Classification of spherical tilings by congruent quadrangles over pseudo-double wheels (II)—the isohedral case

Yohji Акама

(Received October 21, 2013) (Revised October 29, 2018)

ABSTRACT. We classify all edge-to-edge spherical isohedral 4-gonal tilings such that the skeletons are pseudo-double wheels. For this, we characterize these spherical tilings by a quadratic equation for the cosine of an edge-length. By the classification, we see: there are indeed two non-congruent, edge-to-edge spherical isohedral 4-gonal tilings such that the skeletons are the same pseudo-double wheel and the cyclic list of the four inner angles of the tiles are the same. This contrasts with that every edge-to-edge spherical tiling by congruent 3-gons is determined by the skeleton and the inner angles of the skeleton. We show that for a particular spherical isohedral tiling over the pseudo-double wheel of twelve faces, the quadratic equation has a double solution and the copies of the tile also organize a spherical non-isohedral tiling over the same skeleton.

1. Introduction

Throughout this paper, we are concerned with edge-to-edge tilings. A tiling \mathcal{T} is called *isohedral* (or *tile-transitive*), if for any pair of tiles of \mathcal{T} , there is a symmetry operation of \mathcal{T} that transforms one tile to the other. In characterizing the *skeletons* of spherical (isohedral) tilings, an important graph is a *pseudo-double wheel* (the dual graph of the skeleton of an antiprism [6, p. 19]. See Figure 1 (above)). It satisfies the following:

- The skeletons of spherical tilings by spherical 4-gons are generated from pseudo-double wheels by means of applications of two local expansions [4].
- The skeletons of spherical isohedral tilings consist of pseudo-double wheels, an infinite series of graphs, and eighteen sporadic graphs [7].

In Section 3, we prove: for every spherical tiling \mathcal{T} by congruent spherical 4-gons with the skeleton being a pseudo-double wheel G, \mathcal{T} is isohedral if and only if every graph automorphism [6, Sect. 1.1] of G respects the edge-lengths and inner angles of \mathcal{T} .

The author was supported by JSPS KAKENHI Grant Number 16K05247.

²⁰¹⁰ Mathematics Subject Classification. Primary 52C20; Secondary 05B45, 51M20.

Key words and phrases. graph, skeleton, spherical monohedral tiling, spherical quadrangle, spherical trigonometry, symmetry, tile-transitive.

Fig. 1. The above are pseudo-double wheels of 2n faces (n = 3, 4, 5). The below are spherical isohedral tilings by 2n congruent quadrangles such that the skeletons are pseudo-double wheels (n = 3, 4, 5). It holds that $(\cos a)^2 - \cot(\pi/n)(\cot \alpha + \cot \gamma) \cos a - \cot \alpha \cot \gamma = 0$.

Fig. 2. The notation for angles and edges of the quadrangular tile. Some among α , β , γ , δ are equal, and some among a, b, c are equal.

In any spherical tiling by congruent quadrangles, the tile has a pair of adjacent, equilateral edges [10]. For spherical tilings by congruent quadrangles T with the skeleton being pseudo-double wheels, fix the notation for the angles and the edges of the quadrangular tile T as Figure 2. For the spherical *isohedral* tilings such that the skeletons are pseudo-double wheels, we bijectively parameterize the tiles with the pair of the edge-length a of the tile and a typical angle, in Section 4. Then we characterize the tiles as follows (Section 5). Given a spherical 4-gon T such that α , β , γ are adjacent inner angles and β is an inner angle between two edges of length a. T is a tile of some spherical *isohedral* tiling \mathcal{T} by 2n congruent spherical 4-gons with the skeleton of \mathcal{T} being a pseudo-double wheel, if and only if

$$(\cos a)^2 - \cot \frac{\pi}{n} (\cot \alpha + \cot \gamma) \cos a - \cot \alpha \cot \gamma = 0$$

For notations, see Figure 1 (below). In Section 6, by solving this equation, we classify all the tiles of spherical isohedral tilings such that the skeleton of the tilings are pseudo-double wheels. By the classification, we see: there are indeed

two non-congruent, edge-to-edge spherical isohedral 4-gonal tilings such that the skeletons are the same pseudo-double wheel and the cyclic list of the four inner angles of the tiles are the same. This contrasts with that every edge-toedge spherical tiling by congruent 3-gons is determined by the skeleton and the inner angles of the skeleton [11]. In Section 7, we show that for a particular spherical isohedral tiling over the pseudo-double wheel of twelve faces, the quadratic equation has a double solution. Moreover, the copies of the tile also organize a less symmetric, spherical non-isohedral tiling \mathcal{T} over the same skeleton. Based on this tiling \mathcal{T} and Grünbaum-Shephard's characterization theorem [7] of the skeletons of spherical isohedral tilings, we briefly discuss our classification of spherical isohedral tilings over pseudo-double wheels.

2. Basic definitions

By a spherical 4-gon, we mean a topological disk T on the twodimensional unit sphere S^2 such that T is circumscribed by four straight edges, (1) any inner angle between adjacent edges of T is strictly between 0 and 2π but not π , and (2) T is contained in the interior of a hemisphere. By "quadrangle," we mean a "spherical 4-gon." The congruence on the sphere is just the orthogonal transformation, and "sphere" (and "spherical") means the two-dimensional unit sphere S^2 . We identify spherical tilings modulo a special orthogonal group SO(3).

DEFINITION 1 (pseudo-double wheel [4]). For an even number $F \ge 6$, a pseudo-double wheel of F faces is a map such that

- the graph is obtained from a cycle (v₀, v₁, v₂,..., v_{F-1}), by adjoining a new vertex N to each v_{2i} (0 ≤ i < F/2) and then by adjoining a new vertex S to each v_{2i+1} (0 ≤ i < F/2). We identify the suffix i of the vertex v_i modulo F.
- The cyclic order at the vertex N is defined as follows: the edge Nv_{2i+2} is next to the edge Nv_{2i}. The cyclic order at the vertex v_{2i} (0 ≤ i ≤ F/2) is: the edge v_{2i}N is next to the edge v_{2i}v_{2i+1}, and v_{2i}v_{2i+1} is next to the edge v_{2i}v_{2i-1}. The cyclic order at the vertex S is: the edge Sv_{2i+1} (0 ≤ i < F/2) is: the edge Sv_{2i+1}S is next to the edge v_{2i+1}v_{2i}, and v_{2i+1}v_{2i}, and v_{2i+1}v_{2i} is next to the edge v_{2i+1}v_{2i+2}.

The skeleton of the cube is the pseudo-double wheel of six faces.

In the rest of this paper, we fix an orientation of the sphere. By $\angle PQR$, we mean the angle from PQ to RQ in the orientation of the sphere, and assume that (1) $\alpha, \beta, \gamma, \delta \in (0, \pi) \cup (\pi, 2\pi)$, and $a, b, c \in (0, \pi)$, and (2) for tiles, edges represented by solid (thick, dotted, resp.) lines have length a (b, c, resp.). We say a

Fig. 3. Spherical tilings by 2n congruent quadrangles such that the skeletons are pseudo-double wheels (n = 3, 4, 5). Each is isohedral, as any tile is transformed to any tile with the vertical *n*-fold axis ρ and *n* horizontal 2-fold axes η_1, \ldots, η_n .

quadrangle is *concave*, if it has an inner angle greater than π . We are concerned with all spherical isohedral tilings by congruent possibly concave quadrangles such that the skeletons are pseudo-double wheels.

PROPOSITION 1 ([2, p. 62]). (1) If $0 < A, B, C < \pi$, $A + B + C > \pi$, $-A + B + C < \pi$, $A - B + C < \pi$ and $A + B - C < \pi$, then there exists uniquely up to congruence a spherical 3-gon on the two-dimensional unit sphere S^2 such that the inner angles are A, B and C. The converse is also true.

- (2) Let ABC be a spherical 3-gon, and let a, b, c be the sides opposite to the inner angles A, B, C, respectively. Then
 - (a) (Dual cosine law for the sphere (Spherical cosine theorem for angles) [2, p. 65]) $\cos A = -\cos B \cos C + \sin B \sin C \cos a$.
 - (b) (Cosine law for the sphere (Spherical cosine theorem) [2, p. 65]) $\cos a = \cos b \cos c + \sin b \sin c \cos A$.

Spherical cosine law is obtained from the spherical cosine theorem for angles, by exchanging the angles A, B, C and the sides a, b, c with $A \leftrightarrow \pi - a$, $B \leftrightarrow \pi - b$, $C \leftrightarrow \pi - c$. By this exchange, the last three inequalities of Proposition 1 (1) become the distance inequalities for spherical 3-gons. For every nonzero real number x, arccot x is the angle θ such that $0 < |\theta| < \pi/2$ and $\cot \theta = x$. Let $\csc x$ be $1/\sin x$. We say a spherical 4-gon Q is a *copy* of a spherical 4-gon Q', if Q is an orthogonal transformation of Q'.

3. Combinatorial conditions for spherical monohedral quadrangular tilings to be isohedral tilings over pseudo-double wheels

DEFINITION 2. Let PDW_n $(n \ge 3)$ be the set of spherical tilings by 2n congruent, possibly concave quadrangles such that (1) the skeleton is a pseudodouble wheel, and (2) the distribution of inner angles and that of the edgelength on the skeleton are as in Figure 4. Spherical isohedral tilings over pseudo-double wheels

Fig. 4. The solid, the thick, and the dotted thick edges have lengths *a*, *b* and *c*. The vertices *N* and *S* are *n*-valent. Some among α , β , γ , δ are equal, and some among *a*, *b*, *c* are equal.

Note that we do not assume the isohedrality in Definition 2.

For example, all images of Figure 1 and Figure 3 are members of PDW_n (n = 3, 4, 5). The leftmost of Figure 3 is so-called *the central projection* of the cube. They have the vertical *n*-fold axis ρ of rotation, and *n* horizontal 2-fold axes η_i (i = 0, 1, ..., n - 1) of rotation such that for each *i*, η_i is through the midpoint of an edge and $\eta_i \perp \rho$. By these symmetry operations, any tile is transformed to any tile in each tiling. So, they are isohedral.

The two vertices N and S of any tiling \mathcal{T} presented in Figure 4 can be identified with the north pole and the south pole of the unit sphere S^2 respectively, as there are two congruent paths from N to S. For each point $V \ (\neq N, S)$ on S^2 , the *longitude* of V is the angle $\psi \in [-\pi, \pi)$ from the edge Nv_0 to a geodesic segment NV, measured in the direction indicated in Figure 7.

PROPOSITION 2 ([1, Lemma 5]). Given a spherical tiling by congruent quadrangles such that the quadrangles are as in Figure 2 with the edge-length c being the edge-length a. Suppose that (1) there is a vertex incident to only three edges of length a, and (2) there is a 3-valent vertex incident to two edges of length a and to one edge of length b. Then for the inner angles of the tile, we have $\alpha \neq \delta$ and $\beta \neq \gamma$.

THEOREM 1. Let \mathcal{T} be a spherical tiling by six congruent quadrangles.

- (2) \mathcal{T} has a 3-fold axis ρ of rotation and three 2-fold axes η_1 , η_2 , η_3 of rotation perpendicular to ρ .
- (3) \mathcal{T} is isohedral.

⁽¹⁾ $\mathcal{T} \in PDW_3$.

Fig. 5. The eight perfect face-matchings of the skeleton of the cube.

PROOF. (1). Sakano proved this assertion by case analysis [8]. We improve the presentation of his proof, by using Proposition 2, [4], and [3, Theorem 8]. By Euler's theorem, every spherical tiling by 4-gons has a 3-valent vertex [10]. From this, we can prove that the skeleton of any spherical tiling by six 4-gons is the skeleton of the cube (By the enumeration of spherical quadrangulations [4], there is only one spherical quadrangulation of eight vertices). Moreover, the cyclic list of edge-lengths of the tile of a spherical tiling by congruent 4-gons is either *aaaa, aabb, aaab, or aabc* where *a, b, c* are mutually distinct ([10]). When the cyclic list of edge-lengths of the tile of the tile of \mathcal{T} is *aaaa* or *aabb*, then $\mathcal{T} \in PDW_3$, by [9].

Let the edge-lengths of the tile be *aaab* $(a \neq b)$. Then the spherical tiling by six congruent 4-gons induces a perfect face-matching consisting of three edges of length *b*. By a *perfect face-matching* of a graph, we mean a perfect matching [6, p. 2] of the dual graph. By [3, Theorem 8], the skeleton of the cube has eight perfect face-matchings.

