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Abstract. A strongly nonperiodic tiling is defined as a tiling that does not admit

infinite cyclic symmetry. The purpose of this article is to construct, up to isomorphism,

uncountably many strongly nonperiodic hyperbolic tilings with a single vertex config-

uration by a hyperbolic rhombus tile. We use a tile found by Margulis and Mozes [5],

which admits tilings, but no tiling with a compact fundamental domain.

1. Introduction

In this paper, we are concerned with tilings in the hyperbolic plane H in

the Poincaré model. We fix a finite set of hyperbolic polygons whose element

is called a prototile. A tiling is a covering of H by prototiles and their images

by isometry, without interior overlaps. Hereafter we always assume that the

tiling is edge to edge, that is, every edge of the prototile exactly matches with

the one of the other prototiles in the tiling.

We give several definitions (see for e.g., [1, 2]). A patch P is defined to

be a set P ¼ fTaga AA of finitely many prototiles so that
S

a AA Ta is simply

connected. A vertex configuration of a vertex x is a patch P ¼ fTaga AA
ðx A TaÞ having minimal cardinality such that x is in the interior of

S
a AA Ta.

A tiling is called weakly nonperiodic if it does not admit a compact fundamental

domain as a quotient by its symmetry group. A tiling is strongly nonperiodic if

it has no infinite cyclic symmetry. Weakly aperiodic prototiles are defined to

be sets of prototiles that admit a tiling, but none with a compact fundamental

domain. Strongly aperiodic prototiles are defined to be sets of tiles that admit

a tiling, but none with infinite cyclic symmetry. This distinction of weak/

strong non-periodicity of hyperbolic tiling emerged from the pioneering work

by R. Penrose [6], who gave a nonperiodic tiling in H by a weakly aperiodic

prototile.

A tiling is Archimedean if every prototile in the set is a regular polygon

and all vertex configurations are congruent. In the Euclidean case, it is well
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known that there are exactly 11 Archimedean tilings, all of which are periodic

and uniform, that is, all vertex configurations are congruent by the symmetry

group of the tiling [3]. Because hyperbolic plane has more freedom than

Euclidean one, we may not expect such an easy classification. Goodman-

Strauss [2] gave a construction of uncountably many nonperiodic Archimedean

tilings by two prototiles: a regular pentagon and an equilateral triangle1. In

this paper we are interested in presenting a further curious example: strongly

nonperiodic tilings by using a single rhombus (not a regular polygon) and a

single vertex configuration. This result suggests a di‰culty with the above

classification.

We call the following procedure for laying tiles the ringed expansion (cf. [4]

in the case of the Euclidean plane): First, we prepare vertex configurations

to be associated. Starting from a patch, we then associate a vertex config-

uration to each vertex in the boundary of the patch. If we can compatibly

associate vertex configurations to all vertices in the boundary, we get another

larger patch. We call this larger patch the 1st expanded patch. We define

inductively the k-th expanded patch to be a patch obtained by associating

compatibly vertex configurations to all verties in the boundary of the ðk � 1Þ-th
expanded patch for k ¼ 2; 3; . . . . And we say that the k-th ringed expansion is

complete when the k-th expanded patch is obtained. If a similar expansion can

be repeated ad infinitum, we obtain a tiling. Each step of the expansion can

be represented by a word of angles in the boundary of the patch.

We use a weakly aperiodic prototile found by Margulis and Mozes [5].

In general, it is di‰cult to construct a tiling with the desired symmetry for

a given prototype. Using the ringed expansion, we construct strongly non-

periodic hyperbolic tilings with a trivial symmetry group:

Theorem 1. There exist uncountable many strongly nonperiodic hyperbolic

tilings with only one vertex configuration by a weakly aperiodic prototile.

To prove the theorem, we will use a symbolic expression called substitution

rules to specify how the ringed expansion is performed in the next step.

2. Proof of Theorem

In [5], Margulis and Mozes show Lemma that a prototile consisting of

a single tile whose area is not a rational multiple of p is weakly aperiodic.

