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ABSTRACT. A common feature of high-dimensional data is that the data dimension is
high, however, the sample size is relatively low. We call such data HDLSS data. In
this paper, we consider a new two-sample test for high-dimensional data under the
strongly spiked eigenvalue (SSE) model. We consider the distance-based two-sample
test under the SSE model. We introduce the noise-reduction (NR) methodology and
apply that to the two-sample test. Finally, we give simulation studies and demonstrate
the new test procedure by using microarray data sets.

1. Introduction

Suppose that we have two independent d x n; data matrices, X; =
[Xij, ..., Xin,), i=1,2, where x;, j=1,...,n; are independent and identically
distributed (i.i.d.) as a d-dimensional distribution (7z;) with a mean vector g;
and covariance matrix X; (> 0). We assume n; >3, i=1,2. The eigen-
decomposition of X; is given by X; = HiAiHl.T, where A; = diag(4i(), - - -, 4a@i))
having A = --- = A4»(=0) and H; = [hy(;), ..., hy;) is an orthogonal ma-
trix of the corresponding eigenvectors. Let X;— [u;,...,u] :HiA[l/zZi for
i=1,2. Then, Z; is a d x n; sphered data matrix from a distribution with the
zero mean and identity covariance matrix. Let Z; = [z1(), - - -, Za(i)] T and %) =
(Zjl(i)7 ce. ,Zjni([))T, j=1,....d fori=12. Note that E(Z/k(i)zj’k(i)) =0(j#Jj")
and Var(z;;)) = I,,, where I, is the n;-dimensional identity matrix. We assume
that the fourth moments of each variable in Z; are uniformly bounded for
i=1,2. Let Zoj(i) = Zj(i) — (Zj(i)7 . ,Zi([))T, j=1,....d; i=1,2, where Zji) =
n;l Yoy Zixi)- Also, note that if X; is Gaussian, zjs are iid. as the
standard normal distribution, N(0,1). We assume that P(limy_. . [|Zo1(;)|| # 0)
=1 for i=1,2, where ||-| denotes the Euclidean norm. As necessary, we
consider the following assumption for zjs:

(A-D): zykp), k=1,...,m;, are iid. as N(0,1) for i=1,2.
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In this paper, we consider the two-sample test:
Hy:p=p, Vs. Hy iy #py. (1)

We define jin[ = E/n;] x,-j/n,- and Sini = Zl”;l(x,] — .if,'n/.)(xij - fin[)T/(l’l,‘ — 1) for

i=1,2. Then, Hotelling’s T>-statistic is defined by
T2 _ niny
ny +np

where S, = {(n; — 1)S,, + (m2 — 1)S2,,}/(n1 +ny —2). However, S,' does
not exist in the HDLSS context such as n;/d — 0, i = 1,2. In such situations,
Dempster [10, 11], Srivastava [16] and Srivastava et al. [17] considered the test
when 7; and 7, are Gaussian. Fujikoshi et al. [12] considered the Dempster’s
test statistic in the MANOVA context. When 7, and 7, are non-Gaussian,
Bai and Saranadasa [4] and Cai et al. [7] considered the test under the
homoscedasticity, X'} = 2, and Chen and Qin [8] and Aoshima and Yata [1, 2]
considered the test under the heteroscedasticity, 2| # X2,. We note that those
two-sample tests were constructed under the eigenvalue condition as follows:
A .
5> — 0 as d — oo for i=1,2. (2)
tr(27)

(-’?lnl - 32,,2) TSn_l (ilnl - i2n2)a

However, if (2) is not met, one cannot use those two-sample tests. See
Aoshima and Yata [3] for the details. Aoshima and Yata [3] called (2) the
“non-strongly spiked eigenvalue (NSSE) model”. On the other hand, Aoshima
and Yata [3] considered the “strongly spiked eigenvalue (SSE) model” as
follows:

A
lim inf 1(1)2 >0 for i=1 or 2. (3)
d—e | tr(Z7)

For the SSE model, Katayama et al. [14] considered a one-sample test when the
population distribution is Gaussian. Ishii et al. [13] considered the one-sample
test for non-Gaussian cases. Ma et al. [15] considered a two-sample test for
the factor model when 2 = 2,. Aoshima and Yata [3] gave two-sample tests
by considering eigenstructures when d — oo and n; — oo, i=1,2. In this
paper, we consider the divergence condition for d and n;s such as d — o
either when n; is fixed or n; — oo for i =1,2. For the divergence condition,
we propose a two-sample test under the SSE model.