In Figure 5, the first perfect face-matching is transformed to the other seven perfect face-matchings by seven automorphisms of the skeleton of the cube. Enumerate the vertices v_i ($0 \le i \le 7$) of the cube, as in the figure of the first perfect face-matching. The seven automorphisms are represented as seven permutations (2 6)(3 5), (0 4)(1 7)(2 6)(3 5), (0 5)(1 6)(2 7)(3 4), (0 3)(1 2) (4 5)(6 7), (0 3 4 5)(1 2 7 6), (0 5 4 3)(1 6 7 2), and (0 4)(1 7). So we have only to consider the first perfect face-matching. Every inner angle around the vertex v_3 or the vertex v_6 is β or γ , by Figure 2, because v_3 and v_6 are incident to only edges of length a. The number of inner angles β around v_3 , say k, is the number of inner angles β around v_6 . Otherwise, $\beta = \gamma$, which contradicts Proposition 2.

We will prove $k \neq 2$. Suppose k = 2. Without loss of generality, $\angle v_1 v_6 v_7 = \gamma$, $\angle v_7 v_6 v_5 = \angle v_5 v_6 v_1 = \beta$, because the automorphism (1 5 7)(0 4 2) of the skeleton of the cube fixes the face-matching edges $v_0 v_1$, $v_4 v_5$ and $v_2 v_7$. Then $\angle v_0 v_5 v_6 = \gamma$, $\angle v_6 v_5 v_4 = \alpha$ and $\angle v_5 v_4 v_7 = \delta$. Here $\angle v_4 v_5 v_0 = \alpha$ or δ . Assume $\angle v_4 v_5 v_0 = \alpha$. Then an opposite inner angle $\angle v_0 v_3 v_4$ is γ . Hence $\angle v_4 v_3 v_2 = \beta$. So the inner angle $\angle v_7 v_4 v_3$ is γ . The three inner angles around v_4 are γ , δ , X for some $X \in \{\alpha, \delta\}$, while the three inner angles around v_5 are α , α , γ . So $\alpha = \delta$. This contradicts Proposition 2. Hence $\angle v_4 v_5 v_0 = \delta$. Then $\angle v_3 v_4 v_5 = \alpha$. Here $\angle v_7 v_4 v_3 = \beta$ or γ . Assume $\angle v_7 v_4 v_3 = \beta$. Then the three inner angles around v_4 are α , β , δ and those around v_5 are α , γ , δ . So $\beta = \gamma$. This contradicts Proposition 2. Thus $\angle v_7 v_4 v_3 = \gamma$. Hence $\angle v_4 v_3 v_2 =$ β . $\angle v_2 v_3 v_0 = \gamma$, because the three inner angles around v_3 are β , β , γ . Thus $\angle v_3 v_0 v_1 = \delta$. As $\angle v_5 v_6 v_1 = \beta$, an opposite inner angle $\angle v_1 v_0 v_5$ is δ . Hence the three inner angles around v_0 are γ , δ , δ . On the other hand, those around v_4 are α , γ , δ . So $\alpha = \delta$. This contradicts Proposition 2. Thus, the number k of β around v_3 is not two.

In a similar argument, $k \neq 1$. If k = 3, then $\mathcal{T} \in PDW_3$. Otherwise, k = 0. But, because the cyclic of the tile is *aaab* $(a \neq b)$, we have the symmetry $(\alpha, \beta, \gamma, \delta) \leftrightarrow (\delta, \gamma, \beta, \alpha)$. Hence, we have $\mathcal{T} \in PDW_3$, too.

Suppose the cyclic list of the edge-lengths of the tile is *aabc* with a, b, c are mutually distinct. The distribution of the edges of length b is the first perfect face-matching of Figure 5 without loss of generality. Since every edge of length c should be adjacent to an edge of length b and each face has exactly one edge of length c, the tiling is Figure 4 with n = 3. So, $\mathcal{T} \in PDW_3$.

(2). In \mathscr{T} , two vertices consisting of three inner angles β are antipodal to each other, because there are three congruent paths between them: "travel straight a, bend in γ angle, travel straight c, bend in $-\gamma$ angle, and travel straight a." Actually there is a 3-fold axis ρ of rotation through the two vertices, by examining the distribution of α , β , γ and the edge-lengths a, b, c. ρ is the black vertical axis in Figure 3 (left). Moreover the midpoint of an edge e of length b is antipodal to the midpoint of the edge e' of length c, where e is not adjacent to e'. It is because there are two congruent paths between them: one is "travel straight b/2, bend in δ angle, travel straight a, bend in $-\alpha$ angle, travel straight a, bend in β angle, travel straight c/2." The other path is the same with the three angles inverted. Actually an axis through the two midpoints is a 2-fold axis of rotation by examining the distribution of α , β , γ , a, b, c. Similarly we can find three 2-fold axes η_1 , η_2 , η_3 of rotation. Each η_i is a white horizontal axis in Figure 3 (left).

(3). Let T and T' be tiles of \mathscr{T} . Let ρ be the vertical 3-fold axis of rotation and η_i (i = 1, 2, 3) be the horizontal 2-fold axes of rotation, given in (2). If ρ is through a point of $T \cap T'$, then T is transformed to T' by a rotation around the 3-fold axis ρ . Otherwise, if T and T' are adjacent, then T is transformed to T' by some 2-fold axis η_i that is through an edge $T \cap T'$ of length b or c. By repeating these transformations, any tile T is transformed to any other tile T'. So \mathscr{T} is isohedral. This completes the proof of Theorem 1.

 \square

For spherical tilings by congruent quadrangles, Theorem 2 below provides two necessary and sufficient conditions for spherical tilings such that the skeletons are pseudo-double wheels to be isohedral. The two conditions are somehow combinatorial, and come from those given in Theorem 1. One is being PDW_n , and the other is a condition on the symmetry operations of tilings.

As in [9], a *kite* (*dart*, resp.) is a convex (non-convex, resp.) quadrangle such that the cyclic list of edge-lengths is *aabb* ($a \neq b$), and a *rhombus* is a quadrangle such that all the edges are equilateral. A kite, a dart and a rhombus enjoy a mirror symmetry.

LEMMA 1. Let \mathcal{T} be a spherical tiling by congruent polygons such that any edge is incident to an odd-valent vertex. If the tile does not have a mirror symmetry, then neither does \mathcal{T} .

PROOF. Assume \mathcal{T} has a mirror plane σ . Then σ does not intersect transversely with a tile, since the tile does not have a mirror symmetry. Thus the intersection of σ and \mathcal{T} is the cycle of the edges, because each edge of \mathcal{T} is straight. By σ , each vertex on the cycle has even degree. But all the edges of the tiling \mathcal{T} is incident to an odd-valent vertex. This is a contradiction. This completes the proof of Lemma 1.

THEOREM 2. For any spherical tiling \mathcal{T} by 2n congruent quadrangles $(n \ge 4)$, the following three conditions are equivalent:

- (1) $\mathcal{T} \in PDW_n$.
- (2) \mathcal{T} has an n-fold axis ρ of rotation and n 2-fold axes of rotation perpendicular to ρ .
- (3) \mathcal{T} is isohedral and the skeleton is the pseudo-double wheel of 2n faces.

PROOF. $((1) \Rightarrow (3))$ By condition (1), we compute the longitude and the latitude (i.e., the length of the geodesic segment from the north pole) of the vertices v_i 's of \mathscr{T} . There is an *n*-fold axis ρ of rotation through the two poles N and S, because there are three congruent paths between them. We see that there is a 2-fold axis ℓ_i of rotation though the midpoint of the edge $v_{(i+n \mod 2n)}v_{(i+1+n \mod 2n)}$ and that ℓ_i is perpendicular to ρ , for every *i*. So we have condition (2). By this and Figure 4, we have condition (3).

 $((2) \Rightarrow (1))$ We verify:

CLAIM 1. If $m \ge n \ge 4$, any m-fold axis of rotation of \mathcal{T} is through two vertices.

PROOF. The *m*-fold axis is not though the midpoint of an edge, by $m \neq 2$. The *m*-fold axis is not through an inner point of a tile. Otherwise all inner angles of the tile is equal, all edges are equilateral, m = 4. By the premise, m = n = 4. As the tile is a regular quadrangle, all diagonal segments of the tiles are less than π . Otherwise any pair of incident diagonal segments crosses to each other. By drawing exactly one diagonal, geodesic segment in each quadrangular tile, we have a spherical tiling \mathcal{T}' by $2n \times 2 = 16$ congruent isosceles spherical 3-gons. The inner angles of the isosceles 3-gons are $5\pi/8$, $5\pi/16$, $5\pi/16$. It is because the area of the quadrangular tile of the given tiling \mathcal{T} is $\pi/2$, and the sum of the four equal inner angles is $5\pi/2$. However \mathcal{T}' is impossible, by the classification of all spherical tilings by congruent spherical 3-gons [11, Table]. Thus the axis is though a pair of antipodal vertices. This completes the proof of Claim 1.

By Claim 1, the *n*-fold axis ρ of rotation is through two vertices *u* and *v*. Both u and v are *n*-valent. Otherwise, for some positive integers k, n, knequilateral edges are incident to u, and ℓn equilateral edges are incident to v, because of the *n*-fold axis of rotation through u and v. The kn pairs of neighboring edges incident to the vertex u cause kn distinct tiles. Since the number of tiles is 2n, both of k and ℓ are one or two. Let k = 2. Then the kn pairs of neighboring edges incident to the vertex u cause already 2n tiles. Then v is not a vertex of any of these 2n tiles. To see it, assume some tile contains v as a vertex. No vertex is adjacent to both u and v. Otherwise the inner angle is π . *u* is not adjacent to *v*, since the length of any edge is less than π . So if two vertices of a tile of \mathcal{T} are incident to u, then some vertex other than v is incident to them, because the tile is a quadrangle. Thus the number of tiles is greater than 2n. So $k = \ell = 1$. Hence there are exactly n vertices w_i $(0 \le i \le n-1)$ adjacent to u. All edges uw_i 's are equilateral by the *n*-fold axis of rotation through *u* and *v*. We assume that $uw_{i+1 \mod n}$ is next to uw_i , and that the two vertices $w_{i+1 \mod n}$ and w_i are adjacent to a vertex v_i . Let T_i be a tile $uw_iv_1w_{i+1 \mod n}$. By the *n*-fold axis ρ , all v_i 's are distinct.

CLAIM 2. v_i is adjacent to v $(0 \le i < n)$.

PROOF. Otherwise, there is a non-pole vertex \tilde{u}_i adjacent to v_i such that an edge $v_i \tilde{u}_i$ is a neighbor of $v_i w_{i+1 \mod n}$ without loss of generality. Then there is a quadrangular tile T'_i having the three vertices \tilde{u}_i , v_i , $w_{i+1 \mod n}$.

Fig. 6. Proof of Claim 2.

The other vertex, say x_i , of the tile T'_i is not the vertex v. Otherwise, an edge $w_{i+1 \mod n} x_i$ is transformed to an edge $w_i v$ by the *n*-fold axis ρ of rotation of \mathscr{T} . The edge $w_i v$ cannot be transversal to the edge $v_i \tilde{u}_i$. Hence, the lune (that is, digon) determined by the two edges uw_i and $uw_{i+1 \mod n}$ contains a tile other than $T_i = uw_i v_i w_{i+1 \mod n}$ and $T'_i = v_i \tilde{u}_i v w_{i+1 \mod n}$. Thus \mathscr{T} has more than 2n number of tiles, which is absurd. So $x_i \neq v$.

The vertex x_i of the tile T'_i is not the vertex u. Otherwise, an edge $x_i \tilde{u}_i$ has the same length as uw_i and $uw_{i+1 \mod n}$. Since the edge $uw_{i+1 \mod n}$ is a neighbor of the edge uw_i , the edge $x_i \tilde{u}_i$ is a neighbor of uw_i or $uw_{i+1 \mod n}$. Consider the latter case. By the *n*-fold axis ρ through u and v, the tile $T_i = uw_i v_i w_{i+1 \mod n}$ is rotated to $x_i w_{i+1 \mod n} v_i \tilde{u}_i$. But this is impossible because the vertices w_i and $w_{i+1 \mod n}$ of the former tile $T_i = uw_i v_i w_{i+1 \mod n}$ and the vertices $w_{i+1 \mod n}$ and \tilde{u}_i of the latter tile $T'_i = x_i w_{i+1 \mod n} v_i \tilde{u}_i$ are all incident to the vertex v_i . So $w_{i+1 \mod n}$ becomes two-valent. When the edge $x_i \tilde{u}_i$ is a neighbor of uw_i , we have similarly a contradiction. Thus $x_i \neq u$.

Any vertex of the tile $T'_i = w_{i+1 \mod n} v_i \tilde{u}_i x_i$ is neither the *n*-valent *u* nor the *n*-valent *v*, so the number of the tiles of the tiling \mathcal{T} is greater than 2n. This is absurd. Thus the vertex v_i is adjacent to *v*. This establishes Claim 2. \Box

By Claim 2, the skeleton of \mathcal{T} is the pseudo-double wheel of 2n faces. By the *n*-fold axis ρ through *u* and *v*, all *n* edges incident to the vertex *u* have the same length *a*, and all *n* edges incident to the vertex *v* have the same length a'.

