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ABSTRACT. We give a good reduction criterion for proper polycurves with sections,
i.e., successive extensions of family of curves with section, under a mild assumption.
This criterion is a higher dimensional version of the good reduction criterion for
hyperbolic curves given by Oda and Tamagawa.

1. Introduction

Let K be a discrete valuation field with valuation ring Og and residue
field k of characteristic p > 0. Let K5P be the separable closure of K, Gg :=
Gal(K*P/K) the absolute Galois group of K, and Ix its inertia subgroup.
(Note that Ix, as a subgroup of Gk, depends on the choice of a prime ideal
in the integral closure of Ok in K*P over the maximal ideal of Og, but it is
independent of this choice up to conjugation.)

When we are given a variety X proper and smooth over K, it is an
interesting problem to find a criterion for X of admitting good reduction, that
is, to have a scheme X proper and smooth over Og with generic fiber X.
(Such an X is called a smooth model of X.)

Generalizing results of Néron, Ogg, and Shafarevich for elliptic curves,
Serre and Tate [ST] proves that, when X is an abelian variety over K, X
has good reduction if and only if the action of Ix on the first /-adic etale
cohomology H'(X ® K*P @Q,) is trivial, where / is a prime not equal to p.

When X is a proper hyperbolic curve (a geometrically connected proper
smooth curve with genus > 2), it is not always true that X has good reduction
even if the action of Ix on H'(X ® K*P @Q,) is trivial, namely, the first /-adic
etale cohomology does not have enough information to know whether X has
good reduction or not.

If we consider the pro-/ completion 7;(X & K5, f)l of the etale funda-
mental group 7; (X ® K5P,7) (7 is a geometric point of X ® K*P), it admits an
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outer action of Gk (a continuous homomorphism p : Gx — Out(n; (X ® K*P,
N’ = Aut(m (X @ K, 7)) /Inn(m; (X @ K*P,7)")), thus the outer action Pli,
of Ix. This is expected to have a finer information than the action of Ix on
H'(X ® K*P Q) in certain cases. Actually, Oda [Odal] [Oda2] proved that,
for a proper hyperbolic curve X, X has good reduction if and only if the outer
action p|; is trivial. (More strongly, he proved that X has good reduction if
and only if the outer action of Ix on m (X@Ksep,f)l/l}m (X ® K*P, f)l are
trivial for any n, where {I},7;(X ® K*P, f)l }, is the lower central filtration of
(X ® K=, 1))

Note that Oda’s result is natural in the framework of anabelian geometry:
In anabelian geometry, a hyperbolic curve is considered as a typical anabelian
variety, that is, a variety which is determined by its outer Galois representation
Gk — Out 7 (X ® K*P 1) (under suitable assumption on K).

The fact that a hyperbolic curve is anabelian in this sense, which is called
the Grothendieck conjecture, is proven by Tamagawa [Tama] and Mochizuki
[Mochl], [Moch2]|. Therefore it would be natural to expect that, for an
anabelian variety, a similar good reduction criterion to that of Oda will hold.

Another class of varieties which are considered as anabelian is the class
of proper hyperbolic polycurves, that is, varieties X which admit a strucure of
succesive smooth fibrations

X:X,,LX,,_IE...LXILSpecK (1)
whose fibers are proper hyperbolic curves (we call such a structure a sequence
of parameterizing morphisms): Indeed, the Grothendieck conjecture is known
to hold for proper hyperbolic polycurves of dimension up to 4 under suitable
assumption on K, by Mochizuki [Mochl] and Hoshi [Ho]. Therefore it would
be natural to consider good reduction criterion for hyperbolic polycurves,
which is the main interest in this paper. For this good reduction criterion, we
can also treat the case of genus 1 thanks to the criterion of Néron, Ogg, and
Shafarevich.

If we allow the genera of the curves in the definition of proper hyperbolic
polycurves to be 1, we say the resulting variety as a proper polycurve. We call
X a proper polycurve with sections if it admits a sequence of parameterizing
morphisms (1) such that each f; admits a section (we call such a structure a
sequence of parameterizing morphisms with sections). When we fix a sequence
of parameterizing morphisms with sections (1) of X, we call the maximum of
the genera of fibers of f;’s the maximal genus of (1), and when only X is given,
we call the minimum of the maximal genera of sequences of parameterizing
morphisms with sections of X the maximal genus of X.

Also, for such X and any closed point x of X, let K(x) be the residue
field of x and consider the pro-p’ completion 7;(X ® K(x)*P,x)” of the etale
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fundamental group, where X is a geometric point of X ® K(x)*P above x.
Because x is K(x)-rational, 7;(X @ K(x)*P,x)” admits an action (not just
an outer action) of the absolute Galois group Gk of K(x). Thus if we
take a valuation ring Ok, of K(x) which contaips Ok, we have the action of

the inertia subgroup Ix(y) on 7;(X ® K(x)*",%)”. Then the main theorem is
described as follows:

THEOREM 1. Let K be as above and let X be a proper polycurve with
sections over K. Let g be the maximal genus of X. Consider the following
conditions:

(A): X has good reduction.

(B):  For any closed point x of X, and for any choice of valuation ring

Ok (x) of K(x) as above, the action of Iy on (X @ K(x)* %)"" is
trivial.
Then (A) implies (B). If p=0 or p>2g+1, (B) implies (A).

Since the implication (A) = (B) is rather easy, we explain the strategy
of the proof of the implication (B) = (A) (assuming p > 2g +1). Our proof
heavily depends on the machinery of Tannakian categories.

For a prime number / different from p and a geometrically connected
scheme Y over a field L, let Et)(Y ® L(y)*P) be the category of smooth
@,-sheaves on Y ® L(y)*", which is a Tannakian category over Q,. Here, y
is a closed point of ¥ and L(y) is the residue field of y. For r e N, we define
its Tannakian subcategories Et7"(Y ® L(y)*F) (resp. U Et;(Y ® L(»)*?)) as
the minimal one which contains all the smooth @Q;-sheaves of rank < r (resp.
the trivial smooth @Q;-sheaf @Q;) and which is closed under taking subquotients,
tensor products, duals, and extensions. Also, for a geometrically connected
morphism f: Y — Z of geometrically connected schemes over L, we define
the Tannakian subcategory U EtF (Y ® L(»)*?) of Et;(Y ® L(»)*F) as the
minimal one which contains the essential image of f*:Et7'(Z ® L(y)*") —
Et7"(Y ® L(»)*") and which is closed under taking subquotients, tensor prod-
ucts, duals, and extensions. We denote the Tannaka dual of Et="(Y ® L(y)*")
(resp. U Et(Y ® L(»)™F), Uy Et7"(Y ® L(y)*P)) with respect to the fiber
functor defined by a geometric point over y by (Y ® L(y)*P)™&" (resp.
(Y ® L(p)*P) ™ P 7,(Y ® L(y)*P)™™™P") " (In the introduction, we omit
to write the base point. Note that the definition of the affine group scheme
(Y @ L(y)*P) ™ depends on f.) Note that these group schemes are
equipped with actions of the absolute Galois group Gy, of L(y).

