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Abstract. A common feature of high-dimensional data is that the data dimension is

high, however, the sample size is relatively low. We call such data HDLSS data. In

this paper, we consider a new two-sample test for high-dimensional data under the

strongly spiked eigenvalue (SSE) model. We consider the distance-based two-sample

test under the SSE model. We introduce the noise-reduction (NR) methodology and

apply that to the two-sample test. Finally, we give simulation studies and demonstrate

the new test procedure by using microarray data sets.

1. Introduction

Suppose that we have two independent d � ni data matrices, X i ¼
½xij; . . . ; xini �, i ¼ 1; 2, where xij, j ¼ 1; . . . ; ni, are independent and identically

distributed (i.i.d.) as a d-dimensional distribution (pi) with a mean vector mi
and covariance matrix Si ðbOÞ. We assume ni b 3, i ¼ 1; 2. The eigen-

decomposition of Si is given by Si ¼ H iLiH
T
i , where Li ¼ diagðl1ðiÞ; . . . ; ldðiÞÞ

having l1ðiÞ b � � �b ldðiÞðb 0Þ and H i ¼ ½h1ðiÞ; . . . ; hdðiÞ� is an orthogonal ma-

trix of the corresponding eigenvectors. Let X i � ½mi; . . . ; mi� ¼ H iL
1=2
i Z i for

i ¼ 1; 2. Then, Z i is a d � ni sphered data matrix from a distribution with the

zero mean and identity covariance matrix. Let Z i ¼ ½z1ðiÞ; . . . ; zdðiÞ�T and zjðiÞ ¼
ðzj1ðiÞ; . . . ; zjniðiÞÞ

T , j ¼ 1; . . . ; d, for i ¼ 1; 2. Note that EðzjkðiÞzj 0kðiÞÞ ¼ 0 ð j0 j 0Þ
and VarðzjðiÞÞ ¼ Ini , where Ini is the ni-dimensional identity matrix. We assume

that the fourth moments of each variable in Z i are uniformly bounded for

i ¼ 1; 2. Let zojðiÞ ¼ zjðiÞ � ðzjðiÞ; . . . ; zjðiÞÞT , j ¼ 1; . . . ; d; i ¼ 1; 2, where zjðiÞ ¼
n�1
i

Pni
k¼1 zjkðiÞ. Also, note that if X i is Gaussian, zjkðiÞs are i.i.d. as the

standard normal distribution, Nð0; 1Þ. We assume that Pðlimd!y kzo1ðiÞk0 0Þ
¼ 1 for i ¼ 1; 2, where k � k denotes the Euclidean norm. As necessary, we

consider the following assumption for z1kðiÞs:

(A-i): z1kðiÞ, k ¼ 1; . . . ; ni, are i.i.d. as Nð0; 1Þ for i ¼ 1; 2.
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In this paper, we consider the two-sample test:

H0 : m1 ¼ m2 vs: H1 : m1 0 m2: ð1Þ

We define xini ¼
Pni

j¼1 xij=ni and S ini ¼
Pni

j¼1ðxij � xiniÞðxij � xiniÞ
T=ðni � 1Þ for

i ¼ 1; 2. Then, Hotelling’s T 2-statistic is defined by

T 2 ¼ n1n2

n1 þ n2
ðx1n1 � x2n2Þ

TS�1
n ðx1n1 � x2n2Þ;

where Sn ¼ fðn1 � 1ÞS1n1 þ ðn2 � 1ÞS2n2g=ðn1 þ n2 � 2Þ. However, S�1
n does

not exist in the HDLSS context such as ni=d ! 0, i ¼ 1; 2. In such situations,

Dempster [10, 11], Srivastava [16] and Srivastava et al. [17] considered the test

when p1 and p2 are Gaussian. Fujikoshi et al. [12] considered the Dempster’s

test statistic in the MANOVA context. When p1 and p2 are non-Gaussian,

Bai and Saranadasa [4] and Cai et al. [7] considered the test under the

homoscedasticity, S1 ¼ S2, and Chen and Qin [8] and Aoshima and Yata [1, 2]

considered the test under the heteroscedasticity, S1 0S2. We note that those

two-sample tests were constructed under the eigenvalue condition as follows:

l21ðiÞ

trðS2
i Þ

! 0 as d ! y for i ¼ 1; 2: ð2Þ

However, if (2) is not met, one cannot use those two-sample tests. See

Aoshima and Yata [3] for the details. Aoshima and Yata [3] called (2) the

‘‘non-strongly spiked eigenvalue (NSSE) model’’. On the other hand, Aoshima

and Yata [3] considered the ‘‘strongly spiked eigenvalue (SSE) model’’ as

follows:

lim inf
d!y

l21ðiÞ

trðS2
i Þ

( )
> 0 for i ¼ 1 or 2: ð3Þ

For the SSE model, Katayama et al. [14] considered a one-sample test when the

population distribution is Gaussian. Ishii et al. [13] considered the one-sample

test for non-Gaussian cases. Ma et al. [15] considered a two-sample test for

the factor model when S1 ¼ S2. Aoshima and Yata [3] gave two-sample tests

by considering eigenstructures when d ! y and ni ! y, i ¼ 1; 2. In this

paper, we consider the divergence condition for d and nis such as d ! y
either when ni is fixed or ni ! y for i ¼ 1; 2. For the divergence condition,

we propose a two-sample test under the SSE model.

