
actions in terms of symmetric triads with multiplicities, and studied geometric
properties of the orbits as submanifolds in compact symmetric spaces. In this
section, we review O. Ikawa’s method, and we show that his method can be
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also applied to study geometric properties of orbits of actions of the direct
product of two symmetric subgroups on compact Lie groups, which are asso-
ciated to Hermann actions.

Let G be a compact connected semisimple Lie group, and K;, K, closed
subgroups of G. For each i = 1,2, we assume that there exists an involutive
automorphism ¢; of G which satisfies (Gy,), C K; C Gy, where Gy, is the set
of fixed points of §; and (G;), is the identity component of Gy,. Then (G,K;)
and (G, K;) are compact symmetric pairs, and the triple (G, K, K3) is called
a compact symmetric triad. We denote the Lie algebras of G, K; and K, by
g, f; and f,, respectively. The involutive automorphism of g induced from
0; will be also denoted by ;. Take an Ad(G)-invariant inner product {-,->
on g. Then the inner product <-,-)» induces a bi-invariant Riemannian metric
on G and G-invariant Riemannian metrics on the left coset manifold N; :=
G/K, and on the right coset manifold N, := K)\G. We denote these Rie-
mannian metrics on G, N; and N, by the same symbol {-,->. These Rie-
mannian manifolds G, N; and N, are Riemannian symmetric spaces with
respect to {-,->. The isometric action of K; on G/K; and that of K; on K,\G
defined by

hd K2 my le k2 . 77:1()() = nl(kzx) (k2 EKZ, X € G)

e KivNy Kk ~7z2(x) = nz(xkfl) (kl ekKj, xe G)
are called Hermann actions, where n; denotes the natural projection from G
onto N; (i=1,2). Under this setting, we can also consider the isometric
action of K, x K; on G defined by

e Khx Ky Gt (kz,kl) X = kzxkfl (kz € K, ki e K, xe G)

The three actions have the same orbit space, and in fact the following diagram
is commutative:

K\G/K,

where 7; is the natural projection from N; onto the orbit space K,\G/K;.
For x € G, we denote the left (resp. right) transformation on G by L, (resp.
R,). The isometry on N; (resp. N,) induced by L, (resp. R,) will be also
denoted by the same symbol L, (resp. R.).

For i=1,2, we set

m; = {X e g|0i(X) = —X}.
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Then we have two orthogonal direct sum decompositions of g, that is the
canonical decompositions:

g=hdm=5LHLom.

The tangent space Ty )N; of N; at the origin 7;(e) is identified with m; in a
natural way. We define a closed subgroup G, of G by

G12 = {x eG ‘ 01 (x) = 02()()}

Then 0, induces an involutive automorphism of the identity component (Gi2),
of Gz, hence ((Gi2),, K12) is a compact symmetric pair, where K, is a closed
subgroup of (Gyz), defined by

K]z = {k € (Glz)o | 01 (k) = k}

The canonical decomposition of g;, = Lie(G2), with respect to 6 is given
by

g, = (i NtH) @ (my Nmy).

In general, an isometric action of a compact Lie group on a Riemannian
manifold is said to be hyperpolar if there exists a closed connected submani-
fold which is flat in the induced metric and meets all orbits orthogonally.
Such a submanifold is called a section of the Lie group action. In our
setting, fix a maximal abelian subspace a in m; Nn,. Then exp a is a torus
subgroup in (Gy2),. Then exp a, 7 (exp a) and 7w (exp a) are sections of the
(K> x Kj)-action on G, the Kr-action on N;, and the Kj-action on N,
respectively. Hence these three actions are hyperpolar, and their cohomoge-
neities are equal to dim a. A. Kollross ([K]) classified hyperpolar actions on
compact irreducible symmetric spaces. By the classification, we can see that
a hyperpolar action on a compact irreducible symmetric space whose coho-
mogeneity is greater than or equal to two is orbit-equivalent to some Hermann
action.

In order to describe the orbit spaces of the three actions, we consider
an equivalent relation ~ on a defined as follows: for H), H; € a, we de-
fine Hy ~ H, if (K; x Kj) -exp(H;) = (K> x K)) - exp(H,). Clearly, we have
H, ~ H, if and only if K, 7w (exp(H))) =K m(exp(H,)), and similarly,
H, ~ H, if and only if K- m(exp(H;)) =K, - m(exp(H,)). This implies
that a/~ =~ K)\G/K,. For a subgroup L of G, we define the normalizer
Np(a) and the centralizer Z;(a) of a in L by

Np(a) ={ke L|Ad(k)a = a},
Zi(a)={keL|Ad(k)YH =H (Hea)}.
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Then Z;(a) is a normal subgroup of Ny(a). We define a group J by
J={([s],Y) € (Ng,(a)/Zx,nx,(a)) X a|exp(—Y)s e K }.
The group J naturally acts on a by the following manner:
([s,) Y)- H=Ad(s)H+Y  (([s],Y)eJ, Hea).
T. Matsuki ((M]) proved that
K)\G/K; = a/J.

Hereafter, we suppose 6,6, = 6,8,. In such a case, (G, K, K;) is called
a commutative compact symmetric triad, and the Kj-action on N; and the
Ki-action on N, are called commutative Hermann actions. Then we have an
orthogonal direct sum decomposition of g:

g=ENH)® (m Nmy) @ (5 Nimy) @ (my Nh).
We define subspaces of g as follows:
fo={Xetint|[a,X] ={0}},
VE Nmy) = {X ety nmy|[a, X] = {0}},
Vi Nnh) = {X em Nt |[a, X] = {0}}.
For /€,
L, ={Xet,nk|[H [H X]]=—-,HY*X (Hea)},
m, ={XemNnyl|[H,[H X]| = HYX (Hea)},
ViE Nmy) ={X et nmy|[H,[H, X]] = -, HY*X (Hea)},
Vi nk)={Xen Nk|[H[H X]]|= -, H?*X (Hea)}.
We set
2= {4ea\{0}|f; # {0}},
W = {xea\{0}| V5 (ti nma) # {0}},
S=SUWw.

It is known that dim f; = dim m, and dim V;*(f; N my) = dim V;*(m; Nf,) for
each 2eX. Thus we set m(4) :=dimf;, n(4):=dim V;*(f Nm,). Notice
that 2 is the restricted root system of the symmetric pair ((Gi2)y, Ki2), and
3 becomes a root system of a (see [I1]).
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We define an open subset a, of a by

aw= {Hea|<,1,H>¢nz, (o, HY ¢ g—l—nl}.

reX aeW

A connected component of a, is called a cell. The affine Weyl group
W, 2, W) of (2,2, W) is a subgroup of Aff(a) generated by

2nn , 2n+ )z
{(S"—Ow b>/1) AGZ’nEZ}U{<S“’—<a,a> oc)

where Aff(a) is the affine group of a which is expressed as the semidirect
product O(a) X a. The action of (s;,(2n%/<{A,A))A) on a is the reflection
with respect to the hyperplane {H € a|{A,H) =nrn}, and the action of
(85, ((2n 4+ )m/<a, o)) on a is the reflection with respect to the hyperplane
{Hea|{e,HY = (n+1/2)n}. The affine Weyl group W (Z,X, W) acts tran-
sitively on the set of all cells. More precisely, for each cell P, it holds that

a= U sP.

seW(Z,2, W)

o e W,neZ},

For x=exp H (He€a), the orbit K, -m(x) in N; is regular, so
(Ky x Ky)-x in G is, if and only if H €a,. Here we call an orbit regular
if it is an orbit of the maximal dimension. In [I1], it is proved that
W(f ,2, W) is a subgroup of J. Moreover, if Ny and N, are simply-
connected, then W(X,X, W) =J, hence the orbit space K,\G/K; of the
actions can be identified with a/J = a/W(Z, X, W) =~ P. Indeed, for each
orbit K, -7;(x) in Ny and (K, x Kj) - x in G, there exists H € P uniquely so
that K, -m(x) = Ky -m(exp H) in Ny and (K; x Kj) - x = (Ky x K)) - (exp H)
in G. An interior point H in P corresponds to a regular orbit, and a point
H in the boundary of P corresponds to a singular orbit. In fact, P is a
closed region in a, which is a direct product of some simplexes. Then the
cell decomposition of P gives a stratification of orbit types of the action. We
should note that, in general, the cell decomposition of P gives a stratification of
local orbit types of the action. In this paper, we study the biharmonicity of
the orbits, that is a local property of a submanifold. Therefore, without loss
of generality, we may assume that N; and N, are simply-connected, hence
K>\G/K; =~ P. 1In Sections 5 and 6, for some orbit types, we will examine the
number of biharmonic orbits. If N; or N, are not simply-connected, then the
number of biharmonic orbits does not increase compared with the cases of N
and N, are simply-connected.

O. Ikawa ([I1]) introduced the notion of symmetric triad with multiplicities
as a generalization of irreducible root system. For the precise definition of
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symmetric triad with multiplicities, we refer to O. Ikawa’s papers ([11, 12, 13]).
In general, the triad (f ,2, W), which is obtained from a compact symmetric
triad (G, K, K), is not a symmetric triad with multiplicities in the sense of [I1].
However, we know the following theorem.

THEOREM 2 ([I12] Theorem 3.1, [I3] Theorem 1.14). Let (G,K|,K3) be a
compact symmetric triad which satisfies one of the following conditions.
(A) G is simple and 6, + 0y, i.e. 8, and 0, can not be transformed each
other by an inner automorphism of g.
(B)  There exists a compact connected simple Lie group U and a symmetric
subgroup K of U such that

G=UxU, K =4G={uwu)|lueU}, K, =KxK.

(C) There exists a compact connected simple Lie group U and an involu-
tive outer automorphism o such that

G=UxU, Ky =4G ={(u,u)|ue U},
Ky = {(u1,w2) | (o(u2),0(u1)) = (u1,u2)}.

Then the triple (X,%, W) defined as above is a symmetric triad of a, moreover
m(A) and n(o) are multiplicities of A€ X and ae€ W. Conversely every sym-
metric triad is obtained in this way.

When (G, K1, K>) satisfies (A), (B) or (C) in Theorem 2, hence (X, X, W) is
a symmetric triad, we take a fundamental system I7 of . We denote by X+
the set of positive roots in 2. Set X+ =X+ NXand W+ =X*NW. Denote
by I the set of simple roots of 2. We set

Wo={aeW |at+i¢ W (Lell)}.

From the classification of symmetric triads, we have that W, consists of
the only one element, denoted by & We define an open subset Py, of a
by

Poz{Hea

<&,H><g,</1,H>>0 (/1617)}- 4)

Then Py is a cell. For a nonempty subset 4 C IT U {a}, set
ALHY >0 (Aednl)
(u,H) =0 (ueIl\4)

_ < (r/2) (if ae4)
@m{ Ziala) i 24

P! ={ He P
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Then

Py = U P¢ (disjoint union). (5)
ACIU{g}

When (G, K, K;) satisfies 0; ~ 0,, i.e. ) and 0, are transformed each
other by an inner automorphism of g, the Hermann action of K, on the
compact symmetric space G/K; is equivalent to the action of the isotropy
group K; on G/K;. Hence we may assume that ¢; = 6,, and so K; = K,.
Since W = &, then (X,X, W) is not a symmetric triad, and X = X is the
restricted root system of (G, K;). In this case, we can describe the orbit space
of Kj-action on G/K; in terms of the restricted root system X of (G,Kj).
For simplicity, here we assume that G is simple. We take a fundamental
system I of X, and denote the set of positive roots by X and the highest root
by 6. We define an open subset Py of a by

Py={Hea|0,Hy<mn, A, Hy>0 (Aell)}. (6)
Then Py is a cell. For a nonempty subset 4 C IT U {d}, set
A HYy >0 (Aednl)
o HY =0 (e I1\4)

<7 (if ded)
<5’H>{=n (if & ¢ 4)

P! ={ He P

Then

Py = U P{ (disjoint union). (7)
AcIIU{o}

3.2. Second fundamental forms of orbits. We express the second fundamental
forms and mean curvature vector fields of orbits of commutative Hermann
actions and their associated K, x Kj-actions.

Here, let G be a compact connected semisimple Lie group and (G, K, K>)
a commutative compact symmetric triad. Fix a maximal abelian subspace a in
ny Ny, then we have a triad (f , 2, W). We take a fundamental system IT of
2, and set

Xt={leX|i>0}, Tt=xnxt Wr=wnxz".

Then we have an orthogonal direct sum decomposition of g:

g=H @ Zﬁ@a@ ij@V(f]me)('B Z VE(f Nmy)

lext Lext ae W+

) V(m1 ﬂfz) &) Z V;L(ml ﬂfz).

e W+
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According to the above orthogonal direct sum decomposition of g, we
have the following lemma.

LemMA 1 ([I1] Lemmas 4.3 and 4.16). (1) For each /.€ X", there exist
orthonormal bases {S) ;}." (1;' ) and {T. ﬂ-,i};ﬂlﬂ) of Y, and m; respectively such that
for any H € q,

(H,S,,i] =<\ HYT,;, [H, T, ] =<4 H)S, (S0, T),i) = 4,
Ad(exp H)S),; = cos{A, H)S; ; +sin{A, H)>T) ;,
Ad(exp H)T,,; = —sin{A, H)S; ; + cos{., H)T) ;.

(2) For each oae W, there exist orthonormal bases {X, ; ;i? and
{Y.; j":(?) of VXt Nmy) and V,*(ny N) respectively such that for any H € a
(H, Xy ) =<, H)Y, 5, [H, Yol = =, H) Xy, [Xoj, Yol =0,

Ad(exp H) X, ; = cos{a, H)X, ; + sinda, H) Y, ;,
Ad(exp H)Y, ; = —sin{a, H)X,, ; + coso, H) Y, ;.

First, for xe G, we consider an orbit K;-m;(x) of the commutative
Hermann action of K, on N;. Without loss of generality we can assume
that x = exp H where H € a, since 7(exp a) is a section of the action. For
H e a, we set

Xy ={ieXZ|{AHyenlZ}, Wy ={oeW|{a,H)e (n/2) +nZ},
Sy=SpUWy, XhH=X"0Xy, Wi=WnWy ZXj=X,UW;.

Then, for Hea, H is in q, if and only if 2y = & and Wy = &. In such
case, the tangent space

Ty, (x)(N1) = dLy(my) = dL.((my Nmp) @ (my N T))

=dL, (a &) Z m; @ V(m1 N fz) &) Z V;L(ml n fz))

leXt ae W+

of Ny at m(x) is decomposed to the tangent space Ty () (K> -7i(x)) and the
normal space Tri(x)(Kz -71(x)) of the orbit K, - 7(x) as follows.