The rest of the paper is organized as follows. In §2, we consider the
distance-based two-sample test under the SSE model. In §3, we introduce
the noise-reduction (NR) methodology and provide asymptotic properties of
the largest-eigenvalue estimation in the HDLSS context. We apply the NR
method to the two-sample test and give a new test procedure for the SSE
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model. In §4, we give simulation studies and discuss the performance of the
new test procedure. Finally, in §5, we demonstrate the new test procedure by
using microarray data sets.

2. Distance-based two-sample test

In this section, we discuss asymptotic properties of the distance-based two-
sample test for both the NSSE model and the SSE model.
Let

2

= = 2
Ty = [|%1n, — %o, [|” — Z tr(Sin, )/ i

i=1

Let M =M1 — 1. Note that E( ) ||lu12H and

2
2122 /41221#12
A%
ar( g i(n; — 1 niny Z

Bai and Saranadasa [4], Chen and Qin [8] and Aoshima and Yata [1] con-
sidered the statistics for high-dimensional data. We call the test with 7, the
“distance-based two-sample test”. By using Theorem 1 in Chen and Qin [§]
or Theorem 4 in Aoshima and Yata [2], we can claim that as d — oo and
n; — o0, = 17 2

Var(TTnn)l/z = N(0,1) (4)

13 LR

under Hj in (1), (2) and the factor model given in Remark 2. Here, “=
denotes the convergence in distribution. However, we note that 7, does not
hold (4) in the case of (3).
Now, we assume the following assumptions:
d 32

2= 4500
1(0)

e, A1) T
(A-iii): i 1+o(1) and ki) =1+0(1) as d — .

1(2)

(A-ii): =o(l) as d —» o0 for i=1,2;

Note that (A-ii) implies (3), that is (A-ii) is one of the SSE models. Also,
note that (A-ii) implies the condition that Ay /A5 — 0 as d — co. In high-
dimensional context, (A-iii) is much milder than 2} = X,. In addition, one
can check the validity of (A-iii). See §3.3.

REmMARK 1. For a spiked model such as

Ajiy = agd® (G=1,....m) and AjGiy = € (j=mi+1,...,d)
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with positive and fixed constants, a;s, cys and oys, and a positive and fixed
integer my, (A-ii) holds under the conditions that o; > 1/2 and o; > 0. See
Yata and Aoshima [19] for the details.

Let nmi, = min{n;,n}. Under (A-ii) and (A-iii), we have the following
result.

LemMmA 1. Under Hy in (1), (A-ii) and (A-iii), it holds that

Ty _ S\ [ESTE H 1
=z -2 — + 0, (n;
)vl(l) ( 1(1) 1(2)) — nz(”z — 1) 17( mm)

as d — oo either when nyy, is fixed or Ny, — 0.

Let ¢, = 1/n; 4+ 1/ny.  From Lemma 1, under Hy in (1), (A-ii) and (A-iii),
we have that

! 2, 2ol I
21(1)Cn <T"+'11<1>Zm =c¢, (Zi0) — Z1(2))” +0p(1) (5)

i=1

as d — oo either when np, is fixed or nmy, — 0. Note that E(sz(i>)’s are
bounded when 7y, — oo. Then, it holds that

oy P (E10) — Bip) = N(0,1)
as npi, — oo by Lyapunov’s central limit theorem. Hence, from (5) it holds
that as d — oo and npy;, — 0

L <Tn+il<1)z ”(01_ _|1)> =i (6)

)vl(l)cn i—1

under Hy in (1), (A-ii) and (A-iii), where y7 denotes a random variable
distributed as the y? distribution with k degrees of freedom. On the other
hand, under (A-i), we note that et/ 2(21( 1) — Z1(2)) is distributed as N(0,1) even
when ny,, is fixed. Hence, from (5) we have (6) as d — co when ny, is fixed
under Hy in (1), (A-i) to (A-iii).

In order to construct a test procedure for (1) under the SSE model, (A-ii),
it is necessary to estimate A1) and |z,1(]|% i=1,2 in (6).

