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Abstract. We give a good reduction criterion for proper polycurves with sections,

i.e., successive extensions of family of curves with section, under a mild assumption.

This criterion is a higher dimensional version of the good reduction criterion for

hyperbolic curves given by Oda and Tamagawa.

1. Introduction

Let K be a discrete valuation field with valuation ring OK and residue

field k of characteristic pb 0. Let K sep be the separable closure of K , GK :¼
GalðK sep=KÞ the absolute Galois group of K , and IK its inertia subgroup.

(Note that IK , as a subgroup of GK , depends on the choice of a prime ideal

in the integral closure of OK in K sep over the maximal ideal of OK , but it is

independent of this choice up to conjugation.)

When we are given a variety X proper and smooth over K , it is an

interesting problem to find a criterion for X of admitting good reduction, that

is, to have a scheme X proper and smooth over OK with generic fiber X .

(Such an X is called a smooth model of X .)

Generalizing results of Néron, Ogg, and Shafarevich for elliptic curves,

Serre and Tate [ST] proves that, when X is an abelian variety over K , X

has good reduction if and only if the action of IK on the first l-adic etale

cohomology H 1ðX nK sep;QlÞ is trivial, where l is a prime not equal to p.

When X is a proper hyperbolic curve (a geometrically connected proper

smooth curve with genusb 2), it is not always true that X has good reduction

even if the action of IK on H 1ðX nK sep;QlÞ is trivial, namely, the first l-adic

etale cohomology does not have enough information to know whether X has

good reduction or not.

If we consider the pro-l completion p1ðX nK sep; tÞ l of the etale funda-

mental group p1ðX nK sep; tÞ (t is a geometric point of X nK sep), it admits an
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outer action of GK (a continuous homomorphism r : GK ! Outðp1ðX nK sep;

tÞ lÞ :¼ Autðp1ðX nK sep; tÞ lÞ=Innðp1ðX nK sep; tÞ lÞ), thus the outer action rjIK
of IK . This is expected to have a finer information than the action of IK on

H 1ðX nK sep;QlÞ in certain cases. Actually, Oda [Oda1] [Oda2] proved that,

for a proper hyperbolic curve X , X has good reduction if and only if the outer

action rjIK is trivial. (More strongly, he proved that X has good reduction if

and only if the outer action of IK on p1ðX nK sep; tÞ l=Gnp1ðX nK sep; tÞ l are

trivial for any n, where fGnp1ðX nK sep; tÞ lgn is the lower central filtration of

p1ðX nK sep; tÞ l .)
Note that Oda’s result is natural in the framework of anabelian geometry:

In anabelian geometry, a hyperbolic curve is considered as a typical anabelian

variety, that is, a variety which is determined by its outer Galois representation

GK ! Out p1ðX nK sep; tÞ (under suitable assumption on K).

The fact that a hyperbolic curve is anabelian in this sense, which is called

the Grothendieck conjecture, is proven by Tamagawa [Tama] and Mochizuki

[Moch1], [Moch2]. Therefore it would be natural to expect that, for an

anabelian variety, a similar good reduction criterion to that of Oda will hold.

Another class of varieties which are considered as anabelian is the class

of proper hyperbolic polycurves, that is, varieties X which admit a strucure of

succesive smooth fibrations

X ¼ Xn �!
fn

Xn�1 �!
fn�1 � � � �!f2 X1 �!

f1
Spec K ð1Þ

whose fibers are proper hyperbolic curves (we call such a structure a sequence

of parameterizing morphisms): Indeed, the Grothendieck conjecture is known

to hold for proper hyperbolic polycurves of dimension up to 4 under suitable

assumption on K , by Mochizuki [Moch1] and Hoshi [Ho]. Therefore it would

be natural to consider good reduction criterion for hyperbolic polycurves,

which is the main interest in this paper. For this good reduction criterion, we

can also treat the case of genus 1 thanks to the criterion of Néron, Ogg, and

Shafarevich.

If we allow the genera of the curves in the definition of proper hyperbolic

polycurves to be 1, we say the resulting variety as a proper polycurve. We call

X a proper polycurve with sections if it admits a sequence of parameterizing

morphisms (1) such that each fi admits a section (we call such a structure a

sequence of parameterizing morphisms with sections). When we fix a sequence

of parameterizing morphisms with sections (1) of X , we call the maximum of

the genera of fibers of fi’s the maximal genus of (1), and when only X is given,

we call the minimum of the maximal genera of sequences of parameterizing

morphisms with sections of X the maximal genus of X .

Also, for such X and any closed point x of X , let KðxÞ be the residue

field of x and consider the pro-p 0 completion p1ðX nKðxÞsep; xÞp
0
of the etale
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fundamental group, where x is a geometric point of X nKðxÞsep above x.

Because x is KðxÞ-rational, p1ðX nKðxÞsep; xÞp
0
admits an action (not just

an outer action) of the absolute Galois group GKðxÞ of KðxÞ. Thus if we

take a valuation ring OKðxÞ of KðxÞ which contains OK , we have the action of

the inertia subgroup IKðxÞ on p1ðX nKðxÞsep; xÞp
0
. Then the main theorem is

described as follows:

Theorem 1. Let K be as above and let X be a proper polycurve with

sections over K. Let g be the maximal genus of X. Consider the following

conditions:

(A): X has good reduction.

(B): For any closed point x of X, and for any choice of valuation ring

OKðxÞ of KðxÞ as above, the action of IKðxÞ on p1ðX nKðxÞsep; xÞp
0
is

trivial.

Then (A) implies (B). If p ¼ 0 or p > 2gþ 1, (B) implies (A).

Since the implication (A)) (B) is rather easy, we explain the strategy

of the proof of the implication (B)) (A) (assuming p > 2gþ 1). Our proof

heavily depends on the machinery of Tannakian categories.

For a prime number l di¤erent from p and a geometrically connected

scheme Y over a field L, let EtlðY nLðyÞsepÞ be the category of smooth

Ql-sheaves on Y nLðyÞsep, which is a Tannakian category over Ql . Here, y

is a closed point of Y and LðyÞ is the residue field of y. For r A N, we define

its Tannakian subcategories Etar
l ðY nLðyÞsepÞ (resp. U EtlðY nLðyÞsepÞ) as

the minimal one which contains all the smooth Ql-sheaves of ranka r (resp.

the trivial smooth Ql-sheaf Ql) and which is closed under taking subquotients,

tensor products, duals, and extensions. Also, for a geometrically connected

morphism f : Y ! Z of geometrically connected schemes over L, we define

the Tannakian subcategory Uf Et
ar
l ðY nLðyÞsepÞ of EtlðY nLðyÞsepÞ as the

minimal one which contains the essential image of f � : Etar
l ðZnLðyÞsepÞ !

Etar
l ðY nLðyÞsepÞ and which is closed under taking subquotients, tensor prod-

ucts, duals, and extensions. We denote the Tannaka dual of Etar
l ðY nLðyÞsepÞ

(resp. U EtlðY nLðyÞsepÞ, Uf Et
ar
l ðY nLðyÞsepÞ) with respect to the fiber

functor defined by a geometric point over y by p1ðY nLðyÞsepÞ l-alg; r (resp.

p1ðY nLðyÞsepÞ l-unip, p1ðY nLðyÞsepÞ l-rel-unip; r). (In the introduction, we omit

to write the base point. Note that the definition of the a‰ne group scheme

p1ðY nLðyÞsepÞ l-rel-unip; r depends on f .) Note that these group schemes are

equipped with actions of the absolute Galois group GLðyÞ of LðyÞ.
We take a sequence of parametrizing morphisms with sections (1) of

X whose maximal genus is equal to that of X , and prove the implication

(B)) (A) by induction on n. So we assume that Xn�1 has a good model

Xn�1 ! Spec OK . The key ingredient of the proof is the homotopy exact
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sequence of Tannaka duals associated to the morphism X ! Xn�1

1! p1ððX �Xn�1 xÞnKðxÞsepÞ l-unip ! p1ðX nKðxÞsepÞ l-rel-unip; r

! p1ðXn�1 nKðxÞsepÞ l-alg; r ! 1; ð2Þ

where x is any closed point of Xn�1, which is regarded also as a closed point

of Xn via the section of fn : Xn ! Xn�1. This is an l-adic analogue of the

homotopy exact sequences of de Rham and rigid fundamental groups of Lazda

[Laz]. Lazda’s proof is motivic in some sense, and so his proof works also in

our case without so much changes.

