
Hiroshima Math. J.

49 (2019), 1–34

Classification of spherical tilings by congruent quadrangles over

pseudo-double wheels (II)—the isohedral case

Yohji Akama

(Received October 21, 2013)

(Revised October 29, 2018)

Abstract. We classify all edge-to-edge spherical isohedral 4-gonal tilings such that the

skeletons are pseudo-double wheels. For this, we characterize these spherical tilings

by a quadratic equation for the cosine of an edge-length. By the classification, we see:

there are indeed two non-congruent, edge-to-edge spherical isohedral 4-gonal tilings such

that the skeletons are the same pseudo-double wheel and the cyclic list of the four inner

angles of the tiles are the same. This contrasts with that every edge-to-edge spherical

tiling by congruent 3-gons is determined by the skeleton and the inner angles of the

skeleton. We show that for a particular spherical isohedral tiling over the pseudo-

double wheel of twelve faces, the quadratic equation has a double solution and the

copies of the tile also organize a spherical non-isohedral tiling over the same skeleton.

1. Introduction

Throughout this paper, we are concerned with edge-to-edge tilings. A

tiling T is called isohedral (or tile-transitive), if for any pair of tiles of T, there

is a symmetry operation of T that transforms one tile to the other. In

characterizing the skeletons of spherical (isohedral) tilings, an important graph

is a pseudo-double wheel (the dual graph of the skeleton of an antiprism [6,

p. 19]. See Figure 1 (above)). It satisfies the following:
� The skeletons of spherical tilings by spherical 4-gons are generated from

pseudo-double wheels by means of applications of two local expansions

[4].
� The skeletons of spherical isohedral tilings consist of pseudo-double

wheels, an infinite series of graphs, and eighteen sporadic graphs [7].

In Section 3, we prove: for every spherical tiling T by congruent spherical

4-gons with the skeleton being a pseudo-double wheel G, T is isohedral if and

only if every graph automorphism [6, Sect. 1.1] of G respects the edge-lengths

and inner angles of T.
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In any spherical tiling by congruent quadrangles, the tile has a pair of

adjacent, equilateral edges [10]. For spherical tilings by congruent quadrangles

T with the skeleton being pseudo-double wheels, fix the notation for the angles

and the edges of the quadrangular tile T as Figure 2. For the spherical

isohedral tilings such that the skeletons are pseudo-double wheels, we bijectively

parameterize the tiles with the pair of the edge-length a of the tile and a typical

angle, in Section 4. Then we characterize the tiles as follows (Section 5).

Given a spherical 4-gon T such that a, b, g are adjacent inner angles and b is

an inner angle between two edges of length a. T is a tile of some spherical

isohedral tiling T by 2n congruent spherical 4-gons with the skeleton of T

being a pseudo-double wheel, if and only if

ðcos aÞ2 � cot
p

n
ðcot aþ cot gÞ cos a� cot a cot g ¼ 0:

For notations, see Figure 1 (below). In Section 6, by solving this equation, we

classify all the tiles of spherical isohedral tilings such that the skeleton of the

tilings are pseudo-double wheels. By the classification, we see: there are indeed

Fig. 2. The notation for angles and edges of the quadrangular tile. Some among a, b, g, d are

equal, and some among a, b, c are equal.

Fig. 1. The above are pseudo-double wheels of 2n faces ðn ¼ 3; 4; 5Þ. The below are spherical

isohedral tilings by 2n congruent quadrangles such that the skeletons are pseudo-double wheels

ðn ¼ 3; 4; 5Þ. It holds that ðcos aÞ2 � cotðp=nÞðcot aþ cot gÞ cos a� cot a cot g ¼ 0.
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two non-congruent, edge-to-edge spherical isohedral 4-gonal tilings such that

the skeletons are the same pseudo-double wheel and the cyclic list of the four

inner angles of the tiles are the same. This contrasts with that every edge-to-

edge spherical tiling by congruent 3-gons is determined by the skeleton and the

inner angles of the skeleton [11]. In Section 7, we show that for a particular

spherical isohedral tiling over the pseudo-double wheel of twelve faces, the

quadratic equation has a double solution. Moreover, the copies of the tile

also organize a less symmetric, spherical non-isohedral tiling T over the same

skeleton. Based on this tiling T and Grünbaum-Shephard’s characterization

theorem [7] of the skeletons of spherical isohedral tilings, we briefly discuss our

classification of spherical isohedral tilings over pseudo-double wheels.

2. Basic definitions

By a spherical 4-gon, we mean a topological disk T on the two-

dimensional unit sphere S2 such that T is circumscribed by four straight

edges, (1) any inner angle between adjacent edges of T is strictly between 0 and

2p but not p, and (2) T is contained in the interior of a hemisphere. By

‘‘quadrangle,’’ we mean a ‘‘spherical 4-gon.’’ The congruence on the sphere is

just the orthogonal transformation, and ‘‘sphere’’ (and ‘‘spherical’’) means the

two-dimensional unit sphere S2. We identify spherical tilings modulo a special

orthogonal group SOð3Þ.

Definition 1 (pseudo-double wheel [4]). For an even number F b 6, a

pseudo-double wheel of F faces is a map such that
� the graph is obtained from a cycle ðv0; v1; v2; . . . ; vF�1Þ, by adjoining a

new vertex N to each v2i ð0a i < F=2Þ and then by adjoining a new

vertex S to each v2iþ1 ð0a i < F=2Þ. We identify the su‰x i of the

vertex vi modulo F .
� The cyclic order at the vertex N is defined as follows: the edge Nv2iþ2 is

next to the edge Nv2i. The cyclic order at the vertex v2i ð0a iaF=2Þ
is: the edge v2iN is next to the edge v2iv2iþ1, and v2iv2iþ1 is next to the

edge v2iv2i�1. The cyclic order at the vertex S is: the edge Sv2i�1 is

next to the edge Sv2iþ1. The cyclic order at the vertex v2iþ1 ð0a i <

F=2Þ is: the edge v2iþ1S is next to the edge v2iþ1v2i, and v2iþ1v2i is next

to the edge v2iþ1v2iþ2.

The skeleton of the cube is the pseudo-double wheel of six faces.

In the rest of this paper, we fix an orientation of the sphere. By —PQR, we

mean the angle from PQ to RQ in the orientation of the sphere, and assume that

(1) a; b; g; d A ð0; pÞ [ ðp; 2pÞ, and a; b; c A ð0; pÞ, and (2) for tiles, edges repre-

sented by solid (thick, dotted, resp.) lines have length a (b, c, resp.). We say a
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quadrangle is concave, if it has an inner angle greater than p. We are con-

cerned with all spherical isohedral tilings by congruent possibly concave quad-

rangles such that the skeletons are pseudo-double wheels.

Proposition 1 ([2, p. 62]). (1) If 0 < A;B;C < p, Aþ Bþ C > p,

�Aþ Bþ C < p, A� Bþ C < p and Aþ B� C < p, then there exists

uniquely up to congruence a spherical 3-gon on the two-dimensional unit

sphere S2 such that the inner angles are A, B and C. The converse is also

true.

(2) Let ABC be a spherical 3-gon, and let a, b, c be the sides opposite to the

inner angles A, B, C, respectively. Then

(a) (Dual cosine law for the sphere (Spherical cosine theorem for angles)

[2, p. 65]) cos A ¼ �cos B cos C þ sin B sin C cos a.

(b) (Cosine law for the sphere (Spherical cosine theorem) [2, p. 65])

cos a ¼ cos b cos cþ sin b sin c cos A.

Spherical cosine law is obtained from the spherical cosine theorem for

angles, by exchanging the angles A, B, C and the sides a, b, c with A $ p� a,

B $ p� b, C $ p� c. By this exchange, the last three inequalities of Prop-

osition 1 (1) become the distance inequalities for spherical 3-gons. For every

nonzero real number x, arccot x is the angle y such that 0 < jyj < p=2 and

cot y ¼ x. Let csc x be 1=sin x. We say a spherical 4-gon Q is a copy of a

spherical 4-gon Q 0, if Q is an orthogonal transformation of Q 0.

3. Combinatorial conditions for spherical monohedral quadrangular tilings

to be isohedral tilings over pseudo-double wheels

Definition 2. Let PDWn ðnb 3Þ be the set of spherical tilings by 2n

congruent, possibly concave quadrangles such that (1) the skeleton is a pseudo-

double wheel, and (2) the distribution of inner angles and that of the edge-

length on the skeleton are as in Figure 4.

Fig. 3. Spherical tilings by 2n congruent quadrangles such that the skeletons are pseudo-double

wheels ðn ¼ 3; 4; 5Þ. Each is isohedral, as any tile is transformed to any tile with the vertical n-fold

axis r and n horizontal 2-fold axes h1; . . . ; hn.
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Note that we do not assume the isohedrality in Definition 2.

For example, all images of Figure 1 and Figure 3 are members of PDWn

ðn ¼ 3; 4; 5Þ. The leftmost of Figure 3 is so-called the central projection of the

cube. They have the vertical n-fold axis r of rotation, and n horizontal 2-fold

axes hi ði ¼ 0; 1; . . . ; n� 1Þ of rotation such that for each i, hi is through the

midpoint of an edge and hi ? r. By these symmetry operations, any tile is

transformed to any tile in each tiling. So, they are isohedral.

The two vertices N and S of any tiling T presented in Figure 4 can be

identified with the north pole and the south pole of the unit sphere S2 re-

spectively, as there are two congruent paths from N to S. For each point

V ð0N;SÞ on S2, the longitude of V is the angle c A ½�p; pÞ from the

edge Nv0 to a geodesic segment NV , measured in the direction indicated in

Figure 7.

Proposition 2 ([1, Lemma 5]). Given a spherical tiling by congruent quad-

rangles such that the quadrangles are as in Figure 2 with the edge-length c being

the edge-length a. Suppose that (1) there is a vertex incident to only three edges

of length a, and (2) there is a 3-valent vertex incident to two edges of length a

and to one edge of length b. Then for the inner angles of the tile, we have a0 d

and b0 g.

Theorem 1. Let T be a spherical tiling by six congruent quadrangles.

(1) T A PDW3.

(2) T has a 3-fold axis r of rotation and three 2-fold axes h1, h2, h3 of rotation

perpendicular to r.

