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Classification of simple quartics up to equisingular deformation
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Abstract. We study complex spatial quartic surfaces with simple singularities up to

equisingular deformations; as a first step, give a complete equisingular deformation

classification of non-special simple quartic surfaces.

1. Introduction

1.1. Principal results. Throughout the paper, all algebraic varieties are over

the field C of complex numbers. A quartic is a surface in P3 of degree 4.

We confine ourselves to simple quartics only, i.e., those with A–D–E type

singularities (see § 3.1). Two such quartics are said to be equisingular defor-

mation equivalent if they belong to the same deformation family in which the

total Milnor number stays constant.

Four seems to be the highest degree where one can hope to obtain a

complete equisingular deformation classification. Quartics with a non-simple

singular point (which are typically rational or ruled) have been treated in A.

Degtyarev [3, 4], where the complete classification is obtained and described in

terms of lattice embeddings. An alternative description of some non-simple

sets of singularities in terms of Dynkin diagrams can be found in T. Urabe

[23, 24]. Simple quartics are K3-surfaces, and as such they can be studied

by using the global Torelli theorem [21] and the surjectivity of the period map

[13], combined with V. V. Nikulin’s theory of discriminant forms [19]. This

approach was used by Urabe [25, 26], who showed that the total Milnor

number m of a simple quartic does not exceed 19 and listed (in terms of

perturbations of Dynkin graphs) all realizable sets of singularities with the total

Milnor number mc 17. From a slightly di¤erent perspective, also a worth

mentioning is the study of simple real quartics up to equivariant equisingular

deformation, see, e.g., the classification of nonsingular real quartics by V.

Kharlamov [12] or the recent classification of the arrangements of the ten nodes

of a real determinantal quartic by A. Degtyarev and I. Itenberg [7].
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In the present paper, we start a systematic study of the equisingular

stratification of the space of simple quartics. The principal di‰culty here is

the great number of strata (about 12 thousands); thus, as a first step, we confine

ourselves to the so-called non-special quartics. The precise definition is rather

technical, and we postpone it till § 3.3. In a sense, the non-special quartics are

an analogue of irreducible plane sextic curves admitting no dihedral coverings,

cf. [1]; in a similar vein, we have the following geometric characterization,

which is proved in § 4.1.

Theorem 1. A simple quartic X � P3 is non-special if and only if

H1ðXnðSing X [HÞÞ ¼ 0;

where Sing X is the set of the singular points of X and H is a generic hyperplane

section of X.

Still, the number of strata is too large to be listed explicitly, and; hence, in

the existence part we adopt the approach of [1] and describe only those strata

that are extremal with respect to degeneration. (Note that, unlike [23, 24, 25,

26], we do not introduce any artificial Dynkin graphs: all sets of singularities

mentioned below and all perturbations thereof are indeed realized by quartics.)

Recall that a set of simple singularities can be identified with a root system,

i.e., a negative definite lattice generated by vectors of square �2 (see Dufree [8]

and § 3.1); the rank of this lattice is the total Milnor number of the quartic.

By a perturbation of a set of simple singularities S we mean any set of simple

singularities S 0 whose Dynkin graph is an induced subgraph of that of S (see

§ 4.2). Recall, further, that for a simple quartic X � P3, one has mðX Þa 19

(see e.g., [25]); X is called maximizing if mðX Þ ¼ 19.

Denote by MðSÞ the equisingular stratum of simple quartics with a given

set of singularities S. A connected component D � MðSÞ is called real if

it is preserved as a set under the complex conjugation map conj : P3 ! P3.

Clearly, this property is independent of the choice of the coordinates in P3, and

all components of MðSÞ split into real and pairs of complex conjugate ones.

Our principal result is a complete description of the equisingular strata

M1ðSÞ of non-special simple quartics.

Theorem 2. A set of singularities S is realizable as the set of singularities

of a non-special simple quartic if and only if S can be obtained by a perturbation

from one of the sets of singularities listed in Tables 1 and 2. The numbers ðr; cÞ
of, respectively, real and pairs of complex conjugate components of the strata

M1ðSÞ with mðSÞ ¼ 19 are shown in Table 1. If S is one of

D6 l 2A6; D5 l 2A6 lA1; 2A7 l 2A2; 3A6; 2A6 l 2A3
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Table 1. The space M1ðSÞ with mðSÞ ¼ 19

Singularities ðr; cÞ

2E8 lA2 lA1 ð1; 0Þ
E8 lE7 lA4 ð1; 0Þ
E8 lE6 lD5 ð1; 0Þ
E8 lE6 lA4 lA1 ð1; 0Þ
E8 lD7 l 2A2 ð1; 0Þ
E8 lA10 lA1 ð1; 0Þ
E8 lA9 lA2 ð1; 0Þ
E8 lA6 lA5 ð1; 0Þ
E8 lA6 lA4 lA1 ð1; 0Þ
E8 lA6 lA3 lA2 ð0; 1Þ
E8 l 2A4 lA2 lA1 ð1; 0Þ
E7 lE6 lA6 ð1; 0Þ
E7 lA12 ð1; 1Þ2

E7 lA10 lA2 ð0; 1Þ
E7 lA8 lA4 ð2; 0Þ2

E7 l 2A6 ð0; 1Þ
E7 lA6 lA4 lA2 ð1; 0Þ
2E6 lD7 ð1; 0Þ
E6 lD13 ð1; 0Þ
E6 lD9 lA4 ð1; 0Þ
E6 lA13 ð1; 0Þ
E6 lA12 lA1 ð1; 0Þ
D15 l 2A2 ð1; 0Þ
D11 lA6 lA2 ð0; 1Þ
D9 lA6 l 2A2 ð1; 0Þ
D7 lA10 lA2 ð0; 1Þ
D7 l 2A6 ð0; 1Þ
D7 lA6 lA4 lA2 ð0; 1Þ
D7 l 2A4 l 2A2 ð1; 0Þ

Singularities ðr; cÞ

A18 lA1 ð1; 1Þ2

A17 lA2 ð1; 1Þ
A16 lA2 lA1 ð1; 0Þ
A15 l 2A2 ð0; 1Þ
A14 lA5 ð0; 2Þ
A14 lA3 lA2 ð0; 2Þ
A13 lA6 ð0; 2Þ
A13 lA4 lA2 ð1; 0Þ
A12 lA6 lA1 ð1; 1Þ2

A12 lA5 lA2 ð1; 1Þ2

A12 lA4 lA2 lA1 ð0; 1Þ
A12 lA3 l 2A2 ð2; 0Þ
A11 lA6 lA2 ð0; 2Þ
A10 lA9 ð1; 1Þ2

A10 lA8 lA1 ð0; 1Þ
A10 lA7 lA2 ð0; 2Þ
A10 lA6 lA3 ð0; 2Þ
A10 lA6 lA2 lA1 ð1; 0Þ
A10 lA5 lA4 ð1; 0Þ
A10 lA4 lA3 lA2 ð0; 1Þ
A9 lA8 lA2 ð1; 1Þ
A9 lA6 l 2A2 ð1; 0Þ
A8 lA6 lA5 ð1; 1Þ
A8 lA6 lA4 lA1 ð0; 1Þ
A8 lA6 lA3 lA2 ð0; 3Þ
A7 l 2A6 ð0; 2Þ
A7 lA6 lA4 lA2 ð0; 1Þ
2A6 lA5 lA2 ð2; 0Þ
2A6 lA4 lA2 lA1 ð0; 1Þ
A6 l 2A4 lA3 lA2 ð2; 0Þ

