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Abstract. The existence of a‰ne resolvable block designs has been discussed since

1942 in the literature (cf. Bose (1942), Clatworthy (1973), Raghavarao (1988)). Kado-

waki and Kageyama (2009, 2010, 2012) obtained a number of results on combinatorics

for the existence of an a‰ne resolvable SRGD design. In this paper, a new existence

result is shown as a generalization of Theorem 3.3.3 given in Kadowaki and Kageyama

(2009, 2010). Furthermore, another existence result is shown as a conditional converse

of Theorem 3.3.3 and also a generalization of Theorem 3.3.4, both theorems given in

Kadowaki and Kageyama (2009, 2010).

1. Introduction

A block design BDðv; b; r; kÞ with v points is said to be resolvable if the b

blocks of size k each can be grouped into r resolution sets of b=r blocks each

such that in each resolution set every point occurs exactly once. A resolvable

BD is said to be a‰ne resolvable if every two blocks belonging to di¤erent

resolution sets intersect in the same number, say q, of points. It is known that

for an a‰ne resolvable BDðv; b; r; kÞ, q ¼ k2=v holds.

A BDðv; b; r; kÞ is called a group divisible (GD) design with parameters

v ¼ mn; b; r; k; l1; l2 if the mn points are divided into m groups of n points

each such that any two points in the same group occur together in exactly

l1 blocks, whereas any two points from di¤erent groups occur together in

exactly l2 blocks. The GD designs are further classified into three subclasses:

Singular if r� l1 ¼ 0; Semi-Regular (SR) if r� l1 > 0 and rk � vl2 ¼ 0;

Regular if r� l1 > 0 and rk � vl2 > 0.

Furthermore, a special type of a di¤erence scheme is utilized. An sx� sx

matrix A with entries from an abelian group S of order sðb 2Þ is called a

di¤erence scheme, denoted by DSðsx; s; xÞ, if in a vector di¤erence on any two

columns of A every entry of S occurs x times. DSðsx; s; xÞ is also called a
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generalized Hadamard matrix, usually denoted by GHðs; xÞ, or a di¤erence

matrix, usually denoted by Dðm;m; sÞ in literature. It is seen that (i) all entries

in the first row and first column of a DSðsx; s; xÞ can be set 0, and further (ii) in

each of columns except for the first, every entry of S occurs x times. Further-

more, the following properties can be derived.

(iii) In each of rows except for the first one of the DSðsx; s; xÞ, every

entry of S occurs x times.

(iv) In a vector di¤erence on any two rows of a DSðsx; s; xÞ, every entry

of S occurs x times.

It is clear that a DSð2x; 2; xÞ exists i¤ a Hadamard matrix of order 2x

exists. The following results are also available.

Theorem 1 (Theorem 3.3.3 corrected in [3]). For a prime s, the existence

of a DSðsx; s; xÞ implies the existence of an a‰ne resolvable SRGD design with

parameters v ¼ b ¼ xs2, r ¼ k ¼ sx, l1 ¼ 0, l2 ¼ x, q ¼ x; m ¼ sx, n ¼ s for

sb 2.

Theorem 2 (Theorem 3.3.4 in [3]). The existence of a Hadamard matrix of

order 2x is equivalent to the existence of an a‰ne resolvable SRGD design with

parameters v ¼ b ¼ 4x, r ¼ k ¼ 2x, l1 ¼ 0, l2 ¼ x, q ¼ x; m ¼ 2x, n ¼ 2:

In this paper, we derive a new existence result which provides a gener-

alization of Theorem 1. Furthermore, we show another existence result which

reveals a conditional converse of Theorem 1 and also a generalization of

Theorem 2.

2. Statement

The following result will be shown as a generalization of Theorem 1.

Theorem 3. Let s be a prime or a prime power. Then the existence of

a DSðsx; s; xÞ implies the existence of an a‰ne resolvable SRGD design with

parameters v ¼ b ¼ xs2, r ¼ k ¼ sx, l1 ¼ 0, l2 ¼ x, q ¼ x; m ¼ sx, n ¼ s:

Before the proof of Theorem 3, some preliminaries are made. Let s ¼ pn,

where p is a prime and n is a positive integer, and S ¼ fa0; a1; . . . ; as�1g.
Consider pIp with a row-permutation p and the identity matrix Ip of order

p. Also take the following s� s matrix as

pLi Is ¼ ðpai0IpÞn ðpai1IpÞn � � �n ðpai; n�1IpÞ;

where Li ¼ ai0 þ ai1xþ � � � þ ai;n�1x
n�1 for ai0; ai1; . . . ; ai;n�1 A Zp, i ¼ 0; 1; . . . ;

s� 1, n denotes the Kronecker product of matrices, and also Li’s constitute

GF ðsÞ ð¼ S; sayÞ.
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An illustration of Theorem 3 is given for s ¼ 4 ¼ 22 ðp ¼ n ¼ 2Þ and

x ¼ 1, i.e., S ¼ GF ð4Þ ¼ f0; 1; x; 1þ xg with x2 ¼ 1þ x.