The rest of the paper is organized as follows. In § 2, we consider the

distance-based two-sample test under the SSE model. In § 3, we introduce

the noise-reduction (NR) methodology and provide asymptotic properties of

the largest-eigenvalue estimation in the HDLSS context. We apply the NR

method to the two-sample test and give a new test procedure for the SSE
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model. In § 4, we give simulation studies and discuss the performance of the

new test procedure. Finally, in § 5, we demonstrate the new test procedure by

using microarray data sets.

2. Distance-based two-sample test

In this section, we discuss asymptotic properties of the distance-based two-

sample test for both the NSSE model and the SSE model.

Let

Tn ¼ kx1n1 � x2n2k
2 �

X2
i¼1

trðS iniÞ=ni:

Let m12 ¼ m1 � m2. Note that EðTnÞ ¼ km12k
2 and

VarðTnÞ ¼ 2
X2
i¼1

trðS 2
i Þ

niðni � 1Þ þ 4
trðS1S2Þ

n1n2
þ 4

X2
i¼1

mT
12Sim12
ni

:

Bai and Saranadasa [4], Chen and Qin [8] and Aoshima and Yata [1] con-

sidered the statistics for high-dimensional data. We call the test with Tn the

‘‘distance-based two-sample test’’. By using Theorem 1 in Chen and Qin [8]

or Theorem 4 in Aoshima and Yata [2], we can claim that as d ! y and

ni ! y, i ¼ 1; 2

Tn

VarðTnÞ1=2
) Nð0; 1Þ ð4Þ

under H0 in (1), (2) and the factor model given in Remark 2. Here, ‘‘)’’

denotes the convergence in distribution. However, we note that Tn does not

hold (4) in the case of (3).

Now, we assume the following assumptions:

(A-ii):

Pd
j¼2 l

2
jðiÞ

l21ðiÞ
¼ oð1Þ as d ! y for i ¼ 1; 2;

(A-iii):
l1ð1Þ
l1ð2Þ

¼ 1þ oð1Þ and hT
1ð1Þh1ð2Þ ¼ 1þ oð1Þ as d ! y.

Note that (A-ii) implies (3), that is (A-ii) is one of the SSE models. Also,

note that (A-ii) implies the condition that l2ðiÞ=l1ðiÞ ! 0 as d ! y. In high-

dimensional context, (A-iii) is much milder than S1 ¼ S2. In addition, one

can check the validity of (A-iii). See § 3.3.

Remark 1. For a spiked model such as

ljðiÞ ¼ aijd
aij ð j ¼ 1; . . . ;miÞ and ljðiÞ ¼ cij ð j ¼ mi þ 1; . . . ; dÞ
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with positive and fixed constants, aijs, cijs and aijs, and a positive and fixed

integer mi, (A-ii) holds under the conditions that ai1 > 1=2 and ai1 > ai2. See

Yata and Aoshima [19] for the details.

Let nmin ¼ minfn1; n2g. Under (A-ii) and (A-iii), we have the following

result.

Lemma 1. Under H0 in (1), (A-ii) and (A-iii), it holds that

Tn

l1ð1Þ
¼ ðz1ð1Þ � z1ð2ÞÞ2 �

X2
i¼1

kzo1ðiÞk2

niðni � 1Þ þ opðn�1
minÞ

as d ! y either when nmin is fixed or nmin ! y.

Let cn ¼ 1=n1 þ 1=n2. From Lemma 1, under H0 in (1), (A-ii) and (A-iii),

we have that

1

l1ð1Þcn
Tn þ l1ð1Þ

X2
i¼1

kzo1ðiÞk2

niðni � 1Þ

 !
¼ c�1

n ðz1ð1Þ � z1ð2ÞÞ2 þ opð1Þ ð5Þ

as d ! y either when nmin is fixed or nmin ! y. Note that Eðz41kðiÞÞ’s are

bounded when nmin ! y. Then, it holds that

c�1=2
n ðz1ð1Þ � z1ð2ÞÞ ) Nð0; 1Þ

as nmin ! y by Lyapunov’s central limit theorem. Hence, from (5) it holds

that as d ! y and nmin ! y

1

l1ð1Þcn
Tn þ l1ð1Þ

X2
i¼1

kzo1ðiÞk2

niðni � 1Þ

 !
) w21 ð6Þ

under H0 in (1), (A-ii) and (A-iii), where w2k denotes a random variable

distributed as the w2 distribution with k degrees of freedom. On the other

hand, under (A-i), we note that c
�1=2
n ðz1ð1Þ � z1ð2ÞÞ is distributed as Nð0; 1Þ even

when nmin is fixed. Hence, from (5) we have (6) as d ! y when nmin is fixed

under H0 in (1), (A-i) to (A-iii).

