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ABSTRACT. We study biharmonic homogeneous hypersurfaces in Riemannian symmet-
ric spaces associated to the exceptional Lie groups E¢ and G, as well as real, complex
and quaternion Grassmannian manifolds.

1. Introduction

This is a continuation of our previous work [8] (named Part I).

In this paper we study biharmonicity of homogeneous hypersurfaces in the
following compact Riemannian symmetric spaces:

* the space SU(n)/SO(n) with n > 2 (type Al),

» the space SU(2n)/Sp(n) with n > 2 (type AIl),

* the real Grassmannian manifolds ak(R”) of oriented k-planes in R"

with 2 < k <n (type BDI),

* the space SO(2n)/U(n) with n > 2 (type DIII),

* the space Sp(n)/U(n) with n > 2 (type CI),

e the quaternion Grassmannian manifold Gry,(H") (2 <k <n), (type

CII),

* Eq/SU(6) - SU(2) (type EII),

« Eo/((Spin(10) x U(1))/Z4) (type EIII),

* FE4/F4 (type EIV), and

* the space G,/SO(4) (type G).
In Part I we have studied biharmonic tubes around Gri(C"') C Gri(C"),
2 < k < n, biharmonic tubes around Gry(C"™!) ¢ Gry(C"*?), (n > 2) and bihar-
monic tubes around HP”" C Gry(C**?). As a suppliment to Part I, in this
Part II, we study biharmonic tubes around Grk,l(C”*l) in Gri(C") for
2<k<n—k and (k,n) # (2,2m), m > 2.

Our results can be summarized as follows:

The first author is partially supported by Kakenhi 24540063, 15K04834.

2000 Mathematics Subject Classification. Primary 58E20; Secondary 53C43, 53C35.

Key words and phrases. Biharmonic maps, cohomogeneity one action, homogeneous hyper-
surfaces, Grassmannian manifolds, Riemannian symmetric spaces of type AI, All, DIII, CI, EII,
EIII, EIV.



350 Jun-ichi INoGUucHI and Toru SASAHARA

THEOREM. The following compact Riemannian symmetric spaces contain
proper biharmonic homogeneous hypersurfaces:

* the real Grassmannian manifolds Gri(R") of oriented k-planes,

* the complex Grassmannian manifolds Gry(C"),

* the space SO(2n)/U(n) with n > 2 (type DIII),

* the space Sp(n)/U(n) with n =2 (type CI),

* the quaternion Grassmannian manifolds Gri(H"),

* the space E¢/((Spin(10) x U(1))/Zs) (type ENI) and

* the space G2/SO(4) (type G).

This Part II is organized as follows. First we recall basic facts on
biharmonic map theory in Section 2. In particular we recall a criterion of
biharmonicity of constant mean curvature hypersurfaces in Einstein manifolds
due to Ou [15]. Next in Section 3, we prepare useful formulas of orbits
in compact Riemannian symmetric spaces under cohomogeneity one actions
due to Verhdczki [18]. In the next ten successive sections, we study bihar-
monicity of homogeneous hypersurfaces in compact Riemannian symmetric
spaces of type Al, All, AIll, BDI, DIII, CI, CII, EII, EIII and EIV by using
the principal curvature formulas prepared in Section 3. In the final section, we
study biharmonicity of homogeneous hypersurfaces in the quaternionic sym-
metric space G,/SO(4).

The results of this article were partially reported at “International Work-
shop on Finite type Submanifolds 2014 held at Istanbul Technical University,
3-5, September, 2014,

2. Preliminaries

Here we recall basic ingredients of biharmonic map theory.

2.1. Let (M™ g) and (N",§) be Riemannian manifolds and ¢ : M — N a
smooth map. Then ¢ is said to be harmonic if it is a critical point of the
energy functional:

E) = [ 44 ds,

The Euler-Lagrange equation of this variational problem is

() =0
with respect to any compact-supported variations through ¢. The vector field
7(¢p) along ¢ is called the tension field of ¢ and defined by

2(¢) = > _{Vage) ddler) — dp(V e}
i=1



Biharmonic hypersurfaces 351

Here V and V are the Levi-Civita connections of M and N, respectively and
{e1,e2,...,en} is a local orthonormal frame field of M.

More generally, a smooth map ¢ is said to be biharmonic if it is a critical
point of the bienergy functional

E) = [ 310(0)da,

The Euler-Lagrange equation of this variational problem is

Ayt(4 Z (dg(e:), 7(4))dg(e;) = 0. (1)

Here R is the Riemannian curvature of N. The operator 44 is the rough
Laplacian acting on the space I'(¢*TN) of all smooth vector fields along ¢
defined by

m
= VasterVaper = Vagwae
i=1
where {ej,es,...,e,} is a local orthonormal frame field on M as before.

2.2. In case that ¢:(M", g) — (N §) is an isometric immersion of
codimension 1, the mean curvature vector field H and the tension field are
related by 7(¢) = mH. This formula implies that a hypersurface immersion
¢: M — N is minimal if and only if it is a harmonic map.

Since the harmonicity of isometric immersions is equivalent to minimality
of isometric immersions, biharmonic isometric immersions are regarded as
generalizations of minimal immersions.

In [15], Ou obtained the following criterion for biharmonicity of hyper-
surfaces in Einstein manifolds.

TueOREM 1 ([15]). Let ¢ : (M™,g) — (N™*',g) (m >2) be a hypersurface
with shape operator A in an Einstein manifold N with Ric = 1g. Assume that
the mean curvature H = |H| of the hypersurface is constant. Then ¢ is bihar-
monic if and only if either ¢ is minimal or non-minimal with

|4)? = ). 2)

Furthermore, in the latter case, both the ambient space and the hypersurface must
have positive scalar curvatures:

p=m+1)A>0, p=(m-2)A+m*H*>0.