We take a sequence of parametrizing morphisms with sections (1) of
X whose maximal genus is equal to that of X, and prove the implication
(B) = (A) by induction on n. So we assume that X,_; has a good model
X,_1 — Spec Og. The key ingredient of the proof is the homotopy exact
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sequence of Tannaka duals associated to the morphism X — X,

1 — 77.'1((X Xy, x) ® K(x) sep)l—unip o (X ® K(X) sep)l—rel—unip,r
— m (X1 @ K(x)*P)E — 1, (2)

where x is any closed point of X)_;, which is regarded also as a closed point
of X, via the section of f,: X, — X,_;. This is an /-adic analogue of the
homotopy exact sequences of de Rham and rigid fundamental groups of Lazda
[Laz]. Lazda’s proof is motivic in some sense, and so his proof works also in
our case without so much changes.

We make a suitable choice of / and prove by using the exact sequence
(2) that the action of Ix(y on m((X xx, , x) ® K(x)*P)"™P is trivial for any
closed point x of X. (Here we use the assumption p >2g+1.) On the
other hand, we see from the relative theory of Tannakian category and (2)
that 7, (X xy,_, x) ® K(x)*P)"™P*s naturally form a group scheme & over the
category of smooth @Q;-sheaves on X,_;. The triviality of actions of the Galois
groups Ig(y) on the groups 7 ((X xx, , x) ® K(x)*P )P implies that the re-
striction of & to each x(e X,_;) is extendable to a group scheme over the
category of smooth @Q;-sheaves on the Og(,)-valued point of X, _; which extends
x. This kind of property and a result of Drinfeld [Dri] imply that & is
extendable to a group scheme over the category of smooth @;-sheaves on X,,_;.
In particular, & is unramified at the generic point & of the special fiber of X,_;.
This and a variant of Oda’s result imply that X, — X,,_; has good reduction
at the local ring Oy, , ¢ at &, and then a result of Moret-Bailly [Mor] implies
that the morphism X, — X,_; lifts to a smooth morphism X, — X,_;, which
implies (A).

The content of each section is as follows: In Section 2, we give a review
and a preliminary result on /-unipotent envelope of profinite groups which
we need in this paper. In Section 3, we give a review on Oda’s good reduc-
tion criterion for proper hyperbolic curves and prove its variant, which uses
[-unipotent envelope of etale fundamental groups. In Section 4, we prove a
homotopy exact sequence of Tannaka duals of certain categories of smooth
@Q;-sheaves of the form (2). In Section 5, we give a review of Drinfeld’s result
on extension of smooth @;-sheaves. We check that it is applicable in our
situation, because the situation of Drinfeld is slightly more restrictive. In
Section 6, we give a proof of the main theorem, using the results proved up
to previous sections. In Section 7, we give a proof of Oda’s good reduction
criterion in [Odal] and [Oda2], which is not proved for a general discrete
valuation field and is stated for general discrete valuation field without proof in
[Tama] Remark (5.4).

We need to mention the following question.



On a good reduction for proper polycurves with sections 227

Question. Let K be a discrete valuation field, Ix the inertia group of K, p
the residue characteristic of K, X a proper hyperbolic polycurve not necessarily
with section over K. Are the following equivalent?

(A) X has good reduction.
(B) The outer action Ix — Out(m(X@Ksep,f)pl) is trivial.

The implication (A) = (B) is easy. We want to prove the implication
(B) = (A), but we can not use the standard induction because it seems that
appropriate homotopy exact sequences associated to fibrations of curves do
not exist. In fact, the pro-p’ completion (of profinite groups) is not an exact
functor. Moreover, if the characteristic of K is positive, then we do not have
fibration exact sequence of (full) etale fundamental groups. This fact follows
from the existence of specialization homomorphisms which are not isomor-
phisms. To overcome this problem, we assume the existence of sections and
use Tannakian fundamental groups in this paper. Using sections, we can
obtain the above homotopy exact sequences. Another difference between the
above question and the main theorem of this paper is the assumption about
base points. For a family of proper smooth curves over a proper polycurve
over K, this assumption is necessary to obtain informations of reduction of
curves over the function field of the polycurve from informations of reduction
of the closed fibers.

2. Review of /[-unipotent envelope of profinite groups

In this section, we recall basic facts on /-unipotent envelope of profinite
groups.

We start with a review of [Del] §9. For an abstract group G, we denote
the lower central series of G as {I,,G},.,. We write the profinite (resp. pro-p’,
resp. pro-/) completion of G by G (resp. G”', resp. G'), where [ is a prime
number and p is a prime number or 0. Here, the pro-p’ completion of G is
the limit of the projective system of quotient groups of G which are finite
groups of order not divisible by p. (Note that the pro-p’ completion depends
only on p. We do not consider a prime number p’ here.) We also denote the
lower central series of a profinite group G as {I,G},.,, where I,G is the
closure of I',G (as abstract group) in G. For an abstract group G and a prime
number /, the natural morphism from G to its pro-/ completion G induces the
isomorphism

G'/1(G") = (G/I,G)' (3)
for all n > 1, since both sides of this isomorphism are the limit of the projective

system of quotient groups of G which are finite / groups and have nilpotent
length < n.
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DeriNITION 1. The embedding functor
(uniquely divisible nilpotent groups) — (nilpotent groups) 4)

has a left adjoint functor ([Bo] II §4 ex15 and §ex 6), which we denote by
G+— Gq. We refer to Gg as the divisible closure of G.

It is known that, when G is a finitely generated torsion free nilpotent
group, the adjunction morphism G — Ggq is injective.

DeriNITION 2. (1) The unipotent envelope of an abstract finitely generated
group G is defined to be the Tannaka dual of the category of finite
dimensional unipotent representations of G over Q. This is written
by Guip

(2) The l-unipotent envelope of a finitely generated group (resp. a profinite
group) G is defined to be the Tannaka dual of the category of finite
dimensional unipotent representations (resp. finite dimensional con-

tinuous unipotent representations) of G over @Q,;. This is written by
G/-unip.

Let N be a finitely generated torsion free nilpotent group. Then it is
known that we have the diagram

N — Ng = N""P(Q), ()

where the first map is the adjunction morphism defined by Proposition 1.
On the other hand, for N as above, the profinite completion N of N is
known to be isomorphic to the closure of N in N'WP(A,) := [['N"™P(Q,).

. i
Here, [['N"™P(@Q,) is the restricted direct product of the topological groups
i

N'iP(Z,) € N'P(@Q,). Since any finite nilpotent group is the product of their
[-Sylow subgroups, we have

N= ][N, (6)

where / runs over all prime numbers. By looking at the /-component of the
inclusion

[IV' =8 < Ne(ay) = T[N (@), (7)
/ i

we obtain the inclusion

Nl SN Nunip(Ql)' (8)
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Next, we recall the following fact on /-unipotent envelope of profinite
groups. For more detailed explanation for /-unipotent envelope, see [Wil].

ProposiTION 1 ([Wil] Proposition 2.3).  Let G be a finitely generated group,
and | be a prime number. Then, we have the isomorphism

Gl—unip ~ Gunip ®(D Ql' (9)

Moreover, since all the unipotent representations of G over Q, factor through G',
we  have

(Gl)l—ump pad Gl—unip ~ Gunip ®Q Ql' (10)

Let 2, be the closed surface group of genus g > 2. Then, by the main
theorem of [Lab], I;,2,/I;,+12, is a free abelian group for all » > 1. It implies
that X, /I, %, is a finitely generated torsion free nilpotent group. Therefore, if
we denote (Zg)] by 7, we obtain the inclusion

[

n/lm = (Zg/rnzy)l — (Zg/rnzg)unip(Ql) ((Zg/FnZy)unip ®q Q)(Q))
(Zo/T2Zg)) ™™ (Q)

(n/Tym) ™™ (@) (11)

[

Il

We will use the inclusion (11) in the next section.