In order to construct a test procedure for (1) under the SSE model, (A-ii),

it is necessary to estimate l1ð1Þ and kzo1ðiÞk2, i ¼ 1; 2 in (6).

3. Two-sample test for SSE model

In this section, we propose a two-sample test for the SSE model. We

first introduce the noise-reduction (NR) methodology and provide asymptotic

properties of the largest-eigenvalue estimation.
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3.1. Noise-reduction methodology. Yata and Aoshima [19] proposed a method

for eigenvalue estimation called the noise-reduction (NR) methodology that was

brought by a geometric representation of the sample covariance matrix.

We consider the following assumption for i ¼ 1; 2:

(A-iv):

Pd
r; sb 2 lrðiÞlsðiÞEfðz2rkðiÞ � 1Þðz2skðiÞ � 1Þg

nil
2
1ðiÞ

¼ oð1Þ as d ! y either

when ni is fixed or ni ! y.

Remark 2. For several statistical inference of high-dimensional data,

Aoshima and Yata [2], Bai and Saranadasa [4] and Chen and Qin [8] assumed

a general factor model as follows:

xij ¼ G iwij þ mi

for j ¼ 1; . . . ; ni, where G i is a d � qi matrix for some qi > 0 such that

G iG
T
i ¼ Si, and wij , j ¼ 1; . . . ; ni, are i.i.d. random vectors having EðwijÞ ¼ 0

and VarðwijÞ ¼ Iqi . As for wij ¼ ðw1jðiÞ; . . . ;wqi jðiÞÞ
T
, assume that Eðw2

rjðiÞw
2
sjðiÞÞ

¼ 1 and EðwrjðiÞwsjðiÞwtjðiÞwujðiÞÞ ¼ 0 for all r0 s; t; u.

Then, from Lemma 1 given by Yata and Aoshima [21], we claim that (A-iv)

holds under (A-ii) for the factor model. Also, we note that the factor model

naturally holds when pi is Gaussian.

Let l̂l1ðiÞ b � � �b l̂ldðiÞ b 0 be the eigenvalues of S ini for i ¼ 1; 2. Let us

write the eigen-decomposition of S ini as S ini ¼
Pd

j¼1 l̂ljðiÞĥhjðiÞĥh
T
jðiÞ; where ĥhjðiÞ

denotes a unit eigenvector corresponding to l̂ljðiÞ. By using the NR method,

ljðiÞs are estimated by

~lljðiÞ ¼ l̂ljðiÞ �
trðS iniÞ �

P j
s¼1 l̂lsðiÞ

ni � 1� j
ð j ¼ 1; . . . ; ni � 2Þ: ð7Þ

Note that ~lljðiÞ b 0 w.p.1 for j ¼ 1; . . . ; ni � 2. Yata and Aoshima [19, 21] and

Ishii et al. [13] showed that ~lljðiÞ has several consistency properties in high-

dimensional context. Ishii et al. [13] gave the following result when ni is fixed

or ni ! y.

Theorem 1 ([13]). Under (A-ii) and (A-iv), it holds that as d ! y

~ll1ðiÞ
l1ðiÞ

¼ kzo1ðiÞk2=ðni � 1Þ þ opð1Þ when ni is fixed;

1þ opð1Þ when ni ! y

(

for i ¼ 1; 2. Under (A-i), (A-ii) and (A-iv), it holds that as d ! y when ni is

fixed

ðni � 1Þ
~ll1ðiÞ
l1ðiÞ

) w2ni�1 for i ¼ 1; 2:
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Remark 3. Under (A-ii) and (A-iv), it holds that as d ! y either when ni
is fixed or ni ! y

l̂l1ðiÞ
l1ðiÞ

¼
kzo1ðiÞk2

ni � 1
þ
Pd

s¼2 lsðiÞ
l1ðiÞðni � 1Þ þ opð1Þ for i ¼ 1; 2:

If
Pd

s¼2 lsðiÞ=ðl1ðiÞniÞ ! y as d ! y either when ni is fixed or ni ! y,

l̂l1ðiÞ is strongly inconsistent in the sense that l1ðiÞ=l̂l1ðiÞ ¼ opð1Þ. We emphasize

that one can remove the bias term of l̂l1ðiÞ by using the NR method.