(3) T is isohedral.

Fig. 4. The solid, the thick, and the dotted thick edges have lengths a, b and c. The vertices N

and S are n-valent. Some among a, b, g, d are equal, and some among a, b, c are equal.
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Proof. (1). Sakano proved this assertion by case analysis [8]. We im-

prove the presentation of his proof, by using Proposition 2, [4], and [3,

Theorem 8]. By Euler’s theorem, every spherical tiling by 4-gons has a

3-valent vertex [10]. From this, we can prove that the skeleton of any

spherical tiling by six 4-gons is the skeleton of the cube (By the enumeration

of spherical quadrangulations [4], there is only one spherical quadrangulation

of eight vertices). Moreover, the cyclic list of edge-lengths of the tile of a

spherical tiling by congruent 4-gons is either aaaa, aabb, aaab, or aabc where

a, b, c are mutually distinct ([10]). When the cyclic list of edge-lengths of the

tile of T is aaaa or aabb, then T A PDW3, by [9].

Let the edge-lengths of the tile be aaab ða0 bÞ. Then the spherical tiling

by six congruent 4-gons induces a perfect face-matching consisting of three

edges of length b. By a perfect face-matching of a graph, we mean a perfect

matching [6, p. 2] of the dual graph. By [3, Theorem 8], the skeleton of the

cube has eight perfect face-matchings.

In Figure 5, the first perfect face-matching is transformed to the other

seven perfect face-matchings by seven automorphisms of the skeleton of the

cube. Enumerate the vertices vi ð0a ia 7Þ of the cube, as in the figure of the

first perfect face-matching. The seven automorphisms are represented as seven

permutations ð2 6Þð3 5Þ, ð0 4Þð1 7Þð2 6Þð3 5Þ, ð0 5Þð1 6Þð2 7Þð3 4Þ, ð0 3Þð1 2Þ �
ð4 5Þð6 7Þ, ð0 3 4 5Þð1 2 7 6Þ, ð0 5 4 3Þð1 6 7 2Þ, and ð0 4Þð1 7Þ. So we have

only to consider the first perfect face-matching. Every inner angle around the

vertex v3 or the vertex v6 is b or g, by Figure 2, because v3 and v6 are incident

to only edges of length a. The number of inner angles b around v3, say k, is

the number of inner angles b around v6. Otherwise, b ¼ g, which contradicts

Proposition 2.

We will prove k0 2. Suppose k ¼ 2. Without loss of generality,

—v1v6v7 ¼ g, —v7v6v5 ¼ —v5v6v1 ¼ b, because the automorphism ð1 5 7Þð0 4 2Þ
of the skeleton of the cube fixes the face-matching edges v0v1, v4v5 and v2v7.

Then —v0v5v6 ¼ g, —v6v5v4 ¼ a and —v5v4v7 ¼ d. Here —v4v5v0 ¼ a or d.

Assume —v4v5v0 ¼ a. Then an opposite inner angle —v0v3v4 is g. Hence

—v4v3v2 ¼ b. So the inner angle —v7v4v3 is g. The three inner angles around

Fig. 5. The eight perfect face-matchings of the skeleton of the cube.
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v4 are g, d, X for some X A fa; dg, while the three inner angles around v5
are a, a, g. So a ¼ d. This contradicts Proposition 2. Hence —v4v5v0 ¼ d.

Then —v3v4v5 ¼ a. Here —v7v4v3 ¼ b or g. Assume —v7v4v3 ¼ b. Then the

three inner angles around v4 are a, b, d and those around v5 are a, g, d. So

b ¼ g. This contradicts Proposition 2. Thus —v7v4v3 ¼ g. Hence —v4v3v2 ¼
b. —v2v3v0 ¼ g, because the three inner angles around v3 are b, b, g. Thus

—v3v0v1 ¼ d. As —v5v6v1 ¼ b, an opposite inner angle —v1v0v5 is d. Hence the

three inner angles around v0 are g, d, d. On the other hand, those around v4
are a, g, d. So a ¼ d. This contradicts Proposition 2. Thus, the number k of

b around v3 is not two.

In a similar argument, k0 1. If k ¼ 3, then T A PDW3. Otherwise,

k ¼ 0. But, because the cyclic of the tile is aaab ða0 bÞ, we have the

symmetry ða; b; g; dÞ $ ðd; g; b; aÞ. Hence, we have T A PDW3, too.

Suppose the cyclic list of the edge-lengths of the tile is aabc with a, b,

c are mutually distinct. The distribution of the edges of length b is the

first perfect face-matching of Figure 5 without loss of generality. Since

every edge of length c should be adjacent to an edge of length b and each

face has exactly one edge of length c, the tiling is Figure 4 with n ¼ 3. So,

T A PDW3.

(2). In T, two vertices consisting of three inner angles b are antipodal

to each other, because there are three congruent paths between them: ‘‘travel

straight a, bend in g angle, travel straight c, bend in �g angle, and travel

straight a.’’ Actually there is a 3-fold axis r of rotation through the two

vertices, by examining the distribution of a, b, g and the edge-lengths a, b, c.

r is the black vertical axis in Figure 3 (left). Moreover the midpoint of an

edge e of length b is antipodal to the midpoint of the edge e 0 of length c, where

e is not adjacent to e 0. It is because there are two congruent paths between

them: one is ‘‘travel straight b=2, bend in d angle, travel straight a, bend in �a

angle, travel straight a, bend in b angle, travel straight c=2.’’ The other path is

the same with the three angles inverted. Actually an axis through the two

midpoints is a 2-fold axis of rotation by examining the distribution of a, b, g, a,

b, c. Similarly we can find three 2-fold axes h1, h2, h3 of rotation. Each hi is

a white horizontal axis in Figure 3 (left).

(3). Let T and T 0 be tiles of T. Let r be the vertical 3-fold axis of

rotation and hi ði ¼ 1; 2; 3Þ be the horizontal 2-fold axes of rotation, given in

(2). If r is through a point of T \ T 0, then T is transformed to T 0 by a

rotation around the 3-fold axis r. Otherwise, if T and T 0 are adjacent, then T

is transformed to T 0 by some 2-fold axis hi that is through an edge T \ T 0 of

length b or c. By repeating these transformations, any tile T is transformed to

any other tile T 0. So T is isohedral. This completes the proof of Theorem 1.

r
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For spherical tilings by congruent quadrangles, Theorem 2 below provides

two necessary and su‰cient conditions for spherical tilings such that the

skeletons are pseudo-double wheels to be isohedral. The two conditions are

somehow combinatorial, and come from those given in Theorem 1. One is

being PDWn, and the other is a condition on the symmetry operations of

tilings.

As in [9], a kite (dart, resp.) is a convex (non-convex, resp.) quadrangle

such that the cyclic list of edge-lengths is aabb ða0 bÞ, and a rhombus is

a quadrangle such that all the edges are equilateral. A kite, a dart and a

rhombus enjoy a mirror symmetry.

Lemma 1. Let T be a spherical tiling by congruent polygons such that

any edge is incident to an odd-valent vertex. If the tile does not have a mirror

symmetry, then neither does T.

Proof. Assume T has a mirror plane s. Then s does not intersect

transversely with a tile, since the tile does not have a mirror symmetry. Thus

the intersection of s and T is the cycle of the edges, because each edge of T is

straight. By s, each vertex on the cycle has even degree. But all the edges of

the tiling T is incident to an odd-valent vertex. This is a contradiction. This

completes the proof of Lemma 1. r

Theorem 2. For any spherical tiling T by 2n congruent quadrangles

ðnb 4Þ, the following three conditions are equivalent:

(1) T A PDWn.

(2) T has an n-fold axis r of rotation and n 2-fold axes of rotation perpen-

dicular to r.

(3) T is isohedral and the skeleton is the pseudo-double wheel of 2n faces.

Proof. ðð1Þ ) ð3ÞÞ By condition (1), we compute the longitude and the

latitude (i.e., the length of the geodesic segment from the north pole) of the

vertices vi’s of T. There is an n-fold axis r of rotation through the two poles

N and S, because there are three congruent paths between them. We see that

there is a 2-fold axis li of rotation though the midpoint of the edge viviþ1 and

the midpoint of the edge vðiþn mod 2nÞvðiþ1þn mod 2nÞ and that li is perpendicular

to r, for every i. So we have condition (2). By this and Figure 4, we have

condition (3).

ðð2Þ ) ð1ÞÞ We verify:

Claim 1. If mb nb 4, any m-fold axis of rotation of T is through two

vertices.

Proof. The m-fold axis is not though the midpoint of an edge, by m0 2.

The m-fold axis is not through an inner point of a tile. Otherwise all inner
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angles of the tile is equal, all edges are equilateral, m ¼ 4. By the premise,

m ¼ n ¼ 4. As the tile is a regular quadrangle, all diagonal segments of the

tiles are less than p. Otherwise any pair of incident diagonal segments crosses

to each other. By drawing exactly one diagonal, geodesic segment in each

quadrangular tile, we have a spherical tiling T 0 by 2n� 2 ¼ 16 congruent

isosceles spherical 3-gons. The inner angles of the isosceles 3-gons are 5p=8,

5p=16, 5p=16. It is because the area of the quadrangular tile of the given tiling

T is p=2, and the sum of the four equal inner angles is 5p=2. However T 0

is impossible, by the classification of all spherical tilings by congruent spherical

3-gons [11, Table]. Thus the axis is though a pair of antipodal vertices. This

completes the proof of Claim 1. r

By Claim 1, the n-fold axis r of rotation is through two vertices u and v.

Both u and v are n-valent. Otherwise, for some positive integers k, n, kn

equilateral edges are incident to u, and ln equilateral edges are incident to

v, because of the n-fold axis of rotation through u and v. The kn pairs of

neighboring edges incident to the vertex u cause kn distinct tiles. Since the

number of tiles is 2n, both of k and l are one or two. Let k ¼ 2. Then the

kn pairs of neighboring edges incident to the vertex u cause already 2n tiles.