By using Lemma they construct a weakly aperiodic prototile which consists

of a single hyperbolic rhombus tile as shown in Figure 1. In Figure 1, the

1He also pointed out that it is not known whether there is a set of weakly aperiodic prototiles

consisting only of regular polygons.
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symbol b or g denotes a vertex with angle b ¼ ð2�
ffiffiffi
2

p
Þp=6 or g ¼

ffiffiffi
2

p
p=7,

respectively. Note that 6b þ 7g ¼ 2p is the only Z-linear relation among b, g,

and p. We use this hyperbolic rhombus tile. We prepare 14 symbols:

b; g; bb; bg; gb; gg; bbb; bbg; bgb; bgg; gbb; gbg; ggb and ggg;

where a, ab, or abc denotes a vertex with degree 2, 3, or 4, respectively in the

boundary of the patch. For example, bbg denotes the vertex with degree 4 in

the boundary where the angles b, b, and g gather counterclockwise, as shown in

Figure 2.

We use the vertex configuration with the center ðb; g; b2; g; b3; g5Þ as shown
in Figure 3. And, for convenience, we add indices �1 –�13 as shown in Figure

3. Let C ¼ f�1 ; . . . ;�13 g be a set of the indices, and an index in C is called a

color.

When we associate a vertex configuration to a vertex in the boundary of

a patch, we add colors to the symbols of the angles as they appear in the

Fig. 2. The vertex bbg with degree 4Fig. 1. Hyperbolic rhombus tile

Fig. 3. The vertex configuration
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boundary in order to describe this rule in a symbolic manner. For example,

in Figure 4, we associate the vertex configuration by overlapping the vertex bg

in the boundary of a patch with colors �4 �5 . For a symbol at a vertex, there

might be several ways to associate the vertex configuration. Adding colors as

in Figure 4 is designated by bg ¼ �4 �5 , which we call a substitution rule.

To obtain a tiling on the hyperbolic plane by ringed expansion, we have to

associate the vertex configuration to all vertices in the boundary of a patch.

An indexed tile is a tile for which all the angles are assigned colors in C.

Hereafter clockwise (or counterclockwise) order is defined with respect to the

curve that gives the boundary of a patch, being homeomorphic to a ball. We

consider specific indexed tiles a and a as shown in Figure 5, that is, an indexed

a has indices �4 �2 �3 �10 in clockwise order and an indexed a has indices

�4 �2 �3 �11 in clockwise order.

We start the ringed expansion from one a. Because of the vertex config-

uration in Figure 3, we know the result of the first ringed expansion is as

shown in Figure 6. Note that we did not yet assign colors to the angles in

the boundary of this patch. We call such tiles incomplete. The second ringed

expansion is specified by assigning indices to the incomplete tiles appearing at

the boundary of the patch in Figure 6.

Fig. 4. A substitution rule

Fig. 5. Indexed tiles a and a Fig. 6. The patch of first step
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Our strategy is to construct a tiling, as shown in Figure 11, which has

a sequence of a and a connecting at angles g. We call this sequence (of a

and a) a spiral sequence. The adjacent tiles in this sequence are conjoined

by two angles, one angle with color �2 and the other with either �10 or �11 .
Furthermore, we require that all a tiles in the tiling should be contained in

the spiral sequence, that is, the outside of the spiral sequence must consist of

tiles other than a. Hereafter, we construct such a tiling by successive ringed

expansion.

Let us start from one a and assume that its k-th ringed expansion under

the above constraints is complete. All vertices in the boundary are of degree 2

or 3, and any vertex of degree 2 is isolated, that is, both the neighboring

vertices are of degree 3 (for example, see Figure 6). The k-th expanded patch

contains a spiral sequence beginning with the initial a. Then, on the boundary

of the k-th expanded patch, there is an incomplete tile in conjunction with the

spiral sequence having a vertex with color �2 and degree 2 vertex in the

boundary, as shown in Figure 7. We call this tile a termination tile.

Step 1.

Here, note that only one angle in the termination tile is assigned a color �2
as on the vertex a in Figure 7. In this Step 1, we will associate the vertex

configuration to three vertices of the termination tile in the boundary of the

k-th expanded patch and index the termination tile with a or a.

First, on vertices of degree 3 in the termination tile, we apply the follow-

ing two substitution rules bg ¼ �4 �5 and gb ¼ �2 �3 as on the vertices b, c in

Figure 8.