3.2. Test procedure for (1). In this section, we apply the NR method to the

distance-based two-sample test for the SSE model and give a new test procedure

in the HDLSS context.

Let n ¼ n1 þ n2 � 2. From Theorem 1 we have the following result.

Lemma 2. Under (A-i) to (A-iv), it holds that as d ! y when n is fixed

P2
i¼1ðni � 1Þ~ll1ðiÞ

l1ð1Þ
) w2n :

Under (A-ii) to (A-iv), it holds that as d ! y and n ! y

P2
i¼1ðni � 1Þ~ll1ðiÞ

nl1ð1Þ
¼ 1þ opð1Þ:

In addition, from Theorem 1, we can estimate

l1ð1Þ
X2
i¼1

kzo1ðiÞk2

niðni � 1Þ

in (6) by
P2

i¼1
~ll1ðiÞ=ni. Hence, we consider a test statistic for (1) by

F0 ¼ un
Tn þ

P2
i¼1

~ll1ðiÞ=niP2
i¼1ðni � 1Þ~ll1ðiÞ

;

where un ¼ n=cn. Let Fk1;k2 denotes a random variable distributed as the F

distribution with degrees of freedom, k1 and k2. Then, by combining Lemmas

1 with 2, we have the following results.

Theorem 2. Under (A-i) to (A-iv), it holds that as d ! y

F0 )
F1; n when n is fixed;

w21 when n ! y:

�
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Corollary 1. Under (A-ii) to (A-iv), it holds that as d ! y and

nmin ! y

F0 ) w21 under H0 in ð1Þ:

Note that n ! y as ni ! y for i ¼ 1 or 2. From Theorem 2 F0 is

asymptotically distributed as w21 under (A-i) and some conditions. On the other

hand, from Corollary 1, one can claim the result without (A-i) if nmin ! y
(i.e., ni ! y for i ¼ 1; 2).

For a given a A ð0; 1=2Þ we test (1) by

rejecting H0 , F0 > F1; nðaÞ; ð8Þ

where Fk1;k2ðaÞ denotes the upper a point of the F distribution with degrees of

freedom, k1 and k2. Note that F1; nðaÞ ! w21ðaÞ as n ! y, where w2kðaÞ denotes
the upper a point of w2 distribution with k degrees of freedom. Then, under

the conditions in Theorem 2 (or Corollary 1), it holds that

size ¼ aþ oð1Þ

as d ! y either when n is fixed or n ! y. Hence, one can use the test

procedure by (8) even when nis are fixed.

Next, we consider the power of the test by (8). We consider the following

assumption under H1 in (1):

(A-v):
nminm

T
12Sim12

l21ð1Þ
! 0, i ¼ 1; 2; as d ! y either when nmin is fixed or

nmin ! y.

Here, we have the following result.

Lemma 3. Under (A-ii) to (A-v), it holds that

Tn þ
P2

i¼1
~ll1ðiÞ=ni

cnl1ð1Þ
¼

ðz1ð1Þ � z1ð2ÞÞ2

cn
þ km12k

2

cnl1ð1Þ
þ opð1Þ:

as d ! y either when nmin is fixed or nmin ! y.

Then, we have the following results.

Theorem 3. Under (A-i) to (A-v), the test by (8) has that

Power ¼ 1� Fw2
1

w21ðaÞ �
km12k

2

cnl1ð1Þ

 !
þ oð1Þ

as d ! y and n ! y, where Fw2
1
ð�Þ denotes the cumulative distribution function

of w21 .
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Corollary 2. Assume that

km12k
2

cnl1ð1Þ
! y as d ! y either when nmin is fixed or nmin ! y:

Then, under (A-ii) to (A-v), the test by (8) has that

Power ¼ 1þ oð1Þ

as d ! y either when nmin is fixed or nmin ! y.

Remark 4. When d ! y and nmin ! y, we can claim Theorem 3 without

(A-i).

3.3. How to check (A-iii). When (A-iii) is met, one can use the test procedure

by (8). However, (A-iii) is not a general condition for high-dimensional set-

tings, so that it is necessary to check the validity in actual data analyses. We

consider the following test:

H0 : ðl1ð1Þ; h1ð1ÞÞ ¼ ðl1ð2Þ; h1ð2ÞÞ vs: H1 : ðl1ð1Þ; h1ð1ÞÞ0 ðl1ð2Þ; h1ð2ÞÞ: ð9Þ

Note that (A-iii) is met under H0 in (9). Let ~hh1ðiÞ ¼ ðl̂l1=21ðiÞ=
~ll
1=2
1ðiÞÞĥh1ðiÞ for i ¼ 1; 2.

