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ABSTRACT. The existence of affine resolvable block designs has been discussed since
1942 in the literature (cf. Bose (1942), Clatworthy (1973), Raghavarao (1988)). Kado-
waki and Kageyama (2009, 2010, 2012) obtained a number of results on combinatorics
for the existence of an affine resolvable SRGD design. In this paper, a new existence
result is shown as a generalization of Theorem 3.3.3 given in Kadowaki and Kageyama
(2009, 2010). Furthermore, another existence result is shown as a conditional converse
of Theorem 3.3.3 and also a generalization of Theorem 3.3.4, both theorems given in
Kadowaki and Kageyama (2009, 2010).

1. Introduction

A block design BD(v, b, r, k) with v points is said to be resolvable if the b
blocks of size k each can be grouped into r resolution sets of b/r blocks each
such that in each resolution set every point occurs exactly once. A resolvable
BD is said to be affine resolvable if every two blocks belonging to different
resolution sets intersect in the same number, say ¢, of points. It is known that
for an affine resolvable BD(v,b,r,k), ¢ = k*/v holds.

A BD(v,b,r k) is called a group divisible (GD) design with parameters
v=mn,b,r k,, A if the mn points are divided into m groups of n points
each such that any two points in the same group occur together in exactly
A1 blocks, whereas any two points from different groups occur together in
exactly A, blocks. The GD designs are further classified into three subclasses:
Singular if r— A} =0; Semi-Regular (SR) if r—24; >0 and rk—vl, =0;
Regular if r—4; >0 and rk — vi; > 0.

Furthermore, a special type of a difference scheme is utilized. An sx x sx
matrix A with entries from an abelian group S of order s(>2) is called a
difference scheme, denoted by DS(sx,s; x), if in a vector difference on any two
columns of A every entry of S occurs x times. DS(sx,s;x) is also called a
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generalized Hadamard matrix, usually denoted by GH(s,x), or a difference
matrix, usually denoted by D(m,m,s) in literature. It is seen that (i) all entries
in the first row and first column of a DS(sx, s; x) can be set 0, and further (ii) in
each of columns except for the first, every entry of S occurs x times. Further-
more, the following properties can be derived.
(iii) In each of rows except for the first one of the DS(sx,s;x), every
entry of S occurs x times.
(iv) In a vector difference on any two rows of a DS(sx,s;x), every entry
of S occurs x times.
It is clear that a DS(2x,2;x) exists iff a Hadamard matrix of order 2x
exists. The following results are also available.

THEOREM 1 (Theorem 3.3.3 corrected in [3]). For a prime s, the existence
of a DS(sx,s;x) implies the existence of an affine resolvable SRGD design with
parameters v=b=xs>, r=k=sx, .1 =0, Ja=Xx, =X, m=sx, n=s for

s> 2.

THEOREM 2 (Theorem 3.3.4 in [3]). The existence of a Hadamard matrix of
order 2x is equivalent to the existence of an affine resolvable SRGD design with
parameters v=b=4x, r=k=2x, 1, =0, bh=x, ¢g=x; m=2x, n=2.

In this paper, we derive a new existence result which provides a gener-
alization of Theorem 1. Furthermore, we show another existence result which
reveals a conditional converse of Theorem 1 and also a generalization of
Theorem 2.

2. Statement
The following result will be shown as a generalization of Theorem 1.

THEOREM 3. Let s be a prime or a prime power. Then the existence of
a DS(sx,s;x) implies the existence of an affine resolvable SRGD design with
parameters v=b=xs’, r=k=sx, A1 =0, Ja =X, ¢=Xx; m=sx, n=s.