352 Jun-ichi INoGUucHI and Toru SASAHARA

2.3. Hereafter we assume that the ambient space (N,g) is an irreducible
compact Riemannian symmetric space G/K with compact semi-simple G. Let
us denote by B the Killing form of the Lie algebra g of G. Then B is negative
definite on g since G is semi-simple. Thus —B is an Ad(G)-invariant inner
product on g. Moreover the tangent space T,N of N at the origin 0 = K
is identified with the orthogonal complement p of the Lie algebra f of K in g.
The orthogonal decomposition

g=tdp

is a reductive decomposition of g, that is, p satisfies ad(f)p C p. Moreover,
since N is a symmetric space, we have

[p,p] C L.

The restriction — B[, of —B to p induces a G-invariant Riemannian metric g
on N. This Riemannian metric is called the Killing metric of N. The rank of
a Riemannian symmetric space N = G/K is the maximum dimension of a flat
totally geodesic submanifold of N. The Ricci tensor Ric of N with respect to
the Killing metric § computed at the origin is

= 1
Ric, = — §B|

P

This formula shows that N is an Einstein manifold. Ou’s criterion 1is
rephrased as:

THEOREM 2. Let N =G/K be a compact semi-simple Riemannian
symmetric space equipped with the Killing metric. Then a hypersurface
¢: M — G/K with non-zero constant mean curvature is proper biharmonic if
and only if its shape operator A has constant square norm

3. Cohomogeneity one actions

Let y: L x N — N be an isometric action of a compact connected Lie
group L on a Riemannian manifold N = (N,g).

An orbit L(p) of a point pe N is said to be principal if for any g€ N,
there exists an element g e L such that the isotropy subgroup L, satisfies
L, C gL,g~'. By definition principal orbits are orbits of maximum dimension.
The cohomogeneity of the action y is the codimension of principal orbits.

An orbit L(g) is said to be singular if its dimension is less than that of the
principal orbits.
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A closed totally geodesic submanifold C of N is said to be a section if C
intersects orthogonally all the orbits of L, and in this case the action is called
polar. An isometric action y is said to be hyperpolar if it admits sections
which are flat totally geodesic submanifolds. Actions of isotropy subgroups on
Riemannian symmetric spaces are typical examples of hyperpolar actions.

Now let N = G/K be a Riemannian symmetric space of compact type with
simply connected G and the metric g which is induced from the inner product
—c?B on the Lie algebra g of G. Here B is the Killing form of g and ¢ >0 a
constant. Denote by ¢ the corresponding involution, ie., o characterize K as
K =G, ={geG|a(g) =g}

A connected subgroup L of G is called symmetric if there exists an
involutive automorphism 7 of G such that L coincides with G, = {ge G|
7(9) = ¢g}. In this paper we assume that the involution ¢ commutes with o.

Note that L is a connected compact Lie group since G is simply connected.
The natural action of L on G/K is called the Hermann action.

Kollross classified hyperpolar isometric actions on compact Riemannian
symmetric spaces [14]. It should be remarked that cohomogeneity one iso-
metric actions on compact irreducible Riemannian symmetric spaces are always
hyperpolar.

We denote by L(o) the orbit of the origin under the induced action of L.
Then L(o) = L/(LNK) is a Riemannian symmetric space and totally geodesic
in G/K. In our setting, to is an involution on G since v and ¢ commute
with each other. Let us take a symmetric subgroup H = G,,. Then the orbit
H(o) = H/(HNK) is also a totally geodesic submanifold of G/K. It is known
that the L-action is cohomogeneity one if and only if H (o) is a Riemannian
symmetric space of rank 1.

REMARK 1. For the classification of totally geodesic submanifolds in
compact Riemannian symmetric spaces of rank 2, we refer to [5, 9, 10, 11,
12, 13].

ProposiTION 1 ([18]).  If the action of L is of cohomogeneity one and L(0)
is a singular orbit, then the other orbits of L coincide with the tubular hyper-
surfaces around L(o).

Thus hereafter we assume that L-action is of cohomogeneity one with
singular orbit L(o).
Take the normal bundle T+L(0) in N = G/K. At the origin, we have

T,G/K = T,L(0) ® T; L(0), T; L(o) = T,H (o).

Let u be a unit vector in T;"L(o) and y(z) = exp(fu) the closed geodesic with
initial velocity u. Then the image C of y intersects orthogonally all the orbits
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of L. Let a be the maximal eigenvalue of the Jacobi operator R, on T,L(0)
and /i the length of C. We put r = min{n/(2/a),h/2}.

Consider the principal orbit M, := L(y(r)) which is realized as a tube of
radius r € (0,r) around the singular orbit L(0). Then the principal curvature
of M, can be computed in the following way (see e.g., [18]):

(1) Take non-negative eigenvalues aj,as,...,a; of R, on T,L(0).

Denote by mj,my,...,my the multiplicities of these eigenvalues.
(2) Take eigenvalues by = y, by = /4, b3 =0 of R, on T;-L(0). Denote
by ki, ks, k3 = 1 the multiplicities of these eigenvalues. Here y is the
maximal sectional curvature of the Riemannian symmetric space H (o)
of rank 1.
(3) When H(o) is of constant curvature, i.e., H(0) is the /-sphere S’ or
real projective /-space RP’, then k, = 0.
(4) When H(o) = FP’ with F=C (the field of complex numbers), H
(the skew field of quaternions) or O (the Cayley algebra), then k; =
dimR F-1.
Note that h=2n/\/x if H(o) is not a real projective space. In case
H(o) =RP’ (/>2), h=m=n/\/7. By using these data, principal curvatures
of M, is computed as follows:

THEOREM 3 ([17, 18]). The constant principal curvatures of M, are

ﬂ[:\/atan(\/ar), i=1,2,...,s

with multiplicity m; and

= —Vbeotlyb),  j=1,2

with multiplicity m; = k;.