Ty () (K2 - mi(x)) = {i exp(tXs) -m(x)| | Xae€ fz}

dt
= dL(dn(Ad(x)"'8))

=0

=dL, Z n,; ® V(m1 n fz) &) Z Vj(ml n fz) ,

reXN\Zy we WH\Wy
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TE . (Ky - mi(x) = dL.((Ad(x) ') nmy)

=dL, (a@ Z m; @ Z Vj(m] ﬂfz)).

reX} ae W,y
From Lemma 1, O. Ikawa proved the following theorems.

THEOREM 3 ([I1] Lemma 4.22). For x=exp H (H € a), we denote the
second fundamental forms of the orbits K, - mi(x) in Ny by B},. Then we have
1 dL;lB}{(dLX(TM), de(T:UJ)) = cot({u, H)[T, i, Sﬂ,.i}{

2 dL;lBII-I(de( Yoc,i)a de( Y[i,j)) = —tan((ﬁ, H>)[Ym,i7 Xb’:/]L:
By (dLy(Y1),dL(Y2)) = 0,

B}‘I(de(T/l.i)ade(YZ)) =0,

B}, (dLy(Y,.;),dL(Y>)) =0,

dL;' Bl (dL(T;,1), dL(Yp,))) = —tan(<B, HO) .1 Xp 1]

W

I~~~ o~ o~ —
W A
N NI AN

=)

for
Jope X with G, HY {u Hy ¢nZ, 1 <i<m(l), 1 <j<m(u),

o fe W with (o, H,{f,H> ¢ g+nz, l<i<n(@), 1<j<n(p),
Y17Y2€V(mlﬂf2).

Here X* is the normal component, ie. (Ad(x~")my) Ny -component, of a
tangent vector X € my.

THEOREM 4 ([I1] Corollaries 4.23, 4.29, 4.24, and [GT| Theorem 5.3). For
x =exp H (H € a), we denote the mean curvature vector field of K, - m1(x) in N
by tk. Then we have

dL;l(f}i)mx) =— Z m(2) cot{A, HyA + Z n(a) tan{a, H Yo

LeXN\Zy we WH\Wy

We can also apply Theorem 4 for the orbit K - my(x) in N;. Thus we
have the following corollary.

CoroLLARY 1 ([I1] Corollary 4.30). The orbit K, - wy(x) is minimal if and
only if K| - my(x) is minimal.

Next we consider the second fundamental forms of orbits of the (K, x Kj)-
action on G. For x =exp H (H € a), the tangent space T.((K> x Kj) - x) and
the normal space T-((K> x Kj) - x) of the orbit (K» x Kj) - x at x are given as
follows.
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Tx((Kz X Kl) -X)

= {i exp(tXs)x exp(—1X)) Xief, Xre fz}

dt 1=0

=dL.((Ad(x) ') + 1))

=dL, (fo (&) Z I, ® Z ny; @ V(fl N mz)

lext reX\Zy
® > Vhnm)ervmn)e Y. Vunk)|, 8
ae W+ oe WH\ Wy
T (K x K) - x)
= dL((Ad(x) "'my) Nmy)
=dL, (a(—B d>ome > V;(mmfz)). (9)
lex} xe W,

For X = (X2, X)) e g x g, we define a Killing vector field X* on G by

X", = i exp(tXa)y exp(—tX1)

=0
Then
(X), = (dL,)(Ad(») "' X2 - X1)
holds. If X, =0, then X* is a left invariant vector field. Denote by V the

Levi-Civita connection on G. By Koszul’s formula, we have the following.

LEmMa 2 ([Ohl] Lemma 3). Let yeG, X =(X2,X1), Y =(Y2,Y1)€
ax g Then we have

(Vy-Y7)

1 B _
y = 5 dL[Ad) " Xo — X1, Ad(y) " Va4 1),

Here, g x g denotes the Lie algebra of G x G.
By Lemma 2, the first author proved the following theorems.

THEOREM 5 ([Ohl] Theorem 3). For x =exp H (H € a), we denote the
second fundamental form of the orbit (K, x K)-x in G by By. We define
subspaces Vi and Vy of dL'(T(K> x K1) - x) by
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V= Z ny; @ Z Vof(ml n fz),

reXZ\Zy oe WH\ Wy
V)= Z L Z VA (F Nmy).
leXt aeW+

Then we have

(1) For X €fy, Buy(dLy(X),Y) =0 where Y € T\ ((K2 x K1) - X).
(2) For X e V(fi Nnmy),

0 (Yeth @ V(mNnh))
dL'By(dL\(X),dL.(Y)) = {

—%[X, YI© (Yen).

(3) For X e V(m1 ﬂfz),

0 (YeV(imnk)® 1)
1 =
de BH(de(X)adLV(Y)) - {;[X, Y]L (Y S Vz).

(4) For S,; (AeZt, 1<i<m(h),

0 (YE Vg)

-1 . =
dL_ By (dL(S},:),dL.(Y)) = { —%[S/i,h YI© (YeW).

(5) For X,; (oe Wt 1 <i<n(a)),

0 (YE Vz)

dL'By(dL\(X,.;),dL.(Y))={ 1
v Bu(dLy(Xy,:),dL.(Y)) —§[Xe<,i,Y]L (Yer).
(6) For T;; (AeXZ™\Zy, 1 <i<m(l)),

o dL'By(dL,(T;;),dL,(T, ) = cotlu, HY([T; ;, S, ;|" where pe

2N\Zy, 1< j<m(p).

o dL'By(dL,(T;;),dL,(Yp,)) = —tand{B, HY[T; ;, Xp,]= where e

(7) For Y, (o€ W\ Wy, 1 <i<n(a)),

dL;'By(dL(Y,;),dLy(Yy,;)) = —tan{B, HY[ Y, 1, Xp ;]

where fe W\Wy, 1 < j<n(p).

Here, X~ denotes the normal component, ie. the ((Ad(x) 'my)Nnmy)-
component, of a tangent vector X € g.

By Theorems 4 and 5, we obtain the following corollary.
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COROLLARY 2 ([Ohl] Corollary 2). For x =exp H (H € a), we denote the
mean curvature vector field of the orbit (K, X K1) -x in G by ty. Then,

dL M(ty), = — Z m(L) cot{A, HyA + Z n(a) tanda, H Yo

LeXN\Zy oe W\ Wy
Moreover, dL;'(ty), = dL;'(ty;), (v holds. Hence, the orbit (Ky x Ki) - x in
G is minimal if and only if K; - 7(x) in Ny is minimal.
We show the following properties of the mean curvature vector field 7g
of (K x Kj)-x in G and t}; of Ky m(x) in Nj.
PROPOSITION 1. For Hea and o= ([s],Y)eJ, we set H =c-Hea,
x=exp(H) and x' =exp(H'). Then (K; x K;)-x= (K, X K1) - x" and

L (tn), = 1] - dLY (t),-

x'

PrOOF. By the definition of J, there exists s € N, (a) such that Ad(s)|, =
[s] and (s,exp(—Y)s) € K» x K;. Then we have

(s,exp(=Y)s) -exp(H) = s exp(H)s ' exp(Y) = exp(Ad(s)H + Y) = exp(H').

Thus, (K; x K;) - x = (Ky x K1) -x'. Since L;o Ry1op(y) 1S an isometry, we
have
(TH)x’ = (TH)LJOR,]

s—1exp(Y) (x)

=dLo der exp(Y)((TH)x)

= is exp(H) exp(t dL ' (), )s ™" exp(Y)

dt »
= % exp(Ad(s)(t dL ' (zy), + H)) exp(Y)
=0

= % exp(Ad(s)H + Y) exp(¢ Ad(S)(dL;l(TH)x))

t=0
— dL.(Ad(s)dL; ' (ty),)
= dLy([s] - dL (tx) ).

By Lemmas 4.4 and 4.21 in [I1], we have that W(X, X, W) is a subgroup
of J. Then we have the following Lemma.

LemmA 3. For x=exp H (H € a), we have

GudL Y (ty) > =0  (AeZp).
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Proor. When (74), =0, it is trivial. Thus we assume (7z), # 0. Since
J.€ Xy, we have

{ALH) P
<S)~,2m}v) € W(Z,E, W)

Then,

{4, H) _ LHY
<S1,2<}v’}v> }L)H—SA(H)+2<A7A>)~—H.

By Proposition 1, we have

ydL N () >

o

dL; (ty), = s;(dL; (ti),) = dL; (ti), — 2

Therefore, we obtain {,dL;!(ty).> =0.
PROPOSITION 2. For x =exp H (H € a), we have
VA%TH:O (XE%((szKl)-x)).

Proor. Since the orbit (K; x Kj) - x is a homogeneous submanifold in G,
it is sufficient to prove that Vyty =0 at one point x in G.

Let X € To((K; x K}) - x). Then there exists (X2, X)) e, x f; such that
X = (X3, X1);. For ky € K>, we have

. d _
(0, de;l (th) ipx = Ekzx exp(t dL 1 (tw),)

t=0

= dezdLX% exp(t a’L;l (tr),)

t=0
= dez (TH)x
= (TH)kgx'

Since H and dL_'(zy), are in a from Corollary 2, we have, for k| € K,

X

d
(AL (), 0) i = o7 xp( AL (z) k!

t=0

= %x exp(t dL; (1) Jky !

=0

= de_llde% exp(t dL;] (th),)

=0
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—1
= del (TH )x
= (TH )Xkl’ I

In particular, v = (0, —dL;'(ty),)" on the curve exp(tX,)x for X> et and

ty = (dL;'(ty),,0)" on the curve xexp(zX;) for X; ef;.
Since H and dL;!(ty), are in a,

Ad(x) ™ dL (tn), = L (tir) -
Hence, by Lemma 2, we have
(V)?TH)X = (V(Xz,Xl)*TH)i
= Voo )y + Viox )y

= (V00 (0, —dL (1) ) )y + (Voo xy- (AL (t1),, 0) )y

= (; dL,[Ad(x) ' X5, del(m)XDl + <; dLi[—Xy,dL 1(m)x])L

1 L
= (5 de[Ad(X)_ng + X],del(‘L'H)x]) .
Therefore, in order to prove Vyty =0, it is sufficient to show that
[(Ad(x) 'h) + b, dL  (tr) ] € (Ad(x) 'h) + 1.
From (8), we have
(Ad(x) '5) +

- <f0® Z IL® Z m @ VE Nm) @ Z Vj(fl Nny)

AeXT AreX\Zy ae W+

oe WH\ Wy

(&) V(m1 N fz) &) Z V;i(ml n fz)) .
Since dL;'(ty), € a and Lemma 1, we have
[f() &) V(T‘lll N fz) @V N TlIz),dL;l (‘L’H)x} = {0},

B @®m,dL ! (ty)] CE ®my,

[Vj(nT] ﬁfz) D Val(f] ﬁmz),dL;l(TH)x] C V;L(ml ﬂfz) &) Val(f] ﬂmz)
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for Ae 2T\2y and w e WH\Wy. By Lemmas 1 and 3, we also have
[€,dLy(tn),) = {0}, [V;"(fi nma),dLy(t),] = {0}

for Ae 2}, and ae W};. Therefore we have the consequence.

In Theorem 4, we described the tension field of the orbit of commuta-
tive Hermann actions of K; on N;. From this expression, we can verify the
existence of minimal orbits. In the case of isotropy actions of compact
symmetric spaces, the orbit space can be identified with a cell Py as in (6).
D. Hirohashi, H. Tasaki, H. J. Song and R. Takagi, proved that, according to
the stratification of orbit types, there exists a unique minimal orbit in each orbit
type (cf. [HTST, Theorem 3.1]). For commutative Hermann actions which
satisfy one of (A), (B) and (C) in Theorem 2, O. lkawa obtained the same
result (cf. [I1, Theorem 2.24]).

4. Characterizations of biharmonic orbits

In the previous section, we described the second fundamental forms of
orbits of the Hermann action of K, on Nj and the (K; x Kj)-action on G. In
this section, we give a necessary and sufficient condition for an orbit to be a
biharmonic submanifold.

4.1. Characterization of biharmonic orbits of commutative Hermann actions.
First, we consider orbits of commutative Hermann actions. Since all orbits of
Hermann actions satisfy Vi), =0 (see [IST1]), we can apply Theorem 1.

THEOREM 6. Let (G,K;,K>) be a commutative compact symmetric triad.
For x=exp H (H € a), the orbit K, -m(x) is biharmonic in Ny if and only
if

D mAKAL (th) gy () A (1 = (cotl, HY)?)A

/1627\2]]

+ ) )AL (1) g e (1 = (tande, HY) )z =0 (10)

ae W+\W[]

holds.

Proor. The curvature tensor R<’ of the Riemannian symmetric space
(N1,{,>) is given by

R(AL(X),dLy(Y))dL(Z) = —dL[[X, Y], Z]  (X,Y,Zem).
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Since dL;'(t};),, (v € a, We have
o for e ZN\Zy, 1 <i<m(d),

R (1) gy () ALx(T2,)) AL (T,0) = —dL[[dL (Thy) 5, ) Tl T3]
= AL (Tgg) gy (s AVALR[S1, 1, T, i)
= AL (Tgy) gy () AL (2),
o for ae W\ Wy, 1 <j<m(a),
R ((Th)ay (> AL (Yo )) )AL (Y ) = ALy (tgp) g, (), DAL (@),
o for XeV(mnt),
RO ((Th) gy () ALx(X) )AL (X ) = 0.

Since dL;'(t};), (v is in a, by Theorem 3, we have
o for A e XN\Xy, 1 <i<m(l),

Ay, Ax(Ti) = — (AL () ()0 A2 (COA, HY)AL (T 1),

By (A, ALs(T;.0),dL(T}, 1))

= AL (thy) gy (s AV (COWA, H ) By (dL(T}, ), dL(T 1))
= (AL (t)y) s A2 (COtCA, HY)PdLA(2),
o for ae W\ Wy, 1 <j < n(a),

By (4 dL(Yy,j),dL(Yo j))

Tlli)nl(.\')
= —dL; (tgy) gy (> 2> (tano, HY) By (dLy( Y, ), dLy( Yy ;)
= (AL (T)) gy 2> (taner, HY) dL (),

e for X e V(mnh),

B (Ag o AL(X),dLy(X)) = 0.