Then v is not a vertex of any of these 2n tiles. To see it, assume some tile

contains v as a vertex. No vertex is adjacent to both u and v. Otherwise the

inner angle is p. u is not adjacent to v, since the length of any edge is less

than p. So if two vertices of a tile of T are incident to u, then some vertex

other than v is incident to them, because the tile is a quadrangle. Thus the

number of tiles is greater than 2n. So k ¼ l ¼ 1. Hence there are exactly n

vertices wi ð0a ia n� 1Þ adjacent to u. All edges uwi’s are equilateral by the

n-fold axis of rotation through u and v. We assume that uwiþ1 mod n is next to

uwi, and that the two vertices wiþ1 mod n and wi are adjacent to a vertex vi. Let

Ti be a tile uwiv1wiþ1 mod n. By the n-fold axis r, all vi’s are distinct.

Claim 2. vi is adjacent to v ð0a i < nÞ.

Proof. Otherwise, there is a non-pole vertex ~uui adjacent to vi such that

an edge vi~uui is a neighbor of viwiþ1 mod n without loss of generality. Then there

is a quadrangular tile T 0
i having the three vertices ~uui, vi, wiþ1 mod n.

Fig. 6. Proof of Claim 2.
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The other vertex, say xi, of the tile T 0
i is not the vertex v. Otherwise, an

edge wiþ1 mod nxi is transformed to an edge wiv by the n-fold axis r of rotation

of T. The edge wiv cannot be transversal to the edge vi~uui. Hence, the lune

(that is, digon) determined by the two edges uwi and uwiþ1 mod n contains a tile

other than Ti ¼ uwiviwiþ1 mod n and T 0
i ¼ vi~uuivwiþ1 mod n. Thus T has more

than 2n number of tiles, which is absurd. So xi 0 v.

The vertex xi of the tile T 0
i is not the vertex u. Otherwise, an edge xi~uui

has the same length as uwi and uwiþ1 mod n. Since the edge uwiþ1 mod n is a

neighbor of the edge uwi, the edge xi~uui is a neighbor of uwi or uwiþ1 mod n.

Consider the latter case. By the n-fold axis r through u and v, the tile Ti ¼
uwiviwiþ1 mod n is rotated to xiwiþ1 mod nvi~uui. But this is impossible because the

vertices wi and wiþ1 mod n of the former tile Ti ¼ uwiviwiþ1 mod n and the vertices

wiþ1 mod n and ~uui of the latter tile T 0
i ¼ xiwiþ1 mod nvi~uui are all incident to the

vertex vi. So wiþ1 mod n becomes two-valent. When the edge xi~uui is a neighbor

of uwi, we have similarly a contradiction. Thus xi 0 u.

Any vertex of the tile T 0
i ¼ wiþ1 mod nvi~uuixi is neither the n-valent u nor the

n-valent v, so the number of the tiles of the tiling T is greater than 2n. This is

absurd. Thus the vertex vi is adjacent to v. This establishes Claim 2. r

By Claim 2, the skeleton of T is the pseudo-double wheel of 2n faces. By

the n-fold axis r through u and v, all n edges incident to the vertex u have

the same length a, and all n edges incident to the vertex v have the same

length a 0.

By the assumption, T has n horizontal 2-fold rotation axes, each through

a pair of midpoints of edges. As they swap the vertices u and v, we have

a ¼ a 0. By computing the longitude and the latitude of each non-pole ver-

tices, the angle-assignment and the length-assignment of T is exactly as in

Figure 4.

ðð3Þ ) ð2ÞÞ Suppose that the tile of T is a rhombus, a kite, or a dart.

By the classification of spherical monohedral (kite/dart/rhombus)-faced tilings

[9, Table 1], the Schönflies symbol ([5], [6]) of T is Dnd . In the decision tree

[5, Fig. 3.10], by going from the leaf ‘‘Dnd ’’ to the root, we see that Dnd must

have ‘‘n C2’s ? to Cn’’ (n 2-fold axes of rotation perpendicular to an n-fold axis

of rotation). Thus (2) holds. By the same reasoning, the Schönflies symbol

Dn requires (2). So, to complete the proof of ðð3Þ ) ð2ÞÞ, we show: if the

tile of T is none of a kite, a dart and a rhombus, then T has the Schönflies

symbol Dn.

The Schönflies symbol of T is none of T , Td , Th, O, Oh, I , and Ih.

Otherwise, the tiling T has more than three 3-fold rotation axes, by [5, Sect.

3.14]. Since the skeleton of T is the pseudo-double wheel of 2n faces ðnb 4Þ,
T has only two vertices N and S of valence more than three. So there is a
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3-fold axis r of rotation through a three-valent vertex. Thus the rotation in

2p=3 around r transforms N (S, resp.) to S (N, resp.), or fixes both of N and

S. So the rotation in 4p=3 around r fixes both of N and S. This is absurd,

since the 3-fold rotation axis is through neither N nor S.

In any pseudo-double wheel, any edge is incident to an odd-valent vertex.

Because we assumed that the tile of the tiling T on a pseudo-double wheel is

none of a rhombus, a kite, and a dart, the tile has no mirror symmetry. By

Lemma 1, T has no mirror symmetry.

So the Schönflies symbol of the tiling T is Cm or Dm for some integer

mb 2. This is due to the systematic procedure to determine the Schönflies

symbol [5, Sect. 3.14]. Then the tiling T has an m-fold axis r of rotation.

Let G be the symmetry group of the tiling T. Because the tiling T is

isohedral, G acts transitively on the tiles of T. So

(a) the order aG is a multiple of the number 2nb 8 of tiles of T.

Assume the Schönflies symbol of T is Cm for some mb 2. By [5, p. 41],

aG ¼ m. By (a), mb 8. r is through a vertex with the valence being a

multiple of m. So the m-fold axis r of rotation is through the poles N and

S, and thus m ¼ n. The symmetry operations of T are exactly m rotations

around r by Cm [5, p. 41]. No symmetry operation of T transforms a tile

having N as a vertex to a tile having S as a vertex. However T is isohedral.

Thus the Schönflies symbol of the tiling T is Dm for some mb 2. By

[5, p. 41], aG ¼ 2m. By (a), m is a multiple of nb 4. So the m-fold axis

r of rotation is not through a three-valent vertex of T, but through N and S

of the pseudo-double wheel, and m ¼ n. Hence the condition (2) holds. This

completes the proof of ((3))(2)). r

4. Tiles of spherical isohedral tilings over pseudo-double wheels

Definition 3. For nb 3, a PDWn-quadrangle is the tile of some T A
PDWn.

Fact 1. For given nb 3, a; g A ð0; pÞ [ ðp; 2pÞ and a A ð0; pÞ, there is at

most one PDWn-quadrangle, modulo SOð3Þ, such that
� the cyclic list of inner angles in the clockwise order is ða; b; g; dÞ ¼

ða; 2p=n; g; 2p� a� gÞ (cf. Figure 4); and
� the edge ab, the edge bg, and the geodesic segment bd have length a, a,

p� a.

Proof. From a point N on the unit sphere, travel in distance a, bend

counterclockwise in p� a, and travel in 2p. Then, by the last travel, we have

a great circle C. The bending angle intends the inner angle a. By abuse
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of notation, we denote the bending point by a. C is through the point a.

Similarly, from N, travel in distance a. Here the angle of this travel from the

travel Na of length a is b ¼ 2p=n. By abuse of notation, we often write b for

the vertex N. Then bend clockwise in p� g, and travel in 2p. By the last

travel, we have a great circle C 0. By abuse of notation, we denote the bending

point by g. C 0 is through the point g. Then C0C 0 by d0 p. So C and C 0

share exactly two points P, P 0. If each of P and P 0 is a vertex of the PDWn-

quadrangle, the inner angle of a PDWn-quadrangle abgP which is diagonal to

P is b if and only if the inner angle of a PDWn-quadrangle abgP 0 diagonal to

P 0 is 2p� b. In this case, P 0 is inappropriate, as the tiles must not overlap.

Hence, for n, a, g, a, there is at most one pair of b, c. Actually, b is deter-

mined from a, a by a spherical cosine law (Proposition 1 (2b)) cosðp� aÞ ¼
cos a cos bþ sin a sin b cos a, and c is determined similarly. r

Definition 4. Let Qn;a; g;a be a PDWn-quadrangle of Fact 1. We

identify Qn;a; g;a modulo SOð3Þ.

In fact, any PDWn-quadrangle is specified without mentioning a tiling of

PDWn, as in the following Fact. There the vertices A, B, C, D intend the

vertices N, v0, v1, v2 of a tiling of PDWn.

Fact 2. (1) A PDWn-quadrangle is exactly a quadrangle ABCD such that

AB ¼ p� AC ¼ AD, the area of ABCD is 2p=n, and the inner angle A

is 2p=n.

(2) The set of PDWn-quadrangles bijectively corresponds to PDWn.

Proof. (1) As the edges BC and CD have length less than p, we have

two spherical 3-gons ABC and CDA. As noted in the caption of Figure 7,

—ABC ¼ p�—BCA and —ADC ¼ p�—DCA. So the three inner angles of

the vertices B, C, D sum up to 2p. Thus the inner angle of the vertex A is

2p=n since the area of ABCD plus 2p is the sum of all inner angles A, B, C,

D. By regarding the inner angles A, B, C, D as b, a, d, g and then arranging

the 2n copies of the quadrangle ABCD as Figure 4, we conclude ABCD is a tile

of a tiling of PDWn. (2) Clear. r

An edge incident to N or S is called a meridian edge.

Lemma 2. Suppose nb 3, a; g A ð0; pÞ [ ðp; 2pÞ, and a A ð0; pÞ. Every

PDWn-quadrangle Qn;a; g;a satisfies a0 p=2, a0 p=2, g0 p=2,

0 < a <
p

2
, 0 < d < p; and ð1Þ

a > p or g > p ) 3p

2
> a > p > g >

p

2
or

3p

2
> g > p > a >

p

2
: ð2Þ
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Proof. Consider a tiling of PDWn. If a ¼ p=2, then any tile has three

vertices on the equator and the other vertex is a pole. This contradicts the

condition ‘‘no inner angle is p’’ (see Section 2).

Assume g ¼ p=2. See Figure 7. N and S are the poles, and —Nv2v1 ¼
—Sv1v2 ¼ p=2 ¼ g. Then —Nv1v2 ¼ p�—Sv1v2 ¼ p=2. Thus Nv1v2 is an isos-

celes triangle. Hence p� a ¼ Nv1 ¼ Nv2 ¼ a. This contradicts a0 p=2 which

we have already proved. Hence g0 p=2. Similarly, a0 p=2.