Table 2. Extremal sets of singularities with mðSÞ ¼ 18

E8 lD10

E8 lD9 lA1

2E7 l 2A2

E7 lD11

E7 lD9 lA2

D18

D17 lA1

D14 lA4

D10 lA8

D10 l 2A4

2D9

D9 lA9

D9 lA8 lA1

D6 l 3A4

2D5 lA8

2D5 l 2A4

D5 lA9 lA4

D5 lA8 lA5

D5 lA5 l 2A4
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then M1ðSÞ consists of two complex conjugate components; in all other cases, the

stratum M1ðSÞ is connected.

Theorem 2 is proved in § 4.2. In Table 1, we list the maximizing sets of

singularities, which are all extremal. In most cases the transcendental lattice

(the orthogonal complement of the Néron Severi lattice in H2ðX Þ) is unique

in its genus; in six cases marked with 2 in the table the genus consists of two

lattices. Recall that each maximizing quartic surface is defined over an

algebraic number field and this number of transcendental lattices is a lover

bound for the degree of this field.

A complete list of all possible combinations of simple singularities realized

by a complex quartic surface (not-necessarily non-special) was previously found

by Yang [28]. His technique is also based on Nikulin’s criterion of existence

of lattices [19] and he also represents the result in terms of perturbations of

certain extremal sets. We restrict our attention to non-special quartics and

our extremal sets of singularities are extremal in this restricted class. For this

reason, we can also assert that any perturbation of the set S of simple

singularities is realized by a perturbation of simple quartics.

1.2. Contents of the paper. Our principal result, Theorem 2, is proved by a

reduction to an arithmetical problem [7] (cf. also [5]), followed by Nikulin’s

theory of lattice extensions and Nikulin’s existence theorem [19]. The principal

novelty is a systematic usage of the Miranda–Morrison theory [15, 16, 17]

computing the genus groups and a few other bits missing in [19] in the case of

indefinite lattices.

In § 2, based on Nikulin’s work [19], we recall the basic notions and re-

sults about integral lattices, discriminant forms and lattice extensions; then,

we outline the fundamentals of Miranda-Morison’s theory [17] which are used

in § 4.2. In § 3, we discuss the relation between simple quartics and K3-

surfaces, explain the notion of abstract homological type, and recall the reduc-

tion of the classification problem to the arithmetical classification of abstract

homological types. Finally, § 4 is devoted to the proofs of our principal

results: the proof of Theorem 1 is purely homotopy theoretical, whereas that

of Theorem 2 depends essentially on the auxiliary material presented in § 2

and § 3.

1.3. Acknowledgements. I would like to express my gratitude to my advisor

Alex Degtyarev for attracting my attention to the problem, motivating discus-

sions, encouragement and infinite patience. I am also thankful to him for

sharing his results (stated in Table 1) about the moduli space of maximizing

non-special simple quartics.
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2. Preliminaries

2.1. Finite quadratic forms. A finite quadratic form is a finite abelian group

L equipped with a map q : L ! Q=2Z satisfying qðxþ yÞ ¼ qðxÞ þ qðyÞ þ
2bðx; yÞ and qðnxÞ ¼ n2x for all x; y A L, where b : LnL ! Q=Z is a

symmetric bilinear form (which is determined by q). To reduce the notation

we write x2 for qðxÞ and x � y for bðx; yÞ. For a prime p, let Lp :¼ LnZp,

which is called the p-primary part of L. Any finite quadratic form L can

be written as an orthogonal sum of its p-primary components Lp, i.e.,

L ¼ 0
p
Lp where the summation runs over all primes p. Denote by lðLÞ

the minimal number of generators of L.

Consider a fraction m
n
A Q=2Z with g:c:dðm; nÞ ¼ 1 and mn ¼ 0 mod 2.

By m
n

� �
, we denote the finite non-degenerate (see § 2.2) quadratic form on Z=nZ

generated by an element of square m
n
and of order n. For an integer kb 1, let

Uð2kÞ and Vð2kÞ be the quadratic forms on Z=2kZlZ=2kZ defined by the

matrices

Uð2kÞ ¼
0 1

2k

1
2k 0

 !
and Vð2kÞ ¼

1
2k�1

1
2k

1
2k

1
2k�1

 !
:

Nikulin [19] showed that any finite quadratic form can be written as an

orthogonal sum of cyclic summands of the form m
n

� �
and copies of Uð2kÞ and

Vð2kÞ.
The Brown invariant of a finite quadratic form L is the residue

Br L A Z=8Z defined by the Gauss sum

exp
1

4
ip Br L

� �
¼ jLj�1=2

X
x AL

expðipx2Þ:

The Brown invariants of indecomposable p-primary blocks are as follows:

Br 2a
p2s�1

D E
¼ 2 a

p

� �
� �1

p

� �
� 1, Br 2a

p2s

D E
¼ 0 (for p odd, sb 1 and

g:c:d:ða; pÞ ¼ 1),

Br a
2k

D E
¼ aþ 1

2 kða2 � 1Þ mod 8 (for kb 1 and odd a A Z),
Br Uð2kÞ ¼ 0,

Br Vð2kÞ ¼ 4k mod 8 (for all kb 1).

A finite quadratic form is called even if x2 ¼ 0 mod Z for all elements

x A L of order two; otherwise it is called odd. This definition implies that a
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quadratic form is odd if and only if it contains G1
2

� �
as an orthogonal

summand.

2.2. Integral lattices and discriminant forms. An (integral) lattice is a free

abelian group L of finite rank with a symmetric bilinear form b : LnL ! Z.
For short, we use the multiplicative notation x � y for bðx; yÞ and x2 for bðx; xÞ.
A lattice L is called even if a2 is an even integer for all a A L. It is called odd

otherwise. The determinant detðLÞ is defined to be the determinant of the

Gram matrix of b in any basis of L. Since the transition matrix between any

two integral bases has determinant G1, the determinant of detðLÞ A Z of L is

well defined. A lattice L is called non-degenerate if detðLÞ0 0; it is called

unimodular if detðLÞ ¼G1.

From now on all lattices considered are even and non-degenerate.