Consider a DSð4; 22; 1Þ given by, for example,

0 0 0 0

0 1 x 1þ x

0 1þ x 1 x

0 x 1þ x 1

2
6664

3
7775:

Then take the following four matrices as

pL0I4 ¼
1 0

0 1

� �
n

1 0

0 1

� �
; pL1I4 ¼

0 1

1 0

� �
n

1 0

0 1

� �
;

pLxI4 ¼
1 0

0 1

� �
n

0 1

1 0

� �
; pL1þx I4 ¼

0 1

1 0

� �
n

0 1

1 0

� �
;

with L0 ¼ 0þ 0 � x, L1 ¼ 1þ 0 � x, Lx ¼ 0þ 1 � x and L1þx ¼ 1þ 1 � x. By

replacing elements 0; 1; x; 1þ x ðA SÞ in the above DSð4; 22; 1Þ with pL0I4,

pL1I4, pLxI4, pL1þx I4, respectively, we get the following 16� 16 matrix D,

which can be checked to be the usual incidence matrix of an a‰ne resolvable

SRGD design with parameters v ¼ b ¼ 16, r ¼ k ¼ 4, l1 ¼ 0, l2 ¼ 1, q ¼ 1;

m ¼ n ¼ 4:

D ¼

1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0

0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0

0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0

0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1

0 1 0 0 0 0 0 1 1 0 0 0 0 0 1 0

0 0 1 0 1 0 0 0 0 0 0 1 0 1 0 0

0 0 0 1 0 1 0 0 0 0 1 0 1 0 0 0

1 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0

0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0

0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 1

0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 0

1 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0

0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 1

0 0 1 0 0 0 0 1 0 1 0 0 1 0 0 0

0 0 0 1 0 0 1 0 1 0 0 0 0 1 0 0

2
66666666666666666666666666666666664

3
77777777777777777777777777777777775

:
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This illustrates Theorem 3 for s ¼ 4 and x ¼ 1. The illustration can be gener-

alized as the following proof shows.

Proof. By replacing elements a0; a1; . . . ; as�1 ðA SÞ in the sx� sx matrix

as the existent DSðsx; s; xÞ with pL0Is; p
L1Is; . . . ; p

Ls�1Is, respectively, we get an

xs2 � xs2 matrix D. Now it will be shown that the matrix D itself is the

incidence matrix of the required a‰ne resolvable SRGD design. In fact, v ¼
b ¼ xs2 is obvious and the resolvability is introduced as usual. The other

design parameters can be obtained as follows. At first a GD association

scheme of xs2 points is here given by the sx� s array as

1 2 � � � s

sþ 1 sþ 2 � � � 2s

..

. ..
. . .

. ..
.

sðxs� 1Þ þ 1 sðxs� 1Þ þ 2 � � � xs2

2
66664

3
77775:

Here let for each column m ¼ sx (i.e., the number of groups in the GD

association scheme) and for each row n ¼ s (i.e., the number of points in each

group in the GD association scheme). Since there is exactly one ‘1’ in every

row of the matrix pLi Is, it is clear that r ¼ sx. Similarly, since there is exactly

one ‘1’ in every column of the matrix pLi Is, it is seen that k ¼ sx and l1 ¼ 0.

Furthermore it follows that l2 ¼ x, because each element of S in row vector

di¤erences of DSðsx; s; xÞ occurs x times and on the matrices pL0Is; p
L1Is; . . . ;

pLs�1Is, by definition, the fLig coincides with GF ðsÞ ¼ S. Similarly, it can be

seen that q ¼ x (showing the a‰ne resolvability).

Next, we consider a converse of Theorem 1 under some assumption.

By the definition, an a‰ne resolvable SRGD design with parameters v ¼
b ¼ xs2, r ¼ k ¼ sx, l1 ¼ 0, l2 ¼ x, q ¼ x; m ¼ sx, n ¼ s has mð¼ sxÞ groups

in the GD association scheme and rð¼ sxÞ resolution sets of s blocks each.