3. Good reduction criterion for proper hyperbolic curves with sections

In this section, we recall the good reduction criterion for proper hyperbolic
curves proven by Oda and Tamagawa. Then, we give a modified form of it,
when a given hyperbolic curve has a section.

DeriniTION 3. Let S be a scheme and X a scheme over S.

(1) We shall say that X is a proper hyperbolic curve (resp. proper curve)
over S if the structure morphism X — S is smooth, proper, and of
relative dimension one over S, each of whose geometric fiber is con-
nected and of genus > 2 (resp. >1).

(2) We shall say that X is a proper hyperbolic curve with a section (resp.
proper curve with a section) over S if X is a proper hyperbolic curve
(resp. a proper curve) over S, and if the structure morphism has a
section.

Let S be the spectrum of a discrete valuation ring Ok, # the generic point of S,
o the closed point of S, K = x(y) the field of fractions of Ok, k = k(o) the
residue field of Ok, and p the characteristic of k.
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DeriNITION 4. Let X — Spec K be a proper smooth morphism of
schemes. We say that X has good reduction if there exists a proper smooth
S-scheme X whose generic fiber X,, is isomorphic to X over K. We refer to X
as a smooth model of X.

Let X — Spec K be a proper hyperbolic curve. Take a geometric point 7
of X ® K*P. Then we have the exact sequence of profinite groups

l-m(X ®K*®f) - m((X,7) —» Gx — 1. (12)
This exact sequence yields the outer Galois action
Gk — Out(m; (X ® K>, 1)), (13)

where, for a topological group G, Out(G) means the quotient group of the
group Aut(G) of continuous group automorphisms of G divided by the group
Inn(G) of inner automorphisms of G. Then, we have natural homomorphisms

Ix — Gx — Out(m(X ® K*P, f))
— Out(m (X ® K*P,7)"") — Out(m (X ® K*P, 7)) (14)

for any prime number / # p.
Oda and Tamagawa gave the following criterion.

ProposiTiION 2 ([Odal], [Oda2], [Tama] section 5). The following are
equivalent.

(1) X has good reduction.

(2)  The outer action Ix — Out(m; (X ® K*P, f)p/) defined by (14) is trivial.

(3) There exists a prime number | # p such that the outer action Ix —
Out(n; (X ® K*P,7)") defined by (14) is trivial

(4) There exists a prime number | # p such that the outer action of Ix on
(X @ K. 1) /T,m (X ® K, 1) induced by (14) is trivial for all
natural numbers n.

In fact, this proposition is proved in [Odal] and [Oda2] when the residue
field of K is of characteristic 0 and K is a number field or a completion of
a number field. In [Tama] Remark 5.4, this proposition is stated for all
discrete valuation field K without proof. Since, at the time of writing, a
proof of this proposition does not seem to be published, we give a proof in
Section 7.

Assume that the scheme X is a proper curve over Spec K and has a section
s:Spec K — X, and take a geometric point § over s. Since we have the
natural morphism from § to X ® K*P, we have the homotopy exact sequence
(12) with respect to the base point 5. The section s gives a section of the map
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71 (X,5) — Gk in the homotopy exact sequence. This induces a homomor-
phism Gx — Aut(n; (X ® K*P,5)), whose composition to Out(z; (X ® K*P,3))
is the same as the above homomorphism Gx — Out(n;(X ® K*P,5)) in (14).
Therefore, for a prime number / # p, we obtain the following morphisms

Ix — Gg — Aut(nl(X ®KSEP,.§))
— Aut(m (X ® K*P,5)")
— Aut(m (X ® K*?,5)") — Aut((m (X @ K*P,5)")")  (15)

by universal property of /-unipotent envelope. Here, the composition
Aut(z (X ® K*P,5)) — Aut((n; (X ® K*P,5)")™P) can be identified with the
morphism

Aut(m (X @ K*P,5)) — Aut(m) (X @ K¥P,5)™"P), (16)

which is also induced by universal property of /-unipotent envelope, via the
isomorphism in Proposition 1.

ProrosITION 3. The following are equivalent.

(1) X has good reduction.

(2) The action of Ix on nl(X®KS°p,s')p/ defined by (15) is trivial.

(3) The action of Ix on m (X ® K*P,5)™ ™ defined by (15) and (16) is
trivial.

Proor. Assume that X has good reduction, and let X be a smooth
model of X. Fix a separable closure k5P of k, the henselization 0}}, and the
strict henselization Off of O relative to Spec k%P — Spec k. Let K*P be a
separable closure of the fraction field of O3). Then we have the following
diagram:

X ®k K** —— X ® (Frac O}) =—— Spec(Frac O}}) «——— Spec K*P

| | J |

X ®p, O3 X®q, OF e Spec O ———— Spec O3

Since the morphism X ®, O% — Spec OY is proper, the unique section s’
of this morphism is induced by valuative criterion, which is compatible with
vertical arrows of the above diagram and the base change of the section s by
the morphism Spec(Frac O%) — Spec K.

Consider the etale fundamental groups of the schemes in the above
diagram with the geometric points from the scheme Spec K*P (denoted by
7). Then, we have the following commutative diagram of homotopy exact
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sequences of profinite groups

1 — m(X ®x K5, 77) — m (X ® (Frac 02),}?) p— GFra002 — 1

l l l

1 — m(X ®oy O;h,ﬁ) — m(X Roy 02,77) === m (Spec 011;,77) — 1.

It holds that the first row is an exact sequence by [SGA1] IX Theorem 6.1, and
using the same argument in the proof of [SGA1] IX Theorem 6.1, we can show
that the second row is an exact sequence. This diagram induces the com-
mutative diagram of exact sequences of profinite groups

1 — 71'1(X ®x Ksep7;7])[7/ - 71'1(X Rk (Frac 01]})7}7)(17/) — GFrac or — 1

I . !

Here, the profinite group =;(X ®g (Frac 0}}),17)(’) ) is the quotient group
71 (X ®k (Frac O%),77)/Ker(m; (X ®g K5, 77) — m(X Rk K=, i)?"), and the
profinite group 7;(X ®, 0}},77)(1’,) is the quotient group 7(X ®g, O%,7)/
Ker(m (X ®o, O, 77) — m1(X ®o, O, 7)").

Since the left vertical arrow is an isomorphism and the action of Ix
on 7 (X ®p, 0}?,17)”/ is trivial by the above diagram, the action of Ix on
m (X @ K, 7)”" is also trivial.

Assume that the action of Ix on 7 (X ® K*P 5)” " is trivial. Then, the
action of Ix on m (X ® K*P 5™ is trivial by (15) and (16).

Assume that the action of Ix on 7 (X ® K*P,5)™P is trivial. By
Proposition 2 or Néron-Ogg-Shafarevich criterion, it is sufficient to show
that the action of Ix on (X ® K*P,5)" /I (X @ K*P,5) is trivial for all
natural number » in order to prove that X has good reduction.

The action of Ix on 7 (X ® K*P,5)™P s trivial, and we have the
surjective morphism of affine group schemes

T (X ® Ksepj)l-unip . (nl (X ® Ksep,j)/anl(X ® Ksep’j))l-unip (18)

over @Q,. It follows that the homomorphism of their affine rings is injective,
so the action of Ix on (m (X ® K*P,5)/my (X @ K*P,5))™™P is trivial.