4. Riemannian symmetric space of type Al

4.1. Let us consider the Riemannian symmetric space Al(n) := SU(n)/SO(n)
with n > 2. With respect to the Killing metric, this symmetric space is an
(n+2)(n — 1)/2-dimensional Riemannian symmetric space of rank n — 1. The
maximal sectional curvature is x = 1/n. Totally geodesic singular orbits under
cohomogeneity one actions are ([2, 14, 18]):

e {Al(n—1)xU(1)}/Z,-, for n #4 and

o {AI(3) x U(1)}/Z3 and Gry(R®) for n=4. In this case AI(4)=
Gr3(R®) because of the isomorphism SU(4) = Spin(6).

4.2. In this section we consider biharmonic tubes around the singular orbit
{Al(n—1) x U(1)}/Z,—; with the symmetric subgroup L =S(U(n—1) x
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U(1)). Then H =SO(n) and H(o) =RP"'. Moreover, as in [I8], we
have

a = K, a = K/4, a3 =0, my =1, my,=n—2
and r = n/(2y/k). For a positive r < 7/(21/k), the tube around {Al(n— 1) x

U(1)}/Z,-, is a homogeneous hypersurface with principal curvatures:

=V tan(Vkr), yzﬁtan(ﬁr>, #y =0,

2 2

with multiplicities
m=1m=n-2, m=m-1)n-2)/2, rm=n-2, #n=0.

THEOREM 4. The tube around the singular orbit {Al(n—1) x U(1)}/Z,_,
of radius

r=+ntan' vVn—2

is minimal in Al(n) = SU(n)/SO(n) (n > 2).
The only biharmonic tubes around {Al(n—1)x U(1)}/Z,—1 in Al(n)
(n>2) are the minimal ones.

Proor. The mean curvature H of the tube around the singular orbit

{AI(n—1) x U(1)}/Z,_, is computed as

(7* +n—4H = py + (n = 2)p, + (n = 2) iy

— \/E{tan(ﬁr) +nT—2 tan(?r) - % cot<£r> }

NS

Now we put ¢ = tan(y/kr/2). Then we have

(n>+n—4)H = M*/_Etz){(nz)t“ —2nt? +n—2}.

| =

Since 7> < 1, we obtain that M, is minimal if and only if

r:i tan ! n—2yn—1 =ntan™' Vn - 2.
VK n—2

Next, the square norm |A4|* is
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A = i} + (n = 2)u3 + (n — 2) 3

:Ktanz(\/,;r)+(” 4 DX (an? QJr( _42)K cot? @

_ 4 n-2)2 (n-2)
_K{(112)2+ VR 4[2}

= qan S U6+ =21 =+ (=21 =)%Y,

Now we consider the biharmonicity equation |4|* = 1/2:
1674 + (n—2)r* (1 = )2 + (n—2)(1 — ) = 2n(1 — %)™

Hence we have

208 — 216 — 6% — 212 + 1)

" -1

which implies
(P =1)*B—n) =15 —8:°+30¢* — 82 + 1
= (" =42 +1)% + 1264,

The equation has no real solutions satisfying 0 < r < 1 for n > 3. O

5. Riemannian symmetric space of type All

5.1. Let us consider the compact Riemannian symmetric space All(n) :=
SU(2n)/Sp(n) of type AIl (n>2) equipped with the Killing metric. This
Riemannian symmetric space is (n — 1)(2n+ 1)-dimensional and of rank
n—1. The maximal sectional curvature is x = 1/(4n). Moreover we have
r=mn/(2y/x). Since AII(2) = S>(x), hereafter we assume that n > 2. Totally
geodesic singular orbits under cohomogeneity one actions are ([2, 14, 18]):

o {All(n—1)xU(1)}/Z,—1, n> 3.

o {AII(2) x U(1)}/Z, = (S°(x) x S')/Z, and SU(3), n =3.

5.2. In this section we consider biharmonicity of tubes around the singular
orbit {All(n —1) x U(1)}/Z,_, of dimension (2n> —5n+3) with the corre-
sponding symmetric subgroup L = S(U(2n—2)x U(2)). Then we have
H = Sp(n) and H(o) = HP"! of maximal sectional curvature «.
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The eigenvalues of Jacobi operator are given by ([18]):

a =K, a =—, az; =0

N

with multiplicities m; = 1 and my = 4n — 8. From these, we obtain the prin-
cipal curvatures and their multiplicities of the tube:

= VK tan(Vir),  my =1,

,uzzgtanC/TEr), my =4n — 8,

Uy =0, ms = 2n* — 9n + 10,
iy = —V/x cot(Vkr), my =3,
. VK (ﬁr>

= ——— cot
H D

3 rh2=4n—8.

THEOREM 5. A tube around the singular orbit {All(n — 1) x U(1)}/Z,_,
of radius r in All(n) = SU((2n)/Sp(n) (n > 3) is minimal if and only if
r=2yntan"! Vdn — 5.
The only biharmonic tubes around {All(n — 1) x U(1)}/Z,— are minimal ones.

Proor. The mean curvature H is

(2n* —n—2)H = p; +4(n — 2)uy + 31, +4(n —2) i,

= ﬁ{tan(ﬁr) +2(n —2) tan (?)
— 3 cot(v/kr) — 2(n — 2) cot (?) }

_ \/E{Z(n _2) (z - %) 4 —_3§[(+1 1_02— 3},

where ¢ = tan(\/kr/2).
Thus, it follows from 0 < ¢ < 1 that M, is minimal if and only if

2 dn—3—d/n—1
F=— tan~' (/22 3 " =2vntan~! Van — 5.
VK 4n —5

The square norm |A|* is computed as
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A1 = 1} + 4(n — 23 + 37 + 4(n — )3

= K{tanz(ﬁr) + (n —2) tan? <\/2Er>
+ 3 cot?(Vxr) + (n — 2) cot? (4 r) }

472 31— n-2
=i ———+ (n—2) .
K{(l—t2)2+(n )+ T

The biharmonicity equation |4|* = 1/2 is equivalent to

508 — 446 — 184 — 412 + 5
4(1 - 2)* '

It follows that
41 = 23 —n) =764 — 4415 + 90¢* — 441> + 7
= (VIr* =92 +V7)?
+ 2{(18V7 — 44)r* — 512 4+ (18V7 — 44)} > 0.