3. Two-sample test for SSE model

In this section, we propose a two-sample test for the SSE model. We
first introduce the noise-reduction (NR) methodology and provide asymptotic
properties of the largest-eigenvalue estimation.
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3.1. Noise-reduction methodology. Yata and Aoshima [19] proposed a method
for eigenvalue estimation called the noise-reduction (NR) methodology that was
brought by a geometric representation of the sample covariance matrix.

We consider the following assumption for i = 1,2:

d 2 2
iri}“‘YiE Zri_l Z”i—l
(A-iv): 2rs22 050 {(lzkw A k() )}:o(l) as d — oo either
Mit1i)

when n; is fixed or n; — 0.

REMARK 2. For several statistical inference of high-dimensional data,
Aoshima and Yata (2], Bai and Saranadasa [4] and Chen and Qin [8] assumed
a general factor model as follows:

xip=Tiwj+
for j=1,....n;, where I'; is a d x q; matrix for some q; >0 such that
F,T[T =2, and wy, j=1,...,n;, are iid. random vectors having E(w;) =0
and Var(w;) = 1,. As for wi = (wij),..., W, ](,))T, assume that E(wf/(l.>vvfj.(i))

=1 and E(w;iWgiyWyiWuiiy) = 0 for all v # s,t,u.

Then, from Lemma 1 given by Yata and Aoshima [21], we claim that (A-iv)
holds under (A-ii) for the factor model. Also, we note that the factor model
naturally holds when 7; is Gaussian.

Let 11(,-) > > id( > 0 be the elgenvalues of Sm for 171 2. Let us
write the eigen-decomposition of S;, as m ZJ li l), where h
denotes a unit eigenvector corresponding to lj(i>. By usmg the NR method,
Aj(i)s are estimated by

o (Sw) - Y A
ni — 1 - ]

Note that ij(i) >0 w.p.lforj=1,...,n,—2. Yata and Aoshima [19, 21] and
Ishii et al. [13] showed that A;; has several consistency properties in high-

dimensional context. Ishii et al. [13] gave the following result when #n; is fixed
or n; — 0.

(jzl,...,l’lj—Z). (7)

THEOREM 1 ([13]). Under (A-ii) and (A-iv), it holds that as d — oo

@: llzo1i H /(ni — 1) +o0,(1) when n; is fixed,
A1) 1+ 0,,(1) when n; — o

Sfor i=1,2. Under (A-), (A-i) and (A-iv), it holds that as d — oo when n; is
fixed

(i —1) 1 :>}(5__1 for i=1,2.
21(i) :
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REMARK 3.  Under (A-ii) and (A-iv), it holds that as d — oo either when n;
is fixed or n; — o0

d
M) _ Izo10) 12 N Dy As(i)
;vl(i) n; — 1 ﬂm) (I/l,' — 1)

+o,(1)  fori=1,2.

If Z;j:z As(iy/ (A1@yni) — o as d — oo either when n; is fixed or n; — o0,
A1) 1s strongly inconsistent in the sense that Ay;)/4;) = 0,(1). We emphasize
that one can remove the bias term of 4;; by using the NR method.

3.2. Test procedure for (1). In this section, we apply the NR method to the
distance-based two-sample test for the SSE model and give a new test procedure
in the HDLSS context.

Let v=mn;+ny —2. From Theorem 1 we have the following result.

LemMMA 2. Under (A-i) to (A-iv), it holds that as d — oo when v is fixed

2
=X,
)vl(l) Y

Under (A-ii) to (A-iv), it holds that as d — o and v — o

S (= D)

=1+40,(1).
V/il(l) P()

In addition, from Theorem 1, we can estimate
2, lzoroll?
2 Mool
1(1) ;ni(n,- — 1)
in (6) by Zle /{1(1‘) /n;. Hence, we consider a test statistic for (1) by
To+ 30 M/
2 x k)
2 imi(mi = i

where u, =v/c,. Let Fy, x, denotes a random variable distributed as the F
distribution with degrees of freedom, k; and k;. Then, by combining Lemmas
1 with 2, we have the following results.

0= Un

THEOREM 2. Under (A-i) to (A-iv), it holds that as d — oo

Fi, when v is fixed,
F() 2'
xi  when v — 0.
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COROLLARY 1. Under (A-ii) to (A-iv), it holds that as d — co and

Nmin — O
Fy =} under Hy in (1).

Note that v — o0 as n; — oo for i=1 or 2. From Theorem 2 F, is
asymptotically distributed as 7 under (A-i) and some conditions. On the other
hand, from Corollary 1, one can claim the result without (A-i) if ny;, — oo
(i.e., n; — oo for i=1,2).