As for equivalence (1), a A ð0; p=2Þ if and only if v0 and v2 are located

in the northern hemisphere and v1 is in the southern. This is equivalent to

d A ð0; pÞ. We will prove the implication (2). First assume the case where g is

too large. Then, the vertex v1 is in the northern hemisphere and the edge v0v1
crosses to the edge Nv2. To think of the situation, the leftmost lower tiling in

Figure 8 may be useful. In the critical situation, aþ gþ d ¼ 2p implies a ¼
—v1v0N ¼ p=2, g ¼ 3p=2, and d ¼ 0. So p=2 < a < p < g < 3p=2. The same

inequalities with a and g swapped follows when a is too large. r

For T A PDWn, let a be the length of the geodesic segment between N

and v0, and let j be the longitude of the vertex v2 minus that of the vertex

v1. See Figure 7.

Definition 5. For nb 3, define open sets A
ðiÞ
n in R2 ði ¼ 1; 2; 3; 4Þ as

2p
n
� p; 0

� �
� 0; p2
� �

, 0; 2p
n

� �
� 0; p2
� �

, 2p
n
; p

� �
� 0; p2
� �

, and 0; 2p
n

� �
� p

2 ; p
� �

. Let An

be
S4

i¼1 A
ðiÞ
n . See Figure 8.

Theorem 3 (A coordinate system of PDWn). For each integer nb 3, a

function T A PDWn 7! hj; ai A An is a bijection.

Fig. 7. The coordinate system hj; ai of a tiling T of PDWn. See the caption of Figure 4.

Possibly j < 0 and possibly j > b. Because a straight line from N to the antipodal vertex S is

through v1, and because v1S ¼ a, we have Nv1 ¼ p� a, —v2v1N ¼ p� g and —Nv1v0 ¼ p� a.
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Proof. We prove hj; ai A An for any T A PDWn, as follows: For p=2 <

a < p, we have 0 < j < b ¼ 2p=n. Otherwise, we can see that an edge crosses

to an opposite edge. To think of the situation, see the right upper tiling in

Figure 8.

For 0 < a < p=2, j is strictly between b � p ¼ 2p=n� p and p. Otherwise

one of the edge v0v1 and the edge v1v2 contains a pair of antipodal points.

Obviously a0 0. By Lemma 2, a0 p=2. j0 b ¼ 2p=n, by a0 p.

We show that the function T 7! hj; ai is onto An. Take an arbitrary

hj; ai of An. We first construct a quadrangle as follows: Take a point v2
on the sphere such that the geodesic segment v2S has length p� a. Since j

is given and b ¼ 2p=n is known, the vertex v1 and v0 is determined, as in

Figure 7.

When 0 < a < p, a pair of antipodal points appears neither in the edge

Nv0 nor in the edge Nv2. No inner angle is p, as j0 0, 2p=n and a0 p=2.

We verify no edge contains a pair of antipodal points. Since hj; ai is

in the union An of the four open rectangles of Figure 8, a hemisphere contains

all the vertices v0, v1, v2 and the pole N as inner points. Hence, a pair of

antipodal points appears in neither the edge v1v2 nor the edge v0v1, and lengths

of the edges Nv0 and Nv2 are a < p.

Moreover, any of the four edges of the tile does not cross to the opposite

edge, because when 0 < a < p=2 the vertex v1 is located in the southern hemi-

sphere and the edges Nv0 and Nv2 are in the northern hemisphere. On the

other hand, p=2 < a < p implies 0 < j < 2p=n.

Arranging the 2n copies of the quadrangle as Figure 8 results in a tiling of

PDWn. So the function T 7! hj; ai is onto An. p� a is the distance of the

vertex v1 from the pole N while 2p=n� j is the longitude of v1, i.e., —v0Nv1.

So T 7! hj; ai is injective. Hence Theorem 3 is proved. r

5. Quadratic equation of tiles

Theorem 4. Suppose nb 3, a; g A ð0; p=2Þ [ ðp=2; pÞ [ ðp; 3p=2Þ, a A
ð0; p=2Þ [ ðp=2; pÞ. Then a quadrangle is a PDWn-quadrangle Qn;a; g;a, if and

only if fn;a; gðcos aÞ ¼ 0 where

fn;a; gðxÞ :¼ x2 � cot
p

n

� �
ðcot aþ cot gÞx� cot a cot g:

Proof. Assume we are given a quadrangle Nv0v1v2. By our definition

of quadrangles (see Section 2), the quadrangle is a subset of the interior of an

hemisphere. So, Nv0v1 and Nv1v2 are spherical 3-gons. Let j be the angle

from a geodesic segment Nv1 to the edge Nv2 and j 0 be the angle from the edge

Nv0 to the geodesic segment Nv1.
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The given quadrangle is Qn;a; g;a, if and only if there are j and j 0 such that

jþ j 0 ¼ 2p

n
; j0 0; j 0 0 0 ð3Þ

cos g ¼ cos j cos g� sin j sin g cos a; and ð4Þ

cos a ¼ cos j 0 cos a� sin j 0 sin a cos a: ð5Þ

The two equations (4) and (5) are equivalent to spherical cosine theorems for

angles (Proposition 1 (2a)) to spherical 3-gons. It is because of applying the

last two equations —v2v1N ¼ p� g and —Nv1v0 ¼ p� a in the caption of

Figure 7.

In the xy-plane, consider two lines

l: x� y tan g cos a ¼ 1; m: x� y tan a cos a ¼ 1:

They are well-defined, by the premise. Then

ð�Þ ð4Þ , ðcos j; sin jÞ A l; ð5Þ , ðcos j 0; sin j 0Þ A m:

Let R be the reflection with respect to the x-axis followed by rotation in 2p=n

around the origin O. Then, (3) implies ð5Þ , ðcos j; sin jÞ A RðmÞ. To sum

up, under the equation (3),

ð4Þ & ð5Þ , ðcos j; sin jÞ A l \ RðmÞ: ð6Þ

Let P be a point ð1; 0Þ and C be the unit circle x2 þ y2 ¼ 1.

Fig. 8. The open set An ðn ¼ 6Þ (Definition 5) of hj; ai (Figure 7) of T A PDWn. An bijectively

corresponds to PDWn (Theorem 3). The four images are tilings of PDWn.
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Claim 3. (1) For all a, g, there is a unique point P 0 A C \ lnfPg. More-

over P 0 ¼ ðcos j; sin jÞ.
(2) For all a, g, there is a point Q 0 A C \mnfPg. Moreover Q 0 ¼ ðcos j 0;

sin j 0Þ and —POQ 0 ¼ j 0.

Proof. (1). By the premise, j0 0. So P 0 is unique. By equivalence (*),

j ¼ —POP 0. (2). Similar to (1). r

Let S be a point on the x-axis in the xy-plane. The ray starting from S in

the direction of the positive part of x-axis is denoted by xS or Sx. The sum of

the three inner angles of the plane triangle OPP 0 is p. So,

u :¼ —xPP 0 ¼ jþ p

2
: ð7Þ

The line RðmÞ is not the x-axis. It is because RðPÞ A C \ RðmÞnðR� f0gÞ
by —xORðPÞ ¼ 2p=n. Hence, aðRðmÞ \ ðR� f0gÞÞa 1. Let a point Q be

the intersection of the line RðmÞ and x-axis, if it exists. Define

v :¼ p ðRðmÞ \ ðR� f0gÞ ¼ qÞ;
—xQRðPÞ ðotherwiseÞ:

�

See Figure 9.

Claim 4. If the equation (3) holds and p=na j < p, then

tan u ¼ ðtan g cos aÞ�1: tan v ¼
sin 2p

n
sin a cos a� cos 2p

n
cos a

cos 2p
n
sin a cos aþ sin 2p

n
cos a

: ð8Þ

ð4Þ & ð5Þ , fn;a; gðcos aÞ ¼ 0: ð9Þ

Fig. 9. Proofs of (7) and (13). Case j 0 > 0 (left) and case j 0 < 0 (right).
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Proof. (8) The first equation is by the definition of l and Claim 3. The

denominator of the left-hand side of the second equation is not zero, by

Claim 3 (2).

Next, we prove

v ¼

2p
n
þ p� arctanððtan a cos aÞ�1Þ p

n
a j < n�2

n
p

� �
;

p j ¼ n�2
n
p

� �
;

2p
n
� arctanððtan a cos aÞ�1Þ n�2

n
p < j < p

� �
:

8><
>:

The proof is as follows: Suppose p=na j < ðn� 2Þp=n. Let a point Q 0

be the reflection of the point Q 0 with respect to the x-axis. —xPQ 0 ¼ p�
arctanððtan a cos aÞ�1Þ. Thus v ¼ —xPQ 0 þ 2p=n. Suppose j ¼ ðn� 2Þp=n.
By the equation (3), j 0 ¼ ð4� nÞp=n. By the definition, —xORðQ 0Þ ¼
—xORðPÞ þ j 0 ¼ jþ j 0, which is 2p=n by (3). Hence, ð—xORðPÞ þ
—xORðQ 0ÞÞ=2 ¼ p=2. As RðPÞ;RðQ 0Þ A C, RðmÞ does not intersect with the

x-axis. Hence v ¼ p by the definition of v. The proof for ðn� 2Þp=n < ja p

is similar to the proof for p=na j < ðn� 2Þp=n. This establishes the desired

representation of v.

If j0 ðn� 2Þp=n, then by the addition formula of tan, tan v is as

desired. Consider the case j ¼ ðn� 2Þp=n. Then j 0 ¼ ð4� nÞp=n. By (5),

ðtan a cos aÞ�1 ¼ tanð2p=nÞ. By the addition formula of tan, tan v is as

desired. This completes the proof of the equation (8) of Claim 4.

(9) First we claim

l \ RðmÞ C ðcos j; sin jÞ , RðQ 0Þ ¼ P 0: ð10Þ

The proof is as follows: ðcos j; sin jÞ ¼ P 0 is RðPÞ or RðQ 0Þ, because m \ C ¼
fP;Q 0g by Claim 3 (2). Here RðPÞ is ðcosð2p=nÞ; sinð2p=nÞÞ. If RðPÞ ¼ P 0,

then 2p=n ¼ j, and thus j 0 ¼ 2p=n� j ¼ 0, by the equation (3). This is a

contradiction. This completes the proof of (10).