We make a suitable choice of l and prove by using the exact sequence

(2) that the action of IKðxÞ on p1ððX �Xn�1 xÞnKðxÞsepÞ l-unip is trivial for any

closed point x of X . (Here we use the assumption p > 2gþ 1.) On the

other hand, we see from the relative theory of Tannakian category and (2)

that p1ððX �Xn�1 xÞnKðxÞ sepÞ l-unip’s naturally form a group scheme E over the

category of smooth Ql-sheaves on Xn�1. The triviality of actions of the Galois

groups IKðxÞ on the groups p1ððX �Xn�1 xÞnKðxÞsepÞ l-unip implies that the re-

striction of E to each xðA Xn�1Þ is extendable to a group scheme over the

category of smooth Ql-sheaves on the OKðxÞ-valued point of Xn�1 which extends

x. This kind of property and a result of Drinfeld [Dri] imply that E is

extendable to a group scheme over the category of smooth Ql-sheaves on Xn�1.

In particular, E is unramified at the generic point x of the special fiber of Xn�1.

This and a variant of Oda’s result imply that Xn ! Xn�1 has good reduction

at the local ring OXn�1;x at x, and then a result of Moret-Bailly [Mor] implies

that the morphism Xn ! Xn�1 lifts to a smooth morphism Xn ! Xn�1, which

implies (A).

The content of each section is as follows: In Section 2, we give a review

and a preliminary result on l-unipotent envelope of profinite groups which

we need in this paper. In Section 3, we give a review on Oda’s good reduc-

tion criterion for proper hyperbolic curves and prove its variant, which uses

l-unipotent envelope of etale fundamental groups. In Section 4, we prove a

homotopy exact sequence of Tannaka duals of certain categories of smooth

Ql-sheaves of the form (2). In Section 5, we give a review of Drinfeld’s result

on extension of smooth Ql-sheaves. We check that it is applicable in our

situation, because the situation of Drinfeld is slightly more restrictive. In

Section 6, we give a proof of the main theorem, using the results proved up

to previous sections. In Section 7, we give a proof of Oda’s good reduction

criterion in [Oda1] and [Oda2], which is not proved for a general discrete

valuation field and is stated for general discrete valuation field without proof in

[Tama] Remark (5.4).

We need to mention the following question.
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Question. Let K be a discrete valuation field, IK the inertia group of K , p

the residue characteristic of K , X a proper hyperbolic polycurve not necessarily

with section over K. Are the following equivalent?

: (A) X has good reduction.

: (B) The outer action IK ! Outðp1ðX nK sep; tÞp
0
Þ is trivial.

The implication (A)) (B) is easy. We want to prove the implication

(B)) (A), but we can not use the standard induction because it seems that

appropriate homotopy exact sequences associated to fibrations of curves do

not exist. In fact, the pro-p 0 completion (of profinite groups) is not an exact

functor. Moreover, if the characteristic of K is positive, then we do not have

fibration exact sequence of (full) etale fundamental groups. This fact follows

from the existence of specialization homomorphisms which are not isomor-

phisms. To overcome this problem, we assume the existence of sections and

use Tannakian fundamental groups in this paper. Using sections, we can

obtain the above homotopy exact sequences. Another di¤erence between the

above question and the main theorem of this paper is the assumption about

base points. For a family of proper smooth curves over a proper polycurve

over K , this assumption is necessary to obtain informations of reduction of

curves over the function field of the polycurve from informations of reduction

of the closed fibers.

2. Review of l-unipotent envelope of profinite groups

In this section, we recall basic facts on l-unipotent envelope of profinite

groups.

We start with a review of [Del] § 9. For an abstract group G, we denote

the lower central series of G as fGnGgnb1. We write the profinite (resp. pro-p 0,

resp. pro-l) completion of G by ĜG (resp. Gp 0 , resp. Gl), where l is a prime

number and p is a prime number or 0. Here, the pro-p 0 completion of G is

the limit of the projective system of quotient groups of G which are finite

groups of order not divisible by p. (Note that the pro-p 0 completion depends

only on p. We do not consider a prime number p 0 here.) We also denote the

lower central series of a profinite group G as fGnGgnb1, where GnG is the

closure of GnG (as abstract group) in G. For an abstract group G and a prime

number l, the natural morphism from G to its pro-l completion Gl induces the

isomorphism

Gl=GnðGlÞG ðG=GnGÞ l ð3Þ

for all nb 1, since both sides of this isomorphism are the limit of the projective

system of quotient groups of G which are finite l groups and have nilpotent

lengtha n.
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Definition 1. The embedding functor

ðuniquely divisible nilpotent groupsÞ ! ðnilpotent groupsÞ ð4Þ

has a left adjoint functor ([Bo] II § 4 ex15 and § ex 6), which we denote by

G 7! GQ. We refer to GQ as the divisible closure of G.

It is known that, when G is a finitely generated torsion free nilpotent

group, the adjunction morphism G ! GQ is injective.

Definition 2. (1) The unipotent envelope of an abstract finitely generated

group G is defined to be the Tannaka dual of the category of finite

dimensional unipotent representations of G over Q. This is written

by Gunip.

(2) The l-unipotent envelope of a finitely generated group (resp. a profinite

group) G is defined to be the Tannaka dual of the category of finite

dimensional unipotent representations (resp. finite dimensional con-

tinuous unipotent representations) of G over Ql . This is written by

Gl-unip.

Let N be a finitely generated torsion free nilpotent group. Then it is

known that we have the diagram

N ,! NQ GN unipðQÞ; ð5Þ

where the first map is the adjunction morphism defined by Proposition 1.

On the other hand, for N as above, the profinite completion N̂N of N is

known to be isomorphic to the closure of N in N unipðAf Þ :¼
Q
l

0N unipðQlÞ.
Here,

Q
l

0N unipðQlÞ is the restricted direct product of the topological groups

N unipðZlÞ � N unipðQlÞ. Since any finite nilpotent group is the product of their

l-Sylow subgroups, we have

N̂NG
Y
l

N l ; ð6Þ

where l runs over all prime numbers. By looking at the l-component of the

inclusion

Y
l

N l G N̂N ,! N unipðAf Þ ¼
Y
l

0
N unipðQlÞ; ð7Þ

we obtain the inclusion

N l ,! N unipðQlÞ: ð8Þ
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Next, we recall the following fact on l-unipotent envelope of profinite

groups. For more detailed explanation for l-unipotent envelope, see [Wil].

Proposition 1 ([Wil] Proposition 2.3). Let G be a finitely generated group,

and l be a prime number. Then, we have the isomorphism

Gl-unip GGunip nQ Ql : ð9Þ

Moreover, since all the unipotent representations of G over Ql factor through Gl,

we have

ðGlÞ l-unip  @ Gl-unip GGunip nQ Ql : ð10Þ

Let Sg be the closed surface group of genus gb 2. Then, by the main

theorem of [Lab], GnSg=Gnþ1Sg is a free abelian group for all nb 1. It implies

that Sg=GnSg is a finitely generated torsion free nilpotent group. Therefore, if

we denote ðSgÞ l by p, we obtain the inclusion

p=GnpG ðSg=GnSgÞ l ,! ðSg=GnSgÞunipðQlÞG ððSg=GnSgÞunip nQ QlÞðQlÞ

G ððSg=GnSgÞ lÞ l-unipðQlÞ

G ðp=GnpÞ l-unipðQlÞ: ð11Þ

We will use the inclusion (11) in the next section.

3. Good reduction criterion for proper hyperbolic curves with sections

In this section, we recall the good reduction criterion for proper hyperbolic

curves proven by Oda and Tamagawa. Then, we give a modified form of it,

when a given hyperbolic curve has a section.

Definition 3. Let S be a scheme and X a scheme over S.

(1) We shall say that X is a proper hyperbolic curve (resp. proper curve)

over S if the structure morphism X ! S is smooth, proper, and of

relative dimension one over S, each of whose geometric fiber is con-

nected and of genusb 2 (resp.b1).

(2) We shall say that X is a proper hyperbolic curve with a section (resp.

proper curve with a section) over S if X is a proper hyperbolic curve

(resp. a proper curve) over S, and if the structure morphism has a

section.

Let S be the spectrum of a discrete valuation ring OK , h the generic point of S,

s the closed point of S, K ¼ kðhÞ the field of fractions of OK , k ¼ kðsÞ the

residue field of OK , and p the characteristic of k.
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Definition 4. Let X ! Spec K be a proper smooth morphism of

schemes. We say that X has good reduction if there exists a proper smooth

S-scheme X whose generic fiber Xh is isomorphic to X over K . We refer to X

as a smooth model of X .