Let ~hh ¼ maxfj~hhT
1ð1Þ

~hh1ð2Þj; j~hhT
1ð1Þ

~hh1ð2Þj�1g. Note that ~hhb 1 w.p.1. Then, Ishii

et al. [13] gave the following test statistic:

F1 ¼
~ll1ð1Þ
~ll1ð2Þ

~hh�;

where

~hh� ¼
~hh if ~ll1ð1Þ b ~ll1ð2Þ;

~hh�1 otherwise:

�

From Theorem 4.1 in Ishii et al. [13], under (A-i), (A-ii) and (A-iv), it holds

that

F1 ) Fn1; n2 under H0 in ð9Þ

as d ! y when nis are fixed, where ni ¼ ni � 1 for i ¼ 1; 2. For a given

a A ð0; 1=2Þ we test (9) by

rejecting H0 , F1 B ½fFn2; n1ða=2Þg
�1;Fn1; n2ða=2Þ�: ð10Þ

Then, under (A-i), (A-ii) and (A-iv), it holds that

size ¼ aþ oð1Þ

as d ! y when nis are fixed. Hence, by using (10), one can check whether

(A-iii) holds or not.
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4. Simulation studies

We used computer simulations to study the performance of the test pro-

cedure by (8). We also checked the performance of the test procedure by

rejecting H0 , Tn=K̂K
1=2 > za; ð11Þ

where za is a constant such that PðNð0; 1Þ > zaÞ ¼ a and

K̂K ¼ 2
X2
i¼1

Wini

niðni � 1Þ þ 4
trðS1n1S2n2Þ

n1n2
with

Wini ¼
Pni

j0kðxT
ij xikÞ

2

niðni � 1Þ �
2
Pni

j0k0l x
T
ij xikx

T
ikxil

niðni � 1Þðni � 2Þ þ
Pni

j0k0l0m xT
ij xikx

T
il xim

niðni � 1Þðni � 2Þðni � 3Þ :

Here, Wini is an unbiased estimator of trðS2
i Þ given by Chen et al. [9]. See

Srivastava et al. [18] for the details of Wini . Note that Aoshima and Yata [1]

and Yata and Aoshima [20] gave a di¤erent unbiased estimator of trðS2
i Þ.

From Theorems 1 and 2 in Chen and Qin [8] or Corollary 1 in Aoshima and

Yata [3], under (2) and the factor model given in Remark 2, the test procedure

by (11) has size ¼ aþ oð1Þ as d ! y and ni ! y, i ¼ 1; 2. If (3) is met or nis

are fixed, we cannot claim ‘‘size¼ aþ oð1Þ’’ for the test procedure by (11). We

set a ¼ 0:05, m1 ¼ 0 and

Si ¼
Sð1Þ O2;d�2

Od�2;2 ciSð2Þ

� �
; i ¼ 1; 2; ð12Þ

where Ok; l is the k � l zero matrix, Sð1Þ ¼ diagðd b; d 1=2Þ, Sð2Þ ¼ ð0:3ji�jj1=2Þ and

ðc1; c2Þ ¼ ð1; 1:5Þ. Note that (A-ii) is met for b > 1=2. Also, note that (A-iii)

is met.

First, we considered the case when d ! y while nis are fixed. We set

d ¼ 2s, s ¼ 3; . . . ; 11 and ðn1; n2Þ ¼ ð10; 15Þ. Independent pseudo-random ob-

servations were generated from pi : Npðmi;SiÞ, i ¼ 1; 2. We considered two

cases for b in (12): (a) b ¼ 1 and (b) b ¼ 2=3. We considered the following

cases for m2: (i) m2 ¼ 0 and (ii) m2 ¼ ð0; . . . ; 0; 1; . . . ; 1ÞT whose last dd be
elements are 1, where dxe denotes the smallest integerb x. Note that m2 ¼
ð1; . . . ; 1ÞT when b ¼ 1. We considered a naive estimation of F0 as

F̂F0 ¼ un
Tn þ

P2
i¼1 l̂l1ðiÞ=niP2

i¼1ðni � 1Þl̂l1ðiÞ

and checked the performance of the test procedure given by

rejecting H0 , F̂F0 > F1; nðaÞ: ð13Þ
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For each case, we checked the performance of the test procedures given by (8),