By the assumption, \mathcal{T} has *n* horizontal 2-fold rotation axes, each through a pair of midpoints of edges. As they swap the vertices *u* and *v*, we have a = a'. By computing the longitude and the latitude of each non-pole vertices, the angle-assignment and the length-assignment of \mathcal{T} is exactly as in Figure 4.

 $((3) \Rightarrow (2))$ Suppose that the tile of \mathscr{T} is a rhombus, a kite, or a dart. By the classification of spherical monohedral (kite/dart/rhombus)-faced tilings [9, Table 1], the Schönflies symbol ([5], [6]) of \mathscr{T} is D_{nd} . In the decision tree [5, Fig. 3.10], by going from the leaf " D_{nd} " to the root, we see that D_{nd} must have " $n C_2$'s \perp to C_n " (n 2-fold axes of rotation perpendicular to an n-fold axis of rotation). Thus (2) holds. By the same reasoning, the Schönflies symbol D_n requires (2). So, to complete the proof of $((3) \Rightarrow (2))$, we show: if the tile of \mathscr{T} is none of a kite, a dart and a rhombus, then \mathscr{T} has the Schönflies symbol D_n .

The Schönflies symbol of \mathscr{T} is none of T, T_d , T_h , O, O_h , I, and I_h . Otherwise, the tiling \mathscr{T} has more than three 3-fold rotation axes, by [5, Sect. 3.14]. Since the skeleton of \mathscr{T} is the pseudo-double wheel of 2n faces $(n \ge 4)$, \mathscr{T} has only two vertices N and S of valence more than three. So there is a 3-fold axis ρ of rotation through a three-valent vertex. Thus the rotation in $2\pi/3$ around ρ transforms N (S, resp.) to S (N, resp.), or fixes both of N and S. So the rotation in $4\pi/3$ around ρ fixes both of N and S. This is absurd, since the 3-fold rotation axis is through neither N nor S.

In any pseudo-double wheel, any edge is incident to an odd-valent vertex. Because we assumed that the tile of the tiling \mathcal{T} on a pseudo-double wheel is none of a rhombus, a kite, and a dart, the tile has no mirror symmetry. By Lemma 1, \mathcal{T} has no mirror symmetry.

So the Schönflies symbol of the tiling \mathscr{T} is C_m or D_m for some integer $m \ge 2$. This is due to the systematic procedure to determine the Schönflies symbol [5, Sect. 3.14]. Then the tiling \mathscr{T} has an *m*-fold axis ρ of rotation. Let G be the symmetry group of the tiling \mathscr{T} . Because the tiling \mathscr{T} is isohedral, G acts transitively on the tiles of \mathscr{T} . So

(#) the order #G is a multiple of the number $2n \ge 8$ of tiles of \mathcal{T} .

Assume the Schönflies symbol of \mathcal{T} is C_m for some $m \ge 2$. By [5, p. 41], #G = m. By (#), $m \ge 8$. ρ is through a vertex with the valence being a multiple of m. So the *m*-fold axis ρ of rotation is through the poles N and S, and thus m = n. The symmetry operations of \mathcal{T} are exactly m rotations around ρ by C_m [5, p. 41]. No symmetry operation of \mathcal{T} transforms a tile having N as a vertex to a tile having S as a vertex. However \mathcal{T} is isohedral.

Thus the Schönflies symbol of the tiling \mathscr{T} is D_m for some $m \ge 2$. By [5, p. 41], #G = 2m. By (#), *m* is a multiple of $n \ge 4$. So the *m*-fold axis ρ of rotation is not through a three-valent vertex of \mathscr{T} , but through *N* and *S* of the pseudo-double wheel, and m = n. Hence the condition (2) holds. This completes the proof of $((3)\Rightarrow(2))$.

4. Tiles of spherical isohedral tilings over pseudo-double wheels

DEFINITION 3. For $n \ge 3$, a PDW_n -quadrangle is the tile of some $\mathcal{T} \in PDW_n$.

FACT 1. For given $n \ge 3$, $\alpha, \gamma \in (0, \pi) \cup (\pi, 2\pi)$ and $a \in (0, \pi)$, there is at most one PDW_n-quadrangle, modulo SO(3), such that

- the cyclic list of inner angles in the clockwise order is $(\alpha, \beta, \gamma, \delta) = (\alpha, 2\pi/n, \gamma, 2\pi \alpha \gamma)$ (cf. Figure 4); and
- the edge $\alpha\beta$, the edge $\beta\gamma$, and the geodesic segment $\beta\delta$ have length a, a, πa .

PROOF. From a point N on the unit sphere, travel in distance a, bend counterclockwise in $\pi - \alpha$, and travel in 2π . Then, by the last travel, we have a great circle C. The bending angle intends the inner angle α . By abuse

of notation, we denote the bending point by α . *C* is through the point α . Similarly, from *N*, travel in distance *a*. Here the angle of this travel from the travel $N\alpha$ of length *a* is $\beta = 2\pi/n$. By abuse of notation, we often write β for the vertex *N*. Then bend clockwise in $\pi - \gamma$, and travel in 2π . By the last travel, we have a great circle *C'*. By abuse of notation, we denote the bending point by γ . *C'* is through the point γ . Then $C \neq C'$ by $\delta \neq \pi$. So *C* and *C'* share exactly two points *P*, *P'*. If each of *P* and *P'* is a vertex of the *PDW_n*-quadrangle, the inner angle of a *PDW_n*-quadrangle $\alpha\beta\gamma P$ which is diagonal to *P'* is $2\pi - \beta$. In this case, *P'* is inappropriate, as the tiles must not overlap. Hence, for *n*, α , γ , *a*, there is at most one pair of *b*, *c*. Actually, *b* is determined from α , *a* by a spherical cosine law (Proposition 1 (2b)) $\cos(\pi - a) = \cos a \cos b + \sin a \sin b \cos \alpha$, and *c* is determined similarly.

DEFINITION 4. Let $Q_{n,\alpha,\gamma,a}$ be a PDW_n -quadrangle of Fact 1. We identify $Q_{n,\alpha,\gamma,a}$ modulo SO(3).

In fact, any PDW_n -quadrangle is specified without mentioning a tiling of PDW_n , as in the following Fact. There the vertices A, B, C, D intend the vertices N, v_0 , v_1 , v_2 of a tiling of PDW_n .

FACT 2. (1) A PDW_n-quadrangle is exactly a quadrangle ABCD such that $AB = \pi - AC = AD$, the area of ABCD is $2\pi/n$, and the inner angle A is $2\pi/n$.

(2) The set of PDW_n -quadrangles bijectively corresponds to PDW_n .

PROOF. (1) As the edges *BC* and *CD* have length less than π , we have two spherical 3-gons *ABC* and *CDA*. As noted in the caption of Figure 7, $\angle ABC = \pi - \angle BCA$ and $\angle ADC = \pi - \angle DCA$. So the three inner angles of the vertices *B*, *C*, *D* sum up to 2π . Thus the inner angle of the vertex *A* is $2\pi/n$ since the area of *ABCD* plus 2π is the sum of all inner angles *A*, *B*, *C*, *D*. By regarding the inner angles *A*, *B*, *C*, *D* as β , α , δ , γ and then arranging the 2*n* copies of the quadrangle *ABCD* as Figure 4, we conclude *ABCD* is a tile of a tiling of *PDW_n*. (2) Clear.

An edge incident to N or S is called a *meridian edge*.

LEMMA 2. Suppose $n \ge 3$, $\alpha, \gamma \in (0, \pi) \cup (\pi, 2\pi)$, and $a \in (0, \pi)$. Every PDW_n -quadrangle $Q_{n,\alpha,\gamma,a}$ satisfies $a \ne \pi/2$, $\alpha \ne \pi/2$, $\gamma \ne \pi/2$,

$$0 < a < \frac{\pi}{2} \quad \Leftrightarrow \quad 0 < \delta < \pi; \qquad and \tag{1}$$

$$\alpha > \pi \text{ or } \gamma > \pi \implies \frac{3\pi}{2} > \alpha > \pi > \gamma > \frac{\pi}{2} \text{ or } \frac{3\pi}{2} > \gamma > \pi > \alpha > \frac{\pi}{2}.$$
 (2)

PROOF. Consider a tiling of PDW_n . If $a = \pi/2$, then any tile has three vertices on the equator and the other vertex is a pole. This contradicts the condition "no inner angle is π " (see Section 2).

Assume $\gamma = \pi/2$. See Figure 7. N and S are the poles, and $\angle Nv_2v_1 = \angle Sv_1v_2 = \pi/2 = \gamma$. Then $\angle Nv_1v_2 = \pi - \angle Sv_1v_2 = \pi/2$. Thus Nv_1v_2 is an isosceles triangle. Hence $\pi - a = Nv_1 = Nv_2 = a$. This contradicts $a \neq \pi/2$ which we have already proved. Hence $\gamma \neq \pi/2$. Similarly, $\alpha \neq \pi/2$.

As for equivalence (1), $a \in (0, \pi/2)$ if and only if v_0 and v_2 are located in the northern hemisphere and v_1 is in the southern. This is equivalent to $\delta \in (0, \pi)$. We will prove the implication (2). First assume the case where γ is too large. Then, the vertex v_1 is in the northern hemisphere and the edge v_0v_1 crosses to the edge Nv_2 . To think of the situation, the leftmost lower tiling in Figure 8 may be useful. In the critical situation, $\alpha + \gamma + \delta = 2\pi$ implies $\alpha = \angle v_1 v_0 N = \pi/2$, $\gamma = 3\pi/2$, and $\delta = 0$. So $\pi/2 < \alpha < \pi < \gamma < 3\pi/2$. The same inequalities with α and γ swapped follows when α is too large.

For $\mathcal{T} \in PDW_n$, let *a* be the length of the geodesic segment between *N* and v_0 , and let φ be the longitude of the vertex v_2 minus that of the vertex v_1 . See Figure 7.

DEFINITION 5. For $n \ge 3$, define open sets $A_n^{(i)}$ in \mathbf{R}^2 (i = 1, 2, 3, 4) as $\left(\frac{2\pi}{n} - \pi, 0\right) \times \left(0, \frac{\pi}{2}\right)$, $\left(0, \frac{2\pi}{n}\right) \times \left(0, \frac{\pi}{2}\right)$, $\left(\frac{2\pi}{n}, \pi\right) \times \left(0, \frac{\pi}{2}\right)$, and $\left(0, \frac{2\pi}{n}\right) \times \left(\frac{\pi}{2}, \pi\right)$. Let A_n be $\bigcup_{i=1}^4 A_n^{(i)}$. See Figure 8.

THEOREM 3 (A coordinate system of PDW_n). For each integer $n \ge 3$, a function $\mathcal{T} \in PDW_n \mapsto \langle \varphi, a \rangle \in A_n$ is a bijection.

Fig. 7. The coordinate system $\langle \varphi, a \rangle$ of a tiling \mathscr{T} of PDW_n . See the caption of Figure 4. Possibly $\varphi < 0$ and possibly $\varphi > \beta$. Because a straight line from N to the antipodal vertex S is through v_1 , and because $v_1S = a$, we have $Nv_1 = \pi - a$, $\angle v_2v_1N = \pi - \gamma$ and $\angle Nv_1v_0 = \pi - \alpha$.

Yohji Akama

PROOF. We prove $\langle \varphi, a \rangle \in A_n$ for any $\mathcal{T} \in PDW_n$, as follows: For $\pi/2 < a < \pi$, we have $0 < \varphi < \beta = 2\pi/n$. Otherwise, we can see that an edge crosses to an opposite edge. To think of the situation, see the right upper tiling in Figure 8.

For $0 < a < \pi/2$, φ is strictly between $\beta - \pi = 2\pi/n - \pi$ and π . Otherwise one of the edge v_0v_1 and the edge v_1v_2 contains a pair of antipodal points. Obviously $a \neq 0$. By Lemma 2, $a \neq \pi/2$. $\varphi \neq \beta = 2\pi/n$, by $\alpha \neq \pi$.

We show that the function $\mathscr{T} \mapsto \langle \varphi, a \rangle$ is onto A_n . Take an arbitrary $\langle \varphi, a \rangle$ of A_n . We first construct a quadrangle as follows: Take a point v_2 on the sphere such that the geodesic segment v_2S has length $\pi - a$. Since φ is given and $\beta = 2\pi/n$ is known, the vertex v_1 and v_0 is determined, as in Figure 7.

When $0 < a < \pi$, a pair of antipodal points appears neither in the edge Nv_0 nor in the edge Nv_2 . No inner angle is π , as $\varphi \neq 0$, $2\pi/n$ and $a \neq \pi/2$.