We have a natural injection (11) in the previous section, by which the
action of Ix on m (X ® K*P,5)/Im (X @ K*P,5) is trivial for all natural
number n. Therefore, X has good reduction by Proposition 2.

REMARK 1. In the above proposition, we only used the hypothesis that
X — Spec K is proper, smooth, geometrically connected and has a rational point,
to prove 1 = 2. In particular, we can show the following claim.



On a good reduction for proper polycurves with sections 233

CLAIM. Let X be a proper smooth K-scheme with geometrically connected
fibers, and x be a closed point of X. Consider K(x)-scheme X ®y K(x) and
the associated Galois action Iy — Aut(m (X ®k K(x)) @k K(x)*P, X)),
Here, X is a geometric point over Spec K(x). If X has good reduction, this
action is trivial.

4. Homotopy exact sequence of affine group schemes

In this section, we prove the existence of the homotopy exact sequence
of affine group schemes which is similar to [Wil] Corollary 3.2. Wildeshaus
showed it in the case of characteristic zero by using transcendental method, but
we give an algebraic proof which works also in positive characteristic case.
This exact sequence of affine group schemes plays a crucial role to prove the
main theorem in this paper. We obtain this exact sequence by applying the
argument in [Laz] 1.2 to smooth @Q,-sheaves instead of regular integrable
connections.

DerINITION 5. Let r be a positive integer.

(1) Let X be a connected Noetherian scheme and / be a prime number
invertible on X. We denote the category of smooth @Q,;-sheaves on
X by Et(X), which is a Tannakian category over Q;. Then, we
define the its Tannakian subcategory Et*"(X) (resp. U Et;(X)) as the
minimal one which contains all the smooth @;-sheaves of rank < r
(resp. the trivial smooth @;-sheaf @;) and which is closed under
taking subquotients, tensor products, duals, and extensions.

(2) Let f:X — S be a proper smooth morphism between connected
Noetherian schemes and / be a prime number invertible on S. We
define the Tannakian subcategory U EtF"(X) of Et7'(X) as the
minimal one which contains the essential image of f*:Et="(S) —
Et="(X) and which is closed under taking subquotients, tensor prod-
ucts, duals, and extensions.

(3) Let f:X — S be a proper smooth morphism between connected
Noetherian schemes, / be a prime number invertible on S, and s — X
be a geometric point. We write the Tannaka dual of Et"(X), (resp.
U E(X), Uy Et7"(X)) with respect to the fiber functor defined by s
as 7y (X, )8 (resp. 7 (X,s5)™P, 7y (X, ) TP,

When X is a proper smooth variety over a separably closed field, the
category U Et;(X) is the same as Uy Et;7'(X), where f is the structure mor-
phism. Thus, in this case the category U Et;(X) is a special case of the
category Us Et'(X).



234 Ippei NAGAMACHI

Let us recall some notions in the theory of Tannakian category. We will
denote the fundamental group of a Tannakian category J over a field k by
() (see [Del] §6). This is an affine group scheme over .7, that is, a group
object in the opposite category of the category of rings of Ind . Moreover,
for f:X — S and s— X as in Definition 5, s*z(Et7 (X)) = m;(X,s)&"
(resp. s*n(U Et;(X)) = 7 (X, )™, s*n(Us Bt~ (X)) = m (X, 5) ™m0,

Let f: X — S be a proper, smooth, and geometrically connected mor-
phism with section p between connected Noetherian schemes. We fix a
geometric point s — S, and let X; be the base change of X by s — S. We
write the morphism X; — X by i;, and the base changes of f and p by s — S
as f’ and s’.

We have functors of Tannakian categories

. rr . i
Et¥(S) = Uy E6¥(X) & U Ey(X,), (19)
Pn
which induce homomorphisms

ip ls -rel-unip, r i -alg, r
1 (Xy, )P 2y (X, 5) TIPS, 5) 8 (20)
D«
between their Tannaka duals.
Thanks to [Del], it can be seen that these morphisms of affine group
schemes come from homomorphisms between the fundamental groups

n(Uy B (X)) & (B (S)), (21)

p'n(Us Et¥ (X)) £ n(Et(S)), (22)
and

(U Ey(X,)) 2 i*z(Uy BE"(X)). (23)

DeriNITION 6. The relatively [-unipotent fundamental group of X /S with
respect to (f,r) at p is defined to be the kernel of the morphism (21). This is
an affine group scheme over Et7(S). We denote it by 7(X/S,r, p)™ ",

The morphisms of schemes X bx ER S induce homomorphisms
w(U Bu(X)) <= (U B (X0) S5 i w(BE(S)(29)

of affine group schemes over U Et;(X;). Taking fibers at s, we get
71 (X, )P 1y (g breier Ly g (g g eler (25)

Since inverse image of objects in Et7'(S) by foiy=f"os is trivial, the
composition of the above morphisms is trivial. Thus we have the unique
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morphism
71 (Xs, 8) ™M = s*7(U Bty (X)) — s*my (X /S, r, p)romp, (26)
The following theorem is an /-adic etale version of [Laz] Theorem 1.6.

TuEOREM 2. Let us suppose that the rank of R'f,Q, is <r. Then, the
morphism (26) is an isomorphism.

Since 7 (X, s) ™I 7 (S, 5) 187 s surjective, this is equivalent to
saying that

1 — i (AXx,S) [-unip i} m (X,S) [-rel-unip, r ﬁ) nl (S, S) l-alg,r 1. (27)

is an exact sequence of affine group schemes over Q.

We start the proof of Theorem 2, following the proof of Lazda given in
[Laz] 1.2. As in the proof of Lazda, it is sufficient to prove the following by
[Wil] and [EHS]:

: (A) If &€ Uy Etf'(X) satisfies that i’& is trivial, then there exists

Z e Et7'(S) such that & ~ f*Z.

(B) Let & € Uy Eti'(X), and let #, C i*& denote the largest trivial sub-
object. Then there exists &y C & such that %, >~ i’ as a sub-object
of ijé.

(C) For each & € U Et;(X;), there exists # € Uy Et7"(X) and a surjec-
tive homomorphism i’ 7 — &.

Before proving these assertions, we check that the restrictions of functors
S, R+ Uy Ety(X) — Et(S) to Uy Et'(X) — Et'(S) are well-defined.

DEerINITION 7. Let g : Z — W be a proper smooth and geometrically con-
nected morphism between connected Noetherian schemes, and ¢ be a natural
number. For objects & € U, Eti/(Z), we define the notion of “having uni-
potent class < m with respect to (g,?)” inductively as follows. If & belongs to
the essential image of g* : Et (W) — U, Et7(Z), then we say & has unipotent
class < 1 with respect to (g,7). If there exists an extension

0= —-&6—6 —0 (28)

with &’ of unipotent class <m — 1 and ¥~ of unipotent class < 1, then we say
that & has unipotent class < m.

LemMMA 1. The functors f.,R'f. : Uy Et;(X) — Et(S) induce the functors
S, R - Uy Bt (X) — Et(S).

ProOF. Let & be an element of Uy Et;'(X) whose unipotent class is <m.
We use induction on m. For the case m = 1, there exists # € Et7"(S) such
that [*# ~ &. Then, f.f*7 =~ F eEt7'(S) and RY.[*F =2 R/.Q,® F €
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Et="(S) by projection formula. For the case m >2, we have an exact
sequence

0—-7 —-&6—-6 -0 (29)

with &’ of unipotent class < m — 1 and ¥~ of unipotent class < 1. Taking the
long exact sequence

0— £, — fué — f.6' — R'.v" — R'f.& — R'f.¢&', (30)
it follows that f,&, R'f.,& e Et'(S) by induction hypothesis.