H/my(x)

Therefore, by Theorem 1, we have the consequence.

COROLLARY 3. Let (G, K1, K>) be a commutative compact symmetric triad
which satisfies dim a =1, ie. X C {o,20}. For x=exp H (H € a), suppose
that the orbit K, - my(x) is a regular orbit. Then K, - my(x) is biharmonic in N,
if and only if
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AL (Thp) vy o (m() {1 = (cot<t, H))*} + 4m(2u){1 — (cot<20, H))?}
+n(x){1 — (tanda, HY)*} +4n(20){1 — (tan{2x, H)*}) = 0
holds. Here, for Aca, if A¢ X (resp. A¢ W), then m(2) =0 (resp. n(1) =0).
4.2. Characterization of biharmonic orbits of (K, x Kj)-actions. Next, we

consider orbits of the (K, x Kj)-action on G. By Proposition 2, we can
apply Theorem 1.

THEOREM 7. Let (G,K|,K>) be a commutative compact symmetric triad.
For x =exp H (H € q), the orbit (K X K}) - x is biharmonic in G if and only if

> m(A)<dL; (zu) A G — (cot{Z, H>)2> )

).EE+\EH

+ Z n(rx)<de1(rH)x,oc><%—(tan(oc,H})z)oc

oe W+\W]]

+ Y m(<dL (o) wou+ Y n(B)KAL; (en) ., BB = 0

uel}; peW,;
holds.

Proor. Since (G, {,)) is a Riemannian symmetric space, the curvature
tensor R$” of (G,<,)) is given by

R(dL(X),dL(Y))dL,(Z) = —dL\[[X, Y], Z] (X,Y,Zeg).

Hence, we have
o for e ZN\Zy, 1 <i<m(d),

R ((ti) g, dL(T3,0))dL(Ts5) = <AL (ti) ., 2DdL(2),
o for AeXZt, 1 <i<m(l),

R ((t) g, AL (S1.1))dL(S5,5) = <AL (tir) ., 2DdL(2),
o for ae W\ Wy, 1 < j<n(a),

R ((th)y dLx (Yo, j))dLx (Y, j) = <dLy ' (tr) ., o>dLx(2),
o for oe Wt 1< j<n(a),

R ((thr)y dLx(Xs, j))dLx (X, j) = <dLy ' (tir) ., o>dLx(2),
e for Xety@V(HiNnm) @ V(imNh),

R ((zh),,dL(X))dLy(X) = 0.
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On the other hand, for each e ZT\Zy, 1 <i<m(A) and X € Ad(x) "' (f) +
f;, by Theorem 5, we have

Ay, dLy(T;,0), dLe (X))

= <BH(de(T),,i)> dLY(X>>7 (TH)x>

0 (X ety ® V(m1 n fz))

— YL X, T3 () o> XeVHnm)® Y, s L
® Yyew Vi(BiNm))

=19 cotlu, HYAL[T; ;s Sy ;1" (i)Y (X =T, for pe ZH\Zy,
1 <j<m(d)

—tan{o, HYdL[T; ;s X,.;]", (tur),> (X = Y, ; for ae WH\ Wy,

1 <j<n(x)
—5<dL  (Tn) o A (X =5,
={ —cot{d, HYdL (1), Ay (X =T;)
0 (lf <X7Si,i>:<X7 Ti,i>:O)~

Thus, we have

A

TH),\‘

dL(T; ;) = — % AL (ty),, AYdL.S; ; — cot{ i, HY{dL " (ty) , AYdL.T; .

Therefore, we obtain

B (A, dLx(T7,1),dL(T,1))
- 7%<dL;1(rH)x,)L>BH(de(Sz,i),de(TM))
— AL (tn) 4> cOt(< HY) By (dL(T;,1), dLy(T),1))
= dL  (ty),, A <i + (cot{, H>)2> dL.(})

for 2e 2"\2y, 1 <i<m(4). Similarly, we have
o for e ZN\Zy, 1 <i<m(d),

Bu(Ap,,), dLy(S;,i),dLy(S;,:))

= L e B (LT, ). dLA(S;. )

= % (dL; (1), AYdLy(2),
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e for ae W\ Wy, 1 <j<n(a),

B (A, dLx(Ys ;) dLx(Yy )

x

= AL () B (L (X, ) AL Yo )

+<dL  (ty) , o) tan(<e, HY) By (dLy(Y, ), dLy(Y,,)))
= <L o)+ Cancn 13)? L ),

o for ae W\ Wy, 1 <j < n(a),

Br(A(zy), dLx(Xy ), dLx (X))

= AL () B (AL (Yo ) dL(Xe )

- %<dL;‘ (T) s AL (0),

o forXelp@VHNm)@V(mnNh) @3, 5 L@ X cp: V- (liNm),
Bu(Ag,), dL.(X),dL.(X)) = 0.
Therefore, by Theorem 1, we have the consequence.
When dim a = 1, we have the following corollary.

COROLLARY 4. Let (G,K;, K>) be a commutative compact symmetric triad
which satisfies dim a =1, ie. ¥ C {a,20}. For x=exp H (H €a), suppose
that (K> x Ky) - x is a regular orbit.  Then the orbit (K, x K}) - x is biharmonic
in G if and only if

L )y ) (m(“){g — (coto, H >)2} + 4m(22) {% ~ (cot{2a, H>)2}
" "(“){% — (tanda, H>)2} +4n(20) {% — (tan(2s, H>)2}) ~0
holds.  Here, for J.€a, if A¢ X (resp. L ¢ W), then m(1) =0 (resp. n(A) =0).

5. Biharmonic homogeneous submanifolds in compact symmetric spaces

In the previous section, we characterized the biharmonic property of orbits
of commutative Hermann actions and the actions of the direct product of
two symmetric subgroups on compact Lie groups in terms of symmetric triad
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with multiplicities. In this section, we study proper biharmonic orbits of com-
mutative Hermann actions by using Theorems 4 and 6. In [OSU], we clas-
sified proper biharmonic hypersurfaces in irreducible compact symmetric spaces
which are orbits of commutative Hermann actions. In order to obtain proper
biharmonic orbits of higher codimension, we have to consider the cases of
dim a > 2. Here we determine the biharmonic properties of singular orbits of
commutative Hermann actions in the cases of dim a =2. Then all cohomo-
geneity two isotropy actions and commutative Hermann actions satisfying the
condition (A), (B), or (C) in Theorem 2 are classified as follows:

Cases of 0 = 0, (isotropy actions). Since K; = K,, we show the list of
irreducible symmetric pairs of compact type of rank two.

* Type A;
- (SU(3),80(3)),
— (SU(3) x SU(3),SU(3)),
- (E67F4)>
e Type B,
- (SO(5) x SO(5),S0(5)),
— (SO(4 + n),SO(2) x SO(2 + n)),
e Type C,
- (Sp(2),U(2)),
— (Sp(2) x Sp(2),Sp(2)),
— (Sp(4),Sp(2) x Sp(2)),
- (SU(4),5(U(2) x U(2))),

e Type G,
~ (G2,80(4)),
— (G2 X Gz, Gz),

Cases of 0, + 0,. The following classification is due to O. Ikawa [I2].
* Type I-B;
— (SO(2+s+1),S0(2 +s) x SO(¢),S0(2) x SO(s + 1)) 2<¢t,1<y),
— (SO(6) x SO(6),4(SO(6) x SO(6)), K») (condition (C)).
Here K> = {(u1,u2) € SO(6) x SO(6) | (0(u2),0(u1)) = (u1,u2)} and
¢ is an involutive outer automorphism on SO(6). Then (G,), =
SO(3) x SO(3) or SO(5).
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* Type I-C,
— (S0O(8),50(4) x SO(4), U(4)),
- (SU(4),50(4),5(U(2) x U(2))),
— (SU(4) x SU(4),4(SU(4) x SU(4)),K>) (condition (C)).

Here K = {(u1,u2) € SU4) x SU4) | (o(u2),0(u1)) = (u1,u2)} and
o is an involutive outer automorphism on SU(4). Then (G,), =
SO(4).

— (SU(4) x SU(4),4(SU(4) x SU(4)), K3) (condition (C)).
Here K> = {(u1,u2) € SU4) x SU4) | (6(u2),0(u1)) = (u1,u2)} and
o is an involutive outer automorphism on SU(4). Then (G,), =
Sp(2).

Type I-BCy-A7]

— (SUQ2+s+41),S(U(2+s5) x U(2),S(UQ2) x U(s+1)) 2<t1<s),

— (Sp(2+s+1),Sp(2 + ) x Sp(#),Sp(2) x Sp(s + 1)) (2 <t 1<y),

— (SO(12),U(6),U(6)"). Here, we define U(6) = {geSO(12)]
JgJ~!' =g}, where

and I; denotes the identity matrix of / x /.

e Type I-BC,-B;

— (SO(4 +25),S0(4) x SO(25),U(2+5)) (2 <),
— (Ee,SU(6) - SU(2),S0(10) - U(1)),
— (E7,S0(12) - SU(2), Es - U(1)),

e Type II-BC,

— (SU(2+35),S0(2+5),S(U(2) x U(s))) (2< ),

— (SO(10),S0(5) x SO(5),U(5)),

— (Es,Sp(4),S0(10) - U(1)),

— (SU(5) x SU(5),4(SU(5) x SU(5)), K3) (condition (C)).
Here K> = {(u1,u2) € SU(5) x SU(5) | (0(u2),0(u1)) = (u1,u2)} and
o is an involutive outer automorphism on SU(5). Then (G,), =
SO(5).

e Type II-A;

— (SU(6),5p(3),50(6)),
- (EeSP@).F),
— (Ux U,4(U x U),K x K) (condition (B)).
Here (U,K) is a compact symmetric pair of type A,.

e Type 1I-B,
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— (Ux U,4(U x U),K x K) (condition (B)).
Here (U,K) is a compact symmetric pair of type B,.

e Type II-C,

— (SU(8),S(U() x U(4)),Sp(4)),
~ (SP(4). U(4), Sp(2) x Sp(2)),
— (UxU,4(U x U),K x K) (condition (B)).
Here (U,K) is a compact symmetric pair of type C.
e Type HI-BC,
— (SU(4 + 2s5),S(U(4) x U(25)),Sp(2+s)) (2<3s),
- (SU(10),S(U(5) x U(5)),Sp(5)),
~ (Sp(2+ ), U(2+ 9).Sp(2) x Sp(s)) (2< ),
— (Ux U,4(U x U),K x K) (condition (B)).
Here (U,K) is a compact symmetric pair of type BC,.
e Type 1I-G,
— (Ux U,4(U x U),K x K) (condition (B)).
Here (U,K) is a compact symmetric pair of type G,.

In the following, we consider the biharmonic properties of singular orbits
of Hermann actions for each compact symmetric triad in the above list. For
H e a, we set x = exp(H) and consider the orbit K, - 7;(x) of the K2 action on
N, through 7;(x). For simplicity, we denote the tension field dL; (TH)7Il by
7. According to the classification of types of symmetric trlads, we examme
biharmonic property of orbits individually. Hereafter, we assume that N, and
N, are simply-connected.

Cases of 0, ~ 0,. First, we examine isotropy actions of compact symmetric
spaces. When 0; ~ 0, Hermann actions are orbit equivalent to isotropy
actions of compact symmetric spaces. We set a basis {H,},.; of a as
follows;

(Hy, B> =0 (‘X;‘éﬁa O(,ﬂen), (Hy,0) =m,

where 0 is the highest root of 2. Then we have

{ZIMH% t, >0 (ae ), Zt“<l}.

oaell aell

From (6) and (7), the orbit space of an isotropy action is described as Py =
Uscrogs P{. Since dim a =2, IT = {0y,0,} and Py is a triangle region in a.
We apply Theorem 6 to the following three cases;

(1) HeP™ ={tH, |0<1<1},

(2) HeP™ = {tH, |0<1<1},

(3) HeP“‘l “} = {1H, + (1 - 0)H,, |0 <1< 1}.
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These three cases correspond to three edges of Py. In these cases, we can solve
the equation (10) in Theorem 6 concretely in most cases. In the following, we
compute the equation (10) in Theorem 6 for each root type.

5.1. Type A,. We set

a={e1 + e+ Eses &) + &+ & =04
Then, we have
2+={O(1=€1—827a2262—€3,061+062}, W+=@,
m = m(a) (e X).

(1) When HePé““"s} ={tH, |0 <t <1}, we have X}, = {az}. Hence
we obtain

g = m cotloy, Hyay + m cotloy + on, H (o + o) = m cotay, HY (20 + o).
Thus the orbit K, -7(x) is harmonic if and only if <oy, H) =n/2. By
Theorem 6, the orbit K, - 7;(x) is biharmonic if and only if

0 = m, 00 )(1 — (cotlen, H )
+mry, o + a)(1 = (cotdon + ay, HY)?) (e + o)
= m{ty, (1 — (cotay, HY)?)(20m + o).

Thus we have 7y =0 or <oj,H) = (1/4)n, (3/4)n. Therefore, the orbit
K, - m(x) is proper biharmonic if and only if {a;,H) = (1/4)n or (3/4)n.
In this case, there exist exactly two proper biharmonic orbits. By the same
argument, we have the followings:

(2) The orbit K, -x(x) is proper biharmonic if and only if <{op, H) =
(1/4)n, (3/4)n for H=1tH,, (0<t<1).

(3) The orbit K, -x(x) is proper biharmonic if and only if <o, H) =
(1/4)r, (3/4)r for H=1tH,, + (1 —0)H,, (0 <t<1).

5.2. Type B, and C,. We set
2t ={ar =e; — ey 00 = ey, 00 + 0,00 + 20}, wt=g,
52061-1-20(2:81-1—62,

and
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(1) When He Pé“l‘d} ={tH, |0 <t< 1}, we have X} ={e}. By
Theorem 4, we have
g = —my cotay, H Yoy —my cotlay + o, Hy (o + o)
— my cotloy + 200, H (o + 20)
= —(2my + my) cotloy, Hy(o) + o).

Hence, ty =0 if and only if <oy, H) =7/2. By Theorem 6, K, 7 (x) is
biharmonic if and only if

0 = my{zy, o y(1 — (cotdon, HY)*)oy
+my oy, o+ o (1 — (cot<oy, HY)?) (o + 02)
+my g, o + 2m (1 — (coton, HY)?) (o + 202)

= Czpr, 00 )(2my +m) (1 = (cotlen, HY)?) (o + ).