We verify no edge contains a pair of antipodal points. Since $\langle \varphi, a \rangle$ is in the union A_n of the four open rectangles of Figure 8, a hemisphere contains all the vertices v_0 , v_1 , v_2 and the pole N as inner points. Hence, a pair of antipodal points appears in neither the edge v_1v_2 nor the edge v_0v_1 , and lengths of the edges Nv_0 and Nv_2 are $a < \pi$.

Moreover, any of the four edges of the tile does not cross to the opposite edge, because when $0 < a < \pi/2$ the vertex v_1 is located in the southern hemisphere and the edges Nv_0 and Nv_2 are in the northern hemisphere. On the other hand, $\pi/2 < a < \pi$ implies $0 < \varphi < 2\pi/n$.

Arranging the 2*n* copies of the quadrangle as Figure 8 results in a tiling of PDW_n . So the function $\mathscr{T} \mapsto \langle \varphi, a \rangle$ is onto A_n . $\pi - a$ is the distance of the vertex v_1 from the pole N while $2\pi/n - \varphi$ is the longitude of v_1 , i.e., $\angle v_0 N v_1$. So $\mathscr{T} \mapsto \langle \varphi, a \rangle$ is injective. Hence Theorem 3 is proved.

5. Quadratic equation of tiles

THEOREM 4. Suppose $n \ge 3$, $\alpha, \gamma \in (0, \pi/2) \cup (\pi/2, \pi) \cup (\pi, 3\pi/2)$, $a \in (0, \pi/2) \cup (\pi/2, \pi)$. Then a quadrangle is a PDW_n -quadrangle $Q_{n,\alpha,\gamma,a}$, if and only if $f_{n,\alpha,\gamma}(\cos a) = 0$ where

$$f_{n,\alpha,\gamma}(x) := x^2 - \left(\cot \frac{\pi}{n}\right) (\cot \alpha + \cot \gamma) x - \cot \alpha \cot \gamma.$$

PROOF. Assume we are given a quadrangle $Nv_0v_1v_2$. By our definition of quadrangles (see Section 2), the quadrangle is a subset of the interior of an hemisphere. So, Nv_0v_1 and Nv_1v_2 are spherical 3-gons. Let φ be the angle from a geodesic segment Nv_1 to the edge Nv_2 and φ' be the angle from the edge Nv_0 to the geodesic segment Nv_1 .

Fig. 8. The open set A_n (n = 6) (Definition 5) of $\langle \varphi, a \rangle$ (Figure 7) of $\mathcal{T} \in PDW_n$. A_n bijectively corresponds to PDW_n (Theorem 3). The four images are tilings of PDW_n .

The given quadrangle is $Q_{n,\alpha,\gamma,a}$, if and only if there are φ and φ' such that

$$\varphi + \varphi' = \frac{2\pi}{n}, \qquad \varphi \neq 0, \qquad \varphi' \neq 0$$
 (3)

$$\cos \gamma = \cos \varphi \cos \gamma - \sin \varphi \sin \gamma \cos a$$
, and (4)

$$\cos \alpha = \cos \varphi' \cos \alpha - \sin \varphi' \sin \alpha \cos \alpha. \tag{5}$$

The two equations (4) and (5) are equivalent to spherical cosine theorems for angles (Proposition 1 (2a)) to spherical 3-gons. It is because of applying the last two equations $\angle v_2v_1N = \pi - \gamma$ and $\angle Nv_1v_0 = \pi - \alpha$ in the caption of Figure 7.

In the xy-plane, consider two lines

$$\ell: x - y \tan \gamma \cos a = 1, \qquad m: x - y \tan \alpha \cos a = 1.$$

They are well-defined, by the premise. Then

(*) (4) \Leftrightarrow (cos φ , sin φ) $\in \ell$, (5) \Leftrightarrow (cos φ' , sin φ') $\in m$.

Let *R* be the reflection with respect to the *x*-axis followed by rotation in $2\pi/n$ around the origin *O*. Then, (3) implies (5) \Leftrightarrow (cos φ , sin φ) $\in R(m)$. To sum up, under the equation (3),

(4) & (5)
$$\Leftrightarrow$$
 (cos φ , sin φ) $\in \ell \cap R(m)$. (6)

Let P be a point (1,0) and C be the unit circle $x^2 + y^2 = 1$.

CLAIM 3. (1) For all α , γ , there is a unique point $P' \in C \cap \ell \setminus \{P\}$. Moreover $P' = (\cos \varphi, \sin \varphi)$.

(2) For all α , γ , there is a point $Q' \in C \cap m \setminus \{P\}$. Moreover $Q' = (\cos \varphi', \sin \varphi')$ and $\angle POQ' = \varphi'$.

PROOF. (1). By the premise, $\varphi \neq 0$. So P' is unique. By equivalence (*), $\varphi = \angle POP'$. (2). Similar to (1).

Let S be a point on the x-axis in the xy-plane. The ray starting from S in the direction of the positive part of x-axis is denoted by xS or Sx. The sum of the three inner angles of the plane triangle OPP' is π . So,

$$u := \angle xPP' = \frac{\varphi + \pi}{2}.$$
(7)

The line R(m) is not the x-axis. It is because $R(P) \in C \cap R(m) \setminus (\mathbb{R} \times \{0\})$ by $\angle xOR(P) = 2\pi/n$. Hence, $\#(R(m) \cap (\mathbb{R} \times \{0\})) \leq 1$. Let a point Q be the intersection of the line R(m) and x-axis, if it exists. Define

$$v := \begin{cases} \pi & (R(m) \cap (\mathbf{R} \times \{0\}) = \emptyset); \\ \angle x Q R(P) & (\text{otherwise}). \end{cases}$$

See Figure 9.

CLAIM 4. If the equation (3) holds and $\pi/n \le \varphi < \pi$, then

$$\tan u = (\tan \gamma \cos a)^{-1}. \qquad \tan v = \frac{\sin \frac{2\pi}{n} \sin \alpha \cos a - \cos \frac{2\pi}{n} \cos \alpha}{\cos \frac{2\pi}{n} \sin \alpha \cos a + \sin \frac{2\pi}{n} \cos \alpha}.$$
 (8)

(4) & (5)
$$\Leftrightarrow f_{n,\alpha,\gamma}(\cos a) = 0.$$
 (9)

Fig. 9. Proofs of (7) and (13). Case $\varphi' > 0$ (left) and case $\varphi' < 0$ (right).

PROOF. (8) The first equation is by the definition of ℓ and Claim 3. The denominator of the left-hand side of the second equation is not zero, by Claim 3 (2).

Next, we prove

$$v = \begin{cases} \frac{2\pi}{n} + \pi - \arctan((\tan \alpha \cos a)^{-1}) & \left(\frac{\pi}{n} \le \varphi < \frac{n-2}{n}\pi\right); \\ \pi & \left(\varphi = \frac{n-2}{n}\pi\right); \\ \frac{2\pi}{n} - \arctan((\tan \alpha \cos a)^{-1}) & \left(\frac{n-2}{n}\pi < \varphi < \pi\right). \end{cases}$$

The proof is as follows: Suppose $\pi/n \le \varphi < (n-2)\pi/n$. Let a point $\overline{Q'}$ be the reflection of the point Q' with respect to the x-axis. $\angle xP\overline{Q'} = \pi - \arctan((\tan \alpha \cos a)^{-1})$. Thus $v = \angle xP\overline{Q'} + 2\pi/n$. Suppose $\varphi = (n-2)\pi/n$. By the equation (3), $\varphi' = (4-n)\pi/n$. By the definition, $\angle xOR(Q') = \angle xOR(P) + \varphi' = \varphi + \varphi'$, which is $2\pi/n$ by (3). Hence, $(\angle xOR(P) + \angle xOR(Q'))/2 = \pi/2$. As $R(P), R(Q') \in C$, R(m) does not intersect with the x-axis. Hence $v = \pi$ by the definition of v. The proof for $(n-2)\pi/n < \varphi \le \pi$ is similar to the proof for $\pi/n \le \varphi < (n-2)\pi/n$. This establishes the desired representation of v.

If $\varphi \neq (n-2)\pi/n$, then by the addition formula of tan, tan v is as desired. Consider the case $\varphi = (n-2)\pi/n$. Then $\varphi' = (4-n)\pi/n$. By (5), $(\tan \alpha \cos a)^{-1} = \tan(2\pi/n)$. By the addition formula of tan, tan v is as desired. This completes the proof of the equation (8) of Claim 4.

(9) First we claim

$$\ell \cap R(m) \ni (\cos \varphi, \sin \varphi) \quad \Leftrightarrow \quad R(Q') = P'.$$
 (10)

The proof is as follows: $(\cos \varphi, \sin \varphi) = P'$ is R(P) or R(Q'), because $m \cap C = \{P, Q'\}$ by Claim 3 (2). Here R(P) is $(\cos(2\pi/n), \sin(2\pi/n))$. If R(P) = P', then $2\pi/n = \varphi$, and thus $\varphi' = 2\pi/n - \varphi = 0$, by the equation (3). This is a contradiction. This completes the proof of (10).

Next we claim

$$\tan(v-u) = \tan \frac{\pi}{n} \quad \Leftrightarrow \quad f_{n,\alpha,\gamma}(\cos a) = 0. \tag{11}$$

The left-hand side of equivalence (11) is

$$\frac{\tan u - \tan v}{1 + \tan u \tan v} + \tan \frac{\pi}{n} = 0.$$

Observe that the denominator of the first term of the left-hand side cannot be 0. Assume otherwise. Then $u - v = \pi/2 + i\pi$ for some integer *i*. Thus $\angle PP'(R(P)) = \pi/2 + i\pi$ for some integer *i*. Thus $\varphi + \varphi' = \pi$, which contradicts the equation (3). Hence the denominator $1 + \tan u \tan v$ of the first term

of the left-hand side is not 0. Also note that the denominator $\cos \pi/n$ of the second term of the left-hand side is not 0. Substitute (8) in the left-hand side. Then we have a quadratic equation of $\cos a$, by calculation. Because $\sin \alpha \sin \gamma \sin(\pi/n) \neq 0$, the quadratic equation is equivalent to the quadratic equation $f_{n,\alpha,\gamma}(x) = 0$ of $x = \cos a$. This completes the proof of (11).

Hence, by equivalences (6), (10), and (11), we have only to prove

$$R(Q') = P' \quad \Leftrightarrow \quad \tan(v - u) = \tan \frac{\pi}{n},$$
 (12)

to show (9). If R(Q') = P', then $\angle POR(Q') = \angle POP' = \varphi$. Thus $v - u = (\varphi + \varphi')/2 + k\pi$ for some integer k. The equation (3) implies $\tan(v - u) = \tan(\pi/n)$. To prove the converse of (12), we derive

$$\tan(v-u) = \tan(\pi/n) \quad \Rightarrow \quad \angle POR(Q') = \varphi.$$

Case A. $\pi/n \le \varphi < (n-2)\pi/n$ (See Figure 9).

The mean M of $\angle xOR(P) = 2\pi/n$ and $\angle xOR(Q') = 2\pi/n - \varphi'$ is $2\pi/n - \varphi'/2 = \pi/n + \varphi/2$ by the equation (3). Then $M < \pi/2$, by $\varphi < (n-2)\pi/n$. Therefore, $R(m) \cap ((0,\infty) \times \{0\})$ consists of a unique point Q, where R(m) is a line through the two points R(P) and R(Q'). We claim

$$\frac{\pi}{n} \le \varphi < \frac{n-2}{n}\pi \quad \Rightarrow \quad v - u = \frac{\pi}{n} - \varphi + \angle POR(Q') \in \left(\frac{4-n}{2n}\pi, \frac{\pi}{2}\right).$$
(13)

The proof is as follows: Observe $v = (\varphi' + \pi)/2 + \angle POR(Q')$. It is clear when $\varphi' > 0$. In case $\varphi' < 0$, the observation follows from $v = (-\varphi' + \pi)/2 + (\angle POR(Q') + \varphi')$. By the equation (8), $v > \pi/2 + 2\pi/n$. Clearly, $v < \pi$. Hence, by $u \in (\pi/2, \pi)$, v - u is in the desired interval. From the equations (7) and (3), the desired equation of (13) follows. This completes the proof of (13).

Assume $\tan(v-u) = \tan(\pi/n)$. By (13), $\varphi = \angle POR(Q')$. Case B. $(n-2)\pi/n < \varphi < \pi$ (See Figure 10). We claim:

$$\frac{n-2}{n}\pi < \varphi < \pi \quad \Rightarrow \quad v - u = \frac{\pi}{n} - \varphi + \angle POR(Q') - \pi \in \left(-\pi, \frac{2-n}{2n}\pi\right). \tag{14}$$

The proof is as follows: By Figure 10, $v = (-\varphi' + \pi)/2 + 2\pi/n - \pi > 0$.