Given a lattice L, the form b : LnL ! Z can be extended by linearity

to a form ðLnQÞnQ ðLnQÞ ! Q. If L is non-degenerate, the dual group

L� :¼ HomðL;ZÞ can be identified with the subgroup

fx A LnQ j x � y A Z for all y A Lg

Since the original bilinear form b on L is integer valued, L is a finite index

subgroup of its dual. The quotient L�=L is called the discriminant group of

L and is denoted by L or disc L. If fe1; e2; . . . eng is a basis set for L and

fe�1 ; e�2 ; . . . ; e�ng is the dual basis for L�, then the Gram matrix ½ei � ej� is exactly
the matrix of the homomorphism j : L ! L�, x 7! ½y 7! x � y�. Hence one

has jLj ¼ jdetðLÞj. Note that x � y A Z whenever x A L or y A L. Thus, L

inherits from LnQ a non-degenerate symmetric bilinear form bL : LnL !
Q=Z; it is called the discriminant form. If L is even, this form bL can

be promoted to the quadratic extension qL : L ! Q=2Z, ðx mod LÞ 7!
ðx2 mod 2ZÞ. Hence, the discriminant form of an even lattice is a finite

quadratic form. Accordingly, given a prime p, we use the notation discp L or

Lp for the p-primary part of L, i.e., Lp ¼ LnZp. Each discriminant group

L decomposes into orthogonal sum L ¼ 0
p
Lp of its p-primary components.

The signature of a non-degenerate lattice L is the pair ðsþ; s�Þ of its positive

and negative inertia indices. Two non-degenerate integral lattices are said to

have the same genus if their localizations over R and over Zp are isomorphic.

The following few statements give the relation between the genus of an even

integral lattice and its discriminant form.

Theorem 3 (Nikulin [19]). The genus of an even integral lattice L is

determined by its signature ðsþL; s�LÞ and discriminant form disc L.

The existence of an even integral lattice L with a given signature is given

by Nikulin’s existence theorem (see Theorem 5).
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Theorem 4 (van der Blij [27]). For any non-degenerate even integral lattice

L, one has Br L ¼ sþ � s� mod 8.

We denote by gðLÞ the set of all isomorphism classes of all non-degenerate

even integral lattices with the same genus as L. Each set gðLÞ is known to

contain finitely many isomorphism classes.

Given a prime p, we define the determinant detpðLÞ as the determinant of

the matrix of the quadratic from on Lp in an appropriate basis (see [18] and

[19] for details). Unless p ¼ 2 one has detpðLÞ ¼ u=jLpj where u is a well

defined element of u A Z�
p =ðZ�

p Þ
2. If p ¼ 2, the determinant det2ðLÞ is well

defined only if L2 is even.

Theorem 5 (Nikulin [19]). Let L be a finite quadratic form and let sG
be a pair of integers. Then, the following four conditions are necessary and

su‰cient for the existence of an even integral lattice L whose signature is

ðsþ; s�Þ and whose discriminant form is L:

(1) sGb 0 and sþ þ s� b lðLÞ.
(2) sþ � s� ¼ Br L mod 8.

(3) For each p0 2, either sþ þ s� > lpðLÞ or detpðLÞ1 ð�1Þs� �
jLj modðZ�

p Þ
2
.

(4) Either sþ þ s� > l2ðLÞ, or L2 is odd, or det2ðLÞ1GjLj modðZ�
2 Þ

2
.

2.3. Automorphisms of lattices. An isometry of integral lattices is a homo-

morphism of abelian groups preserving the forms. The group of auto-

isometries of L is denoted by OðLÞ. There is a natural homomorphism

d : OðLÞ ! AutðLÞ, where AutðLÞ denotes the group of automorphisms of

L preserving the discriminant form q on L. Obviously, one has AutðLÞ ¼Q
p AutðLpÞ, where the product runs over all primes. The restrictions of d to

the p-primary components are denoted by dp : OðLÞ ! AutðLpÞ.
Given a vector u in L with u0 0, the reflection against its orthogonal

hyperplane is the automorphism

ru : L ! L

x 7! x� 2
ðx � uÞ
u2

u

The reflection ru is well-defined whenever u A u2

2

� �
L�. Note that r2u ¼ id, i.e., ru

is an involution. Each image dpðruÞ A AutðLpÞ is also a reflection (see § 2.6).

If u2 ¼G1 or u2 ¼G2, then the induced automorphism dðruÞ is the identity.

2.4. Lattice extensions. For a non-degenerate even lattice S, an even integral

lattice L containing S is called an extension of S. An isomorphism between
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two extensions L1 � S and L2 � S is an isometry between L1 and L2 taking S

to S. In particular, if the isomorphism L1 ! L2 restricts to id on S, the

extensions L1 and L2 are called strictly isomorphic. For a given subgroup A of

OðSÞ, we define A-isomorphisms of extensions of S as those which restrict to an

element of A on S.

Recall that S is assumed to be non-degenerate, hence given a finite index

extension L � S, one has L � S �. Thus there are inclusions S � L � L� � S �

which imply L=S � S �=S ¼ S. The subgroup K ¼ L=S of S is called the

kernel of the finite index extension L � S. Since L is an even integral lattice,

the discriminant quadratic form on S restricts to zero on K, i.e., K is

isotropic.

Proposition 1 (Nikulin [19]). Let S be a non-degenerate even lattice, and

fix a subgroup A � OðSÞ. The map L 7! K ¼ L=S � S establishes a one-to-

one correspondence between the set of A-isomorphism classes of finite index

extensions L � S and the set of A-orbits of isotropic subgroups K � S. Under

this correspondence one has L ¼ fx A S � j ðx mod SÞ A Kg and L ¼ K?=K.

Proposition 2 (Nikulin [19]). Let L � S be a finite index extension of a

lattice S and let K � S be its kernel. Then an auto-isometry S ! S extends to

L if and only if the induced automorphism of S preserves K.

An extension L � S is called primitive if L=S is torsion free. Following

Nikulin [19], we confine ourselves to the special case where L is unimodular.

If S is a primitive non-degenerate sublattice of a unimodular lattice L then S?

is also primitive in L and L is a finite index extension of SlS?. Further-

more, since disc L ¼ 0, the kernel K � SlS? is the graph of an anti-

isometry c : S ! disc S?. Hence the genus gðS?Þ is determined by the

genera gðSÞ and gðLÞ. Conversely, given a lattice N A gðS?Þ and an anti-

isometry c : S ! N where N is the discriminant group of N, the graph of c

is an isotropic subgroup K � SlS? and the corresponding finite index

extension SlN ,! L is a unimodular primitive extension of S with S? GN.

Any anti-isometry c : S ! disc S? induces a homomorphism d c : OðSÞ !
AutðNÞ. Recall that there is a natural homomorphism d : OðNÞ ! AutðNÞ.
Thus, since also an indefinite unimodular lattice is unique in its genus, we have

the following theorem.

Theorem 6 (Nikulin [19]). Let L be an indefinite unimodular even lattice

and S � L a non-degenerate primitive sublattice. Fix a subgroup A � OðSÞ.
Then the A-isomorphism class of a primitive extension S � L is determined by

(1) a choice of a lattice N A gðS?Þ and

(2) a choice of a double coset cN A d cðAÞnAutðNÞ=Im d (for a given N

and some anti-isometry c : S ! N inducing d c).
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Theorem 7 (Nikulin [19]). Let L be an indefinite unimodular even lattice,

S � L a non-degenerate primitive sublattice and c : S ! N the anti-isometry

where, N ¼ S?. Then a pair of isometries aS A OðSÞ and aN A OðNÞ extends to
L if and only if d cðaSÞ ¼ dðaNÞ.