Next, we choose either a or a. If we choose a, we apply the substitu-

tion rule ggg ¼ �9 �10�11 on the remaining vertex. Using the substitution rule

ggg ¼ �9 �10�11 on the vertex d in Figures 9, we obtain an indexed tile a which

emerges from the termination tile. If we choose a, we apply ggg ¼ �10�11�12
instead of ggg ¼ �9 �10�11 on the remaining vertex. Using the substitution rule

Fig. 7. A termination tile with a color k2 Fig. 8. bg ¼k4 k5 , gb ¼k2 k3
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ggg ¼ �10�11�12 on the vertex d in Figures 10, we obtain an indexed tile a which

emerges from the termination tile.

Then we obtain the spiral sequence of a and a one longer.

Step 2.

Since the adjacent tiles of a, a are conjoined by two angles, one angle with

color �2 and the other with either �10 or �11 , any vertex in the boundary of the

k-th expanded patch has degree 2 or 3 in the patch obtained in Step 1, except

the vertices b, c, d of the termination tile that we processed in Step 1. In this

Step 2, we apply another set of substitution rules only on vertices of degree

3. If a vertex of degree 3 is isolated, that is, both the neighboring vertices are

of degree 2, we apply the following substitution rules ð�Þ.

bb ¼ �6 �7 ; bg ¼ �4 �5 ; gb ¼ �2 �3 ; gg ¼ �11�12 : � � � ð�Þ

If the sequence of consecutive vertices of degree 3 appears in the boundary,

we start from the application of list (*) to one of the consecutive vertices of

degree 3. Then, the next vertex (vertices) of the sequence will be of degree 4.

So we apply from the list ð��Þ to the next vertex (vertices) of degree 4. If

the next vertex (vertices) of the sequence to this vertex (these vertices) is (are)

of degree 4 again, we apply from the list ð��Þ to the next vertex (vertices) of

degree 4. By doing this proccessure repeatedly, we can apply from the list ð��Þ
to the rest of the vertices of the sequence.

bbb ¼ �6 �7 �8 ; bbg ¼ �7 �8 �9 ; bgb ¼ �4 �5 �6 ; bgg ¼ �8 �9 �10 ;
gbb ¼ �5 �6 �7 ; gbg ¼ �13�1 �2 ; ggb ¼ �12�13�1 ; ggg ¼ �10�11�12 :

�
� � � ð��Þ

In fact, there are the sequences fe1; e2g and f f1; f2g that emerged from

Step 1 as in Figure 9 and 10. For example, we apply to e1 from list ð�Þ
and then to e2 from list ð��Þ, and to f1 from list ð�Þ and then to f2 from list

ð��Þ.

Fig. 9. ggg ¼k9 k10k11 , a termination tile

with a

Fig. 10. ggg ¼k10k11k12 , a termination tile

with a
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Step 3.

In this Step 3, we will complete the ðk þ 1Þ-th ringed expansion. All the

remaining vertices to be substituted are of degree 4, which had been of degree 2

at the beginning of this construction. We apply the same list ð��Þ.
Through steps 2–3 of this construction, if a vertex of degree 2 in the

boundary has an angle g, then the list ð��Þ gives the angle a color of �5 , �9 , �13
or �11 . Hence, this angle will never be assigned �2 or �10 , and the tile will never

be an a tile. It is clear that on the ðk þ 1Þ-th expanded new patch, all vertices

in the boundary are of degree 2 or 3 again.

By Step 1 of the construction, in each step of ringed expansions we

can select a or a per our preference. Hence, we have a tiling with a spiral

sequence of a and a, as shown in Figure 11, and we can choose spiral sequences

having an infinite number of a’s. Recall that all a tiles in the tiling are con-

tained in the spiral sequence. A congruence transformation on the hyperbolic

plane H, which preserves this tiling must then map the initial a tile to itself,

and consequently, the symmetry group is trivial, which shows its strong non-

periodicity. Our construction shows that there is a surjective map from the

set of tilings having such a spiral sequence, to the set of a one-sided infinite

sequence of a and a having an infinite number of a’s. The latter set is clearly

uncountable. Hence, we have uncountably many number of strongly non-

periodic tilings up to isomorphism.

Fig. 11. A spiral sequence of a and a
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