For & eEtF(X) (resp. &' € Eti'(X;)) we denote the counit of the
adjunction between f* and f, (resp. f™ and f!) as cg: f*fid — & (resp.
ot [118" = &)

We first verify assertion (A).

PROPOSITION 4. If i& is trivial, then cgs : f*f.& — & is an isomorphism.

Proor. It is sufficient to show that the homomorphism:

icg i 6 — 076, (31)

which we get by pulling back c¢g by i, is an isomorphism. By proper base
change theorem,

P16 = S E = AL, (32)

so what we should show is that ¢}, is an isomorphism for any trivial
&' € Et(X;). This follows from the assumption that f is geometrically con-
nected.

We next show assertion (B).

PROPOSITION 5. Let & € Uy Bt/ (X), and let Fy C ii & denote the largest
trivial sub-object. Then there exists & C & such that F = i’ &y as a sub-object
of ilé.

Proor. Let us denote if& as #. We have the following commutative
diagram

Fo F
AT
ZTL’FU Tc}
f/*f:k/%()—)f/*f;‘/y-

Since #y is trivial, ¢/ is an isomorphism, which we have proved in the proof
of proposition 4. Since f"*f/Z is trivial, so is the image of ¢/ : f*f)/F — Z,
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and then we get the unique homomorphism f"*f/# — %,. Hence Z, is the
image of f"f/7 — 7.

By the proof of the previous proposition, f"f/% — Z 1is obtained by
pulling back c¢ : f*f.6 — & by i;. Thanks to exactness of i, % is the inverse
image of the image of c,.

Finally, we start the proof of assertion (C).

For n e N, we define an object %, € U Et;(X;) inductively as follows. Let
%, be the trivial smooth @;-sheaf of rank 1 (denoted by @Q,). For n > 1, we
will define %, to be the extension of %, by f™*(R'f/(%) ,))" corresponding to
the identity under the isomorphisms:

Ext(%,-1, [ (RUf) (0, 1))") = Ext(Q, %, ® f"(R'f! (%, ))")
= H'(X, 2, ® [ (R (2, 1))
=R\ (), ® " (R'f/ (%))
=R/ (U, ,) ® (R'f!(2) )
= End(R'f/(%,",)). (33)
Taking higher direct images of the dual of the short exact sequence
0 — f™(RYf(U) ) — Uy — Uy — 0, (34)
we get the following exact sequence

) = 1)) — R ) > Ry ) — Ry, (35)

*

0— fl(u

n—1
LeEMMA 2. The connecting homomorphism O is the identity.

Proor. The element of

Ext(f™(R'f/(u

n—1

), %, 1) = End(R'f! (%)) (36)
defined by the extension
0= — ) — f"(Rf (%)) — 0 (37)

is the identity.
From the fact that, for an extension 0 — & — # — f™*7" — 0 of a trivial
smooth @Q;-sheaf f™7¥" by &, the extension class under the isomorphism

Ext(f"7,&6) = 7"V ® R'f/(&) = Hom(7", R'f/(&)) (38)
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is nothing but the connecting homomorphism for the long exact sequence
0— f/(6) — fI(F)— 1 — Rf/(6), (39)
the lemma follows.

In particular, any extension of %,_; by a trivial smooth @Q,-sheaf 7" is
split after pulling back to #,, and f/ (%, ;) = f/(«,). We get inductively the
isomorphisms Q; = f/(%)") = f/(,) for all n.

Let x = p'(s), yy = 1 € (%), = @y, and choose an element u, € (%,), for n
inductively so that (%,), — (%u-1), sends u, to u,_;.

PropoSITION 6. Let & € U Et)(X;) be an object of unipotent class < m
with respect to (f',r) and n > m. Then for any v € F, there exists a morphism
o: U, — F which send u, to v.

ProorF. We copy the proof of [Laz] Proposition 1.17 and [HJ] Proposition
2.1.6. Let # be of unipotent class <m. To show the proposition, we use
induction on m. The case m =1 is trivial. For the case m > 2, choose an
exact sequence

06tz lag o, (40)

with 4 of unipotent class < m — 1 and & of unipotent class < 1. By induction

hypothesis, there exists a morphism f: %,_1 — % such that ¢ (v) = f,(u,—1).

Consider the following pull-back exact sequences of the above extension with
nat B

respect to U, — Uy—1 — Y:

L

0 & 7! Up—y —— 0O
0 & 7 G 0.

As explained above, the extension of %, by & splits. Fix a section %, — F"
and let us denote the induced morphism by y: %, — #. Then ¢ (y.(u,) —v)
=0. By induction hypothesis, there exists y’: %, — & such that y.(u,) =
y(y) —v. Then, y — oy’ satisfies the condition required for o.

COROLLARY 1. For all & € U Et)(X;), there exists a surjective homomor-
phism %,S?N — & for some m,N € N.
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Proor. The assertion follows immediately from the proposition if we take
a basis for &.

We will define #, € Uy Et"(X) whose restriction to X, is isomorphic to
U, inductively. Moreover, we will construct an isomorphism fi(#,") = Q,
and a homomorphism ¢, : p*#," — @, such that the composite Q; = f.(#,") =
P ) — prH,Y & @, is an isomorphism.

We start the induction with %] = Q;. Let us assume that #, is defined.
Then, we will define #,,, to be an extension of ¥, by the sheaf f*Rf,(#,")"
so that the inverse image of the exact sequence

0= X (RU(H,) = Wt — Wy — 0 (41)
to Xj is isomorphic to
0 — f*(RU(W))" = Uiy — Uy — 0. (42)
Now consider the extension group
Ext(#,, f*(R'L(0,)) = HY (X, 9,7 @ fH (R (#,))"). (43)

Let us denote #," ® f*(R'.(#;,"))" as &. The Leray spectral sequence for &
associated to f: X — S gives us the 5-term exact sequence

0— H'(S, /(&) — H'(X,6) — H(S,R'f.(6))
— H*(S, f.(6)) — H*(X,&). (44)

After rewriting the objects in the above exact sequence by projection formulas,
the isomorphism (43) and induction hypothesis, we obtain the following exact
sequence

0 — HY(S,(RA(#,"))") — Ext(y, f*(RL(H,))")
— End(R'f.(#,")) — H*(S, R'f.(#,")")
= H(X, 7, ® (R'.(#,)"). (45)

The isomorphism Q; = f.(#,") = p*f*f.(#;") — p*W,” = @, induces an
isomorphism

H'(S, (RUL.(0,7))") = H'(S, £.(#,") ® (R'(#,"))")
= H'(S,p™ 0, @ (RA(#,")))

— H'(S,(RL(#,"))"). (40)
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Since this is the same as the following isomorphism
HI(S, (R0, — HIX, 0, ® £ (R (0,7))
— HI(S, p 0, ® (R'L (%))
— H(S,(RL(#,))"), (47)

the homomorphisms

H'(S, (RUL(1,))") — Ext(Wn, f*(RU(#,7))")
H2(S, (RU(0,))") — H(X, 0, ® (RUL(0,"))")

in the exact sequence (45) split. Therefore the morphism Ext(#4,
FH(RY())Y) — End(R'f(#,”)) have a unique section corresponding to
the retraction, so in the commutative diagram

Ext(#,, [ (R (,)") —— Ext(%, f"(R'f)(%,))")

| S

End(R'f.(#,7)) W)

the element id € End(R!f.(#;")) canonically lifts to Ext(“f/n,f*(le*(“WnV))v)
by the section. Then, #,.; is defined to be the extension of #, by
S*(RY.(#;¥))" corresponding to this element. Since this is sent to ide
End(R'f/(%)), which corresponds to the extension class of %,.;, we have
natural isomorphism i #;.1 = Upt1.