So, the desired equation follows from the equations (7) and (3), in a similar argument as Case A. The equation (3) implies $v = \pi/n + \varphi/2 - \pi/2 < \pi/n$. By condition of Case B and the definition (7) of the angle *u*, we have $(n-1)\pi/n < u < \pi$. So v - u is indeed in the desired interval of (14). This completes the proof of (14).

Spherical isohedral tilings over pseudo-double wheels

Fig. 10. Proof of (14). $(n-2)\pi/n < \varphi < \pi$.

Assume $\tan(v - u) = \tan(\pi/n)$. The interval $(-\pi, (2 - n)\pi/(2n))$ contains $\pi/n + k\pi$ for a unique integer k = -1. By (14), $\varphi = \angle POR(Q')$.

Case C. $\varphi = (n-2)\pi/n$. Then the line R(m) does not intersect with the x-axis. As $R(m) \cap C = \{R(P), R(Q')\}, \pi/2 = (\angle POR(Q') + \angle POR(P))/2, \angle R(Q')OR(P) = -\varphi', \angle POR(P) = \varphi$, and the equation (3), it holds that $\varphi = \angle POR(Q')$. Thus we have proved the converse of (12). This completes the proof of Claim 4.

By the symmetry $(\varphi, \gamma) \leftrightarrow (\varphi', \alpha)$, (9) of Claim 4 implies: If the equation (3) holds and $\varphi < \pi/n$, then (4) & (5) $\Leftrightarrow f_{n,\gamma,\alpha}(\cos a) = 0$. Here $f_{n,\gamma,\alpha}(\cos a) = f_{n,\alpha,\gamma}(\cos a)$. So, *T* is a $Q_{n,\alpha,\gamma,a}$ if and only if $f_{n,\alpha,\gamma}(\cos a) = 0$. This establishes Theorem 4.

6. Range of inner angles of PDW_n -quadrangles

To classify the two opposite inner angles α , γ and the edge-length a of PDW_n -quadrangles $Q_{n,\alpha,\gamma,a}$'s, we solve $f_{n,\alpha,\gamma}(\cos a) = 0$, taking the condition Lemma 2 (Proposition 1 (1), resp.) of quadrangles (spherical 3-gons, resp.) into account. This classifies all tilings of PDW_n , because of Fact 2 (2).

6.1. Discriminant. The equation $f_{n,\alpha,\gamma}(\cos a) = 0$ has at most two solutions $a \in (0,\pi)$, as $\cos a$ is strictly decreasing for $a \in (0,\pi)$ and $f_{n,\alpha,\gamma}(x)$ is quadratic. The smaller solution $a = a_{n,\alpha,\gamma}^-$ is the arccosine of

$$\frac{1}{2} \cot \frac{\pi}{n} (\cot \alpha + \cot \gamma + \sqrt{\Delta_{n,\alpha,\gamma}}),$$

while the larger solution $a = a_{n,\alpha,\gamma}^+$ of $f_{n,\alpha,\gamma}(\cos a) = 0$ is obtained from $a_{n,\alpha,\gamma}^-$ by inverting the sign in front of the square root. Here

$$\Delta_{n,\alpha,\gamma} := \cot^2 \gamma + 2\left(2\tan^2 \frac{\pi}{n} + 1\right) \cot \alpha \cot \gamma + \cot^2 \alpha.$$

Fig. 11. The curves $\gamma = dgn_n(\alpha)$ $(\pi/2 < \alpha < \pi)$, $\alpha = dgn_n(\gamma)$ $(\pi/2 < \gamma < \pi)$, $\alpha + \gamma = 2\pi - \pi/n$ (dash), and $\alpha + \gamma = 2\pi$ (dash-dot), when n = 4. See Lemma 3.

LEMMA 3. Let $\pi/2 < \alpha < \pi < \gamma < 3\pi/2$. Then

(1) $\Delta_{n,\alpha,\gamma} \ge 0 \Leftrightarrow \gamma \le \operatorname{dgn}_n(\alpha)$. Moreover, the equality of one side implies that of the other side. Here $\operatorname{dgn}_n : (\pi/2, \pi) \to (\pi, 3\pi/2)$ is defined as

$$dgn_n(\psi) := \pi - \arctan\left(\cos^2\frac{\pi}{n}\left(\sin\frac{\pi}{n} + 1\right)^{-2}\tan\psi\right)$$

- (2) The curve $\gamma = dgn_n(\alpha)$ is strictly decreasing, convex, and has the tangential line $\gamma = 2\pi \pi/n \alpha$ at $\alpha = 3\pi/4 \pi/(2n)$.
- $(3) \quad 2\pi \pi/n \alpha < \operatorname{dgn}_n(\alpha) < 2\pi \alpha \text{ for all } \alpha \in (\pi/2, 3\pi/4 \pi/(2n)).$

PROOF. (1). Let $s_n := \sin(\pi/n) - 1 < 0$, $t_n := \sin(\pi/n) + 1 > 0$, and

$$z_1 := -s_n^2 \cot \alpha \sec^2 \frac{\pi}{n}, \qquad z_2 := -t_n^2 \cot \alpha \sec^2 \frac{\pi}{n}.$$

We prove $z_1 < \cot \gamma \Rightarrow$ Lemma 3 (1), as follows: By calculation, z_1 and z_2 are the zeros of the quadratic polynomial

$$p(z) := z^2 + 2 \cot \alpha \left(2 \tan^2 \frac{\pi}{n} + 1 \right) z + \cot^2 \alpha.$$

Here $\Delta_{n,\alpha,\gamma} = p(\cot \gamma)$. $z_1 < z_2$ by $\pi/2 < \alpha < \pi$. Clearly $\gamma \le dgn_n(\alpha)$ if and only if $\gamma - \pi \le -\arctan(\tan \alpha \cos^2(\pi/n)t_n^{-2})$. $\gamma - \pi \in (0, \pi/2)$ by the premise. So, by applying the strictly decreasing function $\cot, \gamma \le dgn_n(\alpha)$ is equivalent to $z_2 \le \cot \gamma$. Hence

CLAIM 5. Let
$$\pi/2 < \alpha < \pi < \gamma < 3\pi/2$$
. Then
 $\gamma \le \operatorname{dgn}_n(\alpha) \iff -\cot \alpha \left(1 + \sin \frac{\pi}{n}\right)^2 \sec^2 \frac{\pi}{n} \le \cot \gamma$.

The equality of one side implies that of the other side.

Therefore, Lemma 3 (1) follows from $z_1 < \cot \gamma$, because the polynomial p(z) is quadratic.

We first prove $z_1 < -\cot \alpha$ as follows: The premise $\alpha \in (\pi/2, \pi)$ implies $\tan \alpha < 0$. So, $z_1 < -\cot \alpha$ if and only if $s_n^2 \sec^2(\pi/n) < 1$. As $s_n < 0$, the inequality $\sec^2(\pi/n)s_n^2 < 1$ is equivalent to $-\cos(\pi/n) < s_n$, which is equivalent to $1/\sqrt{2} < \sin(\pi/n + \pi/4)$. The last inequality holds for n = 3 by calculation. It also holds for $n \ge 4$, by $\pi/n + \pi/4 \in (\pi/4, \pi/2]$. Thus $z_1 < -\cot \alpha$.

Assume $z_1 \ge \cot \gamma$. Then $\cot \gamma < -\cot \alpha$ by $z_1 < -\cot \alpha$. By $\alpha \in (\pi/2, \pi)$ and $\gamma \in (\pi, 3\pi/2)$, we have $\cot \gamma > 0$, $\tan \alpha \tan \gamma < 0$, and thus $-\tan \alpha < \tan \gamma$. Hence $\tan(\alpha + \gamma) = (\tan \alpha + \tan \gamma)/(1 - \tan \alpha \tan \gamma) > 0$, which implies $\alpha + \gamma > 2\pi$ by the premise $\alpha \in (\pi/2, \pi)$, $\gamma \in (\pi, 3\pi/2)$. This contradicts $\alpha + \gamma + \delta = 2\pi$. Hence $z_1 < \cot \gamma$.

To prove Lemma 3 (2), we first verify the curve $\gamma = \text{dgn}_n(\alpha)$ and the line $\gamma = 2\pi - (\pi/n) - \alpha$ intersect at $\alpha = 3\pi/4 - \pi/(2n)$, as follows:

$$\operatorname{dgn}_{n}\left(\frac{3\pi}{4} - \frac{\pi}{2n}\right) = 2\pi - \frac{\pi}{n} - \left(\frac{3\pi}{4} - \frac{\pi}{2n}\right),\tag{15}$$

if and only if $\arctan(\cos^2(\pi/n)\tan(\pi/4 + \pi/(2n))(\sin(\pi/n) + 1)^{-2})$ is $\pi/4 - \pi/(2n)$. As the right-hand side $\pi/4 - \pi/(2n)$ is strictly between $(0, \pi/2)$, the condition is equivalent to $\cos^2(\pi/n)\tan^2(\pi/4 + \pi/(2n))(\sin(\pi/n) + 1)^{-2} = 1$. Hence the square root of the left-hand side is unity, as $n \ge 3$ implies $0 < (1/4 + 1/(2n))\pi < \pi/2$. By calculation, it is indeed unity from the double-angle formulas. Thus (15) is proved.

By calculation, we have a partial derivative

$$\partial_{\alpha} \operatorname{dgn}_{n}(\alpha) = -t_{n}^{2} \cos^{2} \frac{\pi}{n} \left(\left(t_{n}^{4} - \cos^{4} \frac{\pi}{n} \right) \cos^{2} \alpha + \cos^{4} \frac{\pi}{n} \right)^{-1}$$

It is negative because $t_n > 1$. So $\gamma = dgn_n(\alpha)$ is decreasing. Since

$$\partial_{\alpha} \operatorname{dgn}_{n}\left(\frac{3\pi}{4} - \frac{\pi}{2n}\right) = -1$$
 (16)

by calculation, a line $\alpha + \gamma = 2\pi - \pi/n$ is the tangential line of the curve $\gamma = dgn_n(\alpha)$. By calculation, the second-order derivative $\partial_{\alpha}^2 dgn_n(\alpha)$ is

$$-t_n^2\cos^2\frac{\pi}{n}\left(t_n^4-\cos^4\frac{\pi}{n}\right)\sin 2\alpha\left(\left(t_n^4-\cos^4\frac{\pi}{n}\right)\cos^2\alpha+\cos^4\frac{\pi}{n}\right)^{-2}.$$

It is positive since $\pi/2 < \alpha < \pi$ by the premise and $t_n > 1$.

To prove Lemma 3 (3), observe that the first inequality $2\pi - \pi/n - \alpha < dgn_n(\alpha)$ follows from Lemma 3 (2). As for the second inequality $dgn_n(\alpha) < 2\pi - \alpha$, note that $dgn_n(\alpha) \rightarrow 3\pi/2 - 0$, as $\alpha \rightarrow \pi/2 + 0$. By equality (16) and the convexity of the curve $\gamma = dgn_n(\alpha)$, we have $\partial_{\alpha} dgn_n(\alpha) \le -1$ for all $\alpha \in (\pi/2, 3\pi/4 - \pi/(2n))$. Thus $dgn_n(\alpha) < 2\pi - \alpha$. This establishes Lemma 3.

6.2. The statement.

DEFINITION 6. For $n \ge 3$, define

$$B_n := \{ (\alpha, \gamma) \in ((0, \pi) \cup (\pi, 2\pi))^2 \mid A \ Q_{n, \alpha, \gamma, a} \text{ exists for some } a \in (0, \pi) \}.$$

By simple trigonometric formulas, we describe B_n and the length a of the meridian edge of each PDW_n -quadrangles $Q_{n,\alpha,\gamma,a}$.

THEOREM 5 (Inner angles and edge-length of PDW_n -quadrangles). Assume $n \ge 3$.

- (1) $B_n = \bigcup_{i=1}^8 B_n^{(i)}$ where $B_n^{(i)}$ is defined in (4) below.
- (2) $(\alpha, \gamma) \in B_n^{(4)} \cup B_n^{(8)}$, if and only if there exist exactly two PDW_n-quadrangles. Here the edge-length a is $a_{n,\alpha,\gamma}^+$ or $a_{n,\alpha,\gamma}^-$.
- (3) $(\alpha, \gamma) \in \bigcup_{1 \le i \le 8, i \ne 4,8} B_n^{(i)}$, if and only if there exists a unique PDW_n quadrangle $Q_{n,\alpha,\gamma,a}$. Here the edge-length a is $a_{n,\alpha,\gamma}^-$ for $(\alpha,\gamma) \in B_n^{(1)}$; $a_{n,\alpha,\gamma}^+$ for $(\alpha,\gamma) \in B_n^{(2)} \cup B_n^{(5)} \cup B_n^{(6)}$;

$$\pi - \arccos\left(\left(\sec\frac{\pi}{n}\right)\left(\sin\frac{\pi}{n} + 1\right)\cot\alpha\right) = a_{n,\alpha,\gamma}^{\pm} < \frac{\pi}{2}$$
(17)

for $(\alpha, \gamma) \in B_n^{(3)}$;

$$\pi - \arccos\left(\left(\sec\frac{\pi}{n}\right)\left(\sin\frac{\pi}{n} + 1\right)\cot\gamma\right) = a_{n,\alpha,\gamma}^{\pm} < \frac{\pi}{2}$$
(18)

for $(\alpha, \gamma) \in B_n^{(7)}$.