Let X ! Spec K be a proper hyperbolic curve. Take a geometric point t

of X nK sep. Then we have the exact sequence of profinite groups

1! p1ðX nK sep; tÞ ! p1ðX ; tÞ ! GK ! 1: ð12Þ

This exact sequence yields the outer Galois action

GK ! Outðp1ðX nK sep; tÞÞ; ð13Þ

where, for a topological group G, OutðGÞ means the quotient group of the

group AutðGÞ of continuous group automorphisms of G divided by the group

InnðGÞ of inner automorphisms of G. Then, we have natural homomorphisms

IK ! GK ! Outðp1ðX nK sep; tÞÞ

! Outðp1ðX nK sep; tÞp
0
Þ ! Outðp1ðX nK sep; tÞ lÞ ð14Þ

for any prime number l0 p.

Oda and Tamagawa gave the following criterion.

Proposition 2 ([Oda1], [Oda2], [Tama] section 5). The following are

equivalent.

(1) X has good reduction.

(2) The outer action IK ! Outðp1ðX nK sep; tÞp
0
Þ defined by (14) is trivial.

(3) There exists a prime number l0 p such that the outer action IK !
Outðp1ðX nK sep; tÞ lÞ defined by (14) is trivial.

(4) There exists a prime number l0 p such that the outer action of IK on

p1ðX nK sep; tÞ l=Gnp1ðX nK sep; tÞ l induced by (14) is trivial for all

natural numbers n.

In fact, this proposition is proved in [Oda1] and [Oda2] when the residue

field of K is of characteristic 0 and K is a number field or a completion of

a number field. In [Tama] Remark 5.4, this proposition is stated for all

discrete valuation field K without proof. Since, at the time of writing, a

proof of this proposition does not seem to be published, we give a proof in

Section 7.

Assume that the scheme X is a proper curve over Spec K and has a section

s : Spec K ! X , and take a geometric point s over s. Since we have the

natural morphism from s to X nK sep, we have the homotopy exact sequence

(12) with respect to the base point s. The section s gives a section of the map
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p1ðX ; sÞ ! GK in the homotopy exact sequence. This induces a homomor-

phism GK ! Autðp1ðX nK sep; sÞÞ, whose composition to Outðp1ðX nK sep; sÞÞ
is the same as the above homomorphism GK ! Outðp1ðX nK sep; sÞÞ in (14).

Therefore, for a prime number l0 p, we obtain the following morphisms

IK ,! GK ! Autðp1ðX nK sep; sÞÞ

! Autðp1ðX nK sep; sÞp
0
Þ

! Autðp1ðX nK sep; sÞ lÞ ! Autððp1ðX nK sep; sÞ lÞ l-unipÞ ð15Þ

by universal property of l-unipotent envelope. Here, the composition

Autðp1ðX nK sep; sÞÞ ! Autððp1ðX nK sep; sÞ lÞ l-unipÞ can be identified with the

morphism

Autðp1ðX nK sep; sÞÞ ! Autðp1ðX nK sep; sÞ l-unipÞ; ð16Þ

which is also induced by universal property of l-unipotent envelope, via the

isomorphism in Proposition 1.

Proposition 3. The following are equivalent.

(1) X has good reduction.

(2) The action of IK on p1ðX nK sep; sÞp
0
defined by (15) is trivial.

(3) The action of IK on p1ðX nK sep; sÞ l-unip defined by (15) and (16) is

trivial.

Proof. Assume that X has good reduction, and let X be a smooth

model of X . Fix a separable closure k sep of k, the henselization Oh
K , and the

strict henselization Osh
K of OK relative to Spec k sep ! Spec k. Let K sep be a

separable closure of the fraction field of Osh
K . Then we have the following

diagram:

X nK K sep ���! X nK ðFrac Oh
KÞ ���! ��� SpecðFrac Oh

KÞ  ��� Spec K sep???y
???y

???y
???y

XnOK
Osh

K XnOK
Oh

K Spec Oh
K Spec Osh

K :

ð17Þ

������! ��������!a::::::::::::::::::: ������!
Since the morphism XnOK

Oh
K ! Spec Oh

K is proper, the unique section s 0

of this morphism is induced by valuative criterion, which is compatible with

vertical arrows of the above diagram and the base change of the section s by

the morphism SpecðFrac Oh
KÞ ! Spec K.

Consider the etale fundamental groups of the schemes in the above

diagram with the geometric points from the scheme Spec K sep (denoted by

h). Then, we have the following commutative diagram of homotopy exact
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sequences of profinite groups

1 �! p1ðX nK K sep; hÞ �! p1ðX nK ðFrac Oh
KÞ; hÞ GFrac Oh

K
1?y ?y ?y

1 �! p1ðXnOK
Osh

K ; hÞ p1ðXnOK
Oh

K ; hÞ p1ðSpec Oh
K ; hÞ �! 1:

����! ���� ����!
����! ����!a:::::::::::

It holds that the first row is an exact sequence by [SGA1] IX Theorem 6.1, and

using the same argument in the proof of [SGA1] IX Theorem 6.1, we can show

that the second row is an exact sequence. This diagram induces the com-

mutative diagram of exact sequences of profinite groups

1 ! p1ðX nK K sep; hÞp
0
! p1ðX nK ðFrac Oh

KÞ; hÞ
ðp 0Þ

GFrac Oh
K

1

# # #
1 ! p1ðXnOK

Osh
K ; hÞp

0
p1ðXnOK

Oh
K ; hÞ

ðp 0Þ p1ðSpec Oh
K ; hÞ ! 1:

���! ��� ���!
���! ���!a::::::::

Here, the profinite group p1ðX nK ðFrac Oh
KÞ; hÞ

ðp 0Þ is the quotient group

p1ðX nK ðFrac Oh
KÞ; hÞ=Kerðp1ðX nK K sep; hÞ ! p1ðX nK K sep; hÞp

0
Þ, and the

profinite group p1ðXnOK
Oh

K ; hÞ
ðp 0Þ is the quotient group p1ðXnOK

Oh
K ; hÞ=

Kerðp1ðXnOK
Osh

K ; hÞ ! p1ðXnOK
Osh

K ; hÞp
0
Þ:

Since the left vertical arrow is an isomorphism and the action of IK
on p1ðXnOK

Osh
K ; hÞp

0
is trivial by the above diagram, the action of IK on

p1ðX nK K sep; hÞp
0
is also trivial.

Assume that the action of IK on p1ðX nK sep; sÞp
0
is trivial. Then, the

action of IK on p1ðX nK sep; sÞ l-unip is trivial by (15) and (16).

Assume that the action of IK on p1ðX nK sep; sÞ l-unip is trivial. By

Proposition 2 or Néron-Ogg-Shafarevich criterion, it is su‰cient to show

that the action of IK on p1ðX nK sep; sÞ l=Gnp1ðX nK sep; sÞ l is trivial for all

natural number n in order to prove that X has good reduction.

The action of IK on p1ðX nK sep; sÞ l-unip is trivial, and we have the

surjective morphism of a‰ne group schemes

p1ðX nK sep; sÞ l-unip !! ðp1ðX nK sep; sÞ=Gnp1ðX nK sep; sÞÞ l-unip ð18Þ

over Ql . It follows that the homomorphism of their a‰ne rings is injective,

so the action of IK on ðp1ðX nK sep; sÞ=Gnp1ðX nK sep; sÞÞ l-unip is trivial.

We have a natural injection (11) in the previous section, by which the

action of IK on p1ðX nK sep; sÞ l=Gnp1ðX nK sep; sÞ l is trivial for all natural

number n. Therefore, X has good reduction by Proposition 2.

Remark 1. In the above proposition, we only used the hypothesis that

X ! Spec K is proper, smooth, geometrically connected and has a rational point,

to prove 1) 2. In particular, we can show the following claim.
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Claim. Let X be a proper smooth K-scheme with geometrically connected

fibers, and x be a closed point of X. Consider KðxÞ-scheme X nK KðxÞ and

the associated Galois action IKðxÞ ! Autðp1ððX nK KðxÞÞnKðxÞKðxÞsep; xÞp
0
Þ.

Here, x is a geometric point over Spec KðxÞ. If X has good reduction, this

action is trivial.

4. Homotopy exact sequence of a‰ne group schemes

In this section, we prove the existence of the homotopy exact sequence

of a‰ne group schemes which is similar to [Wil] Corollary 3.2. Wildeshaus

showed it in the case of characteristic zero by using transcendental method, but

we give an algebraic proof which works also in positive characteristic case.

This exact sequence of a‰ne group schemes plays a crucial role to prove the

main theorem in this paper. We obtain this exact sequence by applying the

argument in [Laz] 1.2 to smooth Ql-sheaves instead of regular integrable

connections.

Definition 5. Let r be a positive integer.