To complete the induction, it is sufficient to show that f.(#,},) = fi(#,")
and that there exists a morphism p*#,Y, — Q; as in the induction hypothesis.
By taking fibers at s and applying proper base change theorem, we can prove
the first claim. For the second, we consider the following exact sequences

0 p*%v p*W\/l le( ) 0
0 —— @Q; === (pushout) —— Rf,(#,") —— 0,

where the left vertical arrow is ¢,. Then, the lower exact sequence splits since
the following diagram

Ext((RUL(#,7)), p* ") —— Ext(W, [*(R'L(4,)))

| |

Ext((RUL(#,7), Q) === H'(S,RL.(W,)))
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commutes and the right vertical arrow sends the extension class defined by
Wns1 to 0. Fixing its retraction, we have a homomorphism p*#,7, — Q; such
that the composition p*#," — p*#,%, — Q, is equal to ¢,. Now the second
assertion follows immediately from the fact that the diagram

f*%il - P*f*f*%il - P*"Wnil

] T | ™\

Q —— SN —— p SN —— P ——

commutes.
These arguments and Corollary 1 show the following proposition, which is
assertion (C).

PROPOSITION 7. For all F € U Et(X;), there exists & € Uy Bt (X) and a
surjective homomorphism ii6 — F.

5. Extension of smooth @Q;,-sheaves

In this section, we prove the results similar to [Dri] 5.1 when the base
scheme is a discrete valuation ring. In [Dri], they are proved when the base
scheme is Z and we check that they remain valid also in our situation.

Throughout this section, K is a discrete valuation field with valuation ring
Ok and residue field k& of characteristic p > 0.

LEMMA 3. Let X be a regular scheme of finite type and flat over Ok,
D C X the special fiber, and let us suppose that the closed subset D is an
irreducible reduced divisor of X. Let G be a finite group, and ¢ : Y — X\D
a G-torsor ramified at D. Then there exists a closed point xe D and a
1-dimensional subspace L of the tangent space T.X (iéf(mx/mi)* with the
following property:

(C) if CC X; is any regular 1-dimensional closed subscheme tangent to
L such that C ¢ Dy then the pullback of ¢: Y — X\D to C\{x} is ramified
at X.

Here X is a geometric point corresponding to x and Xz, Di are the strict
Henselizations.

PrOOF. Let Y be the normalization of X in the ring of fractions of Y,
and 7 : Y — X be the canonical morphism. Let us denote the generic point of
D by &y and choose a ramified point &y in Y over y.

Let us consider the quotient scheme Y /I of Y by the inertia subgroup I of
the decomposition group at ¢y and the open subscheme X’ of Y /I obtained by
removing divisors over &y except for the image of &y.
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First we prove the lemma in the case X = X', so we can assume that the
fiber 77!1(&y) is equal to {¢y}. Then G is solvable and so we can assume that
|G| is a prime number ¢ by replacing Y by Y/H, where H C G is a normal
subgroup of prime index.

The extension of the rings of fractions of Y and X is finite separable, so
7 is a finite morphism. Since Y is finite type over Ok, its regular locus is
open by [EGA] Corollaire 6.12.6 and it contains £y. To prove the lemma we
can replace X by any open subscheme of X which contains &y. Thus we can
assume that Y is regular by shrinking X because 7 is a closed map.

Set D:= (7 !(D)),.q- Since D is integral and finite type over Ok, the
regular locus of D is open and we may assume that D and D are regular.
Then, we can prove the theorem for any closed point x € D. The assumption
I = G means that the action of G on D is trivial and the morphism 7p : D—D
is purely inseparable. Let e; be its degree and let e, be the multiplicity of D in
the divisor 77!(D). Then eje; = |G| = ¢, so e; equals 1 or gq.

Case 1: e =1, eo=¢q. Since ¢; =1, the morphism 7p : D— D is an
isomorphism. If L ¢ T,.D and C C X; is any regular 1-dimensional closed
subscheme tangent to L, T;C is transversal to the image of the tangent map
Ti1(yY — ToX. Since the scheme C xy Y is regular and the set 7~ '(%) is a
point, the pullback of z: Y — X\D to C\X is indeed ramified at X.

Case 2: e =gq, eo=1. Fix any closed point yeD, and let x be
7p(y). If the extension of their residue fields k(y) D k(x) is nontrivial, it
is purely inseparable, so any L satisfies the condition (C). Let us assume that
k(y) =2 k(x). Let us denote the maximal ideal of Ox «, Op «, Oy, OD,y as
My, Ny, my, n, and choose a local defining equation f € Oy . of D. Since
ex=1, Oy,y/(f) = Op . Then, we have the following commutative diagram
with horizontal lines exact:

0 —— () +mY)/m} —— my/my —— nyfng —— 0

J |

0 —— ((f)+md)/m2 —— my/m> —— n,/n} —— 0.

The left vertical arrow is an isomorphism, but m,/m? —>my/my2 is not
an isomorphism because 7 is not etale at y, so the right vertical arrow
is not an isomorphism. If we choose L C T, X with LC T,D and L ¢
Im(T, yD~—> T.D), we can finish the argument just as in Case 1 since the
subspace Im(7] yﬁ — T\D) of T\D is of codimension 1.

So we finished the proof in the case X = X'. Finally we prove the lemma
in general case. By the lemma for X', we can take a closed point x’ in the
topological closure of the image of &y in X’ and a 1-dimensional subspace L’
of T.»X' which satisfy the condition (C) for X’. Since a closed point of the
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special fiber of X’ is a closed point of the special fiber of Y /I, if we define x to
be the image of x’ by the morphism Y/I — X, it is a closed point of D.
Then, also, since X’ — X is etale by the Zariski-Nagata purity theorem [SGA1]
X Theorem 3.4, TvX' = T, X Q) k(x'). By the argument of taking L’ up
to the previous paragraph, we see that one can take the 1-dimensional subspace
L' of T X' in order that it comes from a 1-dimensional subspace L of T.X.
Then we see that the condition (C) is satisfied for this x and L. So we finished
the proof of the lemma in general case.

COROLLARY 2. Let X be a scheme smooth over Okx and U C X the generic
fiber. Let & a smooth Q;-sheaf on U, where | is a prime number not equal to
the characteristic of k. Suppose that & does not extend to a smooth Q-sheaf
on X. Then there exists a closed point x € X\U and a 1-dimensional subspace
L C T, X with the following property:

(*) if C is a Dedekind scheme of finite type over Ok, c € C a closed point
such that the extension k(c) D k(x) is separable, and ¢ :(C,c) — (X,x) a
morphism with ¢~ (U) # & such that the image of the tangent map T.C —
T X @y k(c) equals L @y k(c) then the pullback of & to o~ (U) is ramified
at c.

ProoF. By the Zariski-Nagata purity theorem [SGA1] X Theorem 3.4, &
is ramified along some irreducible divisor D C X, DNU = . Now use the
above lemma.