Therefore, the equation has no real solutions satisfying 0 < ¢ < 1 for n > 3.

O

6. Riemannian symmetric space of type AIII

6.1. Let us denote by Gry(C") the Grassmannian manifold of all complex
linear k-subspaces in complex Euclidean n-space C”. The Grassmannian
manifold Gr(C") is represented by Gry(C") = SU(n)/S(U(k) x U(n —k)) as
a homogeneous space. We equip the Grassmannian manifold Gry(C") with
the Killing metric § induced from —B. Then the resulting homogeneous
Riemannian space is a real 2k(n — k)-dimensional compact Riemannian sym-
metric space of rank min(k,n — k). Moreover Gry(C") admits a SU(n)-
invariant complex structure J which is compatible to the metric g. Hence
(Gri(C"),g,J) is a Hermitian symmetric space of type AIIl. The maximal
sectional curvature is x = 1/n.

6.2. Totally geodesic singular orbits in Gri(C") under cohomogeneity one
actions are ([2, 14, 18]):
(1) Gri(C"™") and Gry (C™Y) for 2 <k <n—k, (k,n)# (2,2m) for
m> 2.
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(2) Grp_(C*71) = Gr (C*7Y, if n =2k and k > 3.
(3) Gry(C¥1), CPY¥2 and the quaternion projective space HP'~! if
k=2 and n=2[.
In Part I, we have classified:
(1) biharmonic tubes around Gry(C" ') c Grx(C"), 2 < k < n ([Theorem

4, Partl]),

(2) biharmonic tubes around Gry(C"') € Gry(C"*?), n > 2 ([Theorem 5,
Partl]),

(3) biharmonic tubes around HP" C Gry(C*"*?), n>2 ([Theorem 6,
Partl]).

In this section we study biharmonic tubes around Gry_;(C"™!) in Gry(C")
for 2<k<n—k and (k,n) # (2,2m), m>2. The symmetric subgroup
L is L=S(U(l)xUm—-1)). Hence H=S(U(k—1)xU(n—k+1)) and
H(o) = CP"*. The maximal sectional curvature of H(0) is y = k. Moreover
we have r =/ /k.

The eigenvalue of Jacobi operator are given by ([18]):

ay = 0220

K
47

with multiplicity m; = 2k — 2. Hence the principal curvature of the tube are
given by

H =§ tan(gr) Hy =0,

i = VROV, iy =Y Cm(@)

with multiplicities
I/}’l1:2(k—1), }’}’IQZZ(k—l)(I’l—k—l), l’;’llzl7 }’;12:2(71—/(—1).

THEOREM 6. A tube M, around Gry_(C"™") of radius r in Gri(C")
2 <k <n—k) with (k,n) #(2,2m), m > 2 is minimal if and only if

2n —2k — 1
}’:2\/1; tanl< ,,l2k7_1>

A tube M, is proper biharmonic if and only if

n+1+/(n—2k)?+4n
_ -1
¥ = 2y/ntan J T
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Proor. The mean curvature H is computed as

(2nk —2k* — 1)H = 2(k — Dy + iy +2(n — k — )iy

:ﬁ{(k_1)r—1;t’2—”_’§_l},

where ¢ = tan(y/kr/2). The equation H = 0 implies that M, is minimal if and
only if

2 pr—2k—1) o =2k -1
r—\/}?tan ( T >_2\/ﬁtan T )

Next, the square norm |A|> is computed as

AP = 2(k = D + 2 +2(n — k — 1)

:K{(kl)t2+(112)2+nk1}.

2 42 212

The biharmonicity equation |4|* = 1/2 becomes
f(6):=Q2k—D)* —2(n+ 1) +2n— 2k — 1 =0,
which gives us

tz_n—i—li (n —2k)* + 4n
B 2k —1 '

Moreover, we have

-2k —1\ 42k —2n+1)
f(V % —1 )_ w1 Y

Thus M, is proper biharmonic if and only if

n+1+4/(n—2k)*+4n
_ -1
r = 2+/ntan J T ) -

7. Riemannian symmetric space of type BDI

7.1. Let N =S0(n)/SO(k) x SO(n— k) be the compact Riemannian sym-
metric space of type BDI. This symmetric space is the real Grassmannian
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manifold (Trk(R”) of oriented k-planes in R" with dim N = k(n — k) and of
rank min(k,n — k). With respect to the Killing metric, Grx (R") has maximal
sectional curvature k = 1/(n —2). Even if SO(n) is not simply connected, the
procedure of computing the principal curvatures of tubes around singular orbits
still works for this space. s
Totally geodesic singular orbits in Gri(R"”) under cohomogeneity one
actions are (see [2]):
* reflective submanifolds:
— Gr (R and Gr(R"™™), if 2 <k <n—k and (k,n) # (2,2m)
for m > 2.
— Gr_ (R* ) = Gre(R*Y), if n =2k and k > 4.
— 8%2 Gry(R¥') and CP'"! if k=2 and n=2I.
— Gr3(R% and U(3)/SO(3) if k=3 and n=6. In this case
Gr3(R%) = AI(4).
* non-reflective submanifolds:
- G,/S0(4) C GI‘3(R7).

7.2. In this section we consider tubes around the singular orbit Cf}vrk,l(R”’l)
with k > 2 and n > 4. This orbit is obtained by the cohomogeneity one action
of the symmetric subgroup L = SO(n —1). Under the action of L, we have
H=S0(k—1)xSO(n—k+1) and H(o) =S"*(y) is the (n— k)-sphere of
curvature y = x/2. We have r = ﬁ The eigenvalues of the Jacobi operator
are ([18]):

ay = a2=0

X

with multiplicity m; =k — 1.
The principal curvatures of the tube M, of radius r around L(o)

= /Stan( /2 =0 i = — s cot( /5
ﬂl— 2 2r7 ﬂz— 9 Iul_ 2 2}’

with multiplicities

are

my=k—1, my=(k-1)n—-k-1), m=n—k—1

THEOREM 7. A tube M, around CA}/rk,l(R”_l) of radius r in ark(R”)
(2 <k < n) is minimal if and only if

r=+/2(n-2) tan1< %)
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In case n # 2k, M, is proper biharmonic if and only if

In case n =2k, the only biharmonic tubes are minimal ones.
Proor. The mean curvature is computed as

(nk —k*> = )H = (k — Dy + (n — k — )y

K n—k—1
= —_— —1 _——
e "=,
where ¢ = tan(y/rxc/2r).
Hence, H =0 if and only if

_\/gtn_l n—k—1
r= Ka 7,{_ .