Next we claim

tanðv� uÞ ¼ tan
p

n
, fn;a; gðcos aÞ ¼ 0: ð11Þ

The left-hand side of equivalence (11) is

tan u� tan v

1þ tan u tan v
þ tan

p

n
¼ 0:

Observe that the denominator of the first term of the left-hand side cannot

be 0. Assume otherwise. Then u� v ¼ p=2þ ip for some integer i. Thus

—PP 0ðRðPÞÞ ¼ p=2þ ip for some integer i. Thus jþ j 0 ¼ p, which contra-

dicts the equation (3). Hence the denominator 1þ tan u tan v of the first term
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of the left-hand side is not 0. Also note that the denominator cos p=n of the

second term of the left-hand side is not 0. Substitute (8) in the left-hand

side. Then we have a quadratic equation of cos a, by calculation. Because

sin a sin g sinðp=nÞ0 0, the quadratic equation is equivalent to the quadratic

equation fn;a; gðxÞ ¼ 0 of x ¼ cos a. This completes the proof of (11).

Hence, by equivalences (6), (10), and (11), we have only to prove

RðQ 0Þ ¼ P 0 , tanðv� uÞ ¼ tan
p

n
; ð12Þ

to show (9). If RðQ 0Þ ¼ P 0, then —PORðQ 0Þ ¼ —POP 0 ¼ j. Thus v� u ¼
ðjþ j 0Þ=2þ kp for some integer k. The equation (3) implies tanðv� uÞ ¼
tanðp=nÞ. To prove the converse of (12), we derive

tanðv� uÞ ¼ tanðp=nÞ ) —PORðQ 0Þ ¼ j:

Case A. p=na j < ðn� 2Þp=n (See Figure 9).

The mean M of —xORðPÞ ¼ 2p=n and —xORðQ 0Þ ¼ 2p=n� j 0 is

2p=n� j 0=2 ¼ p=nþ j=2 by the equation (3). Then M < p=2, by j <

ðn� 2Þp=n. Therefore, RðmÞ \ ðð0;yÞ � f0gÞ consists of a unique point Q,

where RðmÞ is a line through the two points RðPÞ and RðQ 0Þ. We claim

p

n
a j <

n� 2

n
p ) v� u ¼ p

n
� jþ—PORðQ 0Þ A 4� n

2n
p;
p

2

� �
: ð13Þ

The proof is as follows: Observe v ¼ ðj 0 þ pÞ=2þ—PORðQ 0Þ. It is clear

when j 0 > 0. In case j 0 < 0, the observation follows from v ¼ ð�j 0 þ pÞ=2þ
ð—PORðQ 0Þ þ j 0Þ. By the equation (8), v > p=2þ 2p=n. Clearly, v < p.

Hence, by u A ðp=2; pÞ, v� u is in the desired interval. From the equations

(7) and (3), the desired equation of (13) follows. This completes the proof

of (13).

Assume tanðv� uÞ ¼ tanðp=nÞ. By (13), j ¼ —PORðQ 0Þ.
Case B. ðn� 2Þp=n < j < p (See Figure 10).

We claim:

n� 2

n
p < j < p ) v� u ¼ p

n
� jþ—PORðQ 0Þ � p A �p;

2� n

2n
p

� �
: ð14Þ

The proof is as follows: By Figure 10, v ¼ ð�j 0 þ pÞ=2þ 2p=n� p > 0.

So, the desired equation follows from the equations (7) and (3), in a

similar argument as Case A. The equation (3) implies v ¼ p=nþ j=2� p=2 <

p=n. By condition of Case B and the definition (7) of the angle u, we have

ðn� 1Þp=n < u < p. So v� u is indeed in the desired interval of (14). This

completes the proof of (14).
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Assume tanðv� uÞ ¼ tanðp=nÞ. The interval ð�p; ð2� nÞp=ð2nÞÞ contains

p=nþ kp for a unique integer k ¼ �1. By (14), j ¼ —PORðQ 0Þ.
Case C. j ¼ ðn� 2Þp=n. Then the line RðmÞ does not intersect with

the x-axis. As RðmÞ \ C ¼ fRðPÞ;RðQ 0Þg, p=2 ¼ ð—PORðQ 0Þ þ—PORðPÞÞ=2,
—RðQ 0ÞORðPÞ ¼ �j 0, —PORðPÞ ¼ j, and the equation (3), it holds that j ¼
—PORðQ 0Þ. Thus we have proved the converse of (12). This completes the

proof of Claim 4. r

By the symmetry ðj; gÞ $ ðj 0; aÞ, (9) of Claim 4 implies: If the equation

(3) holds and j < p=n, then ð4Þ & ð5Þ , fn; g;aðcos aÞ ¼ 0. Here fn; g;aðcos aÞ ¼
fn;a; gðcos aÞ. So, T is a Qn;a; g;a if and only if fn;a; gðcos aÞ ¼ 0. This estab-

lishes Theorem 4. r

6. Range of inner angles of PDWn-quadrangles

To classify the two opposite inner angles a, g and the edge-length a of

PDWn-quadrangles Qn;a; g;a’s, we solve fn;a; gðcos aÞ ¼ 0, taking the condition

Lemma 2 (Proposition 1 (1), resp.) of quadrangles (spherical 3-gons, resp.) into

account. This classifies all tilings of PDWn, because of Fact 2 (2).

6.1. Discriminant. The equation fn;a; gðcos aÞ ¼ 0 has at most two solutions

a A ð0; pÞ, as cos a is strictly decreasing for a A ð0; pÞ and fn;a; gðxÞ is quadratic.

The smaller solution a ¼ a�n;a; g is the arccosine of

1

2
cot

p

n
ðcot aþ cot gþ

ffiffiffiffiffiffiffiffiffiffiffiffi
Dn;a; g

p
Þ;

while the larger solution a ¼ aþn;a; g of fn;a; gðcos aÞ ¼ 0 is obtained from a�n;a; g by

inverting the sign in front of the square root. Here

Dn;a; g :¼ cot2 gþ 2 2 tan2 p

n
þ 1

� �
cot a cot gþ cot2 a:

Fig. 10. Proof of (14). ðn� 2Þp=n < j < p.
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Lemma 3. Let p=2 < a < p < g < 3p=2. Then

(1) Dn;a; g b 0 , ga dgnnðaÞ. Moreover, the equality of one side implies that

of the other side. Here dgnn : ðp=2; pÞ ! ðp; 3p=2Þ is defined as

dgnnðcÞ :¼ p� arctan cos2
p

n
sin

p

n
þ 1

� ��2

tan c

 !
:

(2) The curve g ¼ dgnnðaÞ is strictly decreasing, convex, and has the tangential

line g ¼ 2p� p=n� a at a ¼ 3p=4� p=ð2nÞ.
(3) 2p� p=n� a < dgnnðaÞ < 2p� a for all a A ðp=2; 3p=4� p=ð2nÞÞ.

Proof. (1). Let sn :¼ sinðp=nÞ � 1 < 0, tn :¼ sinðp=nÞ þ 1 > 0, and

z1 :¼ �s2n cot a sec2
p

n
; z2 :¼ �t2n cot a sec2

p

n
:

We prove z1 < cot g ) Lemma 3 ð1Þ, as follows: By calculation, z1 and z2
are the zeros of the quadratic polynomial

pðzÞ :¼ z2 þ 2 cot a 2 tan2 p

n
þ 1

� �
zþ cot2 a:

Fig. 11. The curves g ¼ dgnnðaÞ ðp=2 < a < pÞ, a ¼ dgnnðgÞ ðp=2 < g < pÞ, aþ g ¼ 2p� p=n

(dash), and aþ g ¼ 2p (dash-dot), when n ¼ 4. See Lemma 3.

20 Yohji Akama



Here Dn;a; g ¼ pðcot gÞ. z1 < z2 by p=2 < a < p. Clearly ga dgnnðaÞ if and

only if g� pa�arctanðtan a cos2ðp=nÞt�2
n Þ. g� p A ð0; p=2Þ by the premise.

So, by applying the strictly decreasing function cot, ga dgnnðaÞ is equivalent to
z2 a cot g. Hence

Claim 5. Let p=2 < a < p < g < 3p=2. Then

ga dgnnðaÞ , �cot a 1þ sin
p

n

� �2
sec2

p

n
a cot g:

The equality of one side implies that of the other side.

Therefore, Lemma 3 (1) follows from z1 < cot g, because the polynomial

pðzÞ is quadratic.

We first prove z1 < �cot a as follows: The premise a A ðp=2; pÞ implies

tan a < 0. So, z1 < �cot a if and only if s2n sec2ðp=nÞ < 1. As sn < 0, the

inequality sec2ðp=nÞs2n < 1 is equivalent to �cosðp=nÞ < sn, which is equivalent

to 1=
ffiffiffi
2

p
< sinðp=nþ p=4Þ. The last inequality holds for n ¼ 3 by calculation.

It also holds for nb 4, by p=nþ p=4 A ðp=4; p=2�. Thus z1 < �cot a.

Assume z1 b cot g. Then cot g < �cot a by z1 < �cot a. By a A ðp=2; pÞ
and g A ðp; 3p=2Þ, we have cot g > 0, tan a tan g < 0, and thus �tan a < tan g.

Hence tanðaþ gÞ ¼ ðtan aþ tan gÞ=ð1� tan a tan gÞ > 0, which implies aþ g >

2p by the premise a A ðp=2; pÞ, g A ðp; 3p=2Þ. This contradicts aþ gþ d ¼ 2p.

Hence z1 < cot g.

To prove Lemma 3 (2), we first verify the curve g ¼ dgnnðaÞ and the line

g ¼ 2p� ðp=nÞ � a intersect at a ¼ 3p=4� p=ð2nÞ, as follows:

dgnn
3p

4
� p

2n

� �
¼ 2p� p

n
� 3p

4
� p

2n

� �
; ð15Þ

if and only if arctanðcos2ðp=nÞ tanðp=4þ p=ð2nÞÞðsinðp=nÞ þ 1Þ�2Þ is p=4�
p=ð2nÞ. As the right-hand side p=4� p=ð2nÞ is strictly between ð0; p=2Þ,
the condition is equivalent to cos2ðp=nÞ tan2ðp=4þ p=ð2nÞÞðsinðp=nÞ þ 1Þ�2 ¼
1. Hence the square root of the left-hand side is unity, as nb 3 implies 0 <

ð1=4þ 1=ð2nÞÞp < p=2. By calculation, it is indeed unity from the double-

angle formulas. Thus (15) is proved.