We can also show the above corollary for an ind-smooth @Q;-sheaf & on U.
In fact, assume that & does not extend to an ind-smooth @;-sheaf on X. We
can write & as inductive system (&;);.,, where each of its structure morphisms
is injective. Then, there exists iy € I such that &, does not extend to a smooth
Q;-sheaf on X.

6. Proof of the main theorem

DeriNITION 8. Let S be a scheme and X a scheme over S.

(1) We shall say that X is a proper polycurve (of relative dimension n)
over S if there exists a positive integer » and a (not necessarily
unique) factorization of the structure morphism X — S

X=X,—-X1— - —-X1—=Xo=S (48)

such that, for each ie{l,...,n}, X; — X;_; is a proper curve (cf.
Definition 3; recall that the genus of the curve is #0). We refer to
the above factorization of X — S as a sequence of parametrizing
morphisms.
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(2) We shall say that X is a proper polycurve with sections (of relative
dimension n) over S if X is proper polycurve (of relative dimension n)
over S, whose parametrizing morphisms can be chosen so that for all
ie{l,...,n}, Xi — X, is a proper curve with section (cf. Definition
3). We refer to such a sequence of parametrizing morphisms as a
sequence of parametrizing morphisms with sections.

(3) Let X be a proper polycurve with sections of relative dimension n
over S. For a sequence of parametrizing morphisms with sections
of this,

S X=X, = X1 — = X1 = Xy=85, (49)

we call the maximum of the genera of fibers of X; — X, | the
maximal genus gy of <. We call the minimum of the maximal
genera of sequences of parametrizing morphisms with sections of X
the maximal genus gy of X.

Before proving the main theorem, we prove a lemma.

DerFNITION 9. For a profinite group G, let us consider the smallest
Tannakian subcategory of the category of finite dimensional continuous
G-representations over @Q); which contains all the finite dimensional continuous
G-representations over @Q; of dimension < r and which is closed under taking
subquotients, tensor products, duals, and extensions. We write the Tannaka
dual of the Tannakian subcategory with respect to the forgetful functor as
G'27 This definition is compatible with Definition 5.3 if G is the etale
fundamental group of X.

LemMA 4. Let S be a connected Noetherian scheme and take a geometric
point s over S. Let r be a natural number. Then, for a prime number |
which is invertible on S, the morphism m(S,s) " — (2,(S,5)” )" is an
isomorphism, if p is 0 or a prime number which does not divide any of 1" — 1
(I1<h<r).

Proor. For any continuous representation of 7;(S,s) over @Q; whose
rank is <r, the action of #;(S,s) factors through 7(S,s)” " since GL(r,Z)) =
lim GL(r,Z/I"Z) and the order of GL(r,Z/I"Z) is 1=t (r — 1) (17 =1). ..
(I =11,

Let V1, 7> be finite dimensional continuous representations of 7 (S, s) over
@, whose actions of 7;(S,s) factor through (S, s)”l. It is easy to see that
any subquotient of ¥, V; ® V>, and V) are m;(S,s)” ’—representations. What
we should show is for any extension V of 7;(S,s)-representation

0O—-V—-V—-71—0, (50)
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the action factors through 7 (S,s)” ", Thus it is sufficient to show the image
Im(7(S,s) — Aut V) is a pro-p’ group. It follows from the fact that the
image of the homomorphism

Im(7;(S,s) — Aut V) — Aut 7} x Aut V> (51)

is pro-p’ and its kernel is pro-/. Therefore 7;(S,s) " and (m;(S,s)? )" "
are isomorphic.

Let K be a discrete valuation field with valuation ring Ok and residue field
k of characteristic p >0. Let X be a scheme of finite type geometrically
connected over K. For any closed point x € X, let K(x) be the residue field of
x and Gy the absolute Galois group of K(x). Choose a valuation ring O )
of K(x) over Ok and let I, be the inertia subgroup of Ok, (which is well7
defined up to conjugation). Because x is K(x)-rational, 7;(X ® K(x)*P, x)”
admits an action (not an outer action) of Gg(,). Note that the triviality of the
action of inertia is independent of its choice.

THEOREM 3. Assume that X is a proper polycurve with sections over K and

g = gx is the maximal genus of X. Consider the following conditions.

(A) X has good reduction.

(B) The action of Ik on m(X ® K(x)*P.%)"" is trivial for any closed

point x € X, valuation ring Ok v of K(x) over Ok, and geometric point X

over Spec K(x).
Then, we have (A) = (B). If we assume that p=0 or p>2g+1, (B)= (A)
follows.

Proor. From Remark 1, (A) = (B) follows. Let us prove (B)= (A).
Fix a sequence of parameterizing morphisms with sections

In Jn-1 Jir1 fi Jic1 S il
X=X,=X1 1= =X =X 1= = X = Xy=SpecK
Sn Sn—1 Si+1 Si Si—1 52 51

of X — Spec K, whose maximal genus is g.

We will show that X, has good reduction by induction on n. For n=1,
it is proved in Proposition 3. Now we assume that n > 2. For any closed
point ye X, ;, the natural surjection 7;(X, ® K(x)*P, )7)1’/ -1 (Xpm1 ®
K(x)*?, 7)”" makes the action of Ix(y) on 7 (X1 @ K(x)*P, y)” " trivial, where
y is a geometric point above y. Moreover, the above sequence of parameter-
izing morphism gives the condition of X,_; — Spec K about maximal genus.
Therefore, we may assume that we have a smooth model X, ; of X,_;.

Fix a prime number / such that p does not divide any of /" —1
(1 <h <2g). Note that there exists such a prime number by the theorem
on arithmetic progressions and the assumption p >2g+ 1. For any closed
point x € X,,_; and any geometric point X over x, we have an exact sequence
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of affine group schemes

1 —m (Xn Xx, X, )_C) [-unip —m (Xn X Spec K %, )—C)l-l‘el-unip,Zg
- =\ /-alg,2
- 77:1()(’171 XSpec K X, x) a8 1 (52)

by Theorem 2.
Now we consider the diagram

Xi’l XXH—] K(Xn—l) s Xi’l ........... > %ﬂ Ceorresnsrnnnannns %
e
v v

Spec K(X,-1) X, X, Spec Ox, | ¢

where K(X,_1) is the function field of X,,_;, £ is the generic point of the special
fiber X,_1\X,_1, f,, s, are the base change of f,, s, respectively, and Ox, , ¢
is the local ring at £, What we should show is that there exist a proper
hyperbolic curve X, over X, ; whose base change by X, | — X,_| is iso-
morphic to X,. Thanks to [Mor], it is sufficient for this to show that there
exists a proper hyperbolic curve X over Spec Ox, , ¢ whose base change by
Spec K(X,_1) — Spec Ox, , ¢ is isomorphic to X, xyx, , K(X,_;). Fix an iner-
tia subgroup I C Gkx, ,) at ¢ and a geometric point 7 of X, xx, , K(X,_1)
above Spec K(X,—1). To complete the proof, it comes down to show that the
action of I on m (X, xx,_, I, t_)/'“nip is trivial by Proposition 3.

Let us denote the morphism Spec K(X,—;) — X,—; as i. Then, we have
the following exact sequences of affine group schemes over Etfzg (K(Xp-1)):

0 —— Ker £, — si'n(Up EE2(X, xx,_, K(X,1)) 2= n(Et=(Spec K(X,_1))) — 0

0 — i* Ker [, i*s;n(Uy, B6(X,)) i*n(Bt (X, ) — 0.