2.5. Miranda–Morrison’s theory. Let p be a prime. Define

Gp :¼ fG1g �Q�
p =ðQ�

p Þ
2;

G0 :¼ fG1g � fG1g � fG1g �Q�=ðQ�Þ2:

It is convenient to introduce the following subgroups related to Gp:
� Gp;0 :¼ fð1; 1Þ; ð1; upÞ; ð�1; 1Þ; ð�1; upÞg � Gp; here, p is odd and up is

the only nontrivial element of Z�
p =ðZ�

p Þ
2,

� G2;0 :¼ fð1; 1Þ; ð1; 3Þ; ð1; 5Þ; ð1; 7Þ; ð�1; 1Þ; ð�1; 3Þ; ð�1; 5Þ; ð�1; 7Þg � G2,
� Gþþ

p :¼ f1g � Z�
p =ðZ�

p Þ
2 � Gp;0,

� G2;2 :¼ fð1; 1Þ; ð1; 5Þg � Gþþ
2 ,

� G 0
2;0 :¼ G2;0=G2;2 (and G 0

p;0 :¼ Gp;0 for p0 2),
� G��

0 :¼ fð1; 1Þ; ð�1;�1Þg � G0.

Let, further,

GA;0 :¼
Y
p

Gp;0 � GA :¼ GA;0 �
X
p

Gp

where ‘‘�’’ denotes the sum of the subgroups. Note that

GA ¼ ðdp; spÞ A
Y
p

Gp j ðdp; spÞ A Gp;0 for almost all p

( )

The natural map Q�=ðQ�Þ2 ! Q�
p =ðQ�

p Þ
2 induces canonical maps

jp : G0 ! Gp;0: ð2:1Þ

Let N be an indefinite lattice with rkðNÞb 3. We will use certain

subgroups S ]
pðNÞ � Gp;0 and SpðNÞ � Gp. In the notation of [17] (which

slightly di¤ers from the notation in [15, 16]), one has S ]
pðNÞ :¼ S ]ðNnZpÞ

and SpðNÞ :¼ SðNnZpÞ; we refer the reader to [17] (see chapter 7, section 4)

for the precise definitions. The subgroups S ]
pðNÞ are computed explicitly in

[17] (see Theorems 12.1, 12.2, 12.3 and 12.4 in chapter 7).

Another object defined in [17] (see chapter 8, sections 5, 6 and 7) is the

F2-module

EðNÞ :¼ GA;0

�Y
p

S ]
pðNÞ � G0: ð2:2Þ
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This module is finite. Indeed, following [17] (see Definition 7:4 in chapter 8),

we call a prime p regular with respect to N if S ]
pðNÞ ¼ Gp;0. An important

point here is the fact that a prime p is regular unless p j detðNÞ; thus, (2.2)

reduces to finitely many primes p:

EðNÞ ¼
Y

p j detðNÞ
Gp;0

�Y
p j detðNÞ

S ]
pðNÞ � G0: ð2:3Þ

Theorem 8 (Miranda–Morrison [17]). Let N be a non-degenerate indef-

inite even lattice with rkðNÞb 3. Then there is an exact sequence

OðNÞ !d AutðNÞ !e EðNÞ ! gðNÞ ! 1; ð2:4Þ

where gðNÞ is the genus group of N.

A simplified version of (2.3) computing the numeric invariants

epðNÞ :¼ ½Gp;0 : S
]
pðNÞ� and ~SSpðNÞ :¼ j�1

p ðS ]
pðNÞÞ � G0;

can be found in [15, 16]. This gives us the size of the group EðNÞ: one has

jEðNÞj ¼ eðNÞ
½G0 : ~SSðNÞ�

ð2:5Þ

where

eðNÞ :¼
Y
p

epðNÞ; ~SSðNÞ :¼
\
p

~SSpðNÞ;

and the product and intersection run over all primes p or, equivalently, over all

primes p j detðNÞ.
The following theorem can be deduced from Theorems 6 and 8.

Theorem 9 (Miranda–Morrison [15, 16]). Let S be a primitive sublattice

of an even unimodular lattice L such that N :¼ S? is a non-degenerate indefinite

even lattice with rkðNÞb 3. Then the strict isomorphism classes of primitive

extensions S ,! L are in a canonical one-to-one correspondence with the group

EðNÞ.

As explained § 2.4, given a unimodular lattice L and a primitive sublattice

S � L, one has an anti-isometry c : S ! N (where N ¼ S?), which induces a

homomorphism d c : OðSÞ ! AutðNÞ. If N is indefinite and rkðNÞb 3, then

d cðOðSÞÞ � AutðNÞ is a normal subgroup with abelian quotient (see (2.4)) and

we have a homomorphism d? : OðSÞ ! AutðNÞ !e EðNÞ independent of the

choice of an anti-isometry c. The next statement follows from Theorems 8

and 6.
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Corollary 1. Let S be a primitive sublattice of an even unimodular lattice

L such that N :¼ S? is a non-degenerate indefinite even lattice with rkðNÞb 3

and let A � OðSÞ be a subgroup. Then, the A-isomorphism classes of primitive

extensions S ,! L are in a one-to-one correspondence with the F2-module

coker d?jA.

2.6. Reflections. Recall that AutðNÞ ¼
Q

p AutðNpÞ where p runs over all

primes. Let s be a prime and a A Ns such that

ska ¼ 0 and a2 ¼ 2u

sk
mod 2Z; g:c:dðu; sÞ ¼ 1; k A N: ð2:6Þ

We denote by Ny
s the set of all elements a A Ns satisfying (2.6) and let

Ny ¼
S

s N
y
s . Then one can define a map,

Ns ! Z=skZ; x 7! 2ðx � aÞ
a2

mod sk

where a A Ny
s . Thus, there is a reflection ra A Aut Ns given by

ra : x 7! x� 2ðx � aÞ
a2

a:

If a2 ¼ 1
2 mod Z and 2a ¼ 0 then ra ¼ id.

Let p be a prime and consider the homomorphism

AutðNÞ ¼
Y
p

AutðNpÞ !
f Y

p

SpðNÞ=S ]
pðNÞ

which is the product of the epimorphisms

fp : AutðNpÞ !! SpðNÞ=S ]
pðNÞ

introduced in Miranda–Morrison [17] (see chapter 8, section 7). The images

of the homomorphism fp can be computed on reflections as follows: For a

prime s and an element a A Ny
s , the image of the reflection ra A AutðNsÞ under

fs is given by fsðraÞ ¼ ð�1; uskÞ, see (2.6). If s ¼ 2 and a2 ¼ 0 mod Z, then

fsðraÞ is only well-defined modulo Gþþ
2 . If s ¼ 2 and a2 ¼ 1

2 mod Z, then

fsðraÞ is well-defined modulo G2;2. In these cases to determine the value

of fsðraÞ, we need more information about a and N.