(11) and (13) and observed the results with 2000ð¼ R; sayÞ repetitions. We

defined Pr ¼ 1 (or 0) when H0 was falsely rejected (or not) for r ¼ 1; . . . ; 2000

for (a) and defined a ¼
PR

r¼1 Pr=R to estimate the size. We also defined

Pr ¼ 1 (or 0) when H1 was falsely rejected (or not) for r ¼ 1; . . . ; 2000 for (b)

and (c) and defined 1� b ¼ 1�
PR

r¼1 Pr=R to estimate the power. Note that

their standard deviations are less than 0:011. In Fig. 1, we plotted a and

1� b for (a) and (b). We observed that the test procedure by (8) gives better

performances compared to (11) regarding the size. The size by (11) did not

become close to a. This is probably because Tn does not hold the asymptotic

normality when (2) is not met. On the other hand, (11) gave better perfor-

mances compared to (8) regarding the power. This is because (11) cannot

control the size when (3) is met. The test procedure by (13) gave quite bad

performances for (b). The power was much lower than the power of (8). The

main reason must be that the bias of l̂l1ðiÞ is getting larger as d increases.

From Remark 3 l̂l1ðiÞ is strongly inconsistent in the sense that l1ðiÞ=l̂l1ðiÞ ¼ opð1Þ
for (b).

Next, we considered the case when ni ! y, i ¼ 1; 2. We considered two

cases of d: (a) d ¼ 200 and (b) d ¼ 1000. We set n1 ¼ 4s, s ¼ 2; . . . ; 10,

n2 ¼ 1:5n1 and b ¼ 3=4 in (12). We considered two cases of m2: (i) m2 ¼ 0

and (ii) m2 ¼ ð0; . . . ; 0; 1; . . . ; 1ÞT whose last d5cnl1ð1Þe elements are 1. Note

that km12k
2 ¼ d5cnl1ð1Þe for (ii). Then, it holds that

Fw2
1
fw21ðaÞ � km12k

2=ðcnl1ð1ÞÞg ¼ 0

for (ii). Thus from Theorem 3 the test by (8) has Power ¼ 1þ oð1Þ as d ! y
and ni ! y, i ¼ 1; 2. We also checked the performance of the test procedure

by

rejecting H0 , T̂T�=K̂K
1=2
� > za; ð14Þ

where T̂T� and K̂K� are given in Section 5.2 of Aoshima and Yata [3]. We set

k1 ¼ k2 ¼ 2 in T̂T� and K̂K�. From Theorem 6 in Aoshima and Yata [3], under

(3) and some regularity conditions, the test procedure by (14) has size ¼
aþ oð1Þ as d ! y and ni ! y, i ¼ 1; 2. Let d� ¼ dd 1=2e. We considered

a non-Gaussian distribution for i ¼ 1; 2, as follows: ðz1jðiÞ; . . . ; zd�d� jðiÞÞ
T , j ¼

1; . . . ; ni; are i.i.d. as Nd�d� ð0; Id�d� Þ and ðzd�d�þ1jðiÞ; . . . ; zdjðiÞÞT , j ¼ 1; . . . ; ni;

are i.i.d. as the d�-variate t-distribution, td� ð0; Id� ; 10Þ, with mean zero, co-

variance matrix Id� and degrees of freedom 10, where ðz1jðiÞ; . . . ; zd�d� jðiÞÞ
T

and ðzd�d�þ1jðiÞ; . . . ; zdjðiÞÞT are independent for each j. Note that (A-iv) holds

from the fact that
Pd

r; sb2 lrðiÞlsðiÞEfðz2rkðiÞ � 1Þðz2skðiÞ � 1Þg ¼ 2
Pd�d�

s¼2 l2sðiÞ þ
Oð
Pd

r; sbd�d�þ1 lrðiÞlsðiÞÞ ¼ oðl21ðiÞÞ for i ¼ 1; 2. Similar to Fig. 1, we calculated
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a and 1� b for the test procedures given by (8) and (14). In Fig. 2, we plotted

a and 1� b for (a) and (b). We observed that the test procedure by (8) gives

better performances compared to (14) regarding the size, especially when nis

are small. On the other hand, the test procedure by (14) became close to a

as nis increase. In addition, (14) gave better performances compared to (8)

regarding the power. This is probably because the asymptotic variance of T̂T�
is smaller than VarðTnÞ for the high-dimensional settings. See Section 5.1 in

Aoshima and Yata [3] for the details. Hence, we recommend to use the test

procedure by (14) when nis are not small and (3) holds. If nis are small

(e.g. nis are about 10), we recommend to use the test procedure by (8) for the

SSE model. We emphasize that high-dimensional data often have the SSE

model. Also, the sample size is often quite small. See § 5 for example.

5. Demonstration

In this section, we use two high-dimensional gene expression data sets that

have the SSE model. We demonstrate the proposed test procedure by (8).