In the incidence matrix, ðxsÞ2 submatrices Cij of order s are newly introduced

such that (i) Cij ’s are ð0; 1Þ-matrices corresponding to the i-th group of the GD

association scheme and the j-th resolution set of the design for i; j ¼ 1; 2; . . . ;

sx, and (ii) Cij ¼ Is for i ¼ 1 or j ¼ 1. For example, the incidence matrix D in

the illustration of Theorem 3 is expressed by

D ¼

C11 C12 C13 C14

C21 C22 C23 C24

C31 C32 C33 C34

C41 C42 C43 C44

2
6664

3
7775

with Cij ¼ I4 for i ¼ 1 or j ¼ 1. Some conditions on these Cij are newly

assumed in the following theorem.
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Theorem 4. Let s be a prime. Then the existence of an a‰ne resolvable

SRGD design with parameters v ¼ b ¼ xs2, r ¼ k ¼ sx, l1 ¼ 0, l2 ¼ x, q ¼ x;

m ¼ sx, n ¼ s implies the existence of a DSðsx; s; xÞ, if all Cij ’s have a structure

formed by some cyclic row-permutations of Is.

Before the proof of Theorem 4, we will give an illustration of Theorem 4

for s ¼ 3 and x ¼ 1, along with new three procedures, T1, T2, T3, of trans-

formation.

Now let D be the incidence matrix of an a‰ne resolvable SRGD design

with parameters v ¼ b ¼ 9, r ¼ k ¼ 3, l1 ¼ 0, l2 ¼ 1, q ¼ 1; m ¼ n ¼ 3, whose

solution can be found in Table VI of [2], with the following incidence matrix

D ¼

1 0 0 1 0 0 1 0 0

0 1 0 0 0 1 0 1 0

0 0 1 0 1 0 0 0 1

1 0 0 0 1 0 0 1 0

0 1 0 1 0 0 0 0 1

0 0 1 0 0 1 1 0 0

1 0 0 0 0 1 0 0 1

0 1 0 0 1 0 1 0 0

0 0 1 1 0 0 0 1 0

2
66666666666666664

3
77777777777777775

:

The matrix D can be transformed into the following D�, whose first three

rows and columns are the juxtaposition of I3, without loss of generality, by

some permutation of rows and/or columns in D (let this type of transformation

be called T1):

D 7!T1
D� ¼

1 0 0 1 0 0 1 0 0

0 1 0 0 1 0 0 1 0

0 0 1 0 0 1 0 0 1

1 0 0 0 0 1 0 1 0

0 1 0 1 0 0 0 0 1

0 0 1 0 1 0 1 0 0

1 0 0 0 1 0 0 0 1

0 1 0 0 0 1 1 0 0

0 0 1 1 0 0 0 1 0

2
66666666666666664

3
77777777777777775

¼
C11 C12 C13

C21 C22 C23

C31 C32 C33

2
64

3
75

with Cij ¼ I3 for i ¼ 1 or j ¼ 1.

Here it should be noted that Cij ’s of D� have a structure formed by some

cyclic row-permutations of I3 (i.e., the assumption on Cij is satisfied in the
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illustration), and each of 3 columns displayed above corresponds to each of 3

resolution sets in the starting a‰ne resolvable design.

Next form a new 9� 3 matrix D��, as a submatrix of the matrix D�, of

consisting only of the first column in each of 3 resolution sets in D� (let this

type of transformation be called T2):

D� 7!T2
D�� ¼

1 1 1

0 0 0

0 0 0

1 0 0

0 1 0

0 0 1

1 0 0

0 0 1

0 1 0

2
66666666666666664

3
77777777777777775

:

The matrix D�� is now partitioned into 3 groups of 3 rows each and then let

d ij be the j-th column vector of size 3 in the i-th group for 1a ia 3 and

1a ja 3. For example, ðd T
1j ; d

T
2j ; d

T
3j Þ

T is the j-th column of D��. Here,

since in the starting SRGD design every block contains only one point from

each group (by k=m ¼ 1), d ij’s have only one ‘1’ and other 2 ‘0’s for all i and

j. In this stage, the following procedure is now taken (this type of replace-

ment procedure will be called T3): For 1a la 3 when the l-th component of

d ij is a ‘1’, the d ij is replaced with a value l � 1, that is, ð1; 0; 0ÞT is replaced by

0, ð0; 1; 0ÞT by 1 and ð0; 0; 1ÞT by 2. It is obvious that each column, except

for the first column, contains all the distinct elements of Z3 ¼ f0; 1; 2g once.

Hence the resulting matrix D��� of order 3 is clearly a DSð3; 3; 1Þ based on the

additive group S ¼ Z3:

D�� 7!T3
D��� ¼

0 0 0

0 1 2

0 2 1

2
64

3
75:

This illustrates Theorem 4 for s ¼ 3 and x ¼ 1. The illustration can be gener-

alized as the following proof shows.

Proof. Take an a‰ne resolvable SRGD design with the given param-

eters, having the incidence matrix D. The matrix D can be transformed into

the following D�
1 , whose first s rows and columns are the juxtaposition of Is,

of order sx2 without loss of generality, by some permutation of rows and/or

columns in D (this is done by transformation T1):
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D 7!T1
D�

1 ¼

Is Is � � � Is

Is

..