By Theorem 2, Ker f;/, and i* Ker f,, are isomorphic and their fibers at 7
are isomorphic to 7 (X, xx_, 7,7)™P. Let us denote the ind-smooth @,-sheaf
on X,_; corresponding to Ker f,. by &. To show the triviality of the action of
I on 7 (X, xy, , §,7)™™P it is sufficient to prove that & extends to ¥, ;. To

show this, we consider the following claim.

CrLamm. Let x be a closed point in X, 1\X,_; and O, be any discrete
valuation ring over Ok whose field of fraction L is a finite extension over K.
Then, for every morphism Spec Oy — X,,_; over Ok sending the closed point
y€Spec Op t0 X, &gy, Is unramified at y.

We prove the claim. Let us define the valuation ring Ok, of the residue
field K(x') at the image x’ of the generic point of Op by Ok(,) = OL N K(x').
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By condition (B) and Lemma 4, the action of I on 7y (X, Xspec k X', )_c’)l'rel'unip' 29
is trivial. Therefore for O, this claim follows from (52), and so is for
O;.

Finally, we prove that & extends to X, ;. By the above claim and
Corollary 2, it suffices to show that for all closed point x in X, ;\X,_; and for
all 1 dimensional linear subspace M C T,X,_; there exists a discrete valuation
ring Oy over Ok whose field of fraction L is a finite extension over K and Og-
morphism Spec Oy — ¥,_; which induces the isomorphism from the tangent
space of the closed point y of Spec Oy to M. Let us denote the maximal ideal
of the local ring Oy, , » as m, and the n — 1 dimensional linear subspace of
my/m? annihilated by M as N. Let us choose a regular system of parameter

{t1,...,t,} of m, so that the image of {#,...,7,_1} becomes a basis of N.
Case 1: If the image of the maximal ideal of Ox to my/m? is not
contained in N, the quotient ring Ox, , ./(ti,...,t,—1) works as Oy.

Case 2: If the image of the maximal ideal of Ok to m,/m? is contained
in N, we may assume that #; = w — 2. Here, @ is a generator of the maximal
ideal of Og. Then, the quotient ring Ox, , /(f1,...,%—1) works as Op.

7. Appendix

In this section, we give a proof of Proposition 2 which we could not find
in literature. Let us restate the proposition.

Let S be the spectrum of a discrete valuation ring Ok, # the generic point
of S, s the closed point of S, K = x(5) the fractional field of Ok, k = x(s) the
residue field of Ok, and p the characteristic of k.

Consider a proper hyperbolic curve X — Spec K and take a geometric
point 7 over X ® K*P.

ProposiTioN 8 ([Odal], [Oda2], [Tama] section 5). The following are
equivalent.

(1) X has good reduction.

(2)  The outer action Ix — Out(m; (X ® K*P, f)"l) defined by (14) is trivial.

(3) There exists a prime number | # p such that the outer action Ix —
Out(n (X ® K0, 7)) defined by (14) is trivial.

(4)  There exists a prime number | # p such that the outer action of Ix on
(X ® K, 1) /Tym (X @ K0, 7)) induced by (14) is trivial for all
natural numbers n.

We can show 1 = 2 as in the proof of Proposition 3, and the assertion that
2= 3=4is trivial. To show 4 = 1, we may assume that the Jacobian of X
has good reduction and that X has bad reduction as in [Oda2]. Then, we have
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the outer action of the absolute Galois group:
pi(mod m) : Iy — Out 7 (X @ K*P, 1) /Ty (X @ K*P, 7).
THEOREM 4. Under the above assumption, the homomorphism
py(mod 2) : Ix — Out (X ® K¥P, 1) /37 (X @ K*P, 1)’
is trivial, and the homomorphism
pi(mod 3) : Iy — Out (X ® K*P, 1)/ Iym (X @ K*P, 1)’

by factoring through Ix — I}, — Out (X ® K5, 0! /Ty (X @ K*P. 1), defines
the injective homomorphism,

pi(mod 3) : IL — Out 7 (X ® K*P, 1)’ /Iy (X @ K*P, 7).

Let us denote the stable model of X by X and suppose that the special
fiber has n nodes xi,...,x,. To show Theorem 4, we may assume that Ok is a
complete discrete valuation ring and k is an algebraically closed field. Let us
construct a two-dimensional family of stable curves. Consider the classifying
morphism of X

clg : Spec(Ok) — M.

Here, 9, is the moduli stack of stable curves of genus g over Z,. We write
the induced morphism Spec(k) — I, as k. As a regular system of parameters
of the strict henselian local ring Spec OSJ'}M at x, we can choose 3g — 2 elements
p,Ti,...,T35-3. We can assume that the local equation of the singularity X;
of the universal family €, over x; is given by

XY, =T, (1<i<n).
If we write the local equation of x; as
XY =a; (04 a;enOx),

where 7 is a uniformizer of Ok, the local homomorphism 0&1:7)?[ — Og‘xl_ sends
X;, Y; and T; to u; X/, ui’l Y! and a; by [Moch3] §3.7, §3.8 and [Kato]'Lemma
2.1, Lemma 2.2. Here, u is a unit in OF', .

Let us consider the ring

B { Ok[[1]] (char K =0)
AW (char K = p)

and the natural morphism R — Ok which sends ¢ to . Here, W(k) is the
Witt ring for k.
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We write the local homomorphism OSh _— Ok induced by the natural
morphism x : Spec k — Spec Ox — M, Xz, Spec R= img as ¢ The elements
of Osh

g, 1€
TE,Z,T],...,ng_3 (charK:O)
pit,Th, ..., T3y 5 (char K = p)

become a regular system of parameters.
Choose an element @; € R so that its image in Ok is equal to g; if 1 <i<n
and the image of 7; in Ok if n+ 1 <i, and set U; = T; — a;. The subset of
sh
Oiﬁi‘,,z%

T, t, U1,...,U3y,3 (charK:())
p,t,Up, ..., U3g,3 (charK:p)
becomes a regular system of parameters again. Then, it holds that

U; € Ker(4). We write the quotient ring 0Sh /(U1,...,Usg-3) as 4 and the

induced homomorphism 4 — Ok as . If we denote the field of fraction of

the strict henselization 4 (s'; of Ay by L, then we get the following commutative

diagram.
Spec L —— Spec A[1/f] «——— Spec K

Spec A(Sth) —  Spec A «—— Spec Ok
Let us recall Abhyankar’s lemma.

PrOPOSITION 9. Let K, L be an separable closure of K, L. Then we have
the natural outer isomorphisms

Gal(L/L)"" = m(Spec A[1/1)" = Gal(K/K)"’

Let us start the proof of Theorem 4. Let us write the local monodromy
homomorphism as

p:Gal(K/K) — Out (X ® K, 7).

Since Gal(K/K) acts trivially on the abelianization 711 (X ® K,7)"*, p induces
the homomorphism Gal(K /K) — Out 1y (X ®K,t) . By Proposition 9, we
have the morphism

m1(Spec A[1/4]) — 7 (Spec A[1/1)' — Out 7, (X ® K, 7)’,

which is compatible with the isomorphisms of Proposition 9 and the mono-
dromy homomorphism

po: Gal(L/L) — Out (Y ® L, &).
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Here, we write the restriction of the curve €, to the scheme Spec 4 as 9) and a
geometric point of the curve 9 ® L as &. It hold that &; is not equal to 0 in L,
so 9 ® L is smooth over Spec L. Since the residue characteristic of Spec A(Sth)
is 0, this theorem follows from the transcendental method in [Oda2].
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