For a given o€ (0,1/2) we test (1) by

rejecting Hy < Fy > F (), (8)

where Fy, i, () denotes the upper o point of the F distribution with degrees of
freedom, k; and k. Note that Fy (o) — 3 (e) as v — oo, where y7() denotes
the upper o point of x? distribution with k degrees of freedom. Then, under
the conditions in Theorem 2 (or Corollary 1), it holds that

size = a + o(1)

as d — oo either when v is fixed or v — oo. Hence, one can use the test
procedure by (8) even when n;s are fixed.
Next, we consider the power of the test by (8). We consider the following
assumption under H; in (1):
nmin:ulgzi:uu
12(1>
Nmin — 0.

Here, we have the following result.

(A-v): — 0, i=1,2, as d — oo either when ny;, is fixed or

LemMMA 3. Under (A-ii) to (A-v), it holds that

2 7 - - 2
T+ ha/n G —2w)° | el
= + +o0,(1).
Cn)bl(l) Cn Cnll(l)

as d — oo either when nyy, is fixed or Ry, — 0.
Then, we have the following results.
THEOREM 3. Under (A-i) to (A-v), the test by (8) has that
2 ||.“12H2
Power =1 —F, (;{l (o) — Cn)”l(l)> +o(1)

as d — oo and v — oo, where F(-) denotes the cumulative distribution function
2 1
of 1i-
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COROLLARY 2. Assume that

2
||ﬂ12||

7 — o0 as d — oo either when nyy, is fixed or npyy, — 0.
Cali(1)

Then, under (A-ii) to (A-v), the test by (8) has that
Power =1+ o(1)
as d — oo either when nyy, is fixed or Ry, — 0.

REMARK 4. When d — oo and nyi, — o0, we can claim Theorem 3 without

(A-).

3.3. How to check (A-iii)). When (A-iii) is met, one can use the test procedure
by (8). However, (A-iii) is not a general condition for high-dimensional set-
tings, so that it is necessary to check the validity in actual data analyses. We
consider the following test:

Hy : (A1), ) = (A, b)) vse Hi: (i), ) # (A, ). 9)

Note that (A-iii) is met under Hy in (9). Let ill(,-) = (ill(/j/ill(/j)iq(,) fori=1,2.
Let h= max{|itlr(1)l~11(2)|7 |I~11T(1)i11<2)\71}. Note that #>1 w.p.l. Then, Ishii
et al. [13] gave the following test statistic:

A1) ~
Fl = ~l(]) h*a

A1)

where

il* :{il if 21(1) 211(2),
h~!  otherwise.

From Theorem 4.1 in Ishii et al. [13], under (A-i), (A-ii) and (A-iv), it holds
that

F, = F, ,, under Hy in (9)

as d — oo when ;s are fixed, where v, =mn;—1 for i =1,2. For a given
ae(0,1/2) we test (9) by

rejecting Hy < Fi ¢ [{Fyy (4/2)} ", Fy o (4/2)] (10)
Then, under (A-i), (A-ii) and (A-iv), it holds that
size = o+ o(1)

as d — oo when n;s are fixed. Hence, by using (10), one can check whether
(A-iii) holds or not.
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4. Simulation studies

We used computer simulations to study the performance of the test pro-
cedure by (8). We also checked the performance of the test procedure by

1/2

rejecting Hy < T,/K'? > z,, (11)

where z, is a constant such that P(N(0,1) > z,) = o and

> I/Vin- tr(Sln SZn ) .
K=2 R th
;”i(”i BT nim b

n; T 2 n; T T n; T T
Zj;ék(xg‘/ Xik) _ 2 Zj;ék;él Xjj Xike X Xil Zj;ﬁk;él;ém Xjj XileXip Xim

Win = ni(n; — 1) mn— D —2) (i — V(i — 2)(m — 3)

Here, W;, is an unbiased estimator of tr(X?) given by Chen et al. [9]. See
Srivastava et al. [18] for the details of ;. Note that Aoshima and Yata [1]
and Yata and Aoshima [20] gave a different unbiased estimator of tr(X?).
From Theorems 1 and 2 in Chen and Qin [8] or Corollary 1 in Aoshima and
Yata [3], under (2) and the factor model given in Remark 2, the test procedure
by (11) has size =a+0(1) asd — oo and n; — o0, i = 1,2. If (3) is met or n;s
are fixed, we cannot claim “‘size= o + o(1)” for the test procedure by (11). We
set « =0.05, 4y =0 and

x 054
(1) 2,d-2 .
X = , =1,2, 12
(Odz,z Ci2<2)) l (12)

where Oy, is the k x [ zero matrix, X(j) = diag(d”?,d"/?), X = (0.311"*) and
(c1,¢2) = (1,1.5). Note that (A-ii) is met for f > 1/2. Also, note that (A-iii)
is met.