(1) Let X be a connected Noetherian scheme and l be a prime number

invertible on X . We denote the category of smooth Ql-sheaves on

X by EtlðX Þ, which is a Tannakian category over Ql . Then, we

define the its Tannakian subcategory Etar
l ðXÞ (resp. U EtlðXÞ) as the

minimal one which contains all the smooth Ql-sheaves of ranka r

(resp. the trivial smooth Ql-sheaf Ql) and which is closed under

taking subquotients, tensor products, duals, and extensions.

(2) Let f : X ! S be a proper smooth morphism between connected

Noetherian schemes and l be a prime number invertible on S. We

define the Tannakian subcategory Uf Et
ar
l ðX Þ of Etar

l ðX Þ as the

minimal one which contains the essential image of f � : Etar
l ðSÞ !

Etar
l ðXÞ and which is closed under taking subquotients, tensor prod-

ucts, duals, and extensions.

(3) Let f : X ! S be a proper smooth morphism between connected

Noetherian schemes, l be a prime number invertible on S, and s! X

be a geometric point. We write the Tannaka dual of Etar
l ðXÞ, (resp.

U EtlðX Þ, Uf Et
ar
l ðXÞ) with respect to the fiber functor defined by s

as p1ðX ; sÞ l-alg; r (resp. p1ðX ; sÞ l-unip, p1ðX ; sÞ l-rel-unip; r).

When X is a proper smooth variety over a separably closed field, the

category U EtlðX Þ is the same as Uf Et
ar
l ðXÞ, where f is the structure mor-

phism. Thus, in this case the category U EtlðX Þ is a special case of the

category Uf Et
ar
l ðXÞ.
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Let us recall some notions in the theory of Tannakian category. We will

denote the fundamental group of a Tannakian category T over a field k by

pðTÞ (see [Del] § 6). This is an a‰ne group scheme over T, that is, a group

object in the opposite category of the category of rings of Ind T. Moreover,

for f : X ! S and s! X as in Definition 5, s�pðEtar
l ðX ÞÞG p1ðX ; sÞ l-alg; r

(resp. s�pðU EtlðXÞÞG p1ðX ; sÞ l-unip, s�pðUf Et
ar
l ðXÞÞG p1ðX ; sÞ l-rel-unip; r).

Let f : X ! S be a proper, smooth, and geometrically connected mor-

phism with section p between connected Noetherian schemes. We fix a

geometric point s! S, and let Xs be the base change of X by s! S. We

write the morphism Xs ! X by is, and the base changes of f and p by s! S

as f 0 and s 0.

We have functors of Tannakian categories

Etar
l ðSÞ ! 

f �

p �
Uf Et

ar
l ðX Þ !

i �s
U EtlðXsÞ; ð19Þ

which induce homomorphisms

p1ðXs; sÞ l-unip !
is�

p1ðX ; sÞ l-rel-unip; r ! 
f�

p�
p1ðS; sÞ l-alg; r ð20Þ

between their Tannaka duals.

Thanks to [Del], it can be seen that these morphisms of a‰ne group

schemes come from homomorphisms between the fundamental groups

pðUf Et
ar
l ðXÞÞ !

f�
f �pðEtar

l ðSÞÞ; ð21Þ

p�pðUf Et
ar
l ðX ÞÞ  

p�
pðEtar

l ðSÞÞ; ð22Þ

and

pðU EtlðXsÞÞ !
is�

i�s pðUf Et
ar
l ðX ÞÞ: ð23Þ

Definition 6. The relatively l-unipotent fundamental group of X=S with

respect to ð f ; rÞ at p is defined to be the kernel of the morphism (21). This is

an a‰ne group scheme over Etar
l ðSÞ. We denote it by p1ðX=S; r; pÞrel-l-unip.

The morphisms of schemes Xs !
is
X !f S induce homomorphisms

pðU EtlðXsÞÞ �!
is�

i�s pðUf Et
ar
l ðX ÞÞ �!

i �s f�
i�s f
�pðEtar

l ðSÞÞ ð24Þ

of a‰ne group schemes over U EtlðXsÞ. Taking fibers at s, we get

p1ðXs; sÞ l-unip !
is�

p1ðX ; sÞ l-rel-unip; r !f� p1ðS; sÞ l-alg; r: ð25Þ

Since inverse image of objects in Etar
l ðSÞ by f � is ¼ f 0 � s is trivial, the

composition of the above morphisms is trivial. Thus we have the unique

234 Ippei Nagamachi



morphism

p1ðXs; sÞ l-unip ¼ s�pðU EtlðXsÞÞ ! s�p1ðX=S; r; pÞrel-l-unip: ð26Þ

The following theorem is an l-adic etale version of [Laz] Theorem 1.6.

Theorem 2. Let us suppose that the rank of R1f�Ql is ar. Then, the

morphism (26) is an isomorphism.

Since p1ðX ; sÞ l-rel-unip; r ! p1ðS; sÞ l-alg; r is surjective, this is equivalent to

saying that

1! p1ðXs; sÞ l-unip !
is�

p1ðX ; sÞ l-rel-unip; r !f� p1ðS; sÞ l-alg; r ! 1: ð27Þ

is an exact sequence of a‰ne group schemes over Ql .

We start the proof of Theorem 2, following the proof of Lazda given in

[Laz] 1.2. As in the proof of Lazda, it is su‰cient to prove the following by

[Wil] and [EHS]:

: (A) If E A Uf Et
ar
l ðXÞ satisfies that i�s E is trivial, then there exists

F A Etar
l ðSÞ such that EG f �F.

: (B) Let E A Uf Et
ar
l ðXÞ, and let F0 � i�s E denote the largest trivial sub-

object. Then there exists E0 � E such that F0 G i�s E0 as a sub-object

of i�s E.

: (C) For each E A U EtlðXsÞ, there exists F A Uf Et
ar
l ðXÞ and a surjec-

tive homomorphism i�s F! E.

Before proving these assertions, we check that the restrictions of functors

f�;R
1f� : Uf EtlðX Þ ! EtlðSÞ to Uf Et

ar
l ðXÞ ! Etar

l ðSÞ are well-defined.

Definition 7. Let g : Z !W be a proper smooth and geometrically con-

nected morphism between connected Noetherian schemes, and t be a natural

number. For objects E A Ug Et
at
l ðZÞ, we define the notion of ‘‘having uni-

potent classam with respect to ðg; tÞ’’ inductively as follows. If E belongs to

the essential image of g� : Etat
l ðWÞ ! Ug Et

at
l ðZÞ, then we say E has unipotent

classa 1 with respect to ðg; tÞ. If there exists an extension

0!V! E! E 0 ! 0 ð28Þ

with E 0 of unipotent classam� 1 and V of unipotent classa 1, then we say

that E has unipotent classam.

Lemma 1. The functors f�;R
1f� : Uf EtlðXÞ ! EtlðSÞ induce the functors

f�;R
1f� : Uf Et

ar
l ðX Þ ! Etar

l ðSÞ.

Proof. Let E be an element of Uf Et
ar
l ðXÞ whose unipotent class isam.

We use induction on m. For the case m ¼ 1, there exists F A Etar
l ðSÞ such

that f �FGE. Then, f� f
�FGF A Etar

l ðSÞ and R1f� f
�FGR1f�Ql nF A
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Etar
l ðSÞ by projection formula. For the case mb 2, we have an exact

sequence

0!V! E! E 0 ! 0 ð29Þ

with E 0 of unipotent classam� 1 and V of unipotent classa 1. Taking the

long exact sequence

0! f�V! f�E! f�E
0 ! R1f�V! R1f�E! R1f�E

0; ð30Þ

it follows that f�E;R
1f�E A Etar

l ðSÞ by induction hypothesis.

For E A Etar
l ðX Þ (resp. E 0 A Etar

l ðXsÞ) we denote the counit of the

adjunction between f � and f� (resp. f 0� and f 0� ) as cE : f �f�E! E (resp.

c 0
E 0 : f

0�f 0�E
0 ! E 0)

We first verify assertion (A).

Proposition 4. If i�s E is trivial, then cE : f �f�E! E is an isomorphism.

Proof. It is su‰cient to show that the homomorphism:

i�s cE : i�s f
�f�E! i�s E; ð31Þ

which we get by pulling back cE by is, is an isomorphism. By proper base

change theorem,

i�s f
�f�EG f 0�s�f�EG f 0�f 0� i

�
s E; ð32Þ

so what we should show is that c 0
E 0 is an isomorphism for any trivial

E 0 A EtðXsÞ. This follows from the assumption that f is geometrically con-

nected.

We next show assertion (B).

Proposition 5. Let E A Uf Et
ar
l ðXÞ, and let F0 � i�s E denote the largest

trivial sub-object. Then there exists E0 � E such that F0 G i�s E0 as a sub-object

of i�s E.