By calculation, we have a partial derivative

qa dgnnðaÞ ¼ �t2n cos2
p

n
t4n � cos4

p

n

� �
cos2 aþ cos4

p

n

� ��1

:

It is negative because tn > 1. So g ¼ dgnnðaÞ is decreasing. Since

qa dgnn
3p

4
� p

2n

� �
¼ �1 ð16Þ
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by calculation, a line aþ g ¼ 2p� p=n is the tangential line of the curve g ¼
dgnnðaÞ. By calculation, the second-order derivative q2a dgnnðaÞ is

�t2n cos2
p

n
t4n � cos4

p

n

� �
sin 2a t4n � cos4

p

n

� �
cos2 aþ cos4

p

n

� ��2

:

It is positive since p=2 < a < p by the premise and tn > 1.

To prove Lemma 3 (3), observe that the first inequality 2p� p=n� a <

dgnnðaÞ follows from Lemma 3 (2). As for the second inequality dgnnðaÞ <
2p� a, note that dgnnðaÞ ! 3p=2� 0, as a ! p=2þ 0. By equality (16) and

the convexity of the curve g ¼ dgnnðaÞ, we have qa dgnnðaÞa�1 for all a A
ðp=2; 3p=4� p=ð2nÞÞ. Thus dgnnðaÞ < 2p� a. This establishes Lemma 3.

r

6.2. The statement.

Definition 6. For nb 3, define

Bn :¼ fða; gÞ A ðð0; pÞ [ ðp; 2pÞÞ2 jA Qn;a; g;a exists for some a A ð0; pÞg:

By simple trigonometric formulas, we describe Bn and the length a of the

meridian edge of each PDWn-quadrangles Qn;a; g;a.

Theorem 5 (Inner angles and edge-length of PDWn-quadrangles). Assume

nb 3.

(1) Bn ¼
S8

i¼1 B
ðiÞ
n where B

ðiÞ
n is defined in (4) below.

(2) ða; gÞ A B
ð4Þ
n [ B

ð8Þ
n , if and only if there exist exactly two PDWn-quadrangles.

Here the edge-length a is aþn;a; g or a�n;a; g.

(3) ða; gÞ A
S

1aia8; i04;8 B
ðiÞ
n , if and only if there exists a unique PDWn-

quadrangle Qn;a; g;a. Here the edge-length a is a�n;a; g for ða; gÞ A B
ð1Þ
n ;

aþn;a; g for ða; gÞ A B
ð2Þ
n [ B

ð5Þ
n [ B

ð6Þ
n ;

p� arccos sec
p

n

� �
sin

p

n
þ 1

� �
cot a

� �
¼ aGn;a; g <

p

2
ð17Þ

for ða; gÞ A B
ð3Þ
n ;

p� arccos sec
p

n

� �
sin

p

n
þ 1

� �
cot g

� �
¼ aGn;a; g <

p

2
ð18Þ

for ða; gÞ A B
ð7Þ
n .

(4) Here
� B

ð1Þ
n is an open pentagon fða; gÞ j p=2 < a < p; p=2 < g < p; aþ g < 2p�

p=ng;
� B

ð2Þ
n is an open rectangular triangle fða; gÞ j p=2 < a; p < g; aþ g < 2p�

p=ng;
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� B
ð3Þ
n is a curve fða; dgnnðaÞÞ j p=2 < a < 3p=4� p=ð2nÞg;

� B
ð4Þ
n is a nonempty open set fða; gÞ j p=2 < a; 2p� p=n� a < g <

dgnnðaÞg;
� B

ð5Þ
n is symmetric to B

ð1Þ
n around the line aþ g ¼ p; and

� B
ðiþ4Þ
n ð2a ia 4Þ is symmetric to B

ðiÞ
n around the line g ¼ a.

Remark 1. The inner angles ða; gÞ of T A PDWn ranges over Figure 12.

The coordinate system hj; ai for PDWn is introduced in Definition 5. hj; ai
ranges over Figure 8. Figure 12 corresponds to Figure 8, as follows:

In Figure 12, the open set above g ¼ p, the open set right to a ¼ p, and the

open set below g ¼ p=2 correspond to A
ð1Þ
n , A

ð3Þ
n , and A

ð4Þ
n of Definition 5 and

Figure 8, respectively.

Here is the proof. By Theorem 5 (1) and Figure 7,
S4

i¼2 B
ðiÞ
n corresponds

to A
ð1Þ
n , and

S8
i¼6 B

ðiÞ
n to A

ð3Þ
n . By Theorem 5 (1) and Lemma 2, B

ð5Þ
n corre-

Fig. 12. The set Bn ðn ¼ 6Þ. See Theorem 5. The edge-length a is aþn; a; g for B
ð2Þ
n [ B

ð5Þ
n [ B

ð6Þ
n ;

a�n; a; g for ða; gÞ A B
ð1Þ
n ; a�n; a; g or aþn; a; g for B

ð4Þ
n [ B

ð8Þ
n ; and a�n; a; g ¼ aþn; a; g for B

ð3Þ
n [ B

ð7Þ
n . The point

designated by � (�, resp.) corresponds to the upper left (upper right, resp.) image of tiling in

Figure 8.
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sponds to A
ð4Þ
n . So, by Theorem 5 and Theorem 3, B

ð1Þ
n corresponds to

A
ð2Þ
n .

Suppose that the length a of the meridian edges is 0. Then 2n non-

meridian edges split the sphere where the inner angle of each digon is d ¼
2p� a� g. So d ¼ p=n. Hence, a ¼ 0 implies aþ g ¼ pð2� 1=nÞ.

If a ¼ p, then the tile is the union of a digon of angle a and that of angle

g, so b ¼ aþ g ¼ 2p=n.

a ¼ p=2 corresponds to a ¼ p=2 or g ¼ p=2, by the proof of Lemma 2.

Theorem 5 follows from Theorem 6 (Subsection 6.3) and Theorem 7

(Subsection 6.4). Proposition 1 (1) plays an important role in Subsection 6.3.

In Figure 11, the two disjoint regions circumscribed by a solid curve, dashed

line and dotted line do not correspond to PDWn-quadrangles. It is because

every zero of fn;a; g is greater than 1. See Lemma 5 of Subsection 6.4.

6.3. PDWn-quadrangles containing the meridian diagonal geodesic segment. In

any tiling of PDWn, the tile Nv0v1v2 contains a segment Nv1, if and only if

a; g A ð0; p=2Þ or a; g A ðp=2; pÞ. Theorem 6 (1) and Theorem 6 (2) correspond

to the two open pentagons B
ð5Þ
n and B

ð1Þ
n of Theorem 5, respectively. For given

n, a, g, a, there is at most one PDWn-quadrangle Qn;a; g;a (See Fact 1 and

Definition 4). We observe

fn;a; gðG1Þ ¼Hcsc a csc g csc
p

n
sin G

p

n
þ aþ g

� �
: ð19Þ

The axis of the parabola y ¼ fn;a; gðxÞ is

axisðn; a; gÞ :¼ 1

2
cot

p

n
ðcot aþ cot gÞ ð20Þ

Theorem 6. Let nb 3.

(1) Let a; g A ð0; p=2Þ. Then a PDWn-quadrangle Qn;a; g;a exists for some

a A ð0; pÞ, if and only if aþ g > p=n. In this case, a ¼ aþn;a; g.

(2) Let a; g A ðp=2; pÞ. Then a PDWn-quadrangle Qn;a; g;a exists for some

a A ð0; pÞ, if and only if aþ g < 2p� p=n. In this case, a ¼ a�n;a; g.

Proof. (Only-if part of Theorem 6 (1)). See Figure 7. By a; g A
ð0; p=2Þ, a segment Nv1 is in the quadrangle. To the two spherical 3-gons

v0Nv1 and v2Nv1, apply the last inequality of Proposition 1 (1). Then

�aþ—v0Nv1 þ—Nv1v0 < p and �gþ—v1Nv2 þ—v2v1N < p. The sum of

the left-hand sides of the two inequalities is �a� gþ b þ d, and is less than

2p. By d ¼ 2p� a� g and b ¼ 2p=n, we have p > aþ g > b=2 ¼ p=n.

(If part of Theorem 6 (1)). For any a A ð0; pÞ, there is a spherical isosceles

3-gon v0Nv2 such that Nv0 ¼ Nv2 ¼ a and —v0Nv2 ¼ 2p=n. By a; g > 0, there
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is a vertex v1 between Nv0 and Nv2 such that —v1v0N ¼ a and —Nv2v1 ¼ g.

So, v0v1 does not cross to Nv2. Hence, by Theorem 4, Qn;a; g;a exists if and

only if there are a spherical 3-gon v0v1v2 and a A ð0; pÞ such that Nv0 ¼ Nv2 ¼
p�Nv1 ¼ a and fn;a; gðcos aÞ ¼ 0.

Put four vertices N, v0, v1, v2 such that N is the north pole, Nv0 ¼
Nv2 ¼ p�Nv1 ¼ a. Then, v0 lies in the southern hemisphere if and only if

v1 lies in the northern hemisphere. As —v1v0N ¼ a < p=2 by the premise,

v0 lies in the southern hemisphere and p > a > p=2. The geodesic segment be-

tween v0 and v2 lies inside the southern hemisphere. Hence, the 3-gon v0v1v2
is a subset of the 3-gon v0Nv2. Let y ¼ —v2v0N ¼ —Nv2v0. The inner angles

at v1 of the 3-gon v0v1v2 is aþ g ¼ 2p� d, because the assumption a; g A
ð0; p=2Þ implies aþ g < p. The other two inner angles of v0v1v2 are y� a;

y� g. Therefore, by Proposition 1 (1), the existence of the 3-gon v0v1v2 is

equivalent to 2y > p, 2a < p, 2g < p, and 2y� 2a� 2g < p. Thus, Nv0v1v2
is a quadrangle if and only if p=2 < y < p=2þ aþ g. As a spherical 3-gon

v0Sv2 exists, 2ðp� yÞ þ b > p, i.e., y < p=2þ b=2 ¼ p=2þ p=n. The assump-

tion p=n < aþ g implies y < p=2þ aþ g. Moreover, p=2 < y, as v0 and v2
are in the southern hemisphere. Hence, if there is an a A ð0; pÞ such that

fn;a; gðcos aÞ ¼ 0, then the 3-gon v0v1v2 exists such that Nv0 ¼ Nv2 ¼ p�Nv1
¼ a.