First, we considered the case when d — oo while n;s are fixed. We set
d=2% s=3,...,11 and (n,n;) = (10,15). Independent pseudo-random ob-
servations were generated from 7; : N,(p;,2;), i =1,2. We considered two
cases for fin (12): (a) =1 and (b) f=2/3. We considered the following
cases for my: (i) my =0 and (i) m, = (0,...,0,1,....1)7 whose last [d*]
elements are 1, where [x] denotes the smallest integer > x. Note that u, =

(1,...,1)T when f=1. We considered a naive estimation of F as
- Tn"’Ziz:lil(i)/ni
F() = Uy P ~
>oici(ni = Dy

and checked the performance of the test procedure given by

rejecting Hy < Fy > Fi (). (13)
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For each case, we checked the performance of the test procedures given by (8),
(11) and (13) and observed the results with 2000(= R, say) repetitions. We
defined P, =1 (or 0) when H, was falsely rejected (or not) for r=1,...,2000
for (a) and defined =3 % P./R to estimate the size. We also defined
P, =1 (or 0) when H; was falsely rejected (or not) for r=1,...,2000 for (b)
and (c) and defined 1 —f=1— 3%, P,/R to estimate the power. Note that
their standard deviations are less than 0.011. In Fig. 1, we plotted & and
1 — f for (a) and (b). We observed that the test procedure by (8) gives better
performances compared to (11) regarding the size. The size by (11) did not
become close to «. This is probably because 7, does not hold the asymptotic
normality when (2) is not met. On the other hand, (11) gave better perfor-
mances compared to (8) regarding the power. This is because (11) cannot
control the size when (3) is met. The test procedure by (13) gave quite bad
performances for (b). The power was much lower than the power of (8). The
main reason must be that the bias of il(i) is getting larger as d increases.
From Remark 3 4,(; is strongly inconsistent in the sense that Ay(;/Ai;) = 0,(1)
for (b).

Next, we considered the case when n; — oo, i =1,2. We considered two
cases of d: (a) d =200 and (b) d =1000. We set n; =4s, s=2,...,10,
ny =1.5n; and f=3/4 in (12). We considered two cases of u,: (i) 1, =0
and (ii) g, = (0,...,0,1,...,1)" whose last [Scpi(1y] elements are 1. Note
that ||g]|> = [Sealiry] for (ii). Then, it holds that

Fo{xi(2) - oI/ (enary)} =0

for (if). Thus from Theorem 3 the test by (8) has Power =1+ 0(1) as d — «©
and n; — oo, i =1,2. We also checked the performance of the test procedure
by

rejecting Hy < T./K!? > z,, (14)

where T, and K, are given in Section 5.2 of Aoshima and Yata [3]. We set
ki =k, =21in T, and K.. From Theorem 6 in Aoshima and Yata [3], under
(3) and some regularity conditions, the test procedure by (14) has size =
a+o(l) as d — oo and n; — o0, i=1,2. Let d, = [d'/*]. We considered
a non-Gaussian distribution for i = 1,2, as follows: (zy),. .., Z4—a. j(,->)T, j=
1, ..., n;, are 11.d. as Nd—dx (O,Id_d*) and (Zd,d*Jrlj(,-), R 7Zdj(i)) s ] = 17 ..., Ny,
are ii.d. as the d.-variate t-distribution, ¢4 (0,1, ,10), with mean zero, co-
variance matrix I; and degrees of freedom 10, where (le(,‘),-u,zd—d*j(i))T
and (Zg_q,11j(i)s - - - ,zdjm)T are independent for each j. Note that (A-iv) holds
from the fact that Y7 o AaminE{(z2, — D, — D} =2505" 3, +
O a1 Arliyhs(n) = 0(Afy) for i =1,2. Similar to Fig. 1, we calculated
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0.03 ™ 08
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0.01 .y 05 s
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(@) p=11in (12)
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0.09 . 1) L ayn s
P 1 . LI -k
ool e T . 09 '.!‘. ’,.--"’"“"
= A - -
~ _ 03 o == 1
0.05 ik i = -k Pt o ®)
Ay 1 o7le-- o
., -
. ——
0.03 A (®) osf. R as)
.l
o0t a3 A o - g
R S .5 v,
. " / logyd s : L logyd
3 4 5 6 71 & 9 10 1 3 4 5 6 8 =9 10 11