Therefore, the orbit K; - 7;(x) is biharmonic if and only if 747 =0 or <{a;, H) =
n/4, (3/4)r. In particular, K, 7 (x) is proper biharmonic if and only if
oy, Hy =n/4 or (3/4)n. In this case, there exist exactly two proper bihar-
monic orbits.

(2) When H e Pé“z’(s} ={tH,, |0 <1< 1}, we have 2}, = {e; —e2}. By
Theorem 4, we have

Ty = —my cotlon, HYon — my cotloy + 062,H>(O€1 + 062)

— my cotoy + 20, H>(O£] + 20(2)

1
= —z{(2m1 + my) cotlon, Hy — my tanon, H )} oy + 207).

Hence, 757 =0 if and only if

ny
t HY)?=—"2 |
(CO <062, >) 2my + my

By Theorem 6, the orbit K, - 7(x) is biharmonic if and only if
0 = miza, 02)(1 = (cot{oa, HY)? )y
ey, o+ (1 — (coton, HY)?) (e + a2)
+my Ty, o + 200 ) (1 = (cot(2em, HY)?) (o1 4 222)
1
= 5 <t a2 {(2my +mo)(1 — (cotdam, H))?)

+my(1 — (tanday, H))?) + 4ma} (o + 2005).
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Therefore, the orbit K -7;(x) is biharmonic if and only if 74 =0 or
(2m; 4+ ma)(1 — (cotloz, HY)?) + my(1 — (tando, H)?) + 4my = 0
holds. The last equation is equivalent to
((2my + my)(cotlon, H)* — my)((cotlan, HY)* — 1) = 4my(cot{ay, HY)?.

Since m, > 0, the solutions of the equation are not harmonic. Hence the orbit
K5 - 7y (x) is proper biharmonic if and only if

my + 3mp + \/ml2 +dmymy + 8m§

tan, HY)? =
(cotlon, H) pETA—

In this case, there exist exactly two proper biharmonic orbits.
(3) When HeP{™™ = {tH, +(1 - 1)H, |0 <1< 1}, we have X}, =
{e1 +e2} and <o, H) = (n/2) — {0y, H)/2. By Theorem 4, we have

Ty = —my cotlay, H Yoy —my cotlon, H Yoy — my cotloy + op, H y(ay + o)
1 H H
=5 {—mz cot(<m’2 >> + (2my + my) tan(wl’2 >> }ocl.

Hence, 77 = 0 if and only if

<cot <0€1,H>>2 _ 2Zm +my
2 my

By Theorem 6, the orbit K; - m(x) is biharmonic if and only if

0 = mala, o )(1 — (cotlar, HY) e + mi<{za, 02)(1 — (cotlon, HY) )

+ m e, a1+ a1 — (cotloy + on, HY)?) (o + 2)

2
- % {tH, oc1>{4mz + my (1 - (cot <a1’2H>> )
2
+ (2my + my) (1 - (tan <oc1,2H>) > }ocl.

Therefore, the orbit K - 7;(x) is biharmonic if and only if 74 =0 or

2 2
4my 4+ my (1 — (cot <a1’2H>> ) + (2my + my) (1 — (tan @) > =0
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holds. The last equation is equivalent to

2 2 2
(mz <cot <o<1,2H>) — (2m; + m2)> ((cot <o<1,2H>> — 1) =4my (cot <oc1,2H>> .

Since m, > 0, the solutions of the equation are not harmonic. Hence the orbit
K, - 7 (x) is proper biharmonic if and only if

cot Sy, HS 2 B my + 3my + \/ml2 + dmymy + 8m§
2 o ny

holds. In this case, there exist exactly two proper biharmonic orbits.

5.3. Type BC,. We set
St ={a =€) — ey, 00 = ex, 01 + 0,01 + 20, 2009, 201 + 2002},
Wt =&, 6= 20+ 2,
and
my = m(ey), my; = m(e; — e3), m3 = m(2e;).

(1) When H ePé“"(s} ={tH, |0 <1< 1}, we have X}, = {es,2¢,}. By
Theorem 4, we have

ty = {—(m + 2my + m3) cotloy, H) + m3 tanloy, H )} (o + o).
Hence, 7y =0 if and only if

2 ms

cot{oy, H)) = —————
(cot<an, H) my + 2my +mj3

holds. By Theorem 6, K, -7;(x) is biharmonic if and only if
0 = {ogr, o Y{(2my + my + m3) (1 — (cotlay, HY)?)
+ m3(1 — (tanday, HY)?) + 4m3} (o + o2).
Therefore, the orbit K> -7;(x) is biharmonic if and only if 74 =0 or
(2my + my 4 m3)(1 — (cotloy, HY)?) + ms(1 — (tandoy, HY)?) + 4m3 = 0
holds. The last equation is equivalent to
((2ma + my + m3)(cotloy, HY)? — m3)((cotloy, HY)? — 1) = 4ms(cotlay, H))?.

Since m3 > 0, the solutions of the equation are not harmonic. Hence the orbit
K, - m(x) is proper biharmonic if and only if
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(cotay, H>)2

my + 2my + 6ms + \/(l’l’ll + 2my + 61’)’13)2 — 4(1’}’[1 + 2my + I’i’l3)Wl3
a 2(my + 2my + m3) '

In this case, there exist exactly two proper biharmonic orbits.
(2) When H e Pé“z"&} ={tH,, |0 <1< 1}, we have 2}, = {ej —e2}. By
Theorem 4, we have

1
Ty = —z{(2m1 + my + 2m3) cotlon, HY — (ma + 2m3) tandog, Hy}(og + 202).
Hence, 7 = 0 if and only if

my + 2ms3
t HY)? =27 775
(CO (o, >) 2my + nmy + 2m;3

By Theorem 6, the orbit K, -7 (x) is biharmonic if and only if
0= e > (2my + ma + 2m5)(1 — (cot(an, H))?)

+ (my +2m3) (1 — (tandog, HY)?) + 4(my + 2m3) } (o + 2003).
Therefore, the orbit K, - 7;(x) is biharmonic if and only if 74y =0 or

(2my + my + 2m3)(1 — (cot{on, H)?)

+ (my 4 2m3)(1 — (tando, HY)?) + 4(ma 4 2m3) = 0
holds. The last equation is equivalent to
((2my + my + 2m3)(cot{oz, HY)? = (ma + 2m3))((coto, HY)? = 1)
= 4(my 4 2m;3)(cotlon, HY)?.

Since m; + 2m3 > 0, the solutions of the equation are not harmonic. Hence
the orbit K, - 7;(x) is proper biharmonic if and only if

my + 3(my +2m3) + \/ml2 + 4my (my + 2m3) + 8(my + 2m3)?

t{on, HY)? =
(CO <(12, >) 27’}’11 +my +2Wl3

In this case, there exist exactly two proper biharmonic orbits.
(3) When HeP{™™ = {tH, + (1 —1)H, |0 <1< 1}, we have X}, =
{2¢1} and <{op,H) = (n/2) — (o1, Hy. By Theorem 4, we have

g = —(my + m3) tanloy, H Yo + (2my + m3) cotlay, H Yo,.
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Hence, 77 = 0 if and only if

my + mj3
t HY)? =175
(CO <061, >) 2}7/12 +m;

By Theorem 6, the orbit K; -7 (x) is biharmonic if and only if
0= —<egg, o S (ms + 2m)(1 — (cot<oy, HY)?)
+ (my +m3)(1 — (tan<ou, H)?) + 4m3 }oo.
Therefore, the orbit K, - 7;(x) is biharmonic if and only if 74z =0 or
(m3 + 2my) (1 — (cotoy, HY)?) + (my +m3)(1 — (tandey, HY)?) + 4m3 = 0
holds. The last equation is equivalent to
((ms + 2ma)(cot<ou, HY)? — (my + m3))((cot<or, HY)? — 1) = 4ms(cot(en, H)*.

Since m3 > 0, the solutions of the equation are not harmonic. Hence the orbit
K, - m(x) is proper biharmonic if and only if

my + 2my + 6ms + \/(ml — 2m2)2 + 8miz(my + 2my + 4ms)

2 _
(cotor, HY)™ = 2(2my + m3)

holds. In this case, there exist exactly two proper biharmonic orbits.

5.4. Type G;. We set

Xt = {oy, 00,01 + 0, 2001 + 02, 301 + 0, 30 + 200}, Wt =,

ooy =1, <O<1,0€2>=—; oz, 00 = 3,
0 = 3o + 200,
and
m=m(oy) = m(o).

(1) When H € Pé“"(s} ={tH,, |0 <t <1}, we have 2}, = {m}, W, = .
By Theorem 4, we have

cotay, H) cotu, Hy — 1
cotay, HY 4+ cot2uy, H)

Ty = —m{cot(oq,H>+c0t<2oc1,H>+3 }(Zocl + o).

Thus, 77 =0 if and only if
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0 = ¢ cotay, H) + cot20y, H) + 3

cotloy, H) cota, Hy — 1
cotloy, H) + cot20, H)

=

(15(cotdoy, HY)* — 24 + (tandoy, H))?).

Since 0 < <oy, HY < (n/3), g =0 if and only if

(cot(an, H))? = 22

By Theorem 6, the orbit K, -7 (x) is biharmonic if and only if
0 = mlz, 0 Y{(1 — (cotdo, HY)?)
+2(1 = (cot2ay, HY)?) 4 9(1 — (cot{3oy, HY) )} (201 + 02).
Then, we have

(1 = (cotloy, HY)?) + 2(1 — (cot2ay, HY)?) + 9(1 — (cot{3ay, H)?)

=12- [(cot(oq,H))2 + 2(cot<2oc1,H>)2

9 cotloy, H) cota;, Hy — 1 2
cotlay, H) + cotQuy, H) '

Thus, the orbit K5 -7;(x) is biharmonic if and only if
0 = {(cotoy, HY)* 4 2(cot{ 20, HY)*}(cotlay, H) + cot{20y, HY)?
+9(cotlay, HY cot2ay, HY — 1)* — 12(cotay, HY + cot(2uy, H))*

4
- M{%(cot@mfw)g — 378(cot<o, H)*

+ 318(cotlay, HY)* — 30(cot{ay, HY)* + 1}.
We set u = (cot(ocl,H>)2 and
f(u) = 45u* — 378u> + 318u* — 30u + 1.
Then,

ﬂ(u) = 1801’ — 10261* 4 6361 — 30 = 6(u — 5)(30u®> — 21u+ 1)

du
180 5) (u 21 +60\/321> (u 21 —60\/321) |
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Since

1\ 128 daf (1\ 224
G)=5>0 @()-5>0
f(5)=-6824 <0 and f(7)=6112 >0,

the equation f(u) =0 has distinct two solutions for (1/3) <u. Therefore,
there exist 0 < 7_,z, <1 such that the orbits K, - 7 (exp(¢+H,,)) are bihar-
monic. Since

f<—12 +1;/@) #0,

the orbits K, - 7y (exp(t+H,,)) are proper biharmonic. In this case, there exist
exactly two proper biharmonic orbits.

(2) When H e P\ = {tH,,]0 < t < 1}, we have 5}, = {u}, W;} = &.
By Theorem 4, we have

1
Ty = —Em{S cotlop, Hy — tanlon, HY} (30 + 205).
Hence, 7 =0 if and only if
, 1
(cotlan, HY) =3
By Theorem 6, the orbit K, -7 (x) is biharmonic if and only if
1
0 = s, a>{5(1 = (cot<o, H)*) + (1 = (tanlaz, H))) + 4} Gor + 22).

Therefore, the orbit K - 7;(x) is biharmonic if and only if 77 =0 or
5(1 — (cot{on, HY)?) + (1 — (tan<oz, HY)*) +4 =0
holds. The last equation is equivalent to
(5(cot<o, HY)* — 1)((cotoa, HY)? — 1) = 4(cotlon, HY)".

Thus, the solutions of the equation are not harmonic. Hence K- (x) is
proper biharmonic if and only if

(cot(ocz,H>)2 = %

holds. In this case, there exist exactly two proper biharmonic orbits.
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(3) When He Pé“"“z} ={tH,, + (1 -1)H,, |0 <t < 1}, we have X}, =
{301 4+ 200}, Wy = . We set 3= (n/6)t. Then,

(o, HY =28, o, Hy = g —39.

By Theorem 4 we have
g = —m{cot(23) — tan I — tan(39) }a;.
Since

cot § + cot(29)

tan(39) = cot 3 cot(29) — 1’

7y = 0 if and only if
0 = (cot(29) — tan $)(cot 3 cot(23) — 1) — 3(cot & + cot(29))

(cot 9)* — 24(cot 9)* + 15
cot § '

Since 0 < § < (n/6), we have cot $ > /3. Hence ty =0 if and only if
(cot 9)? =12 + V129.

By Theorem 6, the orbit K, -7 (x) is biharmonic if and only if
0= %@H, aY{2(1 = (cot(29))%) + (1 — (tan )?) + 9(1 — (tan(39))%) ;.

Therefore, K, - m(x) is biharmonic if and only if 75 =0 or
0 =2(1 — (cot(29))?) + (1 — (tan $)*) + 9(1 — (tan(39))?)

(cot(29) + cot 9)*

= (12 = 2(cot(29))” — (tan 9)") 9((cot(28))(00t9)—1)2

holds. Thus K5 - 7;(x) is biharmonic if and only if 75 =0 or

0 = {12 — 2(cot(29))? — (tan $)*}((cot(29))(cot & — 1)* — 9(cot(29) + cot 9)*
= —é(tan 9)*{(cot 9)* — 32(cot 9)® + 330(cot 9)* — 360(cot $)* + 45}.

By the same argument as (1) in 5.4, we have that if the orbits K, -m(x) is
biharmonic, then it is harmonic.

Cases of 0; + 0,. Next, we consider the cases of 0; + 0,. Let (G,K;,K>) be
a compact symmetric triad which satisfies the condition (A), (B) or (C) in
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Theorem 2. Then the triple (X, X, W) is a symmetric triad of a with
multiplicities. From (4) and (5), the orbit spaces of Kj-action on N; and
Kj-action on N, are described as Py={H ea|{a,H) >0, <a, H) < (n/2)
(o€ Il)} where & is a unique element in W' which satisfies a+1¢ W for
all Aell. We set a basis {H,},.; of a as follows;

CHofy=0,  (Hn8=3  (a#p upell.