Given another prime p, we define the p-norm jajp A fG1g of a A Ny
s

by

jajp :¼
wpðskÞ if s0 p;

wpðuÞ if s ¼ p;

(
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where the homomorphism wp : Z
�
p =ðZ�

p Þ
2 ! fG1g is defined as

wpðuÞ :¼
u
p

� �
if p0 2;

u mod 4 if p ¼ 2:

(

Note that jaj2 is undefined when p ¼ 2 and a2 ¼ 0 mod Z. Following [1],

given primes p, s and a vector a A Ny
s , we introduce the group

EpðNÞ :¼ fG1g if p ¼ 1 mod 4 and epðNÞ � j ~SSpðNÞj ¼ 8;

1 otherwise;

�

the map fp : N
y
s ! EpðNÞ,

fpðaÞ :¼
1 if EpðNÞ ¼ 1;

jajp otherwise;

�

and the map bp : N
y
s ! G0,

bpðaÞ :¼
ðdpðaÞ � jajp; 1Þ if p ¼ 1 mod 4;

dpðaÞ � jajp otherwise;

�

where the map dp : N
y
s ! fG1g is defined by

dpðaÞ :¼ ð�1Þdp; s

(here dp; s is the conventional Kronecker symbol). Note that we have the

assignment

ra 7! ðdpðaÞ; jajpÞ A G 0
p;0:

The following lemmas provide an explicit description for the group EðNÞ and

compute the image of the homomorphism e on the reflections ra for the special

case when N has one or two irregular primes.

Lemma 1 (Akyol–Degtyarev [1]). Let N be a non-degenerate indefinite

even lattice with rkðNÞb 3, S
]
2ðNÞ � G2;2, and assume that N has one irregular

prime p. Then EðNÞ ¼ EpðNÞ and eðraÞ ¼ fpðaÞ for any a A Ny.

Lemma 2 (Akyol–Degtyarev [1]). Let N be a non-degenerate indefinite

even lattice with rkðNÞb 3, S ]
2ðNÞ � G2;2, and assume that N has two irregular

primes p, q. Then

EðNÞ ¼ EpðNÞ � EqðNÞ � ðG0= ~SSpðNÞ � ~SSqðNÞÞ;

eðraÞ ¼ fpðaÞ � fqðaÞ � ðbpðaÞ � bqðaÞÞ;

for any a A Ny such that a2 0 0 mod Z if p ¼ 2 or q ¼ 2.
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Corollary 2 (Akyol–Degtyarev [1]). Under the hypothesis of Lemma 2,

assume, in addition, that jEðNÞj ¼ jEpðNÞj ¼ 2. Then EðNÞ ¼ EpðNÞ and

eðraÞ ¼ jajp for any a A Ny.

2.7. Positive sign structure. Let N be a non-degenerate lattice. The orthog-

onal projection of any maximal positive definite subspace in NnR to any

other such subspace is an isomorphism of vector spaces. Thus a choice of an

orientation of one maximal positive definite subspace in NnR defines a

coherent orientation of any other. A choice of an orientation of a maximal

positive definite subspace of NnR is called a positive sign structure. We

denote by OþðNÞ the subgroup of OðNÞ consisting of the isometries preserving

a positive sign structure. Obviously either OþðNÞ ¼ OðNÞ or OþðNÞ is a sub-

group of OðNÞ of index 2. In the latter case, each element of OðNÞnOþðNÞ
is called a þ-disorienting isometry of N. Following [17], we define the map

detþ : OðNÞ ! fG1g as

detþðaÞ :¼
þ1 if a preserves the positive sign structure;

�1 if a reserves the positive sign structure:

�

Note that KerðdetþÞ ¼ OþðNÞ.

Proposition 3 (Miranda–Morrison [17]). Let N be a non-degenerate

indefinite even lattice with rkðNÞb 3. Then one has ~SSðNÞ � G��
0 if and only

if detþðaÞ ¼ 1 for all a A Ker½d : OðNÞ ! AutðNÞ�.

Hence, if ~SS � G��
0 , the map detþ : Im d ! fG1g is the descent of detþ

which is well-defined by the proposition above. The following lemma com-

putes the images of the function detþ on reflections.

Lemma 3 (Akyol–Degtyarev [1]). Let N be a non-degenerate indefinite

even lattice with rkðNÞb 3, S ]
2ðNÞ � G2;2, and assume that there exists a prime

p such that ~SSpðNÞ � G��
0 . Then, for an element a A Ny such that ra A Im d

and a2 0 0 mod Z if p ¼ 2, one has detþðraÞ ¼ dpðaÞ � jajp.

Defined in [16], we introduce the group

EþðNÞ :¼ GA;0

�Y
p

S ]
pðNÞ � G��

0 : ð2:7Þ

(Similar to (2.2) and (2.3) the actual computation reduces to finitely many

primes p j detðNÞ.) As in Theorem 8 there is an exact sequence

OþðNÞ !d AutðNÞ !e
þ
EþðNÞ ! gðNÞ ! 1:
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The size of the group EþðNÞ is also computed in [16]: one replaces ½G0 : ~SSðNÞ�
in (2.5) with ½G��

0 : ~SSðNÞ \ G��
0 �. For an irregular prime p, we put ~SSþ

p ðNÞ :¼
~SSpðNÞ \ G��

0 .

Given a unimodular even lattice L and a primitive sublattice S � L such

that N :¼ S? is a non-degenerate indefinite lattice with rkðNÞb 3, we have a

well-defined homomorphism d?
þ : OðSÞ ! EþðNÞ, cf. see § 2.5 for the definition

of d?.

Let p and s be two irregular primes and choose an element a A Ny
s as in

(2.6), we introduce the group

Eþ
p ðNÞ :¼

EpðNÞ if p ¼ 1 mod 4;

G0= ~SSpðNÞ � G��
0 otherwise;

�

the map fþ
p : Ny

s ! Eþ
p ðNÞ,

fþ
p ðaÞ :¼

fpðaÞ if p ¼ 1 mod 4;

dpðaÞ � jajp if p0 1 mod 4 and Eþ
p ðNÞ0 1;

1 if p0 1 mod 4 and Eþ
p ðNÞ ¼ 1;

8><
>:

and the map bþ
p : Ny

s ! G��
0 ,

bþ
p ðaÞ :¼

dpðaÞ � jajp if p ¼ 1 mod 4;

jajp if p0 1 mod 4 and Eþ
p ðNÞ0 1;

projðbpðaÞÞ if p0 1 mod 4 and Eþ
p ðNÞ ¼ 1;

8><
>:

where proj : G0 ! G0= ~SSpðNÞ ¼ G��
0 is the projection map. Next lemma com-

putes the group EþðNÞ and the values of the homomorphism eþ on the

reflections ra

Lemma 4 (Akyol–Degtyarev [1]). Let N be a non-degenerate indefinite

even lattice with rkðNÞb 3, S ]
2ðNÞ � G2;2 and assume that N has two irregular

primes p, q. Then

EþðNÞ ¼ Eþ
p ðNÞ � Eþ

q ðNÞ � ðG��
0 = ~SSþ

p ðNÞ � ~SSþ
q ðNÞÞ

eþðraÞ ¼ fþ
p ðaÞ � fþ

q ðaÞ � ðbþ
p ðaÞ � bþ

q ðaÞÞ

for any a A Ny such that a2 0 0 mod Z if p ¼ 2 or q ¼ 2.