(b) f=2/3 in (12)

Fig. 1. The test procedures given by (8), (11) and (13) for d=2% s=3,...,11 and
(n1,m2) = (10,15) when (a) f=1 and (b) f=2/3. The values of & are denoted by the dashed
lines in the left panels and the values of 1 —f are denoted by the dashed lines in the right
panels. When d is large, 1 —f of (13) was too low to describe in the right panel of (b).

& and 1 — f for the test procedures given by (8) and (14). In Fig. 2, we plotted
@ and 1 — f8 for (a) and (b). We observed that the test procedure by (8) gives
better performances compared to (14) regarding the size, especially when n;s
are small. On the other hand, the test procedure by (14) became close to o
as n;s increase. In addition, (14) gave better performances compared to (8)
regarding the power. This is probably because the asymptotic variance of 7.
is smaller than Var(T,) for the high-dimensional settings. See Section 5.1 in
Aoshima and Yata [3] for the details. Hence, we recommend to use the test
procedure by (14) when n;s are not small and (3) holds. If m;s are small
(e.g. m;s are about 10), we recommend to use the test procedure by (8) for the
SSE model. We emphasize that high-dimensional data often have the SSE
model. Also, the sample size is often quite small. See §5 for example.

5. Demonstration

In this section, we use two high-dimensional gene expression data sets that
have the SSE model. We demonstrate the proposed test procedure by (8).
We analyzed the following data sets: (I) Huntington’s disease data with
22283 (= d) genes consisting of z;: huntington’s disease patients (n; = 17) and
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Fig. 2. The test procedures given by (8) and (14) for n; =4s, s =2,...,10, ny = 1.5n; and = 3/4
when (a) d =200 and (b) d = 1000. The values of & are denoted by the dashed lines in the left
panels and the values of 1 —f are denoted by the dashed lines in the right panels.

7y healthy controls (n, = 14) given by Borovecki et al. [5]; and (II) ovarian
cancer data with 54675 (= d) genes consisting of 7;: normal ovarian samples
(n1 =12) and mp: ovarian cancer samples (n; = 12) given by Bowen et al.
[6]. One can obtain these data sets from NCBI Gene Expression Omni-
bus. We standardized each sample so as to have the unit variance.
Then, it holds that tr(S;,) = d.

First, we confirmed that the data sets satisfy (A-ii). Let o=
Z]iz /1]-2(,-> //112(,->. We considered an estimator of § by = (W, —2120))/;112@
having W,, by (4) in Aoshima and Yata [2], where W, is an unbiased and
consistent estimator of tr(X?). We had 6 = —0.39 for huntington’s disease,
6 = —0.334 for healthy controls, d = 0.273 for normal ovarian samples and
6 =—0.115 for ovarian cancer samples. From these observations we con-
cluded that these data sets satisfied (A-ii). In addition, from Remark 3.1 given
in Ishii et al. [13], by using Jarque-Bera test, we could confirm that these data
sets satisfy (A-i) with the level of significance 0.05.

Next, we tested (9) by (10) with o = 0.05. We calculated that F; = 1.97
for huntington’s disease data and F; = 1.31 for ovarian cancer data. Then, H
in (9) was accepted by (10) both for (I) and (II). Hence, we concluded that
these data sets satisfied (A-iii).
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Finally, we tested (1) by (8) with « = 0.05. We calculated that Fy = 77.87

for (I) and Fy =19.78 for (II). Then, Hy in (1) was rejected by the test
procedure (8) both for (I) and (II).