Before the proof of Theorem 3, some preliminaries are made. Let s = p”,
where p is a prime and n is a positive integer, and S = {ag,011,..., 01}
Consider 7/, with a row-permutation 7 and the identity matrix [, of order
p. Also take the following s x s matrix as

anIX _ (namlp) ® (nun[p) R ® (nai,n—llp)’

where L; = aj + apx + -+ ap1x"" for ap,ai,....ain1 €2, i=0,1,...,
s — 1, ® denotes the Kronecker product of matrices, and also L;’s constitute
GF(s) (= S,say).
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An illustration of Theorem 3 is given for s =4 =22 (p=n=2) and
x=1,1ie, S=GF4)={0,1,x,1+x} with x> =1+ x.
Consider a DS(4,2%;1) given by, for example,

0 0 0 0
0 1 by I+ x
0 1+x 1 X
0 X 1+x 1

Then take the following four matrices as

1 0 1 0 0 1 1 0
Loy __ Liy __
g "“[0 1}@){0 1]’ g "“[1 0}®[0 1}’

nL‘I—10®01 nLHI—Ol@Ol
700 1 1 0| 7o 1 0|

with Ly=04+0-x, Li=1+0-x, L,=0+1-x and L, =1+1-x. By
replacing elements 0,1,x,14x (€S) in the above DS(4,2%:1) with nlol,,
alily, nlI,, ml~Iy, respectively, we get the following 16 x 16 matrix D,
which can be checked to be the usual incidence matrix of an affine resolvable
SRGD design with parameters v=5b=16, r=k=4, 2, =0, L =1, ¢g=1;
m=n=4:

1 000J1 00O0O}J1T OO0O0OJ1 0 O00O0
01 0O0J0 1 O0O0OFJO0O I O OO 1 0 O
001 0J0 01 O0fJ0 01 00O O 1 O
000140 0O T1FJ0 0O 110 0 01

1 00 0J0 01 0}JO0O 1 000 0 01
010010 0O0T1T}]1 0O0O0OQQP0O O 1 0
001 O0fJ1 00O0OFO OOT1fF0 1 0 O

D 000110 1 00}JO OT1TO0O)L 0 0O
1t 0o0o0]ooo1]oo1o]o 100
01 00J0 O0O1 O0OfJ0O OO T1f1 0 O O
001 0JoOo 1 O0O0OF1 OO OCFO0O O O 1
00011 00O0}JO0 1 O0O0OQ)P0O O 1O

1 00 0J0 I 00JO OO T1J0 010
01 00fJ1 00O0OFJO0O OT1 OO O O 1
001 0J0 O0OOT1fF0 I O OfF1 0 0 O
10 00110 01 OFIT 0 O O10 I O O]
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This illustrates Theorem 3 for s =4 and x = 1. The illustration can be gener-
alized as the following proof shows.

ProoF. By replacing elements og, o,...,0,; (€S) in the sx X sx matrix
as the existent DS(sx,s;x) with zfol, zli I, ... b1 I, respectively, we get an
xs? x xs> matrix D. Now it will be shown that the matrix D itself is the
incidence matrix of the required affine resolvable SRGD design. In fact, v =
b = xs? is obvious and the resolvability is introduced as usual. The other
design parameters can be obtained as follows. At first a GD association

scheme of xs” points is here given by the sx x s array as

1 2 ... S
s+1 s+2 e 28
s(xs—1)+1 s(xs—1)+2 --- xs°

Here let for each column m = sx (i.e., the number of groups in the GD
association scheme) and for each row n = s (i.e., the number of points in each
group in the GD association scheme). Since there is exactly one ‘1’ in every
row of the matrix 71, it is clear that r = sx. Similarly, since there is exactly
one ‘1’ in every column of the matrix 7’[, it is seen that k = sx and A; = 0.
Furthermore it follows that A, = x, because each element of S in row vector
differences of DS(sx,s;x) occurs x times and on the matrices nlol, n [, ...,
nls1 I, by definition, the {L;} coincides with GF(s) = S. Similarly, it can be
seen that ¢ = x (showing the affine resolvability).

Next, we consider a converse of Theorem 1 under some assumption.