Proof. Let us denote i�s E as F. We have the following commutative

diagram

F0 F

o

x???c 0F0

x???c 0F

f 0�f 0�F0 ���! f 0�f 0�F:

�������!a::::::::::::::::::::

Since F0 is trivial, c 0F0
is an isomorphism, which we have proved in the proof

of proposition 4. Since f 0�f 0�F is trivial, so is the image of c 0F : f 0�f 0�F!F,
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and then we get the unique homomorphism f 0�f 0�F!F0. Hence F0 is the

image of f 0�f 0�F!F.

By the proof of the previous proposition, f 0�f 0�F!F is obtained by

pulling back cE : f �f�E! E by is. Thanks to exactness of i�s , F0 is the inverse

image of the image of cE.

Finally, we start the proof of assertion (C).

For n A N, we define an object Un A U EtlðXsÞ inductively as follows. Let

U1 be the trivial smooth Ql-sheaf of rank 1 (denoted by Ql). For nb 1, we

will define Un to be the extension of Un�1 by f 0�ðR1f 0� ðU4
n�1ÞÞ

4 corresponding to

the identity under the isomorphisms:

ExtðUn�1; f
0�ðR1f 0� ðU4

n�1ÞÞ
4ÞGExtðQl ;U

4
n�1 n f 0�ðR1f 0� ðU4

n�1ÞÞ
4Þ

GH 1ðXs;U
4
n�1 n f 0�ðR1f 0� ðU4

n�1Þ
4ÞÞ

GR1f 0� ðU4
n�1 n f 0�ðR1f 0� ðU4

n�1Þ
4ÞÞ

GR1f 0� ðU4
n�1Þn ðR1f 0� ðU4

n�1Þ
4Þ

GEndðR1f 0� ðU4
n�1ÞÞ: ð33Þ

Taking higher direct images of the dual of the short exact sequence

0! f 0�ðR1f 0� ðU4
n�1ÞÞ

4! Un ! Un�1 ! 0; ð34Þ

we get the following exact sequence

0! f 0� ðU4
n�1Þ ! f 0� ðU4

n Þ ! R1f 0� ðU4
n�1Þ !

d
R1f 0� ðU4

n�1Þ ! R1f 0� ðU4
n Þ: ð35Þ

Lemma 2. The connecting homomorphism d is the identity.

Proof. The element of

Extð f 0�ðR1f 0� ðU4
n�1ÞÞ;U4

n�1ÞGEndðR1f 0� ðU4
n�1ÞÞ ð36Þ

defined by the extension

0! U4
n�1 ! U4

n ! f 0�ðR1f 0� ðU4
n�1ÞÞ ! 0 ð37Þ

is the identity.

From the fact that, for an extension 0! E!F! f 0�V! 0 of a trivial

smooth Ql-sheaf f 0�V by E, the extension class under the isomorphism

Extð f 0�V;EÞGV4nR1f 0� ðEÞGHomðV;R1f 0� ðEÞÞ ð38Þ
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is nothing but the connecting homomorphism for the long exact sequence

0! f 0� ðEÞ ! f 0� ðFÞ !V! R1f 0� ðEÞ; ð39Þ

the lemma follows.

In particular, any extension of Un�1 by a trivial smooth Ql-sheaf V is

split after pulling back to Un, and f 0� ðU4
n�1ÞG f 0� ðU4

n Þ. We get inductively the

isomorphisms Ql G f 0� ðU4
1 ÞG f 0� ðU4

n Þ for all n.

Let x ¼ p 0ðsÞ, u1 ¼ 1 A ðU1Þx GQl , and choose an element un A ðUnÞx for n

inductively so that ðUnÞx ! ðUn�1Þx sends un to un�1.

Proposition 6. Let F A U EtlðXsÞ be an object of unipotent classam

with respect to ð f 0; rÞ and nbm. Then for any v A Fx, there exists a morphism

a : Un !F which send un to v.

Proof. We copy the proof of [Laz] Proposition 1.17 and [HJ] Proposition

2.1.6. Let F be of unipotent classam. To show the proposition, we use

induction on m. The case m ¼ 1 is trivial. For the case mb 2, choose an

exact sequence

0! E!c F!f G! 0; ð40Þ

with G of unipotent classam� 1 and E of unipotent classa 1. By induction

hypothesis, there exists a morphism b : Un�1 ! G such that fxðvÞ ¼ bxðun�1Þ.
Consider the following pull-back exact sequences of the above extension with

respect to Un �!
nat

Un�1 �!
b

G:

0 ���! E ���! F 00 Un 0����
???y

???y
0 ���! E ���! F 0 ���! Un�1 ���! 0����

???y
???y

0 ���! E F G 0:

����!a:::::::::: ����!

����! �����! ����!
As explained above, the extension of Un by E splits. Fix a section Un !F 00

and let us denote the induced morphism by g : Un !F. Then fxðgxðunÞ � vÞ
¼ 0. By induction hypothesis, there exists g 0 : Un ! E such that g 0xðunÞ ¼
gxðunÞ � v. Then, g� c � g 0 satisfies the condition required for a.

Corollary 1. For all E A U EtlðXsÞ, there exists a surjective homomor-

phism UlN
m ! E for some m;N A N.
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Proof. The assertion follows immediately from the proposition if we take

a basis for Ex.

We will define Wn A Uf Et
ar
l ðXÞ whose restriction to Xs is isomorphic to

Un inductively. Moreover, we will construct an isomorphism f�ðW4
n ÞGQl

and a homomorphism en : p
�W4

n ! Ql such that the composite Ql G f�ðW4
n ÞG

p�f �f�ðW4
n Þ ! p�W4

n !
en Ql is an isomorphism.

We start the induction with W1 ¼ Ql . Let us assume that Wn is defined.

Then, we will define Wnþ1 to be an extension of Wn by the sheaf f �R1f�ðW4
n Þ

4

so that the inverse image of the exact sequence

0! f �ðR1f�ðW4
n ÞÞ

4!Wnþ1 !Wn ! 0 ð41Þ

to Xs is isomorphic to

0! f 0�ðR1f 0� ðU4
n ÞÞ

4! Unþ1 ! Un ! 0: ð42Þ

Now consider the extension group

ExtðWn; f
�ðR1f�ðW4

n ÞÞ
4ÞGH 1ðX ;W4

n n f �ðR1f�ðW4
n ÞÞ

4Þ: ð43Þ

Let us denote W4
n n f �ðR1f�ðW4

n ÞÞ
4 as E. The Leray spectral sequence for E

associated to f : X ! S gives us the 5-term exact sequence

0! H 1ðS; f�ðEÞÞ ! H 1ðX ;EÞ ! H 0ðS;R1f�ðEÞÞ

! H 2ðS; f�ðEÞÞ ! H 2ðX ;EÞ: ð44Þ

After rewriting the objects in the above exact sequence by projection formulas,

the isomorphism (43) and induction hypothesis, we obtain the following exact

sequence

0! H 1ðS; ðR1f�ðW4
n ÞÞ

4Þ ! ExtðWn; f
�ðR1f�ðW4

n ÞÞ
4Þ

! EndðR1f�ðW4
n ÞÞ ! H 2ðS;R1f�ðW4

n Þ
4Þ

! H 2ðX ;W4
n n ðR1f�ðW4

n ÞÞ
4Þ: ð45Þ

The isomorphism Ql G f�ðW4
n ÞG p�f �f�ðW4

n Þ ! p�W4
n !

en Ql induces an

isomorphism

HiðS; ðR1f�ðW4
n ÞÞ

4ÞGHiðS; f�ðW4
n Þn ðR1f�ðW4

n ÞÞ
4Þ

! HiðS; p�W4
n n ðR1f�ðW4

n ÞÞ
4Þ

! HiðS; ðR1f�ðW4
n ÞÞ

4Þ: ð46Þ
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Since this is the same as the following isomorphism

HiðS; ðR1f�ðW4
n ÞÞ

4Þ ! HiðX ;W4
n n f �ðR1f�ðW4

n ÞÞ
4Þ

! HiðS; p�W4
n n ðR1f�ðW4

n ÞÞ
4Þ

! HiðS; ðR1f�ðW4
n ÞÞ

4Þ; ð47Þ

the homomorphisms

H 1ðS; ðR1f�ðW4
n ÞÞ

4Þ ! ExtðWn; f
�ðR1f�ðW4

n ÞÞ
4Þ

H 2ðS; ðR1f�ðW4
n ÞÞ

4Þ ! H 2ðX ;W4
n n ðR1f�ðW4

n ÞÞ
4Þ

in the exact sequence (45) split. Therefore the morphism ExtðWn;

f �ðR1f�ðW4
n ÞÞ

4Þ ! EndðR1f�ðW4
n ÞÞ have a unique section corresponding to

the retraction, so in the commutative diagram

ExtðWn; f
�ðR1f�ðW4

n ÞÞ
4Þ ���! ExtðUn; f

0�ðR1f 0� ðU4
n ÞÞ

4Þ???y
����

EndðR1f�ðW4
n ÞÞ EndðR1f 0� ðU4

n ÞÞ;����������!
the element id A EndðR1f�ðW4

n ÞÞ canonically lifts to ExtðWn; f
�ðR1f�ðW4

n ÞÞ
4Þ

by the section. Then, Wnþ1 is defined to be the extension of Wn by

f �ðR1f�ðW4
n ÞÞ

4 corresponding to this element. Since this is sent to id A
EndðR1f 0� ðU4

n ÞÞ, which corresponds to the extension class of Unþ1, we have

natural isomorphism i�s Wnþ1 GUnþ1.