Then we have

e f

oaell

21, >0 (e ) Zty<1}

aell

We apply Theorem 6 to the following three cases;

(1) HeP{™ ={tH, |0<t<1},

2) HeP™ ={tH,|0<t<1},

(3) HeP{“‘ b = GH, + (1= 0)H,, |0 <1< 1}.
In the followmg, we solve the equation (10) in Theorem 6 for each symmetric
triad with multiplicities which satisfies dim a = 2.

55. Type I-B, and I-BC,-A7. We set

Xt ={e; + ey, e1,e3,2e1,2er}, Wt ={ey, e},
II={o) =e —ey, o0 =er}, =0 +op=e
and
my = m(ey), my; = m(e; + e2), ms = m(2e;), n = n(ey),

Here m3 =0 when (X, 2, W) is of type I-B,.
(1) When HeP{™™ = {tH, |0 <t <1}, we have Zj; = {m,20} and
W = &. By Theorem 4, we have

tg = {—(2my +my + m3) cotloy, H) + (n1 + m3) tan<ay, H ) }ey.
Hence we have 7y =0 if and only if

ny +ms

t H _
(CO <“1; >) m +2m2 —|—WZ3

By Theorem 6, the orbit K; -7 (x) is biharmonic if and only if
0 = {tpg, o0 Y{(m1 + 2my + m3) (1 — (cotloy, HY)?) + 4ms

+ (m +ms)(1 — (tando, HY)?)Jer.
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Therefore, K, - 7m(x) is biharmonic if and only if 74 =0 or
(my + 2my + m3)(cot{oy, H)*
— {(my + 2my + m3) + (n1 +m3) + 4mz} (cotlo, HY) +m +mz =0 (11)

holds. Let H, and H_ denote the solutions of the biharmonic equation
(11) such that (cota;, H_»)* < (cotla;, H,>)*. Since 7 =0 if and only
if

ny + ms

cot{oy, HY)} = —L "5
( <3€1 >) my + 2my + m3

K, - m(x) is proper biharmonic if and only if

(cotoy, H>)2

—(m+2my+6ms+n;) + \/(ml+2n12+6i713+n1)2—4(m1+2m2+m3)(n1+m3)
_ 2(my+2my+m3)

1 (Wl3 = 0)

(WZ3 > 0)

Let Hy be a vector in a satisfying 7y, =0 and 0 < <oy, Hyy < 7/2.
o (I-By) If ms =0, then there exists a unique proper biharmonic orbit.
. (I—BCZ—Af) If ms >0, then

<051,H7> < <O€1,H0> < <O€17H+>,

hence there exist exactly two proper biharmonic orbits.
(2) When H e P{** = {tH,,|0 < 1 < 1}, we have 5}, = {u}, W;} = &.
By Theorem 4, we have

1
Ty = E{—(2m1 + my + 2ms3) cotlon, H)
+ (27’11 +my + 2]’1/12) tan<ay, H>}(OC] + 20(2).
Hence, 7 = 0 if and only if

2ny + my + 2m;
t HY? =127
(CO <o, >) 2my + my + 2m;
By Theorem 6, the orbit K; -7 (x) is biharmonic if and only if

0 = Coa, ) {mi (1 = (coton, HY)?) + (2m + 4ms)(1 — (cot20, H)?)

+n1(1 — (tan{o, H))*)} (o + 200).
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Therefore, K, - 7m(x) is biharmonic if and only if 74 =0 or
0 = my (1 — (cotlorz, HY)?) + (2my + 4m3) (1 — (cot20y, H »)?)
+n1(1 — (tan{o, HY)?)
holds. The last equation is equivalent to
((2my + my + 2m3)(cotan, HY)* — (2ny 4+ my 4 2m3))((cotlan, HY)* — 1)
= (2my + 4m3)(cot{o, HY)™.

Since 2m, + 4m3 > 0, the solutions of the equation are not harmonic. Hence
the orbit K, - 7;(x) is proper biharmonic if and only if

B+ b+ 2ma + dms [ (h + T+ 2ma + dms)* — 411Dy
2

(cot<oy, H>)2 =

holds, where Iy = 2m; + my + 2m3 and L, = 2ny + my + 2ms3.  In this case, there
exist exactly two proper biharmonic orbits.

(3) When HeP{™™ = {tH, + (1 -1)H, |0 <t<1}, we have X}, =
{20(2 + 2052}, W:I— = {OC] + sz}. We set 3=<o;,H). Then, <{on,H)=
(n/2) — 3. By Theorem 4, we have

g = {(2my + m3 + ny) cot 3 — (my + m3) tan 9}o,.
Hence, 7y =0 if and only if

2 mp+m3

cotd) ' =—-——"—.
( ) 2my + m3 + ny

By Theorem 6, the orbit K; -7 (x) is biharmonic if and only if
0 = (o, Y{(2ma 4 ny +m3)(1 — (cot §)%)
+ (my +m3)(1 — (tan 9)°) + 4ms }on.
Therefore, K, -7(x) is biharmonic if and only if 7y =0 or
0 = {(2my +m 4+ m3)(1 — (cot 9)%) + (my 4+ m3)(1 — (tan $)%) + 4m3 )}
holds. The last equation is equivalent to

((2m3 4 m3 + my)(cot 9)* — (my + m3))((cot 9)* — 1) = 4m;3(cot 9)*.
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Since mi3 > 0, the solutions of the equation are not harmonic. Hence the orbit
K5 - 7 (x) is proper biharmonic if and only if

‘g ) _11 + b +4ms + \/(11 +12+4M3)2—41112
(cot 8)" = 21,

holds, where I} =2m, +m3 +mn; and L = m; +ms. In this case, there exist
exactly two proper biharmonic orbits.

5.6. Type I-C,. We set
Z+ = {61 i 62,261,262}, I’V+ = {61 — €2,€] -+ 82},
I ={o) =e —ey,0p =2er}, &=oy+op =e + e,

and m; = m(e| + e2), my = m(2e;1), ny =n(ey +e). In this case, we have the
same results as cases of Type 1-B,.

5.7. Type I-BC,-B,. We set

2t ={e; + er,e1,0,2¢1,202}, Wt ={e; + e er,e},
I ={o =e —eymm=er}, a =0+ 20 =e +e
and
my = m(ey), my = m(e; + e2), m3 = m(2e;),
ny = n(ey), ny = n(e; + e).

Since e; e XN W, e —ex € W and 2<e,e; —exy/{e1 —ez,e; — ez is odd, by
definition of multiplicities, we have m; = m(e;) = n(e;) = ny.

(1) When HeP™™ ={iH,|0<t<1}, we have I}, ={u,2m},
W = &. By Theorem 4, we have

g = {—(m + 2my + m3) cotoy, HY + (my + 2ny + m3) tanloy, H ) }Yey.
Hence we have 7y =0 if and only if

my + 2ny + m3

t oy =TT
(cotonr, H) my + 2my + m3

By Theorem 6, the orbit K5 - m(x) is biharmonic if and only if
0 = Crg, o0 Y{(m + 2my + m3)(1 — (cotla, HY)?)

+ (my + 2ny +m3)(1 — (tan{oy, HY)?) + 4ms} (o + o).



Biharmonic homogeneous submanifolds 85

Therefore, K, - 7m(x) is biharmonic if and only if 74 =0 or
0 = (my 4 2my 4+ m3)(1 — (cotlay, HY)?)
+ (my + 21y +m3)(1 — (tan{oy, HY)?) + 4ms
holds. The last equation is equivalent to
((m1 + 2ma + ms3)(cotlan, HY)* — (my + 2my + m3))((cot{oa, HY)? — 1)
= dms(cot{on, HY)?.

Since m3 > 0, the solutions of the equation are not harmonic. Hence the orbit
K, - m(x) is proper biharmonic if and only if

Lh+bhL+4m; + \/(11 + b +4M3)2 — 451

(cota, HY)* = 2,

holds, where /| = m; +2my +ms3 and L = my + 2n, +m3. In this case, there
exist exactly two proper biharmonic orbits.

(2) When H e Pé“z’“} ={tH,, |0 <1< 1}, we have X}, = {1}, Wj; = &.
By Theorem 4, we have

iy = {—(2m + my + 2m3) cot{20, HY + ny tan20, H )} oy + 207).
Hence we have 7y =0 if and only if

2 M
2my +my +2m3

(cot{20, H))
By Theorem 6, the orbit K; -7 (x) is biharmonic if and only if
0 = 2z, o0 ){(2my + my + 2m3)(1 — (cot2u, HY)?)
+ ny(1 — (tanQRaz, HY)?) — 4m3}(oy + 23).
Therefore, K, -7(x) is biharmonic if and only if 7y =0 or
0 = (2m; + my 4 2m3) (1 — (cot{20z, HY)?)
+my(1 — (tanQRay, HY)?) — 4m;
holds. The last equation is equivalent to
((2my + my 4 2m3) (cot 20, HY)* — 2m3)((cotloz, HY)* — 1)
= —4ms(cotloy, HY) .

Since mj3 > 0, the solutions of the equation are not harmonic.
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o When (=2my+my+2ms+ nz)2 —4(2my + my + 2m3)ny > 0, the orbit
K> -7y (x) is proper biharmonic if and only if

[+ /12— 422my + my + 2m3)ny

205, HY)* =
(C0t< %2 >) 2(2m1 +my + 2”’I3)

holds, where | = —2m;+my+2m3+n,. In this case, there exist
exactly two proper biharmonic orbits.
o When (—2m; + my + 2ms3 + n2)2 —4(2my + my + 2m3)ny < 0, if the orbit
K, - m(x) is biharmonic, then it is harmonic.
o When (—2my + my + 2m3 + n2)2 —4(2my + my + 2m3)ny = 0, there exists
a unique proper biharmonic orbit.
(3) When H € P = {tH,, + (1 = t)H,, |0 < 1 < 1}, we have X}, = &,
Wi ={o1+2m}. We set 28=<a,H). Then <oy, H) = (n/4)—3 By
Theorem 4, we have

Ty = {—my cot(29) + (2my + m3 + ny) tan(29) oy
Hence we have 7y =0 if and only if

. 2my + 2ms3 + np

(cot(29))* "

By Theorem 6, the orbit K -7 (x) is biharmonic if and only if
0 = 2{zp, o1 4 o Y{ma (1 — (cot(29))?)
+ (2my 4 2m3 + m)(1 — (tan(29))?) — 2my }ay.
Therefore, K, - 7(x) is biharmonic if and only if 75 =0 or
0 = (ma(1 — (cot(29))%) + (2m) + 2m3 + ny)(1 — (tan(29))?) — 2m,
holds. The last equation is equivalent to
{m>(cot(29))* — (2my + 2m3 + na) }((cot(29))* — 1) = —2m; (cot(29))*.

Since m; > 0, the solutions of the equation are not harmonic.
© When (2m3 + my +ma)* — 4my(2my + 2ms + ny) > 0, the orbit Ky -y (x)
is proper biharmonic if and only if

(cot(29))?

2ms +my +my + \/(2]’7[3 —+ nmy +le)2 — 4]’)’12(27]’!1 + 2ms + }’12)

2]’)’[2

holds. In this case, there exist exactly two proper biharmonic orbits.
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o When (2m3+my+ m2)2 —4my(2my +2ms3 +mny) <0, if the orbit
K> -7y (x) is biharmonic, then it is harmonic.

o When (2mz+my+ mz)2 —4my(2my +2m3 +ny) =0, there exists a
unique proper biharmonic orbit.

5.8. Type II-BC,. We set

Xt ={e; + e e, e}, Wt ={e; + e er,e,2e1,2e},
I={o =e —eyum=er}, o =201 + 200 = 2¢
and
m; = m(ey), my; = m(e; + e2), n = n(ep),
ny = n(e; + ez), ny = n(2ey).

Since ej,e; +e; € ZN W, 2e; € W and 2<ey,2¢e;/{2e1,2¢;» = 1 and 2{e| + e,
2e1y/{2e1,2¢;y =1 are odd, by definition of multiplicities, we have m; =
m(e1) = n(e) =n; and my = m(e; + e2) = n(e; +e2) = na.

(1) When H e P({)“““} ={tH,, |0 <1< 1}, we have 2}, = {o}, Wj; = &.
By Theorem 4, we have

g = 2{7(1/}’11 + 21/}12) cot2ay, H) + n3 tan2ay, H>}€1.
Hence we have 7y =0 if and only if

ns
my +2my

(cot<2ac1,H>)2 =
By Theorem 6, the orbit K, -7 (x) is biharmonic if and only if
0 = 8<tzr, a1 Y{—(my + 2my)(cot2ar, HY)* + n3(1 — (tan(2ay, HY)*)} o + ).
Therefore, K, - 7m(x) is biharmonic if and only if 74 =0 or
0 = —(my + 2my)(cot{201, H)* + n3(1 — (tan{20y, H)?)

holds. The last equation is equivalent to

{(my +2my)(cot2em, HY)* — n3}((cot{2oy, HY)* — 1)

= —(my + 2my)(cot2uy, HY)*.

Since mj + 2my > 0, the solutions of the equation are not harmonic.
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e When n§ —4(my + 2my)nsy > 0, the orbit K; - my(x) is proper biharmonic
if and only if

, M + n§ —4(my + 2my)n3
(cot2ay, HY)" =

2(my + 2my)

holds. In this case, there exist exactly two proper biharmonic orbits.
o When n% —4(my + 2my)ns < 0, if the orbit K; - mi(x) is biharmonic, then
it is harmonic.
* When n% —4(my + 2my)ny = 0, there exists a unique proper biharmonic
orbit. .
(2) When H e Pé“z"“} ={tH,, |0 <1< 1}, we have 2}, = {1}, Wj; = &.
By Theorem 4, we have

= {—2m + my) cotQloy, H) 4+ (my + 2n3) tan 200, H )} (o + 207).
Hence we have 7y =0 if and only if

> mp+2n3
_2m1+m2'

(cotQay, HY)
By Theorem 6, the orbit K; -7 (x) is biharmonic if and only if
0 = {ti, o Y{—(4m) + 2my) (cot20, H)?
+ (2my + 4n3)(1 — (tanRap, HY)?) — 4my } oy + 23).
Therefore, K, -7(x) is biharmonic if and only if 7z =0 or
0= (2m; +my)(1 — (cot(20, H)?)
+ (ma + 2n3)(1 — (tanQa, H))?) — 2m,
holds. The last equation is equivalent to
(21 +ma)(cot2on, HY)? = (ma + 2n3))((cot(2, HY)* — 1)
= —2m (cot(2u, HY)?.