We analyzed the following data sets: (I) Huntington’s disease data with

22283 ð¼ dÞ genes consisting of p1: huntington’s disease patients (n1 ¼ 17) and

(a) b ¼ 1 in (12)

(b) b ¼ 2=3 in (12)

Fig. 1. The test procedures given by (8), (11) and (13) for d ¼ 2 s, s ¼ 3; . . . ; 11 and

ðn1; n2Þ ¼ ð10; 15Þ when (a) b ¼ 1 and (b) b ¼ 2=3. The values of a are denoted by the dashed

lines in the left panels and the values of 1� b are denoted by the dashed lines in the right

panels. When d is large, 1� b of (13) was too low to describe in the right panel of (b).
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p2: healthy controls (n2 ¼ 14) given by Borovecki et al. [5]; and (II) ovarian

cancer data with 54675 ð¼ dÞ genes consisting of p1: normal ovarian samples

(n1 ¼ 12) and p2: ovarian cancer samples (n2 ¼ 12) given by Bowen et al.

[6]. One can obtain these data sets from NCBI Gene Expression Omni-

bus. We standardized each sample so as to have the unit variance.

Then, it holds that trðS iniÞ ¼ d.

First, we confirmed that the data sets satisfy (A-ii). Let d ¼Pd
j¼2 l

2
jðiÞ=l

2
1ðiÞ. We considered an estimator of d by ~dd ¼ ðWni � ~ll21ðiÞÞ=~ll

2
1ðiÞ

having Wni by (4) in Aoshima and Yata [2], where Wni is an unbiased and

consistent estimator of trðS2
i Þ. We had ~dd ¼ �0:39 for huntington’s disease,

~dd ¼ �0:334 for healthy controls, ~dd ¼ 0:273 for normal ovarian samples and
~dd ¼ �0:115 for ovarian cancer samples. From these observations we con-

cluded that these data sets satisfied (A-ii). In addition, from Remark 3.1 given

in Ishii et al. [13], by using Jarque-Bera test, we could confirm that these data

sets satisfy (A-i) with the level of significance 0:05.

Next, we tested (9) by (10) with a ¼ 0:05. We calculated that F1 ¼ 1:97

for huntington’s disease data and F1 ¼ 1:31 for ovarian cancer data. Then, H0

in (9) was accepted by (10) both for (I) and (II). Hence, we concluded that

these data sets satisfied (A-iii).

(a) d ¼ 200

(b) d ¼ 1000

Fig. 2. The test procedures given by (8) and (14) for n1 ¼ 4s, s ¼ 2; . . . ; 10, n2 ¼ 1:5n1 and b ¼ 3=4

when (a) d ¼ 200 and (b) d ¼ 1000. The values of a are denoted by the dashed lines in the left

panels and the values of 1� b are denoted by the dashed lines in the right panels.
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Finally, we tested (1) by (8) with a ¼ 0:05. We calculated that F0 ¼ 77:87

for (I) and F0 ¼ 19:78 for (II). Then, H0 in (1) was rejected by the test

procedure (8) both for (I) and (II).

Appendix A

A.1. Proof of Lemma 1. By using Chebyshev’s inequality, for any t > 0,

under (A-ii), we have that for i ¼ 1; 2

P
Xni
j0j 0

Xd
s¼2

lsðiÞzsjðiÞzsj 0ðiÞ
niðni � 1Þ

�����
�����> tl1ðiÞ=ni

 !
¼ O

Pp
s¼2 l

2
sðiÞ

t2l21ðiÞ

 !
! 0 ð15Þ

as d ! y either when ni is fixed or ni ! y. We write that

kxini � mik
2 � trðS iniÞ

ni
¼
Xd
s¼1

lsðiÞ z2sðiÞ �
kzosðiÞk2

niðni � 1Þ

 !
:

Here, z2sðiÞ � kzosðiÞk2=fniðni � 1Þg ¼
Pni

j0j 0 zsjðiÞzsj 0ðiÞ=fniðni � 1Þg for all i, s.

Then, from (15) under (A-ii), we have that

kxini � mik
2 � trðS iniÞ=ni
l1ðiÞ

¼ z21ðiÞ �
kzo1ðiÞk2

niðni � 1Þ þ opðn�1
i Þ ð16Þ

as d ! y either when ni is fixed or ni ! y. Let bst ¼ ðlsð1Þltð2ÞÞ1=2 � hT
sð1Þhtð2Þ

for all s, t. Then, we write that

ðx1n1 � m1Þ
T ðx2n2 � m2Þ ¼

Xd
s; tb1

bstzsð1Þztð2Þ ¼ b11z1ð1Þz1ð2Þ þ
Xd
s¼2

bs1zsð1Þz1ð2Þ

þ
Xd
t¼2

b1tz1ð1Þztð2Þ þ
Xd
s; tb2

bstzsð1Þztð2Þ: ð17Þ

Let Si� ¼
Pd

s¼2 lsðiÞhsðiÞh
T
sðiÞ for i ¼ 1; 2. Here, we have that

E
Xd
s¼2

bs1zsð1Þz1ð2Þ

 !28<
:

9=
; ¼

l1ð2Þh
T
1ð2ÞS1�h1ð2Þ

n1n2
a

l1ð2Þl2ð1Þ
n1n2

;

E
Xd
t¼2

b1tz1ð1Þztð2Þ

 !28<
:

9=
; ¼

l1ð1Þh
T
1ð1ÞS2�h1ð1Þ

n1n2
a

l1ð1Þl2ð2Þ
n1n2

;

E
Xd
s; tb2

bstzsð1Þztð2Þ

 !28<
:

9=
; ¼ trðS1�S2�Þ

n1n2
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trðS2

1�Þ trðS 2
2�Þ

q
n1n2

:
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Then, by using Chebyshev’s inequality, for any t > 0, under (A-ii) and (A-iii), it

holds that

P
Xd
s¼2

bs1zsð1Þz1ð2Þ

�����
�����> tl1ð1Þ=nmin

 !
a

l1ð2Þl2ð1Þ

t2l21ð1Þ
! 0;

P
Xd
t¼2

b1tz1ð1Þztð2Þ

�����
�����> tl1ð1Þ=nmin

 !
a

l1ð1Þl2ð2Þ

t2l21ð1Þ
! 0;

P
Xd
s; tb2

bstzsð1Þztð2Þ

�����
�����> tl1ð1Þ=nmin

 !
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trðS2

1�Þ trðS2
2�Þ

q
t2l21ð1Þ

! 0

as d ! y either when ni is fixed or ni ! y for i ¼ 1; 2. Note that z1ð1Þz1ð2Þ ¼
Opðn�1

minÞ. Hence, from (17), under (A-ii) and (A-iii), we have that

ðx1n1 � m1Þ
Tðx2n2 � m2Þ

l1ð1Þ
¼

b11z1ð1Þz1ð2Þ
l1ð1Þ

þ opðn�1
minÞ

¼ z1ð1Þz1ð2Þ þ opðn�1
minÞ ð18Þ

as d ! y either when ni is fixed or ni ! y for i ¼ 1; 2. Here, we write that

kx1n1 � x2n2k
2 ¼

X2
i¼1

kxini � mik
2 � 2ðx1n1 � m1Þ

T ðx2n2 � m2Þ

þ 2mT
12fðx1n1 � m1Þ � ðx2n2 � m2Þg þ km12k

2: ð19Þ

Then, by combining (16) and (18) with (19) under H0 in (1), we can conclude

the result.

A.2. Proof of Lemma 2. Under (A-i), we note that zo1ð1Þ and zo1ð2Þ are

independent, and kzo1ðiÞk2 is distributed as w2ni�1 for i ¼ 1; 2. Hence, from

Theorem 1 we can conclude the result.

A.3. Proofs of Theorem 2 and Corollary 1. Under (A-i), we note that z1ðiÞ
and zo1ðiÞ are independent for i ¼ 1; 2. By combining (6) with Theorem 1 and

Lemma 2, we can conclude the results.

A.4. Proof of Lemma 3. By using Chebyshev’s inequality, for any t > 0,

under (A-v), we have that for i ¼ 1; 2

P jmT
12ðxini � miÞj > tl1ðiÞ=nmin

� �
¼ O

nminm
T
12Sim12

t2l21ðiÞ

 !
! 0 ð20Þ
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as d ! y either when nmin is fixed or nmin ! y. Then, by combining (19)

with (16), (18), (20) and Theorem 1, under (A-ii) to (A-v), we have that

Tn þ
P2

i¼1
~ll1ðiÞ=ni

l1ð1Þ
¼ ðz1ð1Þ � z1ð2ÞÞ2 þ

km12k
2

l1ð1Þ
þ opðn�1

minÞ

as d ! y either when nmin is fixed or nmin ! y for i ¼ 1; 2. Hence, we can

claim the result.

A.5. Proof of Theorem 3. Note that F1; nðaÞ ! w21ðaÞ as n ! y. From

Lemmas 2 and 3, under (A-i) to (A-v), we have that as d ! y and n ! y

P un
Tn þ

P2
i¼1

~ll1ðiÞ=niP2
i¼1ðni � 1Þ~ll1ðiÞ

> F1; nðaÞ
 !

¼ P w21 > w21ðaÞ �
km12k

2

cnl1ð1Þ
þ opð1Þ

 !

¼ 1� Fw2
1

w21ðaÞ �
km12k

2

cnl1ð1Þ

 !
þ oð1Þ:

It concludes the result.

A.6. Proof of Corollary 2. From Lemma 3 the result is obtained straight-

forwardly.
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