- (4) Here
 - $B_n^{(1)}$ is an open pentagon $\{(\alpha, \gamma) \mid \pi/2 < \alpha < \pi, \pi/2 < \gamma < \pi, \alpha + \gamma < 2\pi \pi/n\};$
 - $B_n^{(2)}$ is an open rectangular triangle $\{(\alpha, \gamma) | \pi/2 < \alpha, \pi < \gamma, \alpha + \gamma < 2\pi \pi/n\};$

Fig. 12. The set B_n (n = 6). See Theorem 5. The edge-length a is $a^+_{n,\alpha,\gamma}$ for $B_n^{(2)} \cup B_n^{(5)} \cup B_n^{(6)}$; $a^-_{n,\alpha,\gamma}$ for $(\alpha,\gamma) \in B_n^{(1)}$; $a^-_{n,\alpha,\gamma}$ or $a^+_{n,\alpha,\gamma}$ for $B_n^{(4)} \cup B_n^{(8)}$; and $a^-_{n,\alpha,\gamma} = a^+_{n,\alpha,\gamma}$ for $B_n^{(3)} \cup B_n^{(7)}$. The point designated by \circ (×, resp.) corresponds to the upper left (upper right, resp.) image of tiling in Figure 8.

- B_n⁽³⁾ is a curve {(α, dgn_n(α)) | π/2 < α < 3π/4 − π/(2n)};
 B_n⁽⁴⁾ is a nonempty open set {(α, γ) | π/2 < α, 2π − π/n − α < γ < $dgn_n(\alpha)$;
- $B_n^{(5)}$ is symmetric to $B_n^{(1)}$ around the line $\alpha + \gamma = \pi$; and $B_n^{(i+4)}$ ($2 \le i \le 4$) is symmetric to $B_n^{(i)}$ around the line $\gamma = \alpha$.

REMARK 1. The inner angles (α, γ) of $\mathcal{T} \in PDW_n$ ranges over Figure 12. The coordinate system $\langle \varphi, a \rangle$ for PDW_n is introduced in Definition 5. $\langle \varphi, a \rangle$ ranges over Figure 8. Figure 12 corresponds to Figure 8, as follows:

In Figure 12, the open set above $\gamma = \pi$, the open set right to $\alpha = \pi$, and the open set below $\gamma = \pi/2$ correspond to $A_n^{(1)}$, $A_n^{(3)}$, and $A_n^{(4)}$ of Definition 5 and Figure 8, respectively.

Here is the proof. By Theorem 5 (1) and Figure 7, $\bigcup_{i=2}^{4} B_n^{(i)}$ corresponds to $A_n^{(1)}$, and $\bigcup_{i=6}^{8} B_n^{(i)}$ to $A_n^{(3)}$. By Theorem 5 (1) and Lemma 2, $B_n^{(5)}$ corre-

sponds to $A_n^{(4)}$. So, by Theorem 5 and Theorem 3, $B_n^{(1)}$ corresponds to $A_n^{(2)}$.

Suppose that the length *a* of the meridian edges is 0. Then 2*n* nonmeridian edges split the sphere where the inner angle of each digon is $\delta = 2\pi - \alpha - \gamma$. So $\delta = \pi/n$. Hence, a = 0 implies $\alpha + \gamma = \pi(2 - 1/n)$.

If $a = \pi$, then the tile is the union of a digon of angle α and that of angle γ , so $\beta = \alpha + \gamma = 2\pi/n$.

 $a = \pi/2$ corresponds to $\alpha = \pi/2$ or $\gamma = \pi/2$, by the proof of Lemma 2.

Theorem 5 follows from Theorem 6 (Subsection 6.3) and Theorem 7 (Subsection 6.4). Proposition 1 (1) plays an important role in Subsection 6.3. In Figure 11, the two disjoint regions circumscribed by a solid curve, dashed line and dotted line do not correspond to PDW_n -quadrangles. It is because every zero of $f_{n,\alpha,\gamma}$ is greater than 1. See Lemma 5 of Subsection 6.4.

6.3. PDW_n -quadrangles containing the meridian diagonal geodesic segment. In any tiling of PDW_n , the tile $Nv_0v_1v_2$ contains a segment Nv_1 , if and only if $\alpha, \gamma \in (0, \pi/2)$ or $\alpha, \gamma \in (\pi/2, \pi)$. Theorem 6 (1) and Theorem 6 (2) correspond to the two open pentagons $B_n^{(5)}$ and $B_n^{(1)}$ of Theorem 5, respectively. For given n, α, γ, a , there is at most one PDW_n -quadrangle $Q_{n,\alpha,\gamma,a}$ (See Fact 1 and Definition 4). We observe

$$f_{n,\alpha,\gamma}(\pm 1) = \mp \csc \alpha \csc \gamma \csc \frac{\pi}{n} \sin\left(\pm \frac{\pi}{n} + \alpha + \gamma\right).$$
(19)

The axis of the parabola $y = f_{n,\alpha,\gamma}(x)$ is

$$\operatorname{axis}(n, \alpha, \gamma) := \frac{1}{2} \operatorname{cot} \frac{\pi}{n} (\operatorname{cot} \alpha + \operatorname{cot} \gamma)$$
(20)

Theorem 6. Let $n \geq 3$.

- (1) Let $\alpha, \gamma \in (0, \pi/2)$. Then a PDW_n -quadrangle $Q_{n,\alpha,\gamma,a}$ exists for some $a \in (0,\pi)$, if and only if $\alpha + \gamma > \pi/n$. In this case, $a = a_{n,\alpha,\gamma}^+$.
- (2) Let $\alpha, \gamma \in (\pi/2, \pi)$. Then a PDW_n-quadrangle $Q_{n,\alpha,\gamma,a}$ exists for some $a \in (0,\pi)$, if and only if $\alpha + \gamma < 2\pi \pi/n$. In this case, $a = a_{n,\alpha,\gamma}^-$.

PROOF. (Only-if part of Theorem 6 (1)). See Figure 7. By $\alpha, \gamma \in (0, \pi/2)$, a segment Nv_1 is in the quadrangle. To the two spherical 3-gons v_0Nv_1 and v_2Nv_1 , apply the last inequality of Proposition 1 (1). Then $-\alpha + \angle v_0Nv_1 + \angle Nv_1v_0 < \pi$ and $-\gamma + \angle v_1Nv_2 + \angle v_2v_1N < \pi$. The sum of the left-hand sides of the two inequalities is $-\alpha - \gamma + \beta + \delta$, and is less than 2π . By $\delta = 2\pi - \alpha - \gamma$ and $\beta = 2\pi/n$, we have $\pi > \alpha + \gamma > \beta/2 = \pi/n$.

(If part of Theorem 6 (1)). For any $a \in (0, \pi)$, there is a spherical isosceles 3-gon $v_0 N v_2$ such that $N v_0 = N v_2 = a$ and $\angle v_0 N v_2 = 2\pi/n$. By $\alpha, \gamma > 0$, there

is a vertex v_1 between Nv_0 and Nv_2 such that $\angle v_1v_0N = \alpha$ and $\angle Nv_2v_1 = \gamma$. So, v_0v_1 does not cross to Nv_2 . Hence, by Theorem 4, $Q_{n,\alpha,\gamma,\alpha}$ exists if and only if there are a spherical 3-gon $v_0v_1v_2$ and $a \in (0,\pi)$ such that $Nv_0 = Nv_2 = \pi - Nv_1 = a$ and $f_{n,\alpha,\gamma}(\cos a) = 0$.

Put four vertices N, v_0 , v_1 , v_2 such that N is the north pole, $Nv_0 =$ $Nv_2 = \pi - Nv_1 = a$. Then, v_0 lies in the southern hemisphere if and only if v_1 lies in the northern hemisphere. As $\angle v_1 v_0 N = \alpha < \pi/2$ by the premise, v_0 lies in the southern hemisphere and $\pi > a > \pi/2$. The geodesic segment between v_0 and v_2 lies inside the southern hemisphere. Hence, the 3-gon $v_0v_1v_2$ is a subset of the 3-gon v_0Nv_2 . Let $\theta = \angle v_2v_0N = \angle Nv_2v_0$. The inner angles at v_1 of the 3-gon $v_0v_1v_2$ is $\alpha + \gamma = 2\pi - \delta$, because the assumption $\alpha, \gamma \in$ $(0, \pi/2)$ implies $\alpha + \gamma < \pi$. The other two inner angles of $v_0 v_1 v_2$ are $\theta - \alpha$, $\theta - \gamma$. Therefore, by Proposition 1 (1), the existence of the 3-gon $v_0v_1v_2$ is equivalent to $2\theta > \pi$, $2\alpha < \pi$, $2\gamma < \pi$, and $2\theta - 2\alpha - 2\gamma < \pi$. Thus, $Nv_0v_1v_2$ is a quadrangle if and only if $\pi/2 < \theta < \pi/2 + \alpha + \gamma$. As a spherical 3-gon v_0Sv_2 exists, $2(\pi - \theta) + \beta > \pi$, i.e., $\theta < \pi/2 + \beta/2 = \pi/2 + \pi/n$. The assumption $\pi/n < \alpha + \gamma$ implies $\theta < \pi/2 + \alpha + \gamma$. Moreover, $\pi/2 < \theta$, as v_0 and v_2 are in the southern hemisphere. Hence, if there is an $a \in (0, \pi)$ such that $f_{n,\alpha,\gamma}(\cos a) = 0$, then the 3-gon $v_0v_1v_2$ exists such that $Nv_0 = Nv_2 = \pi - Nv_1$ = a.

In this case, we show $a = a_{n,\alpha,\gamma}^+ \in (0,\pi)$ exists and $f_{n,\alpha,\gamma}(\cos a_{n,\alpha,\gamma}^+)$ is 0. As $a \in (\pi/2,\pi)$, $\cos a \in (-1,0)$. By the assumption, $\pi > \alpha + \gamma > -\pi/n + \alpha + \gamma > 0$. By (19), $f_{n,\alpha,\gamma}(-1) > 0 > f_{n,\alpha,\gamma}(0) = -\cot \alpha \cot \gamma$. The axis axis (n,α,γ) of the parabola $y = f_{n,\alpha,\gamma}(x)$ is positive, as $\alpha, \gamma \in (0,\pi/2)$. So the intersection of $(-1,0) \times \{0\}$ and the parabola $y = f_{n,\alpha,\gamma}(x)$ is the smaller intersection point of $\mathbf{R} \times \{0\}$ and the parabola. Hence $a = a_{n,\alpha,\gamma}^+$.

(2). $Q_{n,\alpha,\gamma,a}$ exists if and only if $Q_{n,\pi-\alpha,\pi-\gamma,\pi-a}$ does so. It is because from any $\mathscr{T} \in PDW_n$, we obtain $\mathscr{T}' \in PDW_n$, by joining the vertices N and S to the opposite vertices v_{2i+1} and v_{2i} respectively, and then deleting the 2nmeridian edges Nv_{2i} and Sv_{2i+1} of \mathscr{T} . As $\pi - \alpha, \pi - \gamma \in (0, \pi/2)$, Theorem 6 (1) implies $\pi - a = a_{n,\pi-\alpha,\pi-\gamma}^+$. Hence, $a = a_{n,\alpha,\gamma}^-$, by the explanation at the beginning of Subsection 6.1 and $\arccos(x) = \pi - \arccos(-x)$. This establishes Theorem 6.

6.4. PDW_n -quadrangles with α or γ greater than π . Theorem 7 (1) and Theorem 7 (2) correspond to an open set $B_n^{(4)} \cup B_n^{(8)}$ and a set $B_n^{(2)} \cup B_n^{(3)} \cup B_n^{(6)} \cup B_n^{(7)}$ of Theorem 5, respectively.

THEOREM 7. Suppose $\alpha > \pi$ or $\gamma > \pi$. Then we have the following: (1) There are more than one, actually, exactly two PDW_n -quadrangles $Q_{n,\alpha,\gamma,a}$, if and only if

$$\frac{\pi}{2} < \alpha < \frac{3\pi}{4} - \frac{\pi}{2n} \qquad \& \qquad 2\pi - \frac{\pi}{n} - \alpha < \gamma < \operatorname{dgn}_n(\alpha); \qquad or \quad (21)$$

$$\frac{\pi}{2} < \gamma < \frac{3\pi}{4} - \frac{\pi}{2n} \qquad \& \qquad 2\pi - \frac{\pi}{n} - \gamma < \alpha < \operatorname{dgn}_n(\gamma). \tag{22}$$

There is indeed a pair (α, γ) satisfying (21) or (22). Here the edge-length a is $a^+_{n,\alpha,\gamma}$ or $a^-_{n,\alpha,\gamma}$.