Since 2my > 0, the solutions of the equation are not harmonic.
o When (my+ n3)* — (2my +my)(my +2n3) >0, the orbit Ky -m(x) is
proper biharmonic if and only if

, matmt \/(mz +n3)% = (2my + my)(my + 2n3)

(cot{2u, H)) (2my + my)

holds. In this case, there exist exactly two proper biharmonic orbits.
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o When (my+n3)* — (2my +my)(my + 2n3) < 0, if the orbit Ky -m(x) is
biharmonic, then it is harmonic.
o When (m;+ n3)2 — (2my +my)(my 4 2n3) =0, there exists a unique
proper biharmonic orbit.
(3) When H e Pé“l"“} ={tH,, + (1 -1)H,, |0 < ¢ < 1}, we have 2}, = &,
Wi ={a=20+2uw}. We set $=<{20,H). Then {20,,H) = (n/2)— %
By Theorem 4, we have

g = 2{(2my + n3) cot 3 — m; tan $}oy.
Hence we have 7y =0 if and only if

m
() R —
(cot 3) 2my + n3

By Theorem 6, the orbit K, -7 (x) is biharmonic if and only if
0 = 4<ty, a1 Y{(2my 4 n3) (1 — (cot $)?) + my (1 — (tan )?) — (2mz + my) }oia.
Therefore, K, -m(x) is biharmonic if and only if 74z =0 or
0= (2my +n3)(1 — (cot 9)%) + my (1 — (tan 9)%) — (2my + m))
holds. The last equation is equivalent to
{(2m> + n3)(cot )% — my }((cot )% — 1) = —(2mz + my)(cot(29))*.

Since 2m +m; > 0, the solutions of the equation are not harmonic.
o When n3 —4(2my + n3)my > 0, the orbit Ky - n1(x) is proper biharmonic
if and only if

ny 4+ \/n3 — 4(2my + n3)m
(cot 9)* = ’

2(2my + n3)

holds. In this case, there exist exactly two proper biharmonic orbits.
e When n§ —4(2my + n3)my < 0, if the orbit K; - mi(x) is biharmonic, then
it is harmonic.
o When n2 —4(2my + ny)my = 0, there exists a unique proper biharmonic
orbit.

5.9. Type III-A;. We set

a={xie; + x2e2 + x3¢3 | x; € R, x1 + xp + x3 = 0},

and
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It=W" ={ej —ey,er —e3,6] —e3},
II ={a) = ey —e,00 = ey — €3}, & = oy + o,

m :=m(L) = n(4) (Aed).

(1) When H e P{** = {tH,, |0 < 1 < 1}, we have 5}, = {a2}, W;} = &.
By Theorem 4, we have

= m{—cotay, H) + tanloy, H)} (20 + o).

Hence we have that 7y = 0 if and only if <oy, H) = n/4. By Theorem 6, the
orbit K; - 7;(x) is biharmonic if and only if

0 = —m{zy, o y(cotloy, HY — tanday, HY)* (20 + o).

Hence, the orbit K - 7;(x) is biharmonic if and only if {oy, H) = n/4. There-
Sore, if the orbit K, -m(x) is biharmonic, then it is harmonic.

(2) When H e P{** = {tH,,|0 < 1 < 1}, we have 5}, = {u}, W}, = &.
By the same calculation as (1), we have that the orbit K; - 7;(x) is biharmonic
if and only if {ap, HY =n/4. Therefore, if the orbit is biharmonic, then it is
harmonic.

(3) When H e P = (tH,, + (1 — 1)H,, |0 < t < 1}, we have £}, = &,
Wi ={o1 +02}. By the same calculation as (1), we have that the orbit
K5 - 71 (x) is biharmonic if and only if {aj, H) = n/4. Therefore, if the orbit is
biharmonic, then it is harmonic.

5.10. Type III-B, and III-C,. We set

2T ={e1 L ez e, e}, W+ ={e £exer e},
H:{a1:€1—€2,a2:€2}, a=o;+200 =e +e
and
my = m(ey), my; = m(e; + e2), ny = n(ey), ny = n(e; + ez).

Since e1 e XN W, e; +e;€ W and 2<ey,e; +ex)/{e1 +er,e1 +e2) =1 is odd,
by definition of multiplicities, we have m; = m(e;) = n(e;) = n;.

(1) When H e Pé“l’&} ={tH,, |0 <t < 1}, we have 2}, = {n}, Wj; = &.
By Theorem 4, we have

g = —(2my + my) cotoy, H) (o + 02) + (2ny + my) tanday, H) (o + o).
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Hence we have 7y =0 if and only if

B 2my + my

tQu, HY)? = .
(CO< o1, >) 2n2+m1

By Theorem 6, the orbit K, -7 (x) is biharmonic if and only if
0 = Car, o0 ){(2m +m)(1 = (cotCon, H))?)
+ (213 +my)(1 — (tan{oy, HY)*) } oty + 2a).
Therefore, K5 -m(x) is biharmonic if and only if 7y =0 or
0 = (2my +m)(1 — (cotlen, HY)?) + (2n3 +my)(1 — (tan{en, H)?)
holds. The last equation is equivalent to
{(2my + my)(cotlo, HY)* — (2ny +m1)} + ((cot<o, HY)? — 1) = 0.
o When my # ny, the orbit K, -m(x) is proper biharmonic if and only if
(cotoy, HY)? =1 (ie. Qoy, HY = (n/4))

holds. In this case, there exists a unique proper biharmonic orbit.
*  When my = ny, if the orbit Ky - m(x) is biharmonic, then it is harmonic.
(2) When H e Pé“z’“} ={tH,, |0 <1< 1}, we have 2}, = {1}, Wj; = &.
By Theorem 4, we have

g = {—(2m; + my) cotQu, H) + ny tan2ap, H )} (ot + 2a0).
Hence we have 7y =0 if and only if

2 m
2my —&-mz'

(cot{20, H))
By Theorem 6, the orbit K -7 (x) is biharmonic if and only if
0 = (t, 20 Y{(2my 4+ ma)(1 — (cot2ey, HY)?)
+ ny(1 — (tanQRaz, HY)?) — 2my oy + 2213).
Therefore, K, -m(x) is biharmonic if and only if 747 =0 or
0= (2my +my)(1 — (cot{202, H)*) + ny(1 — (tan{202, HY)?) — 2my
holds. The last equation is equivalent to

((2m1 + my)(cot2a, HY)? — ny)((cot2uy, HY)* — 1) = =2m (cot20, HY)®.

Since 2m; > 0, the solutions of the equation are not harmonic.
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o When (m —1—112)2 —402my +my)ny >0, the orbit K, -m(x) is proper
biharmonic if and only if

my +ny + \/(I’)’lz —+ }12)2 — 4(2]’}’11 + WIQ)I’lg
2(2my + my)

(cot<2my, H ) =

holds. In this case, there exist exactly two proper biharmonic orbits.
o When (my+ 112)2 —4(2my +my)ny <0, if the orbit K, -m (x) is bihar-
monic, then it is harmonic.
o When (my+ n2)2 —4(2my +my)ny =0, there exists a unique proper
biharmonic orbit.
(3) When H e P} = {tH,, + (1 = t)H,, |0 < 1 < 1}, we have X}, = &,
Wi ={a=o0+2m}. We set 9= o, Hy. Then <20, H)=(n/2)— 9
By Theorem 4, we have

g = {—my cot(9) + (ma + 2my) tan(I) fay.
Hence we have 1y =0 if and only if

2
my

By Theorem 6, the orbit K -7 (x) is biharmonic if and only if
0 = Cr, an y{my(1 = (coton, HY)?) + (ny + 2my)(1 — (tando, H)?) — 2mi Y.
Therefore, K5 -m(x) is biharmonic if and only if 74y =0 or
0 = my(1 — (cotloy, HY)?) + (ny + 2my)(1 — (tanoy, H))?) — 2m,
holds. The last equation is equivalent to
{may(cot ) — (2 + 2my)}((cot(9))* — 1) = —2m (cot(9))*.

Since m; > 0, the solutions of the equation are not harmonic.
* When (m;+ n2)2 —4dmy(ny + 2my) > 0, the orbit K, -m(x) is proper
biharmonic if and only if

(my +m) £ \/(mz +m)* = dma(ny + 2my)

2 _
(cot 3)° = s

holds. In this case, there exist exactly two proper biharmonic orbits.
o When (my+ 7’12)2 —dmy(ny + 2my) <0, if the orbit K, -7 (x) is bihar-
monic, then it is harmonic.
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o When (my+ 112)2 —4my(ny +2my) =0, there exists a unique proper
biharmonic orbit.

5.11. Type III-BC,. We set
ST =W"={e £ ee1,e,2¢1,20},
II={o=e —eym=e}, o = 20 + 200 = 2e;
and
my = m(ey), my =m(e; + e2), m3 = (2e1),
ny =n(ey), ny = nle; + e), ny = (2e).

Since e1,e; + e, € 2N W, 2e; € W and 2{e;,2e;1)/{2e1,2¢;y =1 and 2{e; + e,
2e1y/{2e1,2¢;y =1 are odd, by definition of multiplicities, we have m; =
m(er) = n(e1) = ny, my =m(e; + e2) = nfe; +e2) = ny.

(1) When H ePé“"“} ={tH, |0 <t< 1}, we have X}, ={m,2m},
W; = &. By Theorem 4, we have

Ty = 2{7(2]’)’12 +my + I’)’l3) cot2ay, H) + nj tan<2oc1,H>}(oc1 + 062).
Hence we have 7y =0 if and only if

n3

tQ2o, H S
(cot<2em, H) my + 2my + ms

By Theorem 6, the orbit K5 - m(x) is biharmonic if and only if
0 = d<ty, o >{(2mz + my +m3)(1 — (cot{2a, HY)?)

+n3(1 — (tanay, HY)?) — (2my + my) } oy + ).
Therefore, K, - 7(x) is biharmonic if and only if 7y =0 or

0 = (2my +my + m3)(1 — (cot{20y, HY)?)

+n3(1 = (tanQRay, HY)?) — (2my + my)
holds. The last equation is equivalent to
{(2my + my + m3)(cot2a1, HY)* — m3}((cotd 20y, HY)* — 1)
= —(2my + my) (cot 204, HY).

Since (2my +my) > 0, the solutions of the equation are not harmonic.
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o When (m;+ r13)2 —402my +my + m3)ny > 0, the orbit K, m(x) is

proper biharmonic if and only if

(cot(2y, H)? m3 +n3 + \/(m3 +13)* = 4(2my + my + m3)ns
1y =

2(2my + my + m3)
holds.

biharmonic, then it is harmonic.

biharmonic orbit.

In this case, there exist exactly two proper biharmonic orbits.
When (m3 + n3)2 —4(2my +my +m3)ny <0, if the orbit K -m(x) is

When (m3 + n3)2 —4(2my + my + m3)ny = 0, there exists a unique proper

(2) When H e Pé“z’&} ={tH,, |0 <1< 1}, we have 2}, = {1}, Wj; = &.

By Theorem 4, we have

g = {—(2m1 + my + 2m3) cot2ay, H) + (m2 + 2n2) tan{2ay, H>}(0(1 + 20(2).

Hence we have 7y =0 if and only if

my + 2n;
tQo, HY)? = —— 2" =2
(CO< o2, >) 21’}’11 +m2+2m3

By Theorem 6, the orbit K, -7 (x) is biharmonic if and only if
0 = (zpr, 2 5{(2my + my + 2m3)(1 — (cot2uy, HY)?)
+ (2 + 2n3)(1 — (tand2az, HY)?) — 2my }(og + 2003).
Therefore, K5 -m;(x) is biharmonic if and only if 74y =0 or
0 = (2my + my +2m3)(1 — (cot<2uy, H)?)

+ (m2 + 2n3)(1 — (tanuz, HY)?) — 2m,

holds. The last equation is equivalent to

((2my + my + 2m3)(cotuz, HY)* — (my + 2n3))((cot20, HY)* — 1)

= —2m (cot{2uy, H>)2.

Since 2m; > 0, the solutions of the equation are not harmonic.

o When (my+ms+n3)* — (2my +my+2m3)(my +2ny) >0, the orbit

K, - m(x) is proper biharmonic if and only if
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(cot<2m, H »)?

my +ms +n3 + \/(le + ms + I’l3)2 — (2]’}’[] “+ my + 2]’)’13)(1’}’[2 + 2]’[2)
B 2my +my + 2my

holds. In this case, there exist exactly two proper biharmonic orbits.
* When (my+ ms+ n3)2 — (2my + my + 2m3)(my 4 2ny) < 0, if the orbit
K> -7y (x) is biharmonic, then it is harmonic.
o When (my +ms + n3)2 — (2my + my + 2m3)(my + 2ny) = 0, there exists a
unique proper biharmonic orbit.
(3) When H e Pé“““z} ={tH,, + (1 - 1)H,, |0 < ¢ < 1}, we have 2}, = &,
Wy ={a=20+2m=2¢}. We set 9=Cu,H). Then {Quw,H)=
(n/2) — 3. By Theorem 4, we have

ty = {(4ma + 2n3) cot $ — (2my + 2m3) tan((n/2) — ) }ea.
Hence we have 7y =0 if and only if

2 mp+n3
2my +n3

(cot 3)
By Theorem 6, the orbit K -7 (x) is biharmonic if and only if
0 = 4<ty, 02 ){(2my + n3)(1 — (cot §)?)
+ (my +m3) (1 = (tan 8)%) — (2mz + my) booo.
Therefore, K;-m (x) is biharmonic if and only if 74 =0 or
0 = (2my + n3)(1 — (cot 9)*) + (my +m3)(1 — (tan 9)%) — (2my +my)
holds. The last equation is equivalent to

{(2my + n3)(cot 9)* — (m; 4+ m3)}((cot §)* — 1) = —(m; + 2my)(cot 9)*.

Since mj + 2my > 0, the solutions of the equation are not harmonic.
o When (m3+n3)® —4Q2my +n3)(my +ms3) >0, the orbit Ky - (x) is
proper biharmonic if and only if

2 _ (m3 +n3) + \/(Wls + n3)% = 4(2my + n3)(my 4 m3)

(COt 3) 2(21/1’12 + I’l3)

holds. In this case, there exist exactly two proper biharmonic orbits.
o When (m3+ n3)> —4(2my 4 n3)(my +m3) < 0, if the orbit K - m(x) is
biharmonic, then it is harmonic.
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o When (m3+n3)® —4(2my +n3)(my +m3) =0, there exists a unique
proper biharmonic orbit.