2.8. Root Systems. A root in a lattice L is an element v A L of square

�2. A root system is a negative definite lattice generated by its roots. Each

root system splits uniquely into orthogonal sum of its irreducible components.

As explained in [2], the irreducible root systems are An, nb 1, Dm, mb 4 and

E6, E7, E8. The corresponding discriminant forms are as follows:
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disc An ¼ � n

nþ 1

	 

; disc D2kþ1 ¼ � 2k þ 1

4

	 

;

disc D8kG2 ¼ 2 H
1

2

	 

; disc D8k ¼ Uð2Þ; disc D8kþ4 ¼ Vð2Þ;

disc E6 ¼
2

3

	 

; disc E7 ¼

1

2

	 

; disc E7 ¼ 0:

Given a root system S, the group generated by reflections (defined by the roots

of S) acts simply transitively on the set of Weyl chambers of S. The roots

constituting a single Weyl chamber form a standard basis for S; these roots are

naturally identified with the vertices of the Dynkin graph G :¼ GS. Thus, ones

has an obvious homomorphism

SymðGÞ ! OðSÞ ! AutðSÞ

where SymðGÞ denotes the symmetries of G . Irreducible root systems corre-

spond to connected Dynkin graphs. The following statement follows imme-

diately from the classification of connected Dynkin graphs (see N. Bourbaki

[2]).

Lemma 5. Let G ¼ GS be the connected Dynkin graph of an irreducible

root system S. Then one of the following holds:

(1) If S is A1, E7 or E8, then SymðGÞ ¼ 1.

(2) If S is D4, then SymðGÞ ¼ S3.

(3) For all other types, SymðGÞ ¼ Z=2Z.

If S is Ap, pb 2, D2kþ1 or E8, then the only nontrivial symmetry of G

induces �id on S. If S is E8 then S ¼ 0 and if S is A1, A7 of D2k, the

groups S are F2 modules and �id ¼ id on Aut S.

Further details on irreducible root systems can be found in N. Bourbaki

[2].

3. Simple quartics

3.1. Quartics and K3-surfaces. A quartic is a surface X � P3 of degree

four. A quartic is simple if all its singular points are simple, i.e., those of type

A, D, E. Isomorphism classes of simple singularities are known to be in a

one-to-one correspondence with those of irreducible root systems (see Dufree [8]

for details). Hence, a set of simple singularities can be identified with a root

system, the irreducible summands of the latter (see § 2.8) correspond to the

individual singularity points.
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Let X � P3 be a simple quartic and consider its minimal resolution of

singularities ~XX . It is well known that ~XX is a K3-surface; hence, H2ð ~XXÞG
2E8 l 3U, where U is the hyperbolic plane defined as U :¼ Zu1 lZu2,
u21 ¼ u22 ¼ 0 and u1 � u2 ¼ 1. Note that 2E8 l 3U is the only even unimodular

lattice of signature ðsþ; s�Þ ¼ ð3; 19Þ. We fix the notation LX :¼ H2ð ~XXÞ and

L :¼ 2E8 l 3U.

For each simple singular point p of X the components of the exceptional

divisor are smooth rational ð�2Þ-curves spanning a root lattice in LX . These

sublattices are obviously orthogonal and their orthogonal sum, which is

identified with the set of singularities of X , is denoted by SX . The rank

rkðSX Þ equals the total Milnor number mðXÞ. Since s�ðLÞ ¼ 19 and SX � L is

negative definite, one has mðXÞa 19 (see [25], cf., [20]). If mðX Þ ¼ 19, the

quartic is called maximizing. We introduce the following objects:
� SX � LX : the sublattice generated by the set of classes of exceptional

divisors contracted by the blow-up map ~XX ! X ;
� hX A LX : the class of the pull-back of a generic plane section of X ;
� SX ;h ¼ SX lZhX � LX ;
� ~SSX � ~SSX ;h � LX : the primitive hulls of SX and SX ;h, respectively, i.e.,

~SSX :¼ ðSX nQÞ \ LX and ~SSX ;h :¼ ðSX ;h nQÞ \ LX ;
� oX � LX nR: the oriented 2-subspace spanned by the real and imag-

inary parts of the class of a holomorphic 2-form on ~XX (the period

of ~XX ).

The triple ðSX ; hX ;LX Þ is called the homological type of X .

3.2. Abstract homological types. As explained above the set of singularities

of a quartic X � P3 can be viewed as a root lattice S � L.

Definition 1. A configuration (extending a given set of singularities S) is

a finite index extension ~SSh � Sh :¼ SlZh, h2 ¼ 4, satisfying the following

conditions:

(1) Each root r A ðSnQÞ \ ~SSh with r2 ¼ �2 is in S.

(2) ~SSh does not have an element v with v2 ¼ 0 and v � h ¼ 2.

An automorphism of a configuration ~SSh is an auto-isometry of ~SSh preserving

h. The group of automorphisms of ~SSh is denoted by Authð~SShÞ. One has the

obvious inclusions Authð~SShÞ � Oð~SSÞ � OðSÞ, the latter is due to the condition

(1) in Definition 1, since S is recovered as the sublattice in h? � ~SSh generated

by roots.

Definition 2. An abstract homological type extending a fixed set of

singularities S is an extension of Sh :¼ SlZh, h2 ¼ 4, to a lattice L iso-

morphic to 2E8 l 3U, such that the primitive hull ~SSh of Sh in L is a

configuration.
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An abstract homological type is uniquely determined by the triple H ¼
ðS; h;LÞ. An isomorphism between two abstract homological types Hi ¼
ðSi; hi;LiÞ, i ¼ 1; 2, is an isometry L1 ! L2, taking h1 and S1 to h2 and S2,

respectively (as a set).

Given an abstract homological type H ¼ ðS; h;LÞ, we let ~SS :¼ ðSnQÞ \ L

and ~SSh :¼ ðSh nQÞ \ L be the primitive hulls of S and Sh, respectively.

Note that ~SS ¼ h?~SSh
, i.e., ~SS is also the primitive hull of h?. The orthogonal

complement S?
h is a non-degenerate lattice with sþS

?
h ¼ 2. It follows that

all positive definite 2-subspaces in S?
h nR can be oriented in a coherent way

(see § 2.7).