To complete the induction, it is su‰cient to show that f�ðW4
nþ1ÞG f�ðW4

n Þ
and that there exists a morphism p�W4

nþ1 ! Ql as in the induction hypothesis.

By taking fibers at s and applying proper base change theorem, we can prove

the first claim. For the second, we consider the following exact sequences

0 ���! p�W4
n p�W4

nþ1 R1f�ðW4
n Þ ���! 0???y

???y
����

0 Ql ðpushoutÞ ���! R1f�ðW4
n Þ ���! 0;

����! ����!

�����! �����!a::::::::::::

where the left vertical arrow is en. Then, the lower exact sequence splits since

the following diagram

ExtððR1f�ðW4
n ÞÞ; p�W4

n Þ  ��� ExtðWn; f
�ðR1f�ðW4

n Þ
4ÞÞ???y

???y
ExtððR1f�ðW4

n ÞÞ;QlÞ H 1ðS;R1f�ðW4
n ÞÞ
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commutes and the right vertical arrow sends the extension class defined by

Wnþ1 to 0. Fixing its retraction, we have a homomorphism p�W4
nþ1 ! Ql such

that the composition p�W4
n ! p�W4

nþ1 ! Ql is equal to en. Now the second

assertion follows immediately from the fact that the diagram

f�W
4
nþ1 ���! p�f �f�W

4
nþ1 ���! p�W4

nþ1x???
x???

x???
Ql f�W

4
n p�f �f�W

4
n p�W4

n Ql����! ����! ����! ����!����
���!

 ���
����

commutes.

These arguments and Corollary 1 show the following proposition, which is

assertion (C).

Proposition 7. For all F A U EtlðXsÞ, there exists E A Uf Et
ar
l ðX Þ and a

surjective homomorphism i�s E!F.

5. Extension of smooth Ql-sheaves

In this section, we prove the results similar to [Dri] 5.1 when the base

scheme is a discrete valuation ring. In [Dri], they are proved when the base

scheme is Z and we check that they remain valid also in our situation.

Throughout this section, K is a discrete valuation field with valuation ring

OK and residue field k of characteristic pb 0.

Lemma 3. Let X be a regular scheme of finite type and flat over OK,

D � X the special fiber, and let us suppose that the closed subset D is an

irreducible reduced divisor of X. Let G be a finite group, and f : Y ! XnD
a G-torsor ramified at D. Then there exists a closed point x A D and a

1-dimensional subspace L of the tangent space TxX ¼def ðmx=m
2
xÞ
�

with the

following property:

(C) if C � Xx is any regular 1-dimensional closed subscheme tangent to

L such that C 6� Dx then the pullback of f : Y ! XnD to Cnfxg is ramified

at x.

Here x is a geometric point corresponding to x and Xx, Dx are the strict

Henselizations.

Proof. Let Y be the normalization of X in the ring of fractions of Y ,

and p : Y ! X be the canonical morphism. Let us denote the generic point of

D by xX and choose a ramified point xY in Y over xX .

Let us consider the quotient scheme Y=I of Y by the inertia subgroup I of

the decomposition group at xY and the open subscheme X 0 of Y=I obtained by

removing divisors over xX except for the image of xY .
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First we prove the lemma in the case X ¼ X 0, so we can assume that the

fiber p�1ðxX Þ is equal to fxYg. Then G is solvable and so we can assume that

jGj is a prime number q by replacing Y by Y=H, where H � G is a normal

subgroup of prime index.

The extension of the rings of fractions of Y and X is finite separable, so

p is a finite morphism. Since Y is finite type over OK , its regular locus is

open by [EGA] Corollaire 6.12.6 and it contains xY . To prove the lemma we

can replace X by any open subscheme of X which contains xX . Thus we can

assume that Y is regular by shrinking X because p is a closed map.

Set ~DD :¼ ðp�1ðDÞÞred. Since ~DD is integral and finite type over OK , the

regular locus of ~DD is open and we may assume that ~DD and D are regular.

Then, we can prove the theorem for any closed point x A D. The assumption

I ¼ G means that the action of G on ~DD is trivial and the morphism pD : ~DD! D

is purely inseparable. Let e1 be its degree and let e2 be the multiplicity of ~DD in

the divisor p�1ðDÞ. Then e1e2 ¼ jGj ¼ q, so e1 equals 1 or q.

Case 1: e1 ¼ 1, e2 ¼ q. Since e1 ¼ 1, the morphism pD : ~DD! D is an

isomorphism. If L 6� TxD and C � Xx is any regular 1-dimensional closed

subscheme tangent to L, TxC is transversal to the image of the tangent map

Tp�1ðxÞY ! TxX . Since the scheme C �Y Y is regular and the set p�1ðxÞ is a

point, the pullback of p : Y ! XnD to Cnx is indeed ramified at x.

Case 2: e1 ¼ q, e2 ¼ 1. Fix any closed point y A ~DD, and let x be

pDðyÞ. If the extension of their residue fields kðyÞ � kðxÞ is nontrivial, it

is purely inseparable, so any L satisfies the condition (C). Let us assume that

kðyÞG kðxÞ. Let us denote the maximal ideal of OX ;x, OD;x, OY ;y, O ~DD;y as

mx, nx, my, ny and choose a local defining equation f A OX ;x of D. Since

e2 ¼ 1, OY ;y=ð f ÞGO ~DD;y. Then, we have the following commutative diagram

with horizontal lines exact:

0 ���! ðð f Þ þm2
xÞ=m2

x ���! mx=m
2
x ���! nx=n

2
x ���! 0???y

???y
???y

0 ���! ðð f Þ þm2
yÞ=m2

y ���! my=m
2
y ���! ny=n

2
y ���! 0:

The left vertical arrow is an isomorphism, but mx=m
2
x ! my=m

2
y is not

an isomorphism because p is not etale at y, so the right vertical arrow

is not an isomorphism. If we choose L � TxX with L � TxD and L 6�
ImðTy

~DD! TxDÞ, we can finish the argument just as in Case 1 since the

subspace ImðTy
~DD! TxDÞ of TxD is of codimension 1.

So we finished the proof in the case X ¼ X 0. Finally we prove the lemma

in general case. By the lemma for X 0, we can take a closed point x 0 in the

topological closure of the image of xY in X 0 and a 1-dimensional subspace L 0

of Tx 0X
0 which satisfy the condition (C) for X 0. Since a closed point of the
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special fiber of X 0 is a closed point of the special fiber of Y=I , if we define x to

be the image of x 0 by the morphism Y=I ! X , it is a closed point of D.

Then, also, since X 0 ! X is etale by the Zariski-Nagata purity theorem [SGA1]

X Theorem 3.4, Tx 0X
0 ¼ TxX nkðxÞ kðx 0Þ. By the argument of taking L 0 up

to the previous paragraph, we see that one can take the 1-dimensional subspace

L 0 of Tx 0X
0 in order that it comes from a 1-dimensional subspace L of TxX .

Then we see that the condition (C) is satisfied for this x and L. So we finished

the proof of the lemma in general case.

Corollary 2. Let X be a scheme smooth over OK and U � X the generic

fiber. Let E a smooth Ql -sheaf on U, where l is a prime number not equal to

the characteristic of k. Suppose that E does not extend to a smooth Ql -sheaf

on X. Then there exists a closed point x A XnU and a 1-dimensional subspace

L � TxX with the following property:

(*) if C is a Dedekind scheme of finite type over OK, c A C a closed point

such that the extension kðcÞ � kðxÞ is separable, and j : ðC; cÞ ! ðX ; xÞ a

morphism with j�1ðUÞ0q such that the image of the tangent map TcC !
TxX nkðxÞ kðcÞ equals LnkðxÞ kðcÞ then the pullback of E to j�1ðUÞ is ramified

at c.