5.12. Type II-G;. We set

2P =W = {0, 0 + 0, 20 + o2, 30 + a2, 30 + 200},

<O(2,062>:3, &:3061+2062,

3
<O(1,0C]>:1, <O(1,0CZ>:—§,

and
my = m(ay), my = m(on).

(1) When H € Pé“l’&} ={tH,, |0 <t < 1}, we have X}, = {o}, Wj; = &.
By Theorem 4, we have

ty = 2[—m{cot2a;, H) + cotldoy, H)} — 3my cotl6oy, H)|(201 + o).
Hence we have 7y =0 if and only if
—my{cot2o, H) + cot{day, HY} — 3m, cot{6oy, H) = 0.
By Theorem 6, the orbit K -7 (x) is biharmonic if and only if
0 = —4<ty, a1 Y{my (cot2u;, HY)* + 2m (cotlda;, HY)?
+ 9y (cot 6oy, HY)*} (201 + o).

Therefore, K5 -m(x) is biharmonic if and only if 7y =0 or

0 = my (cot(2ay, HY)? + 2my (cotddoy, H)* + 9ma(cotl 6oy, HY)?
holds. Clearly,

my (cot{20, HY)* + 2my (cotdday, HY)? + 9ms(cot{6ay, HY)> > 0

for 0 <t< 1. Therefore, if the orbit K,-m(x) is biharmonic, then it is
harmonic. i

(2) When H e Pé“z’“} ={tH,, |0 <t < 1}, we have X}, = {1}, Wj; = &.
Then K, - 7(x) is biharmonic if and only if 75 =0 or

0 = (m1 + my)(cot2uz, HY)* + 2my (cot{4uy, H))*
holds. Clearly,

(my 4 ma)(cot2uy, HY)? + 2my(cotddoy, HY)* > 0
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for 0 <t < 1. Therefore, if the orbit K,-m(x) is biharmonic, then it is
harmonic.

(3) When H e Pé“l‘”} ={tH, + (1 -t)H,, |0 < t< 1}, we have X}, = &,
Wi ={3u +20}. We set $=<ou,H). Then {20p,H) = (n/2) — 3% and
0 <9< (n/6). Then K -m(x) is biharmonic if and only if 7 =0 or

0 = my(cot(29))* + gmz(tan(&‘}))z + %ml (tan 9)*
holds. Clearly,
2 9 2 1 2
my(cot(29))” + Emz(tan(SS)) +§m1(tan N >0

for 0 <t < 1. Therefore, if the orbit K,-m(x) is biharmonic, then it is
harmonic.

5.13. Tables of proper biharmonic orbits. By the above arguments, we classify
all the proper biharmonic submanifolds which are singular orbits of commu-
tative Hermann actions whose cohomogeneity is two. The co-dimensions of
these submanifolds are greater than two, since we consider singular orbits of
cohomogeneity two actions.

THEOREM 8. Let (G,K,,K>) be a compact symmetric triad which satisfies

e 0y ~0, and G/K; is an irreducible symmetric space, or

e one of the conditions (A), (B) and (C) in Theorem 2.
Assume that the Ks-action on Ny = G/K; is cohomogeneity two. Then, all
singular orbit types which are one parameter families in the orbit space are
divided into the following three cases:

(1) There exists a unique proper biharmonic orbit.

(ii) There exist exactly two distinct proper biharmonic orbits.

(iii) Any biharmonic orbit is harmonic.

We list below all the results of the above computations. In the follow-
ing tables, the first column shows compact symmetric triads which induce
Hermann actions; the second column shows multiplicities of symmetric triads
which are induced by compact symmetric triads in the first column; the third
column shows a subset 4 in [7U {6} or I1U{a} where P§ gives a singular
orbit type which is one parameter family in the orbit space; the fourth column
represents the result (i), (ii) or (iii) in Theorem 8 for the orbit type of P{'; the
fifth column shows the co-dimension of orbits K, - 7;(x) in Ny and K - my(x)
in Nz.
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Cases of 0, = 0, (Isotropy actions).

Type A,
(G,Ky) m(c) 4 Theorem 8 | codim
(SU(3),S0(3)) 1 {o,0} (i) 3
{o2,0} (i) 3
{oy, 00} (i) 3
(SU(3) x SU(3),SU(3)) | 2 {21,6} (i) 4
{02,0} (i) 4
{og, 00} (i) 4
(SU(6), Sp(3)) 4 {o1,0} (i) 6
{o2,0} (i1) 6
{o1, 00} (i) 6
(Es, F4) 8 {o,0} (i) 10
{2,0} (i) 10
{og, 00} (i) 10
Type B,
(G, K1) (my,my) 4 Theorem 8 | codim
(SO(5) x SO(5),S0(5)) 2,2) {on,5} (i) 4
{o2,0} (i1) 4
{og, 0} (i) 4
(SO(4 +n),SO(2) x SO(2 + n)) (n, 1) {o1,0} (i) n+2
{o2,0} (ii) 3
{o, o} (i1) 3




Biharmonic homogeneous submanifolds

Type C;
(G, Ky) (my,my) 4 Theorem 8 | codim

(Sp(2),U(2)) (1,1) {ou,0} (i) 3
{o2,0} (ii) 3

{a, 00} (i) 3

(Sp(2) x Sp(2), Sp(2)) (2,2) {ou,0} (i) 4
{o2,0} (i) 4

{o, 00} (i) 4

(Sp(4), Sp(2) x Sp(2)) (4,3) {ou,0} (i) 5
{o2,6} (i) 6

{og,00} (i) 5

(SU4),S(U(2) x U(2))) (2,1) {o1,0} (ii) 3
{02,6} (ii) 4

{o, 00} (i) 3

(SO(8),U(4)) (4,1) {o1,0} (i) 3
{o2,0} (ii) 6

{ag,00} (i1) 3
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Type BC,
(G,Ky) (my, o, ) 4 Theorem 8 | codim
(SU@+n),S(UQ) x U2+n) | @n2,1) | {x,6} (ii) 5
{,0) (ii) 2n+2
{og, 00} (i1) 3
(SO(10), U(5)) (4,4,1) {o1,0} (i1) 7
{o2,0} (i1) 6
{o, 00} (i1) 3
(Sp(4 + n),Sp(2) x Sp(2 +n)) (4n,4,3) {a1,0} (i1) 9
{ou,0} (ii) 4n+2
{o, 00} (i1) 5
(Es, T! - Spin(10)) (8,6,1) {o1,0} (ii) 9
{a1,0} (ii) 10
{on, 02} (11) 3
Type G
(G, Ky) (my, ) 4 Theorem 8§ | codim
(G,S0(4)) | {a,0) (ii) 3
{o2,0} (i1) 3
{on, 2} (i) 3
(Gyx G2, Go) | (2,2) | {a,0) (ii) 4
{o2,0} (i1) 4
{a, 00} (iii) 4
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Cases of 0, + 0,

Type I-B;
(G,K1,K>) (my,ma,ny) A Theorem 8 | codim
(SO(2+a+b), (b-2,1,a) | {ou,a} (i) 3
SO(2 + a) x SO(b), ~ -
SO(2) x SO(a + b)) {0, 0} (if) b
{061,062} (ll) a+2
(SO(6) x SO(6), 4(SO(6) x SO(6)), (2,2,2) {o,a} (i) 4
K;) with (G,), = SO(3) x SO(3) ~ -
©) {o, &} (i) 4
{o1, 00} (i) 4
(SO(6) x SO(6), 4(SO(6) x SO(6)), (2,2,2) {o,a} @) 4
Ks) with (G,), = SO(5) - -
©) {00, &} (i) 4
{0(1 y 0(2} (ll) 4
Here 2 <b,1 <a).
Type 1-C,
(G,K1,K>) (my,ma,ny) Y| Theorem 8 | codim
(SO(8), (2,1,2) {o, 8} (i) 3
SO(4) x SO(4),U(4)) (o) i) .
{0(1, O{z} (11) 4
(SU(4),S0(4), (1,1,1) {oy, 0} (i) 3
S(U(2) x U
(2) x U(2))) (2,5 (i) 3
{D(] s 362} (11) 3
(SU(4) x SU(4),4(SU(4) x SU(4)) (2,2,2) {o, 0} (1) 4
K;) with (G,), = SO(4) (C) N -
{on, G} (i1) 4
{O(] s O(z} (11) 4
(SU(4) x SU4),4(SU4) x SU(4)) (2,2,2) {og, 0} (i) 4
K;) with (G;), = Sp(2) (C) (2.5 (i) 4
{061, 062} (11) 4
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Type I—BCZ—Af

(G, K1,K3) (my,my, m3,my) A Theorem 8 | codim
SUQ+a+b), | (b-2).21,24) | {m,a) (ii) 21
S(U(2+a) x U(b)), ~ N
S(U(2) x U(a + b)) {00, 8} (i© 4
{og,00} (i) 2(a+1)
(Sp(2+ a+b), (4(b—1),4,3,4a) {o,0} (i) 4bh + 1
Sp(2 + s) x Sp(?), _ B
Sp(2) x Sp(s + 1)) Cod) | @) 6
{061,962} (11) da+2
(SO(12),U(6),U(6)") (4,4,1,4) {ou, &} (ii) 7
{0, 0} (11) 6
{0(1, sz} (11) 6
Here 2 < b,1 < a.
Type 1-BC,-B;
(G,K1, K>) (my,my, m3,ny) Theorem 8 | codim
(SO(4+2a), | @@—2),2,1.2) | {m.a} (ii) 2a—1
SO(4) x SO(2a), - -
UQ2 +a) {00, &} (i) 4
{oq,ocz} (lll) 4
(Es, (4,4,1,2) {oy,a} (ii) 7
SU(6) - SU(2), -
$O(10) - U(1)) {02, 3} (i) 6
{O{] s 062} (111) 4
(E, (8,6,1,2) (.8} (i) 1
SO(12) - SU(2), N
Es-U(1)) {on, 0} (iii) 8
{0(1 N 062} (111) 4

Here 2 < a.
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Type 1I-BC,
(G, K1, K>) (my,my,m3, n3) Y| Theorem 8 | codim
(SU(2+a), (a—2,1,1) {o1,8} (iii) 3
SO(2 +a), _
S(U(2) x U(a))) {02, 0} (iii) a
{o1, 00} (iii) 3
(SO(10), (2,2,1) {o1,8} (iii) 4
SO(5) x SO(5), -
u(s)) {0, 0} (1if) 4
{9(1,0(2} (111) 3
(Es, (4,3,1) {on, 8} (iii) 5
Sp(4), ~
SO(10) - U(1)) {on, a} (iii) 6
{11,0{2} <111) 3
(SU(5) x SU(5), 4(SU(5) x SU(5)), (2,2,2) {on, 8} (iii) 4
K) with (G,), = SO(5) N
©) {0, 0} (iii) 4
{6{1 ) Oﬂz} (111) 4
Here 2 < a.
Type III-A;
(G,K1,K>) (my,ny) A4 Theorem 8 | codim
(SU(6),p(3),50(6)) | (2.2) | {m.8} | i) 4
{0, a} (iii) 4
{O(], 0(2} (111) 4
(Ee, Sp(4), Fy) @4 | fma | i) 6
{0, d} (iii) 6
{0(17 0(2} (111) 6
(Ux U, (m, m) {o, @} (iii) m—+2
A(U x V), -
K x &), B) {o, G} (iii) m+2
{0{1,(%2} (111) m+2

Here m is the multiplicity of the root system of the symmetric pair (U, K)
of type Aj.
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Type 11I-B,
(G,K1,K) (my, my,ny) 4 Theorem 8 | codim
(Ux U, (m,n,n) {o, 0} (iii) m+2
A(U x U), -
& x K), (B) {oa, 6} (iii) n+2
{o, 00} (iii) n+2

Here (m,n) is the multiplicity of the root system of the symmetric pair

(U,

K) of type B,.

Type 1I1-C,
(G, K1, K>) (my,my, ) A Theorem 8 | codim
(SU(®), (4,3,1) {ou, o} (i) 6
S(U4) x U4)),
( (Si)(j)) “) {on, 0} (iii) 5
{og, 00} (iii) 3
U(4), i
Sp(2) x Sp(2)) 8 | G ’
{0(1, 962} (111) 4
(Ux U, (m,n,n) {og, 0} (iii) m+2
AU x U), i
& x K), (B) {on, 0} (i) n+2
{o, 00} (iii) n+2

Here (m,n) is the multiplicity of the root system of the symmetric pair

(U,K) of type C,.
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Type III-BC;

(G, K, Ks) (my1,my, m3, n3) 4 Theorem 8 codim
(SU(4 +29), (4(s—2),4,3,1) | {on,a} (i) 6
S(U(4) x U(2s)), -
Sp(2 +5)) {on, &} (iii) 4s — 3
{o, a0} (iii) 3
(SU(10), (4,4,1,3) {on, a0} (ii) 6
S(U(5) x U(5)),
( (SL(XS)) o {on, &} (i) 7
{o, a0} (iii) 5
(Sp(2+5), U2 +5), | (2(s—2),2,1,2) | {ou,d} (i) 25— 1
Sp(z(?s i ?;(s)) {on,a} (iii) 4
{ou, o0} (iii) 4
(UX U, (m,n,l,l) {061,5(} (111) n+2
A4(U x U), i
K x K), (B) {02, &} (iif) m+I1+2
(o1, 2} (iif) 1+2

Here (m,n,[) is the multiplicity of the root system of the symmetric pair
(U,K) of type BC,.

Type 1II-G;
(G,K],Kz) (ml,ml,nl,nz) A Theorem 8§ codim
(UxU, (m,n,m,n) {o, a} (iit) n+2
A(U x U), N
& %K), (B) {on,a} (iii) m-+2
{o, 00} (i) n+2

Here (m,n) is the multiplicity of the root system of the symmetric pair
(U,K) of type G,.

6. Biharmonic homogeneous hypersurfaces in compact Lie groups

In this section, applying Corollary 4 we will study biharmonic regular
orbits of cohomogeneity one (K; x Kj)-actions on compact Lie groups.