(2) There is a unique PDW_n -quadrangle, if and only if

$$\frac{\pi}{2} < \alpha < 2\pi - \frac{\pi}{n} - \gamma \qquad \& \qquad \pi < \gamma; \tag{23}$$

$$\gamma = \mathrm{dgn}_n(\alpha) \qquad \& \qquad \frac{\pi}{2} < \alpha < \frac{3\pi}{4} - \frac{\pi}{2n}; \tag{24}$$

$$\frac{\pi}{2} < \gamma < 2\pi - \frac{\pi}{n} - \alpha \qquad \& \qquad \pi < \alpha; \qquad or \tag{25}$$

$$\alpha = \operatorname{dgn}_n(\gamma)$$
 & $\frac{\pi}{2} < \gamma < \frac{3\pi}{4} - \frac{\pi}{2n}$

If (23) or (25) hold, then the edge-length a is $a_{n,\alpha,\gamma}^+$. If $\gamma = dgn_n(\alpha)$, then the edge-length a is

$$\pi - \arccos\left(\left(\sec\frac{\pi}{n}\right)\left(\sin\frac{\pi}{n} + 1\right)\cot\alpha\right) = a_{n,\alpha,\gamma}^+ = a_{n,\alpha,\gamma}^-.$$

If $\alpha = dgn_n(\gamma)$, then the edge-length *a* is

$$\pi - \arccos\left(\left(\sec\frac{\pi}{n}\right)\left(\sin\frac{\pi}{n}+1\right)\cot\gamma\right) = a_{n,\alpha,\gamma}^+ = a_{n,\alpha,\gamma}^-.$$

To prove Theorem 7, we prove the following lemma.

LEMMA 4. If some of condition (21), condition (23), condition (24) and the three conditions with α and γ swapped hold, then for every $a \in (0, \pi/2)$ with $f_{n,\alpha,\gamma}(\cos a) = 0$, there exists a $Q_{n,\alpha,\gamma,a}$ -quadrangle.

PROOF. The assumption implies

$$0 < \alpha + \gamma - \frac{3\pi}{2} < \frac{\pi}{2}.$$
 (26)

Consider a quadrangle $Nv_0v_1v_2$ such that the inner angle between two edges of length a is $\beta = 2\pi/n$, and the two inner angles neighboring to β are α and γ . We prove $Nv_0v_1v_2$ is indeed a *spherical* 4-gon. $\angle v_0Nv_2 = 2\pi/n < \pi$ and $v_0N = v_2N = a < \pi/2$. So, $\theta := \angle v_2v_0N$ is strictly between 0 and $\pi/2$.

26

As a spherical 3-gon v_0Nv_2 clearly exists, a quadrangle $Nv_0v_1v_2$ exists, if and only if a spherical 3-gon $v_0v_1v_2$ exists. The last condition holds, if and only if $\alpha - \gamma + \delta < \pi$, $-\alpha + \gamma + \delta < \pi$, $(\alpha - \theta) + (\gamma - \theta) - \delta < \pi$, and $(\alpha - \theta) + (\gamma - \theta) + \delta > \pi$, by Proposition 1 (1). $\alpha, \gamma > \pi/2$ holds from the assumption of this lemma. So, $\alpha + \gamma + \delta = 2\pi$ implies the first and the second of the four inequalities. The last inequality follows from $0 < \theta < \pi/2$ and $\alpha + \gamma + \delta = 2\pi$. The third inequality is $\alpha + \gamma - 3\pi/2 < \theta$. By $0 < \theta < \pi/2$ and the range (26) of $\alpha + \gamma$,

the quadrangle
$$Nv_0v_1v_2$$
 exists \Leftrightarrow $-\tan(\alpha + \gamma) > \cot \theta$.

Here $\cot \theta = \cos a \tan(\pi/n)$. To see this, represent the length of the base edge of a spherical isosceles 3-gon v_0Nv_2 , in terms of a, n, by using spherical cosine law (Proposition 1 (2b)). By applying the spherical cosine law for angles (Proposition 1 (2a)) to v_0Nv_2 , we have $\cos(2\pi/n) = -\cos^2 \theta + \sin^2 \theta(\cos^2 a + \sin^2 a \cos(2\pi/n))$. As $\cos(\pi/n) > 0$ by $n \ge 3$,

$$\sin \theta = \frac{\cos \frac{\pi}{n}}{\sqrt{\sin^2 \frac{\pi}{n} \cos^2 a + \cos^2 \frac{\pi}{n}}}.$$

So, as $\cos a > 0$ by the premise, $0 < \theta < \pi/2$ implies $\cot \theta = \cos a \tan(\pi/n)$.

Hence, by Theorem 4, Lemma 4 is equivalent to: For every $n \ge 3$, if (21), (23), or (24), then for every $a \in (0, \pi/2)$ with $f_{n,\alpha,\gamma}(\cos a) = 0$, we have

$$\cos a < -\cot \frac{\pi}{n} \tan(\alpha + \gamma). \tag{27}$$

When condition (23) holds, $-\tan(\alpha + \gamma) > \tan(\pi/n)$, and thus inequality (27) holds.

Assume condition (21) or condition (24). By dgn_n ,

$$\frac{\pi}{2} < \alpha < \frac{3\pi}{4} - \frac{\pi}{2n}, \qquad \pi < \frac{5\pi}{4} - \frac{\pi}{2n} < \gamma < \frac{3\pi}{2}.$$
(28)

Thus $f_{n,\alpha,\gamma}(0) = -\cot \alpha \cot \gamma > 0$. So two solutions of the quadratic equation $f_{n,\alpha,\gamma}(x) = 0$ are of the same sign. Hence inequality (27) follows from

$$n \ge 3$$
, (21) & $f_{n,\alpha,\gamma}(x) = 0 \implies x < -\cot \frac{\pi}{n} \tan(\alpha + \gamma)$. (29)

As $f_{n,\alpha,\gamma}(x)$ is quadratic, condition (29) is equivalent to the conjunction of

$$f_{n,\alpha,\gamma}\left(-\cot\frac{\pi}{n}\,\tan(\alpha+\gamma)\right) > 0,\tag{30}$$

and the condition $axis(n, \alpha, \gamma) < -\cot(\pi/n) \tan(\alpha + \gamma)$:

$$\frac{1}{2}\cot\frac{\pi}{n}(\cot\alpha + \cot\gamma) < -\cot\frac{\pi}{n}\tan(\alpha + \gamma).$$
(31)

Inequality (30) is proved as follows: By calculation, the left-hand side is

$$\frac{\sin(\alpha + \gamma + \pi/n)\sin(\alpha + \gamma - \pi/n)}{\cos\alpha\sin\alpha\cos\gamma\sin\gamma(\tan\alpha\tan\gamma - 1)^2\sin^2(\pi/n)}$$

This is positive, because (28) implies $\cos \alpha \sin \alpha \cos \gamma \sin \gamma < 0$, and Lemma 3 (3) implies $2\pi - \pi/n < \alpha + \gamma < 2\pi$. So (30) is established.

In inequality (31), the right-hand side divided by the left-hand side has absolute value $M = |2 \sin \alpha \sin \gamma / \cos(\alpha + \gamma)|$. The right-hand side of (31) is positive by (21) and $\alpha + \gamma + \delta = 2\pi$. So, we have only to show M > 1. The numerator 2 sin $\alpha \sin \gamma$ is negative by (28) and the denominator $\cos(\alpha + \gamma)$ is positive by (21). So M > 1 is equivalent to $\cos(\alpha - \gamma) < 0$. By (28), $\pi/2 = (5\pi/4 - \pi/(2n)) - (3\pi/4 - \pi/(2n)) < \gamma - \alpha < 3\pi/2 - \pi/2 = \pi$. This proves inequality (31) and thus the implication (29). So the spherical 3-gon $v_0v_1v_2$ exists. This establishes Lemma 4.

By calculation,

(†)
$$\operatorname{axis}(n, \alpha, \operatorname{dgn}_n(\alpha)) = -\operatorname{sec} \frac{\pi}{n} \left(\sin \frac{\pi}{n} + 1 \right) \operatorname{cot} \alpha.$$

LEMMA 5. Let n = 3, 4, 5, ... Suppose

$$\frac{3\pi}{4} - \frac{\pi}{2n} < \alpha < \pi < \gamma < \frac{5\pi}{4} - \frac{\pi}{2n}, \qquad 2\pi - \frac{\pi}{n} < \alpha + \gamma, \qquad and \qquad \gamma < \mathrm{dgn}_n(\alpha).$$

Then there is no $a \in (0, \pi)$ such that $f_{n, \alpha, \gamma}(\cos a) = 0$.

PROOF. We prove that $f_{n,\alpha,\gamma}(x) = 0 \Rightarrow x \ge 1$. We have only to verify $axis(n, \alpha, \gamma) > 1$ and $f_{n,\alpha,\gamma}(1) \ge 0$.

We show $axis(n, \alpha, \gamma) > 1$. By the premise, $\cot(\pi/n) > 0$ and $\pi/2 < \alpha < \pi$. By (1) and (2) of Lemma 3, we have $\pi < dgn_n(\alpha) < 3\pi/2$. So, by the premise, $\pi < \gamma < dgn_n(\alpha) < 3\pi/2$. Thus, by (20), $axis(n, \alpha, \gamma) > axis(n, \alpha, dgn_n(\alpha))$. By (†) and $\pi/2 < 3\pi/4 - \pi/(2n) < \alpha < \pi$, $axis(n, \alpha, dgn_n(\alpha)) > axis(n, 3\pi/4 - \pi/(2n), dgn_n(3\pi/4 - \pi/(2n)))$. The last is 1 by calculation. This concludes $axis(n, \alpha, \gamma) > 1$.

Next, we verify $f_{n,\alpha,\gamma}(1) \ge 0$. By the first premise $3\pi/4 - \pi/(2n) < \alpha < \pi < \gamma < 5\pi/4 - \pi/(2n)$, we have $\alpha + \gamma + \pi/n < 2\pi + \pi/4 + \pi/(2n)$. So, by $n \ge 3$ and the second premise, $2\pi < \alpha + \gamma + \pi/n < 2\pi + 5\pi/12$. Thus, by the first premise and (19), $f_{n,\alpha,\gamma}(1) \ge 0$. This completes the proof of Lemma 5.

PROOF OF THEOREM 7. Let $\alpha > \pi$ or $\gamma > \pi$. The edge-length *a* is smaller than $\pi/2$. Otherwise, equivalence (1) of Lemma 2 implies $\delta > \pi$. So α and γ are both less than π , which is absurd. So $0 < \cos a < 1$.

Theorem 7 (1) is proved as follows: By Theorem 4, the following two assertions are equivalent:

- more than one PDW_n -quadrangles $Q_{n,\alpha,\gamma,a}$ exist.
- the quadratic polynomial $f_{n,\alpha,\gamma}(x)$ has two distinct zeros x_1 , x_2 in an open interval (0,1) such that a quadrangle $Q_{n,\alpha,\gamma,\arccos x_i}$ exists for each x_i (i = 1, 2).

Here the quadratic polynomial $f_{n,\alpha,\gamma}(x)$ has two distinct zeros x_1 , x_2 in an open interval (0,1) if and only if the following three are all true:

- (i) $f_{n,\alpha,\gamma}(0) > 0$ and $f_{n,\alpha,\gamma}(1) > 0$;
- (ii) $0 < axis(n, \alpha, \gamma) < 1$; and
- (iii) $\Delta_{n,\alpha,\gamma} > 0.$

Hence, more than one PDW_n -quadrangles $Q_{n,\alpha,\gamma,a}$ exist, if and only if condition (21) or condition (22) holds. It is due to (2) of Lemma 2, Lemma 4 and the following:

CLAIM 6. For the three conditions mentioned above, the following holds:

- (1) In case $\pi/2 < \alpha < \pi < \gamma < 3\pi/2$, inequality (21) \Leftrightarrow (i) & (iii).
- (2) In case $\pi/2 < \gamma < \pi < \alpha < 3\pi/2$, inequality (22) \Leftrightarrow (i) & (iii).
- (3) In each of the above-mentioned two cases, (i) & $\Delta_{n,\alpha,\gamma} \ge 0 \Rightarrow$ (ii).