Proof. By the Zariski-Nagata purity theorem [SGA1] X Theorem 3.4, E

is ramified along some irreducible divisor D � X , D \U ¼q. Now use the

above lemma.

We can also show the above corollary for an ind-smooth Ql-sheaf E on U .

In fact, assume that E does not extend to an ind-smooth Ql-sheaf on X . We

can write E as inductive system ðEiÞi A I , where each of its structure morphisms

is injective. Then, there exists i0 A I such that Ei0 does not extend to a smooth

Ql-sheaf on X .

6. Proof of the main theorem

Definition 8. Let S be a scheme and X a scheme over S.

(1) We shall say that X is a proper polycurve (of relative dimension n)

over S if there exists a positive integer n and a (not necessarily

unique) factorization of the structure morphism X ! S

X ¼ Xn ! Xn�1 ! � � � ! X1 ! X0 ¼ S ð48Þ

such that, for each i A f1; . . . ; ng, Xi ! Xi�1 is a proper curve (cf.

Definition 3; recall that the genus of the curve is 00). We refer to

the above factorization of X ! S as a sequence of parametrizing

morphisms.
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(2) We shall say that X is a proper polycurve with sections (of relative

dimension n) over S if X is proper polycurve (of relative dimension n)

over S, whose parametrizing morphisms can be chosen so that for all

i A f1; . . . ; ng, Xi ! Xi�1 is a proper curve with section (cf. Definition

3). We refer to such a sequence of parametrizing morphisms as a

sequence of parametrizing morphisms with sections.

(3) Let X be a proper polycurve with sections of relative dimension n

over S. For a sequence of parametrizing morphisms with sections

of this,

S : X ¼ Xn ! Xn�1 ! � � � ! X1 ! X0 ¼ S; ð49Þ

we call the maximum of the genera of fibers of Xi ! Xi�1 the

maximal genus gS of S. We call the minimum of the maximal

genera of sequences of parametrizing morphisms with sections of X

the maximal genus gX of X .

Before proving the main theorem, we prove a lemma.

Definition 9. For a profinite group G, let us consider the smallest

Tannakian subcategory of the category of finite dimensional continuous

G-representations over Ql which contains all the finite dimensional continuous

G-representations over Ql of dimensiona r and which is closed under taking

subquotients, tensor products, duals, and extensions. We write the Tannaka

dual of the Tannakian subcategory with respect to the forgetful functor as

Gl-alg; r. This definition is compatible with Definition 5.3 if G is the etale

fundamental group of X .

Lemma 4. Let S be a connected Noetherian scheme and take a geometric

point s over S. Let r be a natural number. Then, for a prime number l

which is invertible on S, the morphism p1ðS; sÞ l-alg; r ! ðp1ðS; sÞp
0
Þ l-alg; r is an

isomorphism, if p is 0 or a prime number which does not divide any of l h � 1

ð1a ha rÞ.

Proof. For any continuous representation of p1ðS; sÞ over Ql whose

rank is ar, the action of p1ðS; sÞ factors through p1ðS; sÞp
0
since GLðr;ZlÞG

lim � GLðr;Z=l nZÞ and the order of GLðr;Z=l nZÞ is l ðn�1Þr
2ðl r � 1Þðl r � lÞ . . .

ðl r � l r�1Þ.
Let V1, V2 be finite dimensional continuous representations of p1ðS; sÞ over

Ql whose actions of p1ðS; sÞ factor through p1ðS; sÞp
0
. It is easy to see that

any subquotient of V1, V1 nV2, and V4
1 are p1ðS; sÞp

0
-representations. What

we should show is for any extension V of p1ðS; sÞ-representation

0! V1 ! V ! V2 ! 0; ð50Þ
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the action factors through p1ðS; sÞp
0
. Thus it is su‰cient to show the image

Imðp1ðS; sÞ ! Aut VÞ is a pro-p 0 group. It follows from the fact that the

image of the homomorphism

Imðp1ðS; sÞ ! Aut VÞ ! Aut V1 �Aut V2 ð51Þ

is pro-p 0 and its kernel is pro-l. Therefore p1ðS; sÞ l-alg; r and ðp1ðS; sÞp
0
Þ l-alg; r

are isomorphic.

Let K be a discrete valuation field with valuation ring OK and residue field

k of characteristic pb 0. Let X be a scheme of finite type geometrically

connected over K . For any closed point x A X , let KðxÞ be the residue field of

x and GKðxÞ the absolute Galois group of KðxÞ. Choose a valuation ring OKðxÞ
of KðxÞ over OK and let IKðxÞ be the inertia subgroup of OKðxÞ (which is well-

defined up to conjugation). Because x is KðxÞ-rational, p1ðX nKðxÞsep; xÞp
0

admits an action (not an outer action) of GKðxÞ. Note that the triviality of the

action of inertia is independent of its choice.

Theorem 3. Assume that X is a proper polycurve with sections over K and

g ¼ gX is the maximal genus of X. Consider the following conditions.

: (A) X has good reduction.

: (B) The action of IKðxÞ on p1ðX nKðxÞsep; xÞp
0
is trivial for any closed

point x A X, valuation ring OKðxÞ of KðxÞ over OK, and geometric point x

over Spec KðxÞ.
Then, we have (A)) (B). If we assume that p ¼ 0 or p > 2gþ 1, (B)) (A)

follows.

Proof. From Remark 1, (A)) (B) follows. Let us prove (B)) (A).

Fix a sequence of parameterizing morphisms with sections

X ¼ Xn �! �
fn

sn

Xn�1 �! �
fn�1

sn�1
� � � �! �

fiþ1

siþ1
Xi �! �

fi

si

Xi�1 �! �
fi�1

si�1
� � � �! �

f2

s2

X1 �! �
f1

s1

X0 ¼ Spec K

of X ! Spec K , whose maximal genus is g.

We will show that Xn has good reduction by induction on n. For n ¼ 1,

it is proved in Proposition 3. Now we assume that nb 2. For any closed

point y A Xn�1, the natural surjection p1ðXn nKðxÞsep; yÞp
0
! p1ðXn�1 n

KðxÞsep; yÞp
0
makes the action of IKðyÞ on p1ðXn�1 nKðxÞsep; yÞp

0
trivial, where

y is a geometric point above y. Moreover, the above sequence of parameter-

izing morphism gives the condition of Xn�1 ! Spec K about maximal genus.

Therefore, we may assume that we have a smooth model Xn�1 of Xn�1.

Fix a prime number l such that p does not divide any of l h � 1

(1a ha 2g). Note that there exists such a prime number by the theorem

on arithmetic progressions and the assumption p > 2gþ 1. For any closed

point x A Xn�1 and any geometric point x over x, we have an exact sequence
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of a‰ne group schemes

1! p1ðXn �Xn�1 x; xÞ
l-unip ! p1ðXn �Spec K x; xÞ l-rel-unip;2g

! p1ðXn�1 �Spec K x; xÞ l-alg;2g ! 1 ð52Þ

by Theorem 2.

Now we consider the diagram

Xn �Xn�1 KðXn�1Þ Xn Xn X

s 0n

x???
???yf 0n sn

x???
???yfn

Spec KðXn�1Þ Xn�1 ���! Xn�1  ��� Spec OXn�1;x

����! ::::::::::::b a::::::::::::::::::

�����!
::::::::: b

::::::::: b

where KðXn�1Þ is the function field of Xn�1, x is the generic point of the special

fiber Xn�1nXn�1, f 0n , s
0
n are the base change of fn, sn respectively, and OXn�1;x

is the local ring at x. What we should show is that there exist a proper

hyperbolic curve Xn over Xn�1 whose base change by Xn�1 ! Xn�1 is iso-

morphic to Xn. Thanks to [Mor], it is su‰cient for this to show that there

exists a proper hyperbolic curve X over Spec OXn�1;x whose base change by

Spec KðXn�1Þ ! Spec OXn�1;x is isomorphic to Xn �Xn�1 KðXn�1Þ. Fix an iner-

tia subgroup I � GKðXn�1Þ at x and a geometric point t of Xn �Xn�1 KðXn�1Þ
above Spec KðXn�1Þ. To complete the proof, it comes down to show that the

action of I on p1ðXn �Xn�1 t; tÞ
l-unip is trivial by Proposition 3.

Let us denote the morphism Spec KðXn�1Þ ! Xn�1 as i. Then, we have

the following exact sequences of a‰ne group schemes over Eta2g
l ðKðXn�1ÞÞ:

0 Ker f 0n� �! s 0�n pðUf 0n Eta2g
l ðXn �Xn�1 KðXn�1ÞÞÞ �!f 0n� pðEta2g

l ðSpec KðXn�1ÞÞÞ �! 0?y ?y ?y
0 �! i � Ker fn� i �s�npðUfn Et

a2g
l ðXnÞÞ i �pðEta2g

l ðXn�1ÞÞ 0:

��!