Definition 3. An orientation of an abstract homological type H ¼
ðS; h;LÞ is a choice y of one of the coherent orientations of positive definite

2-subspaces of S?
h nR.

An isomorphism between two oriented abstract homological types ðHi; yiÞ,
i ¼ 1; 2, is an isomorphism H1 ! H2, taking y1 to y2. An abstract homo-

logical type H is called symmetric if ðH; yÞ is isomorphic to ðH;�yÞ for some

orientation y of H, i.e., H admits an automorphism reversing the orientation.

3.3. Classification of singular quartics. Due to Saint-Donat [22] and Urabe

[25], a triple H ¼ ðS; h;LÞ is isomorphic to the homological type ðSX ; hX ;LX Þ
of a simple quartic X � P3 if and only if H is an abstract homological type in

the sense of Definition 2. In this case, the oriented 2-subspace oX introduced

in § 3.1 defines an orientation of H.

Theorem 10 (see Theorem 2.3.1 in [7]). The map sending a simple quartic

surface X � P3 to its oriented homological type establishes a one to one corre-

spondence between the set of equisingular deformation classes of quartics with a

given set of simple singularities S and the set of isomorphism classes of oriented

abstract homological types extending S. Complex conjugate quartics have

isomorphic homological types that di¤er by the orientations.

Definition 4. A quartic X is called non-special if its homological type is

primitive, i.e., Sh � L is a primitive sublattice.

Note that the homological type H ¼ ðS; h;LÞ is primitive if and only if
~SSh ¼ Sh, in this case, one has disc ~SSh ¼ Sl 1

4

� �
and Authð~SShÞ ¼ OðSÞ.

For a given set of simple singularities S, the corresponding equisingular

stratum of quartics is denoted by MðSÞ. Our primary interest is the family

M1ðSÞ � MðSÞ constituted by the non-special quartics with the set of singu-

larities S. More generally, since the kernel K of the finite index extension

Sh � ~SSh is obviously invariant under equisingular deformations, one can
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consider the strata M�ðSÞ � MðSÞ where the subscript � is the sequence of

invariant factors of the kernel K.

4. Proofs

4.1. Proof of Theorem 1. Note that XnðSing X [HÞG ~XXnðE [HÞ, where
~XX is the minimal resolution of X and E is the exceptional divisor of the blow

up ~XX ! X . Recall that SX is the sublattice in LX ¼ H2ð ~XXÞ generated by the

components of E (see § 3.1). Thus, one has H2ðE [HÞ ¼ SX lZhX � LX ¼
H2ð ~XXÞ.

We have the following cohomology exact sequence of pair ð ~XX ;E [HÞ:

� � � !j
�

H 2ð ~XXÞ !i
�
H 2ðE [HÞ !d H 3ð ~XX ;E [HÞ !j

�

H 3ð ~XXÞ|fflfflffl{zfflfflffl}
0

! � � � :

Hence, H 3ð ~XX ;E [HÞ ¼ coker i�. By universal coe‰cients, since all groups

involved are free, i� is the adjoint of the map

i� : H2ðE [HÞ ! H2ð ~XX Þ;

which is the inclusion SX ;h ,! LX . Thus, we have an exact sequence

0 ! H2ðE [HÞ !i� H2ð ~XX Þ ! ~SSX ;h=SX ;h lF ! 0;

where F is a finitely generated free abelian group. This sequence can be

regarded as a free resolution of ~SSX ;h=SX ;h lF and, by the definition of derived

functor, we have the following isomorphisms

coker i� ¼ Extð~SSX ;h=SX ;h lF;ZÞ ¼ Extð~SSX ;h=SX ;h;ZÞ:

Combining these observations with Poincaré–Lefschetz duality H1ð ~XXnðE [HÞÞ
¼ H 3ð ~XX ;E [HÞ, we conclude that

H1ð ~XXnðE [HÞÞ ¼ Extð~SSX ;h=SX ;h;ZÞG ~SSX ;h=SX ;h

(the last isomorphism being not natural). In particular H1ð ~XXnðE [HÞÞ ¼ 0 if

and only if SX ;h ¼ ~SSX ;h i.e., if and only if X is non-special. r

4.2. Proof of Theorem 2. For the reader’s convenience, we divide the proof

into three propositions; Theorem 2 is their immediate consequence.

Proposition 4. The realizable sets are all sets of singularities that can be

obtained by a perturbation from either the 59 maximizing sets of singularities

listed in Table 1 or 19 sets of singularities with the Milnor number 18 listed in

Table 2.
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Proof. According to Theorems 10 and Definition 4, a set of singularities

S is realized by a non-special quartic if and only if S extends to a primitive

homological type. Thus, we are interested in primitive extensions Sh ,! L ¼
3Ul 3E8. Since the homological type is primitive, one has disc ~SSh ¼ Sl 1

4

� �
,

and the realizable sets are easily found by using Nikulin’s Existence Theorem

(Theorem 5) applied to the genus of the transcendental lattice T :¼ S?
h , which is

determined by S, see § 2.4. Implementing the algorithm in GAP [10], we found

that 2872 sets of simple singularities are realized by non-maximal non-special

quartics and 59 sets of simple singularities are realized by maximal non-special

quartics. According to E. Looijenga [14], deformation classes of perturbations

of an individual simple singularity of type S are in a one-to-one correspondence

with the isomorphism classes of primitive extensions S 0 ,! S of root lattices, see

§ 2.8 and § 2.4. As shown in [9], the latter is the case if and only if the Dynkin

graph of S 0 is an induced subgraph of that of S. Hence, given a simple

quartic X , any perturbation X to a simple quartic X 0 gives rises to a pertur-

bation of the set of singularities S of X to the set of singularities S 0 of X 0.

Conversely, any induced subgraph of the Dynkin graph of a simple quartic X

is that of an appropriate small perturbation X 0 of X . Proof of this statement

repeats, almost literally, the proof of a similar theorem for plane sextic curves

(see Proposition 5:1:1 in [6]). Accordingly, the list of 2872 sets of simple

singularities realized by non-maximal non-special quartics is compared against

the list of all perturbations of the 59 maximizing sets of singularities given in

Table 1 and 19 sets of singularities with Milnor number 18 given in Table 2.

The two lists coincide. r

Let S be one of the realizable sets of singularities and T a representative

of the genus gðS?
h Þ. By Theorem 10, the connected components of the space

M1ðSÞ modulo the complex conjugation conj : P3 ! P3 are enumerated by the

isomorphism classes of primitive homological types extending S. We inves-

tigate these isomorphism classes separately for the maximizing case, i.e.,

mðSÞ ¼ 19, and non-maximizing case, i.e., mðSÞa 18.

If mðSÞ ¼ 19, the transcendental lattice T is a positive definite sublattice

of rank 2, and the numbers ðr; cÞ of connected components of the space M1ðSÞ
listed in Table 1 can easily be computed by Gauss theory of binary quadratic

forms [11] (A. Degtyarev, private communication); details will appear else-

where. Thus, throughout the rest of the proof we assume mðSÞa 18.