In this case, we show a ¼ aþn;a; g A ð0; pÞ exists and fn;a; gðcos aþn;a; gÞ is 0. As

a A ðp=2; pÞ, cos a A ð�1; 0Þ. By the assumption, p > aþ g > �p=nþ aþ g >

0. By (19), fn;a; gð�1Þ > 0 > fn;a; gð0Þ ¼ �cot a cot g. The axis axisðn; a; gÞ of

the parabola y ¼ fn;a; gðxÞ is positive, as a; g A ð0; p=2Þ. So the intersection of

ð�1; 0Þ � f0g and the parabola y ¼ fn;a; gðxÞ is the smaller intersection point

of R� f0g and the parabola. Hence a ¼ aþn;a; g.

(2). Qn;a; g;a exists if and only if Qn;p�a;p�g;p�a does so. It is because

from any T A PDWn, we obtain T 0 A PDWn, by joining the vertices N and

S to the opposite vertices v2iþ1 and v2i respectively, and then deleting the 2n

meridian edges Nv2i and Sv2iþ1 of T. As p� a; p� g A ð0; p=2Þ, Theorem 6

(1) implies p� a ¼ aþn;p�a;p�g. Hence, a ¼ a�n;a; g, by the explanation at the

beginning of Subsection 6.1 and arccosðxÞ ¼ p� arccosð�xÞ. This establishes

Theorem 6. r

6.4. PDWn-quadrangles with a or g greater than p. Theorem 7 (1) and

Theorem 7 (2) correspond to an open set B
ð4Þ
n [ B

ð8Þ
n and a set B

ð2Þ
n [ B

ð3Þ
n [

B
ð6Þ
n [ B

ð7Þ
n of Theorem 5, respectively.

Theorem 7. Suppose a > p or g > p. Then we have the following:

(1) There are more than one, actually, exactly two PDWn-quadrangles Qn;a; g;a,

if and only if
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p

2
< a <

3p

4
� p

2n
& 2p� p

n
� a < g < dgnnðaÞ; or ð21Þ

p

2
< g <

3p

4
� p

2n
& 2p� p

n
� g < a < dgnnðgÞ: ð22Þ

There is indeed a pair ða; gÞ satisfying (21) or (22). Here the edge-length a

is aþn;a; g or a�n;a; g.

(2) There is a unique PDWn-quadrangle, if and only if

p

2
< a < 2p� p

n
� g & p < g; ð23Þ

g ¼ dgnnðaÞ &
p

2
< a <

3p

4
� p

2n
; ð24Þ

p

2
< g < 2p� p

n
� a & p < a; or ð25Þ

a ¼ dgnnðgÞ &
p

2
< g <

3p

4
� p

2n
:

If (23) or (25) hold, then the edge-length a is aþn;a; g. If g ¼ dgnnðaÞ, then
the edge-length a is

p� arccos sec
p

n

� �
sin

p

n
þ 1

� �
cot a

� �
¼ aþn;a; g ¼ a�n;a; g:

If a ¼ dgnnðgÞ, then the edge-length a is

p� arccos sec
p

n

� �
sin

p

n
þ 1

� �
cot g

� �
¼ aþn;a; g ¼ a�n;a; g:

To prove Theorem 7, we prove the following lemma.

Lemma 4. If some of condition (21), condition (23), condition (24) and the

three conditions with a and g swapped hold, then for every a A ð0; p=2Þ with

fn;a; gðcos aÞ ¼ 0, there exists a Qn;a; g;a-quadrangle.

Proof. The assumption implies

0 < aþ g� 3p

2
<

p

2
: ð26Þ

Consider a quadrangle Nv0v1v2 such that the inner angle between two edges of

length a is b ¼ 2p=n, and the two inner angles neighboring to b are a and g.

We prove Nv0v1v2 is indeed a spherical 4-gon. —v0Nv2 ¼ 2p=n < p and v0N ¼
v2N ¼ a < p=2. So, y :¼ —v2v0N is strictly between 0 and p=2.
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As a spherical 3-gon v0Nv2 clearly exists, a quadrangle Nv0v1v2 exists, if

and only if a spherical 3-gon v0v1v2 exists. The last condition holds, if and

only if a� gþ d < p, �aþ gþ d < p, ða� yÞ þ ðg� yÞ � d < p, and ða� yÞ þ
ðg� yÞ þ d > p, by Proposition 1 (1). a; g > p=2 holds from the assumption of

this lemma. So, aþ gþ d ¼ 2p implies the first and the second of the four

inequalities. The last inequality follows from 0 < y < p=2 and aþ gþ d ¼ 2p.

The third inequality is aþ g� 3p=2 < y. By 0 < y < p=2 and the range (26)

of aþ g,

the quadrangle Nv0v1v2 exists , �tanðaþ gÞ > cot y:

Here cot y ¼ cos a tanðp=nÞ. To see this, represent the length of the

base edge of a spherical isosceles 3-gon v0Nv2, in terms of a, n, by using

spherical cosine law (Proposition 1 (2b)). By applying the spherical cosine

law for angles (Proposition 1 (2a)) to v0Nv2, we have cosð2p=nÞ ¼ �cos2 yþ
sin2 yðcos2 aþ sin2 a cosð2p=nÞÞ. As cosðp=nÞ > 0 by nb 3,

sin y ¼
cos p

nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2 p

n
cos2 aþ cos2 p

n

q :

So, as cos a > 0 by the premise, 0 < y < p=2 implies cot y ¼ cos a tanðp=nÞ.
Hence, by Theorem 4, Lemma 4 is equivalent to: For every nb 3, if (21),

(23), or (24), then for every a A ð0; p=2Þ with fn;a; gðcos aÞ ¼ 0, we have

cos a < �cot
p

n
tanðaþ gÞ: ð27Þ

When condition (23) holds, �tanðaþ gÞ > tanðp=nÞ, and thus inequality

(27) holds.

Assume condition (21) or condition (24). By dgnn,

p

2
< a <

3p

4
� p

2n
; p <

5p

4
� p

2n
< g <

3p

2
: ð28Þ

Thus fn;a; gð0Þ ¼ �cot a cot g > 0. So two solutions of the quadratic equation

fn;a; gðxÞ ¼ 0 are of the same sign. Hence inequality (27) follows from

nb 3; ð21Þ & fn;a; gðxÞ ¼ 0 ) x < �cot
p

n
tanðaþ gÞ: ð29Þ

As fn;a; gðxÞ is quadratic, condition (29) is equivalent to the conjunction of

fn;a; g �cot
p

n
tanðaþ gÞ

� �
> 0; ð30Þ
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and the condition axisðn; a; gÞ < �cotðp=nÞ tanðaþ gÞ:

1

2
cot

p

n
ðcot aþ cot gÞ < �cot

p

n
tanðaþ gÞ: ð31Þ

Inequality (30) is proved as follows: By calculation, the left-hand side is

sinðaþ gþ p=nÞ sinðaþ g� p=nÞ
cos a sin a cos g sin gðtan a tan g� 1Þ2 sin2ðp=nÞ

:

This is positive, because (28) implies cos a sin a cos g sin g < 0, and Lemma 3

(3) implies 2p� p=n < aþ g < 2p. So (30) is established.

In inequality (31), the right-hand side divided by the left-hand side has

absolute value M ¼ j2 sin a sin g=cosðaþ gÞj. The right-hand side of (31) is

positive by (21) and aþ gþ d ¼ 2p. So, we have only to show M > 1. The

numerator 2 sin a sin g is negative by (28) and the denominator cosðaþ gÞ is

positive by (21). So M > 1 is equivalent to cosða� gÞ < 0. By (28), p=2 ¼
ð5p=4� p=ð2nÞÞ � ð3p=4� p=ð2nÞÞ < g� a < 3p=2� p=2 ¼ p. This proves in-

equality (31) and thus the implication (29). So the spherical 3-gon v0v1v2
exists. This establishes Lemma 4. r

By calculation,

ðyÞ axisðn; a; dgnnðaÞÞ ¼ �sec
p

n
sin

p

n
þ 1

� �
cot a:

Lemma 5. Let n ¼ 3; 4; 5; . . . . Suppose

3p

4
� p

2n
< a < p < g <

5p

4
� p

2n
; 2p� p

n
< aþ g; and g < dgnnðaÞ:

Then there is no a A ð0; pÞ such that fn;a; gðcos aÞ ¼ 0.

Proof. We prove that fn;a; gðxÞ ¼ 0 ) xb 1. We have only to verify

axisðn; a; gÞ > 1 and fn;a; gð1Þb 0.

We show axisðn; a; gÞ > 1. By the premise, cotðp=nÞ > 0 and p=2 < a < p.

By (1) and (2) of Lemma 3, we have p < dgnnðaÞ < 3p=2. So, by the premise,

p < g < dgnnðaÞ < 3p=2. Thus, by (20), axisðn; a; gÞ > axisðn; a; dgnnðaÞÞ. By

(y) and p=2 < 3p=4� p=ð2nÞ < a < p, axisðn; a; dgnnðaÞÞ > axisðn; 3p=4�
p=ð2nÞ; dgnnð3p=4� p=ð2nÞÞÞ. The last is 1 by calculation. This concludes

axisðn; a; gÞ > 1.

Next, we verify fn;a; gð1Þb 0. By the first premise 3p=4� p=ð2nÞ < a <

p < g < 5p=4� p=ð2nÞ, we have aþ gþ p=n < 2pþ p=4þ p=ð2nÞ. So, by

nb 3 and the second premise, 2p < aþ gþ p=n < 2pþ 5p=12. Thus, by the

first premise and (19), fn;a; gð1Þb 0. This completes the proof of Lemma 5.

r
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Proof of Theorem 7. Let a > p or g > p. The edge-length a is smaller

than p=2. Otherwise, equivalence (1) of Lemma 2 implies d > p. So a and g

are both less than p, which is absurd. So 0 < cos a < 1.