������! ���������!i �ð fn�Þ ����!
By Theorem 2, Ker f 0n� and i� Ker fn� are isomorphic and their fibers at t

are isomorphic to p1ðXn �Xn�1 t; tÞ
l-unip. Let us denote the ind-smooth Ql-sheaf

on Xn�1 corresponding to Ker fn� by E. To show the triviality of the action of

I on p1ðXn �Xn�1 t; tÞ
l-unip, it is su‰cient to prove that E extends to Xn�1. To

show this, we consider the following claim.

Claim. Let x be a closed point in Xn�1nXn�1 and OL be any discrete

valuation ring over OK whose field of fraction L is a finite extension over K .

Then, for every morphism Spec OL ! Xn�1 over OK sending the closed point

y A Spec OL to x, EjSpec L is unramified at y.

We prove the claim. Let us define the valuation ring OKðx 0Þ of the residue

field Kðx 0Þ at the image x 0 of the generic point of OL by OKðx 0Þ ¼ OL \ Kðx 0Þ.
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By condition (B) and Lemma 4, the action of I on p1ðXn �Spec K x 0; x 0Þ l-rel-unip;2g
is trivial. Therefore for OKðx 0Þ, this claim follows from (52), and so is for

OL.

Finally, we prove that E extends to Xn�1. By the above claim and

Corollary 2, it su‰ces to show that for all closed point x in Xn�1nXn�1 and for

all 1 dimensional linear subspace M � TxXn�1 there exists a discrete valuation

ring OL over OK whose field of fraction L is a finite extension over K and OK -

morphism Spec OL ! Xn�1 which induces the isomorphism from the tangent

space of the closed point y of Spec OL to M. Let us denote the maximal ideal

of the local ring OXn�1;x as mx and the n� 1 dimensional linear subspace of

mx=m
2
x annihilated by M as N. Let us choose a regular system of parameter

ft1; . . . ; tng of mx so that the image of ft1; . . . ; tn�1g becomes a basis of N.

Case 1: If the image of the maximal ideal of OK to mx=m
2
x is not

contained in N, the quotient ring OXn�1;x=ðt1; . . . ; tn�1Þ works as OL.

Case 2: If the image of the maximal ideal of OK to mx=m
2
x is contained

in N, we may assume that t1 ¼ $� t2n . Here, $ is a generator of the maximal

ideal of OK . Then, the quotient ring OXn�1;x=ðt1; . . . ; tn�1Þ works as OL.

7. Appendix

In this section, we give a proof of Proposition 2 which we could not find

in literature. Let us restate the proposition.

Let S be the spectrum of a discrete valuation ring OK , h the generic point

of S, s the closed point of S, K ¼ kðhÞ the fractional field of OK , k ¼ kðsÞ the
residue field of OK , and p the characteristic of k.

Consider a proper hyperbolic curve X ! Spec K and take a geometric

point t over X nK sep.

Proposition 8 ([Oda1], [Oda2], [Tama] section 5). The following are

equivalent.

(1) X has good reduction.

(2) The outer action IK ! Outðp1ðX nK sep; tÞp
0
Þ defined by (14) is trivial.

(3) There exists a prime number l0 p such that the outer action IK !
Outðp1ðX nK sep; tÞ lÞ defined by (14) is trivial.

(4) There exists a prime number l0 p such that the outer action of IK on

p1ðX nK sep; tÞ l=Gnp1ðX nK sep; tÞ l induced by (14) is trivial for all

natural numbers n.

We can show 1) 2 as in the proof of Proposition 3, and the assertion that

2) 3) 4 is trivial. To show 4) 1, we may assume that the Jacobian of X

has good reduction and that X has bad reduction as in [Oda2]. Then, we have
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the outer action of the absolute Galois group:

rlðmod mÞ : IK ! Out p1ðX nK sep; tÞ l=Gmþ1p1ðX nK sep; tÞ l :

Theorem 4. Under the above assumption, the homomorphism

rlðmod 2Þ : IK ! Out p1ðX nK sep; tÞ l=G3p1ðX nK sep; tÞ l

is trivial, and the homomorphism

rlðmod 3Þ : IK ! Out p1ðX nK sep; tÞ l=G4p1ðX nK sep; tÞ l

by factoring through IK ! I lK ! Out p1ðX nK sep; tÞ l=G4p1ðX nK sep; tÞ l , defines
the injective homomorphism,

r 0l ðmod 3Þ : I lK ! Out p1ðX nK sep; tÞ l=G4p1ðX nK sep; tÞ l :

Let us denote the stable model of X by X and suppose that the special

fiber has n nodes x1; . . . ; xn. To show Theorem 4, we may assume that OK is a

complete discrete valuation ring and k is an algebraically closed field. Let us

construct a two-dimensional family of stable curves. Consider the classifying

morphism of X

clX : SpecðOKÞ !Mg:

Here, Mg is the moduli stack of stable curves of genus g over Zp. We write

the induced morphism SpecðkÞ !Mg as k. As a regular system of parameters

of the strict henselian local ring Spec Osh
Mg;k

at k, we can choose 3g� 2 elements

p;T1; . . . ;T3g�3. We can assume that the local equation of the singularity ~xxi
of the universal family Cg over xi is given by

XiYi ¼ Ti ð1a ia nÞ:

If we write the local equation of xi as

X 0i Y
0
i ¼ ai ð00 ai A pOKÞ;

where p is a uniformizer of OK , the local homomorphism Osh
Cg; ~xxi
! Osh

X;xi
sends

Xi, Yi and Ti to uiX
0
i , u

�1
i Y 0i and ai by [Moch3] § 3.7, § 3.8 and [Kato] Lemma

2.1, Lemma 2.2. Here, ui is a unit in Osh
X;xi

:

Let us consider the ring

R ¼ OK ½½t�� ðchar K ¼ 0Þ
WðkÞ½½t�� ðchar K ¼ pÞ

�

and the natural morphism R! OK which sends t to p. Here, WðkÞ is the

Witt ring for k.
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We write the local homomorphism Osh
~MMg; ~kk
! OK induced by the natural

morphism ~kk : Spec k ! Spec OK !Mg �Zp
Spec R ¼: ~MMg as ~ff. The elements

of Osh
~MMg; ~kk

p; t;T1; . . . ;T3g�3 ðchar K ¼ 0Þ
p; t;T1; . . . ;T3g�3 ðchar K ¼ pÞ

�

become a regular system of parameters.

Choose an element ~aai A R so that its image in OK is equal to ai if 1a ia n

and the image of Ti in OK if nþ 1a i, and set Ui ¼ Ti � ~aai. The subset of

Osh
~MMg; ~kk

p; t;U1; . . . ;U3g�3 ðchar K ¼ 0Þ
p; t;U1; . . . ;U3g�3 ðchar K ¼ pÞ

�

becomes a regular system of parameters again. Then, it holds that

Ui A Kerð ~ffÞ. We write the quotient ring Osh
~MMg; ~kk

=ðU1; . . . ;U3g�3Þ as A and the

induced homomorphism A! OK as c. If we denote the field of fraction of

the strict henselization Ash
ðtÞ of AðtÞ by L, then we get the following commutative

diagram.

Spec L ���! Spec A½1=t�  ��� Spec K???y
???y

???y
Spec Ash

ðtÞ Spec A Spec OK����!  ����
Let us recall Abhyankar’s lemma.

Proposition 9. Let K, L be an separable closure of K, L. Then we have

the natural outer isomorphisms

GalðL=LÞp
0
G p1ðSpec A½1=t�Þp

0
GGalðK=KÞp

0
:

Let us start the proof of Theorem 4. Let us write the local monodromy

homomorphism as

r : GalðK=KÞ ! Out p1ðX nK ; tÞ l :

Since GalðK=KÞ acts trivially on the abelianization p1ðX nK ; tÞ l;ab, r induces

the homomorphism GalðK=KÞ l ! Out p1ðX nK ; tÞ l : By Proposition 9, we

have the morphism

p1ðSpec A½1=t�Þ ! p1ðSpec A½1=t�Þ l ! Out p1ðX nK ; tÞ l ;

which is compatible with the isomorphisms of Proposition 9 and the mono-

dromy homomorphism

r0 : GalðL=LÞ ! Out p1ðYnL; xÞ:
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Here, we write the restriction of the curve Cg to the scheme Spec A as Y and a

geometric point of the curve YnL as x. It hold that ~aai is not equal to 0 in L,

so YnL is smooth over Spec L. Since the residue characteristic of Spec Ash
ðtÞ

is 0, this theorem follows from the transcendental method in [Oda2].
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