Let (G,K|,K;) be a commutative compact symmetric triad where G is
semisimple. Hereafter we assume that dim a =1 and G is simply-connected.
Then the orbit space of (K> x Kj)-action is homeomorphic to a closed interval.
A point in the interior of the orbit space corresponds to a regular orbit, and
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there exists a unique minimal (harmonic) orbit among regular orbits. On the
other hand, two endpoints of the orbit space correspond to singular orbits.
These singular orbits are minimal (harmonic), moreover these are weakly
reflective ([IST2]). For H ea, we set x =exp(H) and consider the orbit
(Ky x K;) - x of the (K, x Kj)-action on G through x. For simplicity, we
denote the tension field dL,!(zy), of the orbit (K> x K;)-x in G by vy for
Hea

Cases of 0 ~ 0,. First, we consider the cases of ) =0,. Then (G,K)) =
(G,K3) is a compact symmetric pair of rank one. The restricted root type
system of (G, K)) is of type B; or BC;. Let 3:=<J,H) for H € a, where J is
the highest root of X. Then, by (6), Pp = {H ea|0 < 9 < n} is a cell in these
types.

6.1. Type B;. We set 2T = {a}, W = and m = m(a). In this case, 3
satisfies 0 < 3 < 7. By Corollary 2 we have

Ty = —m cot Jo.

Hence 7 = 0 if and only if $ = n/2 holds. By Corollary 4, (K> x Kj) - x in G
is biharmonic if and only if

0=mlty, o) <% — (cot .9)2>
holds. Therefore, the orbit (K, x K) - x is proper biharmonic if and only if
3
2 —
(cot 3)° = 3

holds. In this case, there exist exactly two proper biharmonic hypersurfaces
which are regular orbits of the (K, x Kj)-action on G.

6.2. Type BC,. Weset 2+ = {o, 20}, W+ = & and m; = m(), my = m(2a).
In this case 9 satisfies 0 < 3 <. By Corollary 2 we have

2

— —{(ml + my) cot(g) — o cot(g) }oc.

Hence 7y =0 if and only if

Ty = —mj cot <§> o — mp(cot 9)2a
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holds. By Corollary 4, (K; x K;)-x in G is biharmonic if and only if

0= <(tm, a>{m1 (g - (cot §>2> + 4my G — (cot 9)2> }

holds. Therefore, the orbit (K, x K;) - x is biharmonic if and only if 75 =0

or
my ny Ol «

holds. The last equation is equivalent to

(i o 5 - o3 1) = (3 vom) (o3

Since (m;/2) + 6my > 0, the solutions of the equation are not harmonic.
Hence the orbit (K; X Kj) - x is proper biharmonic if and only if

SN\ 3+ 16m £/ By + 16m)* — 16(m; + my)m;
t[2)) =
(c(5)) (e

holds. In this case, there exist exactly two proper biharmonic hypersurfaces
which are regular orbits of the (K x Kj)-action on G.

Cases of 0 + 0,. If G is simple and 0; + 0,, then for a commutative
compact symmetric triad (G, K|, K,) the triple (X, X, W) is a symmetric triad
with multiplicities m(4) and n(x) (cf. Theorem 2).

All the symmetric triads with dim a =1 are classified into the following
four types ([I1]):

xt W o

I11-B, {a} {a} o

1-BC, {o, 20} {a} o

1I-BC, {o} {o,20} | 20

II-BC; | {o,20} | {o,2a} | 20

Let 9:=<a,H) for Hea. Then, by (4), Po={Heal0< J<n/2}isa
cell in these types. If G is simply connected and K; and K, are connected,
then the orbit space of the (K, x Kj)-action on G is identified with Py =
{H € a|0 < 9 <n/2}, more precisely, each orbit meets exp P, at one point.
For each orbit (K> x K;) - x, dL_!'(ty), € a holds.
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6.3. Type III-B;. We set 2+ = {a}, W = {a} and m = m(x), n = n(x). By
Corollary 2 we have

Ty = —m cot Yo + n tan Jo.

Hence 75 =0 if and only if
n
t9)* ==
(cot 8> =2
holds. By Corollary 4, (K> x K;)-x in G is biharmonic if and only if

0=y, a}{me — (cot .9)2) + nG — (tan 9)2) }

holds. Therefore, the orbit (K, x Kj) - x is biharmonic if and only if 754 =0

or
0= mG — (cot 8)2> + n(g — (tan 9)2>

holds. The last equation is equivalent to

0 = m(cot §)* —%(m +n)(cot 9)* +n

m-—+n

= (m(cot 9) — n)(m(cot §)> — 1) — ( )(cot 9)2.

Since (m+n)/2 > 0, the solutions of the equation are not harmonic. Hence
the orbit (K, x K)) - x is proper biharmonic if and only if

3(m+n) £+ \/9(m—|—n)2 — 16mn

4m

(cot 9)* =

holds. In this case, there exist exactly two proper biharmonic hypersurfaces
which are regular orbits of the (K x Ky)-action on G.

6.4. Type I-BC;. We set X+ = {o,2a}, W' ={a} and m; =m(a), my =
m(2a), n =n(x). By Corollary 2 we have
Ty = —my cot Yo — my cot(29)20 + n tan Ju
= {—(m; +my) cot §+ (my + n) tan $}o.
Hence 7y =0 if and only if

my +n
my + nip

(cot 9)* =
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holds. By Corollary 4, (K; x K;)-x in G is biharmonic if and only if

0= <za, a>{m1 @ — (cot 9)2) +4m;y @ - (cot(29))2> +n @ — (tan 9)2> }

holds. Therefore, the orbit (K, x Kj) - x is biharmonic if and only if 754 =0
or

0=m G — (cot 8)2> + 4my G - (cot(29))2) + n(% — (tan 8)2)
holds. The last equation is equivalent to

0 = (m; + my)(cot 9)* — <; (my +n) + 8m2) (cot §)% + (my +n)

my; +n

= ((my 4 my)(cot 9)* — (ma + n))((cot §)* — 1) — ( + 6m2> (cot 9)°.

Since (m; +n)/2 + 6my > 0, the solutions of the equation are not harmonic.
Hence the orbit (K; X Kj) - x is proper biharmonic if and only if

3(m+n)+16m; + \/(3(m + 1) + 16my)* — 16(m; + my)(my + n)

2 _
(cot )" = 4(my + my)

holds. In this case, there exist exactly two proper biharmonic hypersurfaces
which are regular orbits of the (K, x Kj)-action on G.

6.5. Type II-BC,. We set 2" ={a}, W ={a,20} and m = m(x) = n(a),
n =n(2x). By Corollary 2 we have

3 9
Ty = —m cot <2> o + m tan (2) o+ n tan(9)2a

= 2{—m cot 9+ n tan $}o.

Hence 7 =0 if and only if
2 n
(cot §)* = P

holds. By Corollary 4, (K; X K;) - x in G is biharmonic if and only if

0= <zu, d){me - (cot §)2> + m(% - (tan §>2> +4n G — (tan 9)2>}
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holds. Therefore, the orbit (K, x Kj) - x is biharmonic if and only if 754 =0

0=m (% — (cot §>2> +m (% - (tan §)2> +4n (% — (tan '9)2>

holds. The last equation is equivalent to

0 = 4m(cot §)* — (m + 6n)(cot 9)* + 4n
= 4(m(cot 9)* — n)((cot 9)* — 1) — (=3m + 2n)(cot $)*.

If —3m + 2n =0, then the orbit (K, x K)) - x is proper biharmonic if and only
if (cot $)? =1 holds. When —3m + 2n # 0, the solutions of the equation are
not harmonic.
o When (m+6n)*—64mn>0, then the orbit (Kyx K,)-x is proper
biharmonic if and only if

m+6ni\/(m+6n)2—64mn

8m

(cot )2 =

holds. The condition (m+ 6n)* —64mn >0 is equivalent to m <
(26 — 8V10)n or (26 4+ 8V10)n < m. In this case, if (m + 6n)* — 64mn
> 0, then there exist exactly two proper biharmonic hypersurfaces which
are regular orbits of the (K, x Kj)-action on G.
o When (m+ 6n)2 — 64mn < 0, any biharmonic regular orbits of the
(Ky x Ky)-action on G is harmonic.
It should be remarked that by the classification of compact symmetric triads,
we can see that there is no compact symmetric triad which satisfies (m + 6n)? —
64mn = 0.

6.6. Type III-BC,. We set 2" ={a, 20}, W' ={a,20} and m; =m(a) =
n(a), my =m(20), n=n(2x). By Corollary 2 we have

Ty = —my cot (g)q + m tan (g) o+ n tan §(20) — my cot $(2a)
=2{—(m; + my) cot + n tan J}a.

Hence 7y =0 if and only if

n

(cot 9)* =
my + np
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holds. By Corollary 4, (K; x K;)-x in G is biharmonic if and only if

0 =<y, oc){ml <§ — (cot §>2> +m (% - (tan §>2>
+4n (; — (tan 9)2> +4m; (; — (cot 9)2> }

holds. Therefore, the orbit (K, x Kj) - x is biharmonic if and only if 754 =0

or
0= 3_ cotg2 + 3 tang2
) 2 "2 2
3 2 3 2
+4n 3 (tan )° | + 4my 3 (cot 9)
holds. The last equation is equivalent to
0 = 4(m; +my)(cot 9)* — (m; + 6m; + 6n)(cot 9)* + 4n

= 4((my + my)(cot §)* — n)((cot §)* — 1) — (=3m; + my + 2n)(cot 9)°.

If —3m; + my + 2n = 0, then the orbit (K> x Kj) - x is proper biharmonic if and
only if (cot $)* =1 holds. When —3m; +my +2n # 0, the solutions of the
equation are not harmonic.
o When (my + 6ms + 6n)* — 64(m; + my)n > 0, then the orbit (K> x K,) - x
is proper biharmonic if and only if

my + 6my + 6n + \/(m1 + 6my + 6n)2 — 64(m; + my)n
8(m1 + le)

(cot §)? =

holds. In this case, if (my + 6my + 6n)> — 64(my + ma)n > 0, then there
exist exactly two proper biharmonic hypersurfaces which are regular
orbits of the (K, x Ky)-action on G.

o When (m+6my+ 6n)2 — 64(my +my)n <0, any biharmonic regular

orbits of the (K, x Ky)-action on G is harmonic.

It should be remarked that by the classification of compact symmetric
triads, we can see that there is no compact symmetric triad which satisfies
(my + 6my + 6n)2 — 64(m; +my)n = 0.

Let 5>0, ¢c>1 and ¢ > 1. Each commutative compact symmetric triad
(G,K;,K>) where G is simple, 0; + 0, and dim a =1 is one of the following
(see [12]):
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Type 11I-B,
(G, K1, K3) (m(2), n(a))
(SO(1 +b +¢),SO(1 +b) x SO(c),SO(b +¢)) | (c—1,b)
(SU(4),Sp(2),50(4)) (2,2)
(SU(4),S(U(2) x U(2)),Sp(2)) (3.1
(Sp(2), U(2),Sp(1) x Sp(1)) (1,2)
Type I-BC,
(G, K1, K3) (m(er), m(22), n(x))
(SO(2 +2¢),50(2) x SO(29), U(1 +¢)) 2(g—=1),1,2(¢ = 1))
(SU(1 + b+ ¢),S(U(1 +b) x U(c)), S(U(1) x U(b + ¢)) (2(c —1),1,2b)
(Sp(1 + b+ ¢),Sp(1 + b) x Sp(c), Sp(1) x Sp(b + ¢)) (4(c —1),3,4b)
(SO(8),U(4),U(4)") (4,1,1)
Type 1I-BC,
(G, Ky, Ks) (m(a), n(x),n(22))
(SO(6), U(3),SO(3) x SO(3)) (2,2,1)
(SU(1 +¢),S0(1 +¢),S(U(1) x U(9))) | (¢—-1.g=11)

Type III-BC,

(G, K1, K>)

(m(or), m(20), n(ax), n(20r))

(SU(2 +29),S(U(2) x U(29)), Sp(1 + ¢))

(4(‘17 1)7374(‘17 1)7 1)

(Sp(1 +¢), U(1 + ), Sp(1) x Sp(q))

(2(11_ 1)* 172((1_ 1)72)

(Es,SU(6) - SU(2), Fy) (8,3,8,5)
(Es,80(10) - U(1), Fy) (8,7,8,1)
(F47 Sp(3) : Sp(1)7 Spin(9)) (47 3,4, 4)

Here, we put U4)" = {g e SO(8)|JgJ ! = g}, where

L

and [; denotes the identity matrix of / x /.
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Summing up the above, we obtain the following theorem.

THEOREM 9. Let (G,K,,K>) be a commutative compact symmetric triad
where G is simple, and suppose that the (K, x Kj)-action on G is of cohomo-
geneity one. Then all the proper biharmonic hypersurfaces which are regular
orbits of the (K, x Kj)-action in the compact Lie group G are classified into the

following list:

(1) When (G, K, K>) is one of the following cases, there exist exactly two
distinct proper biharmonic hypersurfaces which are regular orbits of the

(Ky x Kp)-action on G.

(1-1)  (SO(1 4+ b+ ¢),SO(1 +b) x SO(c),SO(b +¢)) (b>0, ¢ > 1)

(1-2) (SU(4),Sp(2),50(4))

(1-3) (SU(4),S5(U(2) x U(2)), Sp(2))

(1-4)  (Sp(2),U(2),Sp(1) x Sp(1))

(1-5) (SO(2 +29),50(2) x SO(2¢),U(1 +¢)) (¢ > 1)

(1-6)  (SU(1+b+¢),S(U(1+b) x U(c)),S(U(1) x U(b+¢)) (b=0,
c>1)

(1-7)  (Sp(1 +b+¢),Sp(1 +b) x Sp(c),Sp(1) x Sp(b+¢)) (b =0,
c>1)

(1-8) (SO(8),U(4),U(4)")

(1-9)  (SU(1 +¢),SO(1 +¢), S(U(1) x U(g))) (¢ > 52)

(1-10)  (SU(2 +29),S(U(2) x U(29)),Sp(1 +¢)) (¢ > 1)

(1-11)  (Sp(1 +¢),U(1 +¢),Sp(1) x Sp(g)) (¢ =2 or g >45)

(1-12) (Eg,SO(10) - U(1),Fy4)

(1-13)  (F4,Sp(3) - Sp(1),Spin(9))

(1-14)  (SO(1 +¢),SO(9),SO(q)) (¢>1)

(1-15)  (F4, Spin(9), Spin(9))

(2) When (G,K,, K>) is one of the following cases, any biharmonic regular

orbit of the (K x Kj)-action on G is harmonic.
(2-1) (S0(6),U(3),80(3) x SO(3))

(2-2)  (SU(1+¢),S0(1 +¢),S(U(1) x U(g))) (52=¢>1)
(2-3)  (Sp(1+¢),U(1+¢),Sp(1) x Sp(q)) (45=q>2)
(2-4)  (Es,SU(6) - SU(2), F4)
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