Note that in case k =n—k, ie.,, n =2k, two singular orbits /Gvrk(R”_l)
and Gry_;(R"!) coincide. The mean curvature is

1 K 1
H_k+1\£<t_z>'

Hence when n =2k, M, is minimal if and only if

7 7
r= < —.
22Kk 2k

Next, the square norm |A| is computed as

K n—k—1
|A|2:—{(k— 1)z2+T}.

By solving the biharmonicity equation |4|* = 1/2, we get

2 n—k—1
=1 _—
’ k—1
As shown above, if 1> =2%Zl then M, is minimal. Next we notice that
”Z’Sl =1 when n=2k. Thus M, is proper biharmonic if and only if n # 2k
and
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REMARK 2. In case k=2 and n =2/, &Z(RZI) is the complex quadric
255 C CP?~!, Biharmonic tubes around CP/~! are classified in [Theorem 7,
Part 1IJ.

8. Riemannian symmetric space of type DIII

8.1. In this section we consider the Riemannian symmetric space N = G/K of
type DIII (n > 2). The Riemannian symmetric space DIII(n) := SO(2n)/U(n)
is n(n — 1)-dimensional and of rank [n/2]. The maximal sectional curvature
is k=1/{2(n— 1)} with respect to the Killing metric. As in Section 7, the
procedure of computing the principal curvatures of tubes around singular orbits
still works for this space. Since DIII(3) = CP? and DIII(4) = (Trz(Rg) is the
complex quadric 24 C CP’, hereafter we restrict our attention to the case
n>4.

8.2. Totally geodesic singular orbits in DIII(n) under cohomogeneity one
actions are congruent to DIII(n —1) (see e.g. [2, 14]). The corresponding
symmetric subgroup is L = SO(2n — 2) x SO(2) of maximal sectional curvature
k. In this case H = U(n) and H(o) = CP"~! of maximal sectional curvature
y=x and r=7n/\/k =/2(n— 1)z

The eigenvalues of the Jacobi operator on 7,L(0) are

a) = —, 612:0.

=

The multiplicity of a; is m; =2(n —2) (see [18]). From these data together
with Theorem 3, the principal curvatures of the tube M, around DIIl(n — 1)
are given by

f = —VK cot(V/kr), ﬂz=—§ cot<‘/7’?r>

with multiplicities
m=2n-2), m=Mm-)n-3), =1, pH=2n-2)

THEOREM 8. A tube M, around DII(n—1) of radius r in DIll(n) is
minimal if and only if r =n— ln/V2.
A tube M, is proper biharmonic if and only if

V2n—2+1
r=2V2n—2tan ' | ———E=—].
( vV2n—3
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Proor. The mean curvature H of M, is computed as

(> —n—1)H =2(n =2y + iy + 2(n — )

= (n—2)y/x tan (\/TEV) — VK cot(vkr) — (n—2) cot(?r)

:\/E{(n—Z)t— ! ;tlz—(n—z)%}

_ VK 2
=Y - 3)( - 1),
where ¢ = tan(y/kr/2). Thus M, is minimal if and only if z=1. Namely,

2 - n—1
=—tan 1= T <+/2n-—1)n.
VK V2 (n=1)

r

Next, we have

AP = 2(n = 2 + 3+ 2(n — 2)43

- K{% tan? (g;’) + cot?(v/kr) + n ; 2 cot? (? r) }

B (n—2)t2+(1—12)2+n—2
B 412 22 (-

Solving the biharmonicity equation |A|2 =1/2, we obtain

Z2:211—112\/271—2 (#1).

2n—3

Therefore M, is proper biharmonic if and only if

F=2v2n—2tan"! (\/2n—1i2 2n—2>
2n—3

V2n—2+1
=2V2n—2t i S
7o tan < T3 -

9. Riemannian symmetric space of type CI

9.1. Now we consider n(n + 1)-dimensional Riemannian symmetric space N =
CI(n) := Sp(n)/U(n) of type CI (n>2). The Riemannian symmetric space
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CI(n) is of rank n. With respect to the Killing metric, the maximal sectional
curvature is ¥ = 1/(n+1). Note that CI(2) = Gr3(R>) because of the iso-
morphism Sp(2) = Spin(5).

9.2. Totally geodesic singular orbits under cohomogeneity one actions are
congruent to CI(n — 1) x 8% ([2, 14]). The corresponding symmetric subgroup
is L =Sp(n—1) x Sp(1). In this case we have H = U(n) and H(0o) = CP"!
of maximal sectional curvature y = x/2. Moreover we have r = n/v2x. In
case n =2, Cl(n—1) x S* = Gr,(R*) € Gr3(R).

The eigenvalues of the Jacobi operator on 7,L(0) are

K K

Ea a2:§7 Cl3:0

a) =

with multiplicities m; =2, my, =2n — 4 (see [18]). From these data together
with Theorem 3, we get

ulz\/—’;tan(ﬁr) uzzﬁtan(ﬂr), Uy =0,
V2 V2 V2 \2V2
iy :—ﬁ cot(£r>7 ﬂzz—ﬂ cot(ﬁr>
V2 V2 2v2 \2V2
with multiplicities
m =2, my =2n — 4, msy =n* —3n+4, =1, iy =2n — 4.