.

Is

2
6666664

3
7777775

9>>>>>=
>>>>>;
xs times

Next form a new xs2 � xs matrix D��
1 , which is a submatrix of the matrix

D�
1 , consisting only of the first column in each of xs resolution sets in D�

1 (this

is done by T2). The matrix D��
1 is now partitioned into xs groups of s rows

each and let d ij be the j-th column vector of size s in the i-th group for 1a

ia xs and 1a ja xs. Here, since in the starting SRGD design every block

contains only one point from each group (by k=m ¼ 1), d ij’s have only one

‘1’ and other s� 1 ‘0’s for all i and j. In this stage, the following replace-

ment procedure (called T3) is now taken: For 1a la s when the l-th

component of d ij is a ‘1’, the d ij is replaced with a value l � 1 which will

become possible elements of the required DS. Then the resulting matrix D���
1

of order xs can be shown to be the required DSðxs; s; xÞ on Zs ¼ f0; 1; . . . ;
s� 1g as follows.

Let S ¼ Zs. In D�
1 , any column in the first resolution set has an inner

product q ð¼ xÞ as vectors with the first column in other resolution sets. This

means that in D���
1 formed from D�

1 by both T2 and T3, any j-th column for

2a ja xs contains each of elements of Zs x times. That is, in the vector

di¤erences between the first column and any j-th column of D���
1 for 2a ja xs

each element of Zs appears x times.

On the other hand, since, by the assumption, Cij ’s of D�
1 have a structure

formed by some cyclic row-permutations of Is for i; j ¼ 1; 2; . . . ; xs, the matrix

D�
1 can be transformed equivalently into the following D�

2 , whose first s rows

and s columns in the second resolution set are the juxtaposition of Is, of order

xs2 by some cyclic row-permutations in each group (let this type of transfor-

mation be called T4):

D�
1 $T4

D�
2 ¼

Is Is � � � Is

Is

..

.

Is

2
6666664

3
7777775

9>>>>>=
>>>>>;
xs times

As before, let D��
2 be an xs2 � xs matrix formed from D�

2 by T2 and fur-

ther let D���
2 be formed from the matrix D��

2 by T3. Then D���
2 is of the

form:
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D�
2 7!T2

D��
2 7!T3

D���
2 ¼

0 0 0 � � � 0

� 0 � � � � �
� 0 � � � � �

..

. ..
.

� 0 � � � � �

2
6666664

3
7777775
:

Under the procedures of transforming D�
2 to D���

2 , it follows that in the matrix

D���
2 , any j-th column for 1a j ð0 2Þa xs contains each of elements of Zs x

times, because any column in the secound resolution set of D�
2 has an inner

product q ð¼ xÞ as vectors with the first column in other resolution sets. It is

further shown that in the vector di¤erences between the second column and any

j-th column of D���
2 for 1a j ð0 2Þa xs each element of Zs appears x times.

In fact, let d12 be an element of the i-th row and the second column of D���
1

and d13 be an element of the i-th row and the third column of D���
1 . Sim-

ilarly, let d22 be an element of the i-th row and the second column of D���
2 and

d23 be an element of the i-th row and the third column of D���
2 . Furthermore

in the i-th group of D�
1 (and D�

2 ), let mi be the frequency of cyclic row-

permutations depending on T4. Then, it holds that d12 þ mi 1 d22ðmod sÞ and

d13 þ mi 1 d23ðmod sÞ. Thus, it follows that d12 � d13 1 ðd12 þ miÞ � ðd13 þ miÞ
1 d22 � d23ðmod sÞ. Furthermore, it is remembered that in the vector di¤er-

ences between the first column and any j-th column of D���
1 for 2a ja xs

each element of Zs appears x times, and in the vector di¤erences between the

second column and any j-th column of D���
2 for 1a j ð0 2Þa xs each element

of Zs appears x times. Therefore these mean that in the vector di¤erences

between the second and third columns of D���
1 each element of Zs appears

equally in the vector di¤erences between the second and third columns of D���
2 .

Thus, similarly to the transformation D�
1 $ D�

2 , if we consider the trans-

formation D�
1 $ D�

j for 3a ja xs, it can be seen that in the vector di¤erences

between ‘‘any two columns’’ of D���
1 each element of Zs appears x times. This

means that the matrix D���
1 is a DSðxs; s; xÞ on Zs.

Note that Theorem 4 shows a generalization of Theorem 2.

Remark. The a‰ne resolvability in the proof of Theorem 3 is also shown

by use of the property (Corollary 8.5.10.1 in [5]) such that a resolvable SRGD

design is a‰ne resolvable if and only if (a) b ¼ v�mþ r and (b) k2=v is an

integer, which can be easily checked in the present case.
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