Theorem 7 (1) is proved as follows: By Theorem 4, the following two

assertions are equivalent:
� more than one PDWn-quadrangles Qn;a; g;a exist.
� the quadratic polynomial fn;a; gðxÞ has two distinct zeros x1, x2 in an

open interval ð0; 1Þ such that a quadrangle Qn;a; g;arccos xi exists for each

xi ði ¼ 1; 2Þ.
Here the quadratic polynomial fn;a; gðxÞ has two distinct zeros x1, x2 in an open

interval ð0; 1Þ if and only if the following three are all true:

( i ) fn;a; gð0Þ > 0 and fn;a; gð1Þ > 0;

( ii ) 0 < axisðn; a; gÞ < 1; and

(iii) Dn;a; g > 0.

Hence, more than one PDWn-quadrangles Qn;a; g;a exist, if and only if

condition (21) or condition (22) holds. It is due to (2) of Lemma 2, Lemma 4

and the following:

Claim 6. For the three conditions mentioned above, the following holds:

(1) In case p=2 < a < p < g < 3p=2, inequality ð21Þ , ðiÞ & ðiiiÞ.
(2) In case p=2 < g < p < a < 3p=2, inequality ð22Þ , ðiÞ & ðiiiÞ.
(3) In each of the above-mentioned two cases, ðiÞ & Dn;a; g b 0 ) ðiiÞ.

Proof. Claim 6 (1) is proved as follows: fn;a; gð0Þ ¼ �cot g cot a > 0 by

the premise. Hence, condition (i) is equivalent to fn;a; gð1Þ > 0. Thus, by the

premise and (19),

condition ðiÞ , aþ g > 2p� p

n
: ð32Þ

By the premise and Lemma 3 (1),

condition ðiiiÞ , g < dgnnðaÞ: ð33Þ

See Figure 11. By the premise and Lemma 5,

ðzÞ condition ðiÞ & Dn;a; g b 0 ) a <
3p

4
� p

2n
or

5p

4
� p

2n
< g:

By (32), condition (i) implies a < 3p=4� p=ð2nÞ , 5p=4� p=ð2nÞ < g. Thus,

by (32) and (33), we have ð21Þ , ðiÞ & ðiiiÞ: So, Claim 6 (1) holds. The

same argument with a and g swapped proves Claim 6 (2).

We prove Claim 6 (3). axisðn; a; gÞ > 0 in either case, because cot aþ
cot g ¼ sinðaþ gÞ=sin a sin g > 0 follows from 3p=2 < aþ g ¼ 2p� d < 2p.
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Consider the case p=2 < a < p < g < 3p=2. As cot g > 0,

condition ðiiÞ , g > arccot 2 tan
p

n
� cot a

� �
þ p:

Hence, by equivalence (32), condition (ii) follows from

p� a� p

n
b arccot 2 tan

p

n
� cot a

� �
: ð34Þ

The right-hand side is positive, because cot a < 0 by p=2 < a < p. So, in-

equality (34) is equivalent to cotðp� a� p=nÞa 2 tanðp=nÞ � cot a. Subtract

tanða� p=2Þ þ tanðp=nÞ from both hand sides of the last inequality, and then

divide them by tanðp=nÞ. By the addition formula of tan, inequality (34) is

equivalent to tanða� p=2Þ tanða� p=2þ p=nÞa 1. By the assumption p=2 <

a < p and implication (z), this holds because the two arguments a� p=2 and

ða� p=2þ p=nÞ are both in the interval ð0; p=2Þ and have mean less than p=4.

Thus inequality (34) holds. The other case p=2 < g < p < a < 3p=2 is proved

by the same argument with a and g swapped. This completes the proof of

Claim 6. r

Theorem 7 (2) is proved as follows: First observe that there exists

exactly one PDWn-quadrangle, if and only if a quadrangle Nv0v1v2 exists

and

(a) fn;a; gðxÞ has a degenerate (i.e., double) zero strictly between 0 and 1;

or

(b) fn;a; gðxÞ has distinct two zeros, but only one in the interval ð0; 1Þ.
Here the edge-length a is less than p=2, from a > p or g > p, by equivalence (1)

of Lemma 2.

We prove that ðaÞ , ðg� dgnnðaÞÞða� dgnnðgÞÞ ¼ 0, as follows: Note

that condition (a) holds if and only if we have all of the conditions (i), (ii) and

Dn;a; g ¼ 0. By Claim 6 (3) and (32), the condition (a) is equivalent to aþ g >

2p� p=n & g ¼ dgnnðaÞ or to aþ g > 2p� p=n & a ¼ dgnnðgÞ. Because 2p�
p=n� a < dgnnðaÞ by Lemma 3 (3), the equation g ¼ dgnnðaÞ implies aþ g >

2p� p=n. So, the condition (a) is equivalent to g ¼ dgnnðaÞ or a ¼ dgnnðgÞ.
This establishes the desired equivalence.

The quadratic equation fn;a; gðcos aÞ ¼ 0 of cos a has the two solutions

a ¼ aþn;a; g; a
�
n;a; g, presented at the beginning of Subsection 6.1. If the two

solutions are a degenerate solution a ¼ aþn;a; g ¼ a�n;a; g ¼ arccosðcotðp=nÞðcot aþ
cot gÞ=2Þ, then Dn;a; g ¼ 0.

Claim 7. The arccosine of the degenerate (i.e., double) solution x of

fn;a; gðxÞ ¼ 0 is (17) for g ¼ dgnnðaÞ and (18) for a ¼ dgnnðgÞ.
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Proof. By Lemma 3 (1), either g ¼ dgnnðaÞ and p=2 < a < p < g < 3p=2,

or a ¼ dgnnðgÞ and p=2 < g < p < a < 3p=2. Consider the first case. By (y),
a is (17) for g ¼ dgnnðaÞ. The proof for case a ¼ dgnnðgÞ is similar. This

completes the proof of Claim 7. r

It is easy to see that condition ðbÞ , fn;a; gð0Þ fn;a; gð1Þ < 0. As fn;a; gð0Þ >
0 by the implication (2) of Lemma 2,

ðbÞ , fn;a; gð1Þ ¼ �sin aþ gþ p

n

� �
csc a csc g csc

p

n
< 0:

By equivalence (32), (b) is equivalent to condition (23) of Theorem 7, for

p=2 < a < p < g; and is equivalent to condition (25) of Theorem 7, for p=2 <

g < p < a. Because fn;a; gð0Þ > 0 and fn;a; gð1Þ < 0 hold, the unique solution x

of the quadratic equation fn;a; gðxÞ ¼ 0 strictly between 0 and 1 is the smaller

solution of the equation. Therefore the edge-length a is aþn;a; g. Hence Lemma

4 establishes Theorem 7 (2). Thus Theorem 7 is proved. r

From Theorem 6 and Theorem 7, Theorem 5 follows.

7. A quadrangle organizing both non-isohedral tiling and isohedral one over

the same skeleton

Recall a PDW6-quadrangle Q6;a; g;a from Definition 4.

Theorem 8. Copies of a spherical 4-gon T :¼ Q6;arccos ð�1=2
ffiffi
7

p
Þ;4p=3;arccos ð1=3Þ

organize both an isohedral tiling T 0 (Figure 13 (middle, right)) and a non-

isohedral tiling T (Figure 13 (middle, left), [1]) such that the skeletons are the

same pseudo-double wheel. The quadratic equation associated to T of Theorem

4 is ðx� 1=3Þ2.

Proof. The edge-lengths and inner angles of T are as in Figure 14

(lower). So, a tile (designated N234 in the figure) of T has two edges of

length a, both incident to the vertex N. N is antipodal to a vertex S, be-

cause there are two congruent paths between the two vertices in Figure 14

(lower). The edge between a vertex d (designated by 3 in Figure 14 (lower))

and S is a, by the figure. The area of the tile of T is 4p=12, as T is a

spherical tiling by twelve congruent tiles. So, the tile of T is a PDW6-

quadrangle, by Fact 2 (2). By the definition of fn;a; gðxÞ in Theorem 4, we

have f6;arccosð�1=2
ffiffi
7

p
Þ;4p=3ðxÞ ¼ ðx� 1=3Þ2. r
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We conjecture that Q6;arccos ð�1=2
ffiffi
7

p
Þ;4p=3;arccos ð1=3Þ is the only spherical 4-gon

such that copies of it organize both a non-isohedral tiling and an isohedral

tiling over a pseudo-double wheel. The conjecture is true by [1, Theorem 2],

once the following is proved: from any spherical non-isohedral tiling by con-

Fig. 13. The copies of the tiles of the rightmost, middle spherical isohedral tiling T 0 organize a

spherical non-isohedral tiling T over the skeleton of T 0. The middle graph is an excerpt of Figure

12. The right four images are the spherical isohedral tilings by Qn; a; g; a for n ¼ 6 and designated

ða; gÞ on the graph. The distribution of inner angles and that of edge-length on the skeleton of T

is the reflection of Figure 14.

Fig. 14. The skeleton, edge-lengths, and inner angles of the reflection of T. The solid, and

the thick edges have length a ¼ c ¼ arccosð1=3Þ and b ¼ arccosð�5=9Þ. a ¼ arccosð�1=ð2
ffiffiffi
7

p
ÞÞ,

b ¼ p=3, g ¼ 4p=3, and d ¼ arccosð5=ð2
ffiffiffi
7

p
ÞÞ. See [1] for detail of T.
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gruent Qn;a; g;a over a pseudo-double wheel, we can obtain such a tiling T

satisfying the condition (II) of [1, Theorem 2].

To generalize Theorem 8, we want to enumerate all spherical polygons

which organize both non-isohedral tilings and isohedral tilings over the same

skeletons. This is a weak inverse problem of the following theorem:

Proposition 3 (Grünbaum-Shephard [7]). The skeleton of a spherical

isohedral tiling is exactly a pseudo-double wheel, the skeleton of a bipyramid,

that of a Platonic solid, or that of an Archimedean dual.
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