THEOREM 9. A tube M, around Cl(n—1) x S* of radius r in Cl(n) is
minimal if and only if

1 V2n =3
Vo
For n >3, the only biharmonic tubes are minimal ones.

For n=2, the only biharmonic tube M, around a‘g(R4) is the tube of
radius

r=+/2(n+1) tan~

Proor. First we look for minimal tubes. We get

(n* +n—1)H =2+ 2n =)o + iy + 2n — 4) i

:2-£tan(£1’)+(2n—4) %tn({} )

)0 (i)



366 Jun-ichi INoGUucHI and Toru SASAHARA

=\/§\/E~%+(2n—4)-ﬂt

2V2

VEl—12 NGB

BN
NG

= — Zh 4 n 2 — 4Zn
’2\@(1_#){(3 )t +2(2n+ 1)i2 +3 — 20},

where ¢ = tan(\/xr/(2v/2)).

Since 0 < < 1, M, is minimal if and only if

V2 [2n+1—-2VAn -2 L V2n =3
r=—= tan =+/2(n+1) tan .
NG 2n—3 V2

The square norm |A|* is computed as

A1 =240 + 20 — 4 + 7 + (2n — 4)ii3

et () 5 ()
—&-l cot? (%r) + " ; 2 cot? (%r)}

. 412 +(n—2)t2+(l—t2)2+n—2
(1= 2)? 4 812 42 (-

The biharmonicity equation |4|* = 1/2 is equivalent to
34 — 381 +3
2(1 — 12)*

It follows that
2(1 = )*(3 —n) = 3% — 2415 + 741* — 241% + 3
= (V31" — 82 +V3)” + (16V/3 — 24)1° + 41* + (16V/3 — 24)1%.

Hence, in case n > 3 the equation has no real solutions. On the other hand,
in case n =2, we obtain

?=3-2v2,5-2V6,

because 72 < 1. As shown above, if n=2 and 1> =5—26, then H =0.
Thus, M, is proper biharmonic if and only if

7:2\/Etan_l(\/3—2\/§)=?7t. O
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In case n = 2, the above classification coincides with the one in Theorem 7
with k=3 and n=>5.

10. Riemannian symmetric space of type CII

10.1. The quaternion Grassmannian manifold Gry(H") 2 <k<n-—1) is
the manifold of all quaternion linear k-subspaces in quaternion Euclidean
n-space H". The quaternion Grassmannian manifold Gry(H") is represented
by Gri(H") = Sp(n)/Sp(k) x Sp(n — k) as a Riemannian symmetric space of
real dimension 4k(n — k) and of rank min(k,n — k). The maximal sectional
curvature is ¥ = 1/(n+ 1) with respect to the metric induced from —B.

10.2. Totally geodesic singular orbits in Gry(H") under cohomogeneity one
actions are ([2, 14]):

(1) Gry(H"™") and Gry_(H"') for 2<k <n—k.

(2) Gr_ (H* 1 = Gry(H* Y, if n =2k and k > 2.

Consider the singular orbit Gry_;(H""!) with the corresponding sym-
metric subgroup L =Sp(l) x Sp(n—1). Then we have H =Sp(k—1) x
Sp(n —k +1) and H(o) = HP"*. The maximal sectional curvature of H (o)
is y = /2. Moreover we have r = v2n/\/k. For k > 2, L(0) = Gr,_(H" 1)
is of maximal sectional curvature x and for k = 2, L(0) = HP"~* is of maximal
sectional curvature x/2.

The eigenvalues of the Jacobi operator on T,L(0) are given by [18]:

K
alzg, a2:0

and m; = 4k —4. Thus by using Theorem 3, the principal curvatures of the
tube M, around Grk,l(Hk_l) are computed as:

TueoREM 10. A tube M, around Gri_(H"™') of radius r in Gri(H")
(2 <2 <n—k) is minimal if and only if

r=2y2(m+1) tan! \/%.
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The only proper biharmonic tube M, is the tube of radius

2n+5i2\/(n—2k)2+6n+6
4k — 1

r=2y2(n+1)tan"! $

Proor. The mean curvature is computed as

(4nk — 4> — 1)H = 4(k — Dy + 341, +4(n —k — 1),

_ \/%{Qk_z)l_a(12—tt2)_2(n_tk_1)},

where ¢ = tan(y/xr/(2V/2)).

Hence, M, is minimal if and only if

L_2V2 can-! [4n — 4k — 1
N 4k—1

Next, we compute the square norm |A|°.

417 = 4k — Dy} + 3+ 4(n — k — D@3

B (k71)12+3(142)2+nfk71
"2 812 20 [

The biharmonicity equation |4|> = 1/2 can be written as
g(t) == (4k — )t* = 22n + 5)> +4n — 4k — 1 =0.

By solving this equation, we obtain

2:2n+5i2\/(n—2k)2+6n+6

! k-1

Moreover, we have

=T\ _ 120k —dn+1)
IV "a=1 |7 k-1 '

Therefore, M, is proper biharmonic if and only if

r=2y2(m+1) tan"! 2n—|—5i2\/(n—2k)2+6n+6
n 4k — 1
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11. Symmetric space of type EII

11.1. Exceptional Lie group Es. Let us denote by J the real linear space of
all 3 by 3 Hermitian matrices of octonions. On this linear space the Jordan
product o is defined by

XoY:=—(XY+YX), X, Yeg3.

Do =

The real algebra J equipped with Jordan product is called the exceptional
Jordan algebra.

The automorphism group F4 of the Jordan algebra J is a simply connected
compact simple Lie group of dimension 52. The exceptional Jordan algebra J
is parametrized as

& ox3 X
IJ=CEX) =% & x |[F=(5,68)eRX = (x1,x,x3) e O
X2 X1 &
The trace tr(2,X) of (£,X) is defined by tr(Z,X) =& + & + &.
The inner product (-,:) on J and trilinear form tr(-,-,-) are defined by

([21])
(X,Y)=tr(XoY), tr(X,Y,Z)=(X,YoZ)

Next, the Freudental product x is defined by

X x Y:%(2Xo Y —tr(X)Y — tr(Y)X

+(tr(X) t(Y) — (X, Y)E), X,YeS.