By the definition, an affine resolvable SRGD design with parameters v =
b=xs*, r=k=sx, 41 =0, =X, ¢g=x; m=sx, n=s has m(= sx) groups
in the GD association scheme and r(= sx) resolution sets of s blocks each.
In the incidence matrix, (xs)2 submatrices C; of order s are newly introduced
such that (i) C;’s are (0, 1)-matrices corresponding to the i-th group of the GD
association scheme and the j-th resolution set of the design for i, j=1,2,...,
sx, and (ii) Cj = I, fori=1or j=1. For example, the incidence matrix D in
the illustration of Theorem 3 is expressed by

with C; =14 for i=1 or j=1. Some conditions on these C; are newly
assumed in the following theorem.
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THEOREM 4. Let s be a prime. Then the existence of an affine resolvable
SRGD design with parameters v=b=xs*>, r=k=sx, 1 =0, bh=x, ¢=x;
m = sx, n = s implies the existence of a DS(sx,s;x), if all Cyj’s have a structure

formed by some cyclic row-permutations of I

Before the proof of Theorem 4, we will give an illustration of Theorem 4
for s=3 and x =1, along with new three procedures, 77, 7>, T3, of trans-
formation.

Now let D be the incidence matrix of an affine resolvable SRGD design
with parameters v=b=9,r=k=3, 41, =0, =1, g=1;, m=n= 3, whose
solution can be found in Table VI of [2], with the following incidence matrix

1 0 0|1 00[1 00
01 0[0 0 1fl0 10
00 1[0 1 0f[0 01
1 00[0 1 0[0 10
D=]0 1 0|1 000 01
00 1[0 0 1f[1 00
1 00[0 0 1|0 01
01 0[0 101 00
00 111 0o0lo 1 0]

The matrix D can be transformed into the following D*, whose first three
rows and columns are the juxtaposition of I3, without loss of generality, by
some permutation of rows and/or columns in D (let this type of transformation
be called T):

1 001 001 00
01 0{0 100 10
00 1/0 0 1/l0 0 1
1 00/lo o 1]lo 1 0 Ci Cp Chs
DED =0 1 0|1 0o0|l0o o0 1|l=|Cy C»n Cn
00 1/0 101 00 Gy Cy Cn
1 00|lo 1 0l0 01
01 0{0 0 1|1 00
00 111 0o0lo 1 0]

with Cj =1 for i=1or j=1.
Here it should be noted that C;’s of D* have a structure formed by some
cyclic row-permutations of I3 (i.e., the assumption on Cj; is satisfied in the
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illustration), and each of 3 columns displayed above corresponds to each of 3
resolution sets in the starting affine resolvable design.

Next form a new 9 x 3 matrix D**, as a submatrix of the matrix D*, of
consisting only of the first column in each of 3 resolution sets in D* (let this
type of transformation be called T3):

1111
0lolo
0lolo
1lo]o
pSp*=|ol1]o0
0lol1
1lo]o
0lo]1
ol 1]o0)

The matrix D** is now partitioned into 3 groups of 3 rows each and then let
d; be the j-th column vector of size 3 in the i-th group for 1 <i<3 and
1 <j<3. For example, (dg,d;,d;)T is the j-th column of D**. Here,
since in the starting SRGD design every block contains only one point from
each group (by k/m = 1), d;’s have only one ‘1’ and other 2 ‘0’s for all i and
j. In this stage, the following procedure is now taken (this type of replace-
ment procedure will be called 73): For 1 </ < 3 when the /-th component of
dj is a ‘1", the dj is replaced with a value / — 1, that is, (1,0,0) T is replaced by
0, (0, 1,O)T by 1 and (0,0, I)T by 2. It is obvious that each column, except
for the first column, contains all the distinct elements of Z; = {0, 1,2} once.
Hence the resulting matrix D** of order 3 is clearly a DS(3,3;1) based on the
additive group S = Zj:

oS O O
o == O
— N O

This illustrates Theorem 4 for s =3 and x = 1. The illustration can be gener-
alized as the following proof shows.