PROOF. Claim 6 (1) is proved as follows: $f_{n,\alpha,\gamma}(0) = -\cot \gamma \cot \alpha > 0$ by the premise. Hence, condition (i) is equivalent to $f_{n,\alpha,\gamma}(1) > 0$. Thus, by the premise and (19),

condition (i)
$$\Leftrightarrow \alpha + \gamma > 2\pi - \frac{\pi}{n}$$
. (32)

By the premise and Lemma 3(1),

condition (iii)
$$\Leftrightarrow \gamma < dgn_n(\alpha)$$
. (33)

See Figure 11. By the premise and Lemma 5,

(†) condition (i) &
$$\Delta_{n,\alpha,\gamma} \ge 0 \Rightarrow \alpha < \frac{3\pi}{4} - \frac{\pi}{2n} \text{ or } \frac{5\pi}{4} - \frac{\pi}{2n} < \gamma.$$

By (32), condition (i) implies $\alpha < 3\pi/4 - \pi/(2n) \Leftrightarrow 5\pi/4 - \pi/(2n) < \gamma$. Thus, by (32) and (33), we have (21) \Leftrightarrow (i) & (iii). So, Claim 6 (1) holds. The same argument with α and γ swapped proves Claim 6 (2).

We prove Claim 6 (3). $axis(n, \alpha, \gamma) > 0$ in either case, because $\cot \alpha + \cot \gamma = \sin(\alpha + \gamma)/\sin \alpha \sin \gamma > 0$ follows from $3\pi/2 < \alpha + \gamma = 2\pi - \delta < 2\pi$.

Consider the case $\pi/2 < \alpha < \pi < \gamma < 3\pi/2$. As $\cot \gamma > 0$,

condition (ii)
$$\Leftrightarrow \gamma > \operatorname{arccot}\left(2\tan\frac{\pi}{n} - \cot\alpha\right) + \pi.$$

Hence, by equivalence (32), condition (ii) follows from

$$\pi - \alpha - \frac{\pi}{n} \ge \operatorname{arccot}\left(2 \tan \frac{\pi}{n} - \cot \alpha\right).$$
 (34)

The right-hand side is positive, because $\cot \alpha < 0$ by $\pi/2 < \alpha < \pi$. So, inequality (34) is equivalent to $\cot(\pi - \alpha - \pi/n) \le 2 \tan(\pi/n) - \cot \alpha$. Subtract $\tan(\alpha - \pi/2) + \tan(\pi/n)$ from both hand sides of the last inequality, and then divide them by $\tan(\pi/n)$. By the addition formula of tan, inequality (34) is equivalent to $\tan(\alpha - \pi/2) \tan(\alpha - \pi/2 + \pi/n) \le 1$. By the assumption $\pi/2 < \alpha < \pi$ and implication (‡), this holds because the two arguments $\alpha - \pi/2$ and $(\alpha - \pi/2 + \pi/n)$ are both in the interval $(0, \pi/2)$ and have mean less than $\pi/4$. Thus inequality (34) holds. The other case $\pi/2 < \gamma < \pi < \alpha < 3\pi/2$ is proved by the same argument with α and γ swapped. This completes the proof of Claim 6.

Theorem 7 (2) is proved as follows: First observe that there exists exactly one PDW_n -quadrangle, if and only if a quadrangle $Nv_0v_1v_2$ exists and

(a) $f_{n,\alpha,\gamma}(x)$ has a degenerate (i.e., double) zero strictly between 0 and 1; or

(b) $f_{n,\alpha,\gamma}(x)$ has distinct two zeros, but only one in the interval (0,1). Here the edge-length *a* is less than $\pi/2$, from $\alpha > \pi$ or $\gamma > \pi$, by equivalence (1) of Lemma 2.

We prove that (a) $\Leftrightarrow (\gamma - dgn_n(\alpha))(\alpha - dgn_n(\gamma)) = 0$, as follows: Note that condition (a) holds if and only if we have all of the conditions (i), (ii) and $\Delta_{n,\alpha,\gamma} = 0$. By Claim 6 (3) and (32), the condition (a) is equivalent to $\alpha + \gamma > 2\pi - \pi/n \& \gamma = dgn_n(\alpha)$ or to $\alpha + \gamma > 2\pi - \pi/n \& \alpha = dgn_n(\gamma)$. Because $2\pi - \pi/n - \alpha < dgn_n(\alpha)$ by Lemma 3 (3), the equation $\gamma = dgn_n(\alpha)$ implies $\alpha + \gamma > 2\pi - \pi/n$. So, the condition (a) is equivalent to $\gamma = dgn_n(\alpha)$ or $\alpha = dgn_n(\gamma)$. This establishes the desired equivalence.

The quadratic equation $f_{n,\alpha,\gamma}(\cos a) = 0$ of $\cos a$ has the two solutions $a = a^+_{n,\alpha,\gamma}, a^-_{n,\alpha,\gamma}$, presented at the beginning of Subsection 6.1. If the two solutions are a degenerate solution $a = a^+_{n,\alpha,\gamma} = a^-_{n,\alpha,\gamma} = \arccos(\cot(\pi/n)(\cot \alpha + \cot \gamma)/2)$, then $\Delta_{n,\alpha,\gamma} = 0$.

CLAIM 7. The arccosine of the degenerate (i.e., double) solution x of $f_{n,\alpha,\gamma}(x) = 0$ is (17) for $\gamma = \text{dgn}_n(\alpha)$ and (18) for $\alpha = \text{dgn}_n(\gamma)$.

30

PROOF. By Lemma 3 (1), either $\gamma = \text{dgn}_n(\alpha)$ and $\pi/2 < \alpha < \pi < \gamma < 3\pi/2$, or $\alpha = \text{dgn}_n(\gamma)$ and $\pi/2 < \gamma < \pi < \alpha < 3\pi/2$. Consider the first case. By (†), *a* is (17) for $\gamma = \text{dgn}_n(\alpha)$. The proof for case $\alpha = \text{dgn}_n(\gamma)$ is similar. This completes the proof of Claim 7.

It is easy to see that condition (b) $\Leftrightarrow f_{n,\alpha,\gamma}(0)f_{n,\alpha,\gamma}(1) < 0$. As $f_{n,\alpha,\gamma}(0) > 0$ by the implication (2) of Lemma 2,

(b)
$$\Leftrightarrow f_{n,\alpha,\gamma}(1) = -\sin\left(\alpha + \gamma + \frac{\pi}{n}\right) \csc \alpha \csc \gamma \csc \frac{\pi}{n} < 0.$$

By equivalence (32), (b) is equivalent to condition (23) of Theorem 7, for $\pi/2 < \alpha < \pi < \gamma$; and is equivalent to condition (25) of Theorem 7, for $\pi/2 < \gamma < \pi < \alpha$. Because $f_{n,\alpha,\gamma}(0) > 0$ and $f_{n,\alpha,\gamma}(1) < 0$ hold, the unique solution x of the quadratic equation $f_{n,\alpha,\gamma}(x) = 0$ strictly between 0 and 1 is the smaller solution of the equation. Therefore the edge-length a is $a_{n,\alpha,\gamma}^+$. Hence Lemma 4 establishes Theorem 7 (2). Thus Theorem 7 is proved.

From Theorem 6 and Theorem 7, Theorem 5 follows.

7. A quadrangle organizing both non-isohedral tiling and isohedral one over the same skeleton

Recall a *PDW*₆-quadrangle $Q_{6,\alpha,\gamma,a}$ from Definition 4.

THEOREM 8. Copies of a spherical 4-gon $T := Q_{6, \arccos(-1/2\sqrt{7}), 4\pi/3, \arccos(1/3)}$ organize both an isohedral tiling \mathcal{T}' (Figure 13 (middle, right)) and a nonisohedral tiling \mathcal{T} (Figure 13 (middle, left), [1]) such that the skeletons are the same pseudo-double wheel. The quadratic equation associated to T of Theorem 4 is $(x - 1/3)^2$.

PROOF. The edge-lengths and inner angles of \mathscr{T} are as in Figure 14 (lower). So, a tile (designated N234 in the figure) of \mathscr{T} has two edges of length a, both incident to the vertex N. N is antipodal to a vertex S, because there are two congruent paths between the two vertices in Figure 14 (lower). The edge between a vertex δ (designated by 3 in Figure 14 (lower)) and S is a, by the figure. The area of the tile of \mathscr{T} is $4\pi/12$, as \mathscr{T} is a spherical tiling by twelve congruent tiles. So, the tile of \mathscr{T} is a PDW_6 -quadrangle, by Fact 2 (2). By the definition of $f_{n,\alpha,\gamma}(x)$ in Theorem 4, we have $f_{6, \arccos(-1/2\sqrt{7}), 4\pi/3}(x) = (x - 1/3)^2$.

Fig. 13. The copies of the tiles of the rightmost, middle spherical isohedral tiling \mathcal{T}' organize a spherical *non-isohedral* tiling \mathcal{T} over the skeleton of \mathcal{T}' . The middle graph is an excerpt of Figure 12. The right four images are *the* spherical isohedral tilings by $Q_{n,\alpha,\gamma,a}$ for n = 6 and designated (α, γ) on the graph. The distribution of inner angles and that of edge-length on the skeleton of \mathcal{T} is the reflection of Figure 14.

Fig. 14. The skeleton, edge-lengths, and inner angles of the reflection of \mathscr{T} . The solid, and the thick edges have length $a = c = \arccos(1/3)$ and $b = \arccos(-5/9)$. $\alpha = \arccos(-1/(2\sqrt{7}))$, $\beta = \pi/3$, $\gamma = 4\pi/3$, and $\delta = \arccos(5/(2\sqrt{7}))$. See [1] for detail of \mathscr{T} .

We conjecture that $Q_{6, \arccos(-1/2\sqrt{7}), 4\pi/3, \arccos(1/3)}$ is the only spherical 4-gon such that copies of it organize both a non-isohedral tiling and an isohedral tiling over a pseudo-double wheel. The conjecture is true by [1, Theorem 2], once the following is proved: from any spherical non-isohedral tiling by con-

gruent $Q_{n,\alpha,\gamma,a}$ over a pseudo-double wheel, we can obtain such a tiling \mathcal{F} satisfying the condition (II) of [1, Theorem 2].

To generalize Theorem 8, we want to enumerate all spherical polygons which organize both *non-isohedral* tilings and *isohedral* tilings over the same skeletons. This is a weak inverse problem of the following theorem:

PROPOSITION 3 (Grünbaum-Shephard [7]). The skeleton of a spherical isohedral tiling is exactly a pseudo-double wheel, the skeleton of a bipyramid, that of a Platonic solid, or that of an Archimedean dual.

Acknowledgement

The author thanks an anonymous referee. He also thanks Kosuke Nakamura for the earlier manuscript.

References

- Y. Akama, Classification of spherical tilings by congruent quadrangles over pseudo-double wheels (I)—a special tiling by congruent concave quadrangles, Hiroshima Math. J., Vol. 43, No. 3, pp. 285–304, 2013.
- [2] D. V. Alekseevskij, E. B. Vinberg, and A. S. Solodovnikov, Geometry of spaces of constant curvature, In Geometry, II, Vol. 29 of Encyclopaedia Math. Sci., pp. 1–138. Springer, Berlin, 1993.
- [3] A. Behmaram and S. Friedland, Upper bounds for perfect matchings in Pfaffian and planar graphs, Electron. J. Combin., Vol. 20, No. 1, p. 64, 2013.
- [4] G. Brinkmann, S. Greenberg, C. Greenhill, B. D. McKay, R. Thomas, and P. Wollan, Generation of simple quadrangulations of the sphere, Discrete Math., Vol. 305, No. 1–3, pp. 33–54, 2005.
- [5] F. A. Cotton, Chemical Applications of Group Theory, Wiley India, third edition, 2009.
- [6] M. Deza and M. Dutour Sikirić, Geometry of chemical graphs: polycycles and two-faced maps, Cambridge university press, 2008.
- [7] B. Grünbaum and G. C. Shephard, Spherical tilings with transitivity properties, In C. Davis, B. Grünbaum, and F. A. Sherk, editors. The geometric vein. The Coxeter Festschrift. Springer-Verlag, New York, 1981.
- [8] Y. Sakano, Toward classification of spherical tilings by congruent quadrangles, Master's thesis, Mathematical Institute, Tohoku University, March, 2010. In Japanese.
- [9] Y. Sakano and Y. Akama, Anisohedral spherical triangles and classification of spherical tilings by congruent kites, darts, and rhombi, Hiroshima Math. J., Vol. 45, No. 3, pp. 309– 339, 2015.
- [10] Y. Ueno and Y. Agaoka, Examples of spherical tilings by congruent quadrangles, Mem. Fac. Integrated Arts and Sci., Ser. IV, Vol. 27, pp. 135–144, 2001.
- [11] Y. Ueno and Y. Agaoka, Classification of tilings of the 2-dimensional sphere by congruent triangles, Hiroshima Math. J., Vol. 32, No. 3, pp. 463–540, 2002.

Yohji Akama Mathematical Institute Graduate School of Science Tohoku University Sendai 980-0845 Japan E-mail: yoji.akama.e8@tohoku.ac.jp URL: http://www.math.tohoku.ac.jp/akama/stcq/