By using X, triple product (X, Y,Z) and determinant function det are defined
by

(X, X, X).

W =

(X,Y,Z)=(X,Y xZ), detX =

Now we consider the complexification 3¢ of . The resulting complex algebra

& ox3 X
~C _ ¥ & ~C £ C DC
S = X3 & ox1 |e€3718,86,8€Cx,x0,x3€
x2 X1 &

is called the exceptional complex Jordan algebra. On the complexification J€
of 3, Hermitian inner product {-,-) is defined by

X, Yy=(X"7),
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where t is the complex conjugation of the exceptional complex Jordan algebra

3¢

The simply connected compact Lie group E¢ is given by ([21, § 3.1]):
Eq = {z € GL(3%) | det((X)) = det(X), {a(X), x(¥) = <X, YD},
The Lie group Eg is a 78-dimensional Lie subgroup of U(27) = U(J°).
more informations on Eg, we refer to [21].

For

11.2. The simply connected compact Riemannian symmetric space of type EII
is represented by N = E¢/SU(6) - SU(2). This is a 40-dimensional quaternionic
symmetric space of rank 4. The maximal sectional curvature is x = 1/12 with
respect to the Killing metric. Totally geodesic singular orbits under coho-
mogeneity one actions are congruent to FI = F4/Sp(3)-Sp(1) with maximal
sectional curvature k. The symmetric subgroup corresponding to FI is L = F4
([2, 14, 20]). In this case, H =Sp(4)/Z, and H(o) = HP?® with maximal
sectional curvature y = x/2 and r = n/(v/2K) = V6.

We consider tubes of radius r < /(v/2x) around F4/Sp(3)-Sp(1). The
principal curvatures of M, are given by Verhdczki [20, (11), 8 Proposition]:

(s mesnw(y)

=-— tan|—=r |, =—— tan| ——=r ), =0,
H \/E \/E Mo 2\/§ 2\/§ M3
nme() mmaneG)

= ——=cot|—=r|, = ——— cot| —=r
SV RV 2770 s

with multiplicities

mp; = 57 nmy = 8, ms = 15, I’;ll = 3, ﬁ’lz = 8.

THEOREM 11. A tube M, around F4/Sp(3)-Sp(1) of radius r in
E¢/SU(6) - SU(2) is minimal if and only if

V1T

The only biharmonic tubes are minimal ones.

r=4v6tan"! (ﬂ) < Vor.

Proor. We put ¢ = tan(\/xr/v/8) and o = /x/8, then we have

= s 2) b st +3{-2a(155) fr8(-2)

(111 — 4262 4 11)
B (1 —12)
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Thus M, is minimal if and only if

o8 21-8V5) i [4-V5
r—\/}:ctan T —4\/6tan (T <\/67T

The square norm |A|* is computed as follows:

AI* = 5uf + 83 + 347 + 8413

. 1012 +tZ+3,(1—r2)2+1
- (1—t2)2 812 2

The biharmonicity equation |4|* = 1/2 becomes
1128 — 7615 4+ 210¢* — 7612 + 11 = 0.
However, the LHS of the equation can be transformed into
(VI1e* = 1322 + V11)? + (26V11 = 76)1° + 19¢* + (26V11 — 76)7%,

which shows that the biharmonicity equation has no real solutions. O

12. Symmetric spaces of type EIII

12.1. We consider the complex projective space P(SC) = CP?*® over SC.

According to Atsuyama [1], the simply connected 32-dimensional Riemannian
symmetric space of type EIII is realized as EIIl = (EIII\{0})/C* C P(3") =
CP?, where

- &ox3 X
Ell:={(5,X)=|x & x |e3°
X2 X1 &

2 2 2
&y =[xl &3¢ = x|, &8 =[x,
xax3 = &3, x3x1 = EX, x1x = £33

This symmetric space EIII is represented by Eg/((Spin(10) x U(1))/Z4) and of
rank 2. The maximal sectional curvature is x« = 1/12.

12.2. The only singular orbits under cohomogeneity one actions are OP? of
maximal sectional curvature x/2 (|2, 14, 20]). In this case L = H = F4 and
L(0) = H(0) = OP? of maximal sectional curvature y = x/2. In addition we
have r = n/v/2x = v/6n. The principal curvatures of a tube M, around OP?
with radius r < n/v/2x are given by Verhéczki [20, 12 Proposition]:
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VK NS
,ulztan<r) m =1
V2 V2 ) ’

1“3:07 I’}’l3:7,

VK (\/1? ) i =7,

1, = ———= cot| —=r

M1 \/-2‘ \/‘2‘

PR cot<ﬂr>, iy = 8.
2V/2 2V/2

THEOREM 12. A tube M, of radius r around OP> in Eg/((Spin(10) x
U(1))/Zs) is minimal if and only if

r=4v6tan"! <\/§> .

A tube M, is proper biharmonic if and only if r=(2V6n)/3 or r=
2v/6 tan~! /5.

Proor. The mean curvature is computed as

K 4t 71— 8
31H_\/%<1_t2+8t— t —;>,

where ¢ = tan(\/xr/V/8).
Thus H = 0 if and only if 15¢* — 34s> + 15 =0. It follows from 0 < ¢ < 1
that M, is minimal if and only if

r= \/g tan ! (\/%) = 4/6 tan™! (@) < Ver.

Next, we have

1612 71— 8
AP =S g ) 0
‘ | 8 ((1 _ l2)2 + + 12 + t2

The biharmonicity equation |4|* = 1/2 can be written as

154 — 92/ + 170¢* — 92¢> + 15 = 0.