Proor. Take an affine resolvable SRGD design with the given param-
eters, having the incidence matrix D. The matrix D can be transformed into
the following Dj, whose first s rows and columns are the juxtaposition of I,
of order sx? without loss of generality, by some permutation of rows and/or
columns in D (this is done by transformation 77):
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LIL] 11

T .
D~ Dj=|" xs times

Next form a new xs? x xs matrix D}*, which is a submatrix of the matrix

Dy, consisting only of the first column in each of xs resolution sets in D; (this
is done by 7). The matrix D{* is now partitioned into xs groups of s rows
each and let d;; be the j-th column vector of size s in the i-th group for 1 <
i<xsand 1 <j<xs. Here, since in the starting SRGD design every block
contains only one point from each group (by k/m = 1), d;’s have only one
‘1’ and other s — 1 ‘0’s for all i and j. In this stage, the following replace-
ment procedure (called 73) is now taken: For 1 </<s when the /-th
component of d; is a ‘1’, the dj; is replaced with a value /—1 which will
become possible elements of the required DS. Then the resulting matrix D™
of order xs can be shown to be the required DS(xs,s;x) on Z,={0,1,...,
s—1} as follows.

Let S=Z,. In Df, any column in the first resolution set has an inner
product ¢ (= x) as vectors with the first column in other resolution sets. This
means that in D™ formed from D{ by both 7> and 73, any j-th column for
2 < j < xs contains each of elements of Z; x times. That is, in the vector
differences between the first column and any j-th column of D** for 2 < j < xs
each element of Z; appears x times.

On the other hand, since, by the assumption, Cy;’s of D} have a structure
formed by some cyclic row-permutations of I; for i, j =1,2,...,xs, the matrix
D; can be transformed equivalently into the following D;, whose first s rows
and s columns in the second resolution set are the juxtaposition of I, of order
xs?> by some cyclic row-permutations in each group (let this type of transfor-
mation be called T4):

I | I I
T I
D} <t D; = ] Xs times
I

As before, let D3* be an xs> x xs matrix formed from D; by T, and fur-
ther let D;** be formed from the matrix D;* by T73. Then D;** is of the
form:
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0 0 O 0
* 0 *
D;ng*,ED;**: * 0 x *
* 0 % .. x

Fokok

Under the procedures of transforming D5 to D3**, it follows that in the matrix
D;**, any j-th column for 1 < j (# 2) < xs contains each of elements of Z; x
times, because any column in the secound resolution set of D; has an inner
product ¢ (= x) as vectors with the first column in other resolution sets. It is
further shown that in the vector differences between the second column and any
J-th column of D™ for 1 < j (#2) < xs each element of Z, appears x times.
In fact, let dj, be an element of the i-th row and the second column of Dj*™*
and dj3 be an element of the i-th row and the third column of D{**. Sim-
ilarly, let d»; be an element of the i-th row and the second column of D;** and
dy3 be an element of the i-th row and the third column of D;**. Furthermore
in the i-th group of D (and Dj), let y; be the frequency of cyclic row-
permutations depending on T4. Then, it holds that di» + ; = dp(mod s) and
di3 +u; = d23(m0d S). Thus, it follows that dy, — diz = (d]2 —&—,u,-) - (d13 +,U,')
= dy — drs(mod s). Furthermore, it is remembered that in the vector differ-
ences between the first column and any j-th column of D™ for 2 < j < xs
each element of Z; appears x times, and in the vector differences between the
second column and any j-th column of D3** for 1 < j (# 2) < xs each element
of Z; appears x times. Therefore these mean that in the vector differences
between the second and third columns of Dj** each element of Z, appears
equally in the vector differences between the second and third columns of D;**.

Thus, similarly to the transformation D} < D3, if we consider the trans-
formation Df < D; for 3 < j < xs, it can be seen that in the vector differences
between “any two columns™ of D{** each element of Z, appears x times. This
means that the matrix D™ is a DS(xs,s;x) on Z;.

Note that Theorem 4 shows a generalization of Theorem 2.

REMARK. The affine resolvability in the proof of Theorem 3 is also shown
by use of the property (Corollary 8.5.10.1 in [5]) such that a resolvable SRGD
design is affine resolvable if and only if (a) b =v—m+r and (b) k?/v is an
integer, which can be easily checked in the present case.
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