Appendix A

A.l. Proof of Lemma 1. By using Chebyshev’s inequality, for any 7 > 0,
under (A-ii), we have that for i =1,2

p le
P( > ‘c/ll(,»)/n,) = 0<M> — 0 (15)

2
Tzll(i)
as d — oo either when n; is fixed or n; — c0. We write that

— 2 ml ”zost ”
||xlﬂf :ul” ZAS < (nl _ 1)) .

i d
iziozv()zv(
ni(n; — 1)

J#I s=2

s=1
Here, 22, — ||z |I*/{ni(ni = 1)} = S21%0 2g 290 /{mi(m — 1)} for all i, s.
Then, from (15) under (A-ii), we have that

||-fin- _:uiHZ - '[I‘(Sm.)/n, 22 ”zol H -1
’ : = - + 0,(n; 16
}'I(i) 1() n; (nl _ 1) P( ) ( )

as d — oo either when n; is fixed or n; — 0. Let f, = (/13(1)/1,@)1/2 X h§1)hr(2)

for all s, z. Then, we write that

d
(Fny — )" (B, — Z BuZsyZix) = BuZinZi) + Zﬁxlz_s(l)zl(Z)
s, t>1 s=2
+Zﬂlzzl yZy2) + Z ﬂstzs )22 (17)
s, t>2

Let 2 = Z;lzz )Ls(i)hs(,»)hsm for i=1,2. Here, we have that

2 T 1
L Al < A1)
Zﬁslzs(l)zl(Z) = P < —
s=2 1722 1712

2
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2
d (. 2y) | \U(ET) w(Z3)
Z BaZs)Zi2) = < .

niny niny




286 Aki IsHn

Then, by using Chebyshev’s inequality, for any 7 > 0, under (A-ii) and (A-iii), it
holds that

d
= 5 /11 2 /12 1
P D BaznZi)| > T/ fmin | < % 0
=2 LTty
Sy A1) A2(2)
P Zﬂlle(l)th) > Til(l)/nmin < .2 0;
= “Ain)

tr(27,) r(23,) 0

d
P( Z BaZsZi2)| > Til(l)/"min> <

as d — oo either when n; is fixed or n; — oo for i =1,2. Note that Z()Z;5) =

2
Tz)\'l(l)

O,(n.1). Hence, from (17), under (A-ii) and (A-iii), we have that
_ T,_ _ _
(X1, ﬂl? (Xom, — 15) :ﬂllel(l)Zl(z) top(n=l)
A1(1) A1(1)
=211 Z12) + 0p(Finin) (18)

as d — oo either when n; is fixed or n; — oo for i = 1,2. Here, we write that
2 : 2 T
%10, — %o, |7 = Z 1 %in, = #ll™ = 2(%1n, — )" (%2, — 1)
i=1

+ 205 {(Finy — ) — (B — )} + o). (19)

Then, by combining (16) and (18) with (19) under Hy in (1), we can conclude
the result.

A.2. Proof of Lemma 2. Under (A-i), we note that z,;;) and z,2 are
independent, and ||z01(,-)||2 is distributed as y; , for i=1,2. Hence, from
Theorem 1 we can conclude the result.

A.3. Proofs of Theorem 2 and Corollary 1. Under (A-i), we note that Z(;
and z,(; are independent for i = 1,2. By combining (6) with Theorem 1 and
Lemma 2, we can conclude the results.

A.4. Proof of Lemma 3. By using Chebyshev’s inequality, for any 7 > 0,
under (A-v), we have that for i=1,2

— i TZ'.
P(‘ﬂsz(xinf — )| > Til(i)/”min) = 0(%) —0 (20)
1(i)
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as d — oo either when npy;, is fixed or nyy, — oo. Then, by combining (19)
with (16), (18), (20) and Theorem 1, under (A-ii) to (A-v), we have that

T+ S0 Ay /ni
A1)

2
= (B — A1) + ezl 0p (i)
A

as d — oo either when np;, is fixed or nyy, — oo for i =1,2. Hence, we can
claim the result.

A.5. Proof of Theorem 3. Note that Fj,(x) — yi(«) as v— oo. From
Lemmas 2 and 3, under (A-i) to (A-v), we have that as d — o0 and v — ©

T, + ~2, i 0/ i 2
P ", n > Zlfl 1(2/ 1 > FLV(O() = P X]z >X%<u> _Mﬁ_op(l)
i = 1) Ay Cni(1)
—1_F, },2(“) _ ||.“12H2 +o(1).
7\ (1)

It concludes the result.

A.6. Proof of Corollary 2. From Lemma 3 the result is obtained straight-
forwardly.
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