It follows from 0 < ¢ < 1 that M, is proper biharmonic if and only if

r=4v6 tan™! (%) = 23&,@
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or

r=4v6 tan”! ( ﬂ) =2v6 tan"! V5. O

13. Symmetric spaces of type EIV

The simply connected compact Riemannian symmetric space of type EIV
is realized as

{X e3C|det X =1,(X,Y) =3}

On this manifold, E¢ acts transitively and the isotropy subgroup at the identity
matrix E is F4 (see [21, § 3.7, § 3.8]). With respect to the Riemannian metric
induced from the inner product —B on ¢, E¢/F4 is a 26-dimensional compact
simply connected Riemannian symmetric space of rank 2. The maximal
sectional curvature is x = 1/24.

We consider tubes of radius r < z/(2y/k) = v6r around SU(6)/Sp(3).
The corresponding symmetric subgroup L of SU(6)/Sp(3) is L = SU(6) -
SU(2). In this case we have H = Sp(4)/Z, and H(o) = HP? is of maximal
sectional curvature y = k.

The principal curvatures of M, are

K Kr
m =V tan(Vkr), g = % tan % 3 =0,
iy = —/x cot(v/xr), fy = —\/TE cot \/7’?
with multiplicities
my; =5, m2:8, m3=1, n%1:3, ny = 8.

THEOREM 13. A tube M, of radius r around AII(3) = SU(6)/Sp(3) in
Ee¢/F4 is minimal if and only if

L [4-V5
r =83 tan <\/ﬁ>

The only biharmonic tubes around AI(3) are minimal ones.

ProoF. The mean curvature H of a tube M, around AII(3) is computed
as

= ﬁ(S tan(y/xr) +§ tan @ — 3 cot(v/xr) —g cot \/7;6>
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_ 5.2t 3(1—12) 4
V()

= 2“17\/_%1‘2)(201‘2 —+ 8[2(1 _ t2) _ 3(1 _ 12)2 _ 8(1 _ [2))

_ \/E 4 2
= 2t(1—t2)(1” 424 +11).

Thus M, is minimal if and only if

r=28v3tan"! ( %) =83 tan™! (%) < Veén.

The square norm |4|* is
[A|* = 57 + 83 + 347 + 813

2072 , 31-2)7 2

We see that the biharmonicity equation |A4|* =1/2 is same as the one in
Section 11. Thus, it has no real solutions. O

14. Riemannian symmetric space of type G

In this section we consider the space G,/SO(4) of all quaternionic
subalgebras of the Cayley algebra O equipped with the Killing metric. Then
the resulting homogeneous Riemannian space G,/SO(4) is an 8-dimensional
quaternionic symmetric space of rank 2. This space has the same real
homology as the quaternion projective plane HP>. With respect to the Killing
metric, the maximal sectional curvature of G,/SO(4) is 1/4.

Let us consider the singular orbit CP? under the cohomogeneity one
action of SU(3). The maximal sectional curvature of CP? is 1/4. Note that
G,/SU(3) = S® is nor Riemannian symmetric, but nearly Kéhler 3-symmetric.

The principal curvatures of a tube M, of radius r € (0,/37) around CP?
are computed explicitly by Verhoczki [19] (¢f. Garcia, Hullet [6]):

11 = 2\/§ 2\/§7

A2 =0,
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i3 = ! ( 2 cot —=+ , /4 cot? — +3>
R ViV v
1 r r
Jy =——=|—2cot —=— 4cot2—+3>
SRV ( Vi VTN A

with multiplicities

By using this table, we obtain the following result:

THEOREM 14. A tube M, around CP? in G,/SO(4) is minimal if and only

if its radius is
-1 /3
r=2v3tan 7

The only proper biharmonic tube M, around CP? are tubes of radius

o
V3

Proor. The mean curvature H is computed as

r or r=2v3tan"!

Sl

7H*—LcotL—icotL
V3 2v3 V33

1 ( , T >
=———(2tan" —=—3 ).
2\/§tan2\/§ 243

Hence M, is minimal if and only if r = 2+/3 tan™! \/% < /3x.
Next the square norm |A\2 is given by

1
|4)* = — (cot2 Lt acot? L+ 4 cot? L+3)

12 2V3 V3 V3
1 r r
=— 8c0t2+cot2+3>
U( V3 2V3
1 r r
=——  (2tan* ——tan® —+3).
12tan22\’/§( an 3 an 2\/§+ )

The biharmonicity equation |4|* = 1/2 becomes:

2t — 7P +3=0,
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where ¢ = tan ﬁ Hence t=+/3 or t=1/v/2. Thus we have

2n 1
=2V3tan ' V3="2 <3 or =2V3tan! — < V37 < V3.
r \/§ T r \/§ b4 . [

REMARK 3. For the classification of all totally geodesics submanifolds in
G,/SO(4), we refer to [13].

Concluding remark

The unit sphere S" is a typical example of simply connected irreducible
Riemannian symmetric space of compact type. Based on this fact, in Part I
and this Part II, we have studied biharmonic homogeneous hypersurfaces in
Riemannian symmetric spaces of compact type. Next, the odd-dimensional
sphere S**! is a standard example of Sasakian space form (see [3] and [4]).
The Berger sphere is a typical example of Sasakian space form. Sasakian
space forms are naturally reductive homogeneous Riemannian spaces. The
odd-dimensional sphere is the only Riemannian symmetric Sasakian manifold.
Berger spheres equipped with canonical Sasakian structure are normal homo-
geneous spaces which are not Riemannian symmetric. Thus the study on
biharmonic hypersurfaces in compact normal homogeneous Riemannian spaces,
e.g., Berger spheres is another generalization of ‘“biharmonic submanifold
geometry in S"”.

In [7], the first named author of the present paper classified proper
biharmonic anti-invariant surfaces in 3-dimensional Sasakian space forms.
Next, the second named author of this paper classified proper biharmonic
Legendre surfaces in 5-dimensional Sasakian space forms [16].

To close this paper we propose the following problems.

PROBLEMS.

(1) Classify all biharmonic homogeneous hypersurfaces in simply con-
nected irreducible Riemannian symmetric space of compact type.

(2) Construct explicit examples of proper biharmonic hypersurfaces in
normal homogeneous Riemannian spaces.

(3) Classify all biharmonic homogeneous hypersurfaces in the Berger
sphere.
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