Proposition 5. For each realizable set of singularities S with mðSÞa 18,

the space M1ðSÞ=conj is connected.

Proof. If mðSÞa 18, then T is an indefinite lattice with rk Tb 3 and we

can apply Mirranda–Morison’s theory. We try to enumerate primitive homo-
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logical types H ¼ ðS; h;LÞ extending S, i.e., the primitive extensions Sh ,! L.

Since the extension is primitive, ~SSh ¼ Sh, one has disc ~SSh ¼ Sl 1
4

� �
and

AuthðShÞGOðSÞ. Then we have a well-defined homomorphism d? : OðSÞ !
EðTÞ, and by Corollary 1,

p0ðM1ðSÞ=conjÞGCokerðd? : OðSÞ ! EðTÞÞ: ð4:1Þ

Thus, the space M1ðSÞ=conj is connected (equivalently, the primitive homo-

logical type extending S is unique up to isomorphism) if and only if the map

d? is surjective, and we shall prove the latter statement is true.

Out of the 2872 sets of singularities realized by non-special non-

maximizing quartics, for 2830 sets of singularities one gets EðTÞ ¼ 1 by using

(2.5), and the assertion follows automatically.

For the remaining 42 cases, one has jEðTÞj0 1. Among these, there

are 18 set of singularities containing a point of type A4 and satisfying the

hypothesis of Lemma 1 or Corollary 2 with p ¼ 5. For these set of singu-

larities one has jEðTÞj ¼ 2 and a nontrivial symmetry of any type A4 point

maps to the generator �1 A EðTÞ.
There are 8 sets of singularities containing a point of type A2 and

satisfying the hypothesis of Lemma 2 with p ¼ 2, q ¼ 3. For these 8 cases,

one has jEðTÞj ¼ 2 and a nontrivial symmetry of any type A2 point maps to

the generator �1 A EðTÞ. For the following 4 sets of singularities,

D9 lA3 l 3A2; D7 lD5 l 3A2;

A11 lA3 l 2A2; A8 l 2A3 l 2A2;

one has jEðTÞj ¼ 4. Each of these 4 sets has two irregular primes p ¼ 2,

q ¼ 3, and for all of them the homomorphism given by Lemma 2 is

eðraÞ ¼ ðd2ðaÞ � d3ðaÞ; jaj2 � jaj3Þ A fG1g � fG1g:

A symmetry of any type A2 point and a transposition A2 $ A2 give rise to

reflections ra; rs A T with a2 ¼ 2
3 and ðsÞ2 ¼ 4

3 . The images eðraÞ ¼ ð�1;�1Þ
and eðrsÞ ¼ ð�1; 1Þ are linearly independent, thus generating the group EðTÞ.

The 9 sets of singularities listed in Table 3 still satisfy the assumptions of

Lemma 2, which yields jEðTÞj ¼ 2. Also shown in the table are the irregular

primes ðp; qÞ, the homomorphism e : AutðTÞ ! EðTÞ, and an automorphism of

S generating EðTÞ.
Finally, what remains are the three sets of singularities

D4 l 2A4 l 3A2; 2A7 l 2A2 2A4 l 2A3 l 2A2;

to which Lemmas 1, 2 or Corollary 2 can not be applied. For them, we

compute the group EðTÞ directly from the definition (2.2) which can be
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restated as

EðTÞ ¼
Y

p jdetðTÞ
Gp;0

� Y
p jdetðTÞ

S ]
pðTÞ � jðG0Þ;

where we identify the inclusion G0 ,! GA;0 with the product j :¼
Q

p jp (see

2.1). For example, for the case

2A4 l 2A3 l 2A2;

the computation can be summarized in the following table:

G5;0 G3;0 G 0
2;0

generator of S
]
5ðTÞ �1 �1 1 1 1 1

generator of S
]
3ðTÞ 1 1 �1 1 1 1

generator of S
]
2ðTÞ 1 1 1 1 1 1

jð�1; 1Þ �1 1 �1 1 �1 1

jð1;�1Þ 1 1 1 �1 1 �1

d5 j � j5 d3 j � j3 d2 j � j2
a symmetry of A4 �1 �1 1 �1 1 1

a transposition A4 $ A4 �1 1 1 �1 1 1

a symmetry of A2 1 �1 �1 1 1 �1

a transposition A2 $ A2 1 �1 �1 �1 1 �1

The rank of the matrix composed by the 9 rows of the table (see, Remark

1) is 6 ¼ dim G 0
2;0 þ dim G3;0 þ dim G5;0, which implies that d? is surjective.

Table 3. Extremal singularities

Singularities ðp; qÞ e : AutðTÞ ! EðTÞ generators of EðTÞ

E8 l 2A3 l 2A2 ð2; 3Þ eðraÞ ¼ d2ðaÞ � d3ðaÞ � jaj2 � jaj3 A2 $ A2

2E6 l 2A3 ð2; 3Þ eðraÞ ¼ d2ðaÞ � d3ðaÞ � jaj2 � jaj3 symmetry of A3

D11 lA3 l 2A2 ð2; 3Þ eðraÞ ¼ d2ðaÞ � d3ðaÞ � jaj2 � jaj3 A2 $ A2

2D7 l 2A2 ð2; 3Þ eðraÞ ¼ d2ðaÞ � d3ðaÞ � jaj2 � jaj3 A2 $ A2

2D5 l 2A4 ð2; 5Þ eðraÞ ¼ d2ðaÞ � d5ðaÞ A4 $ A4

D5 lA6 lA3 l 2A2 ð2; 3Þ eðraÞ ¼ d2ðaÞ � d3ðaÞ � jaj2 � jaj3 A2 $ A2

A7 lA4 lA3 l 2A2 ð2; 3Þ eðraÞ ¼ d2ðaÞ � d3ðaÞ � jaj2 � jaj3 A2 $ A2

2A6 l 2A3 ð2; 7Þ eðraÞ ¼ jaj2 � jaj7 symmetry of A3

2A6 l 3A2 ð3; 7Þ eðraÞ ¼ d3ðaÞ � d7ðaÞ � jaj3 � jaj7 A2 $ A2
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For the remaining two cases

D4 l 2A4 l 3A2; 2A7 l 2A2;

the computation is almost literally the same. For 2A7 l 2A2, where

S
]
2ðTÞ 6� G2;2, we have to modify j � j2 by replacing w2 with w2ðuÞ ¼ u mod 8

A f1; 3; 5; 7g ¼ Z�
2 =ðZ�

2 Þ
2 and consider the full group G2;0 instead of G 0

2:0.

r

Remark 1. Here and below, when speaking about ranks and dimensions,

we regard all groups G�, E, E
þ, etc. as F2-vector spaces. In particular, when

computing the rank of a matrix, we need to switch from the multiplicative

notation f1;�1g to the additive f0; 1g.

Corollary 3. For all sets of singularities S with mðSÞa 18, the corre-

sponding transcendental lattice T is unique in its genus, i.e., gðTÞ ¼ 1.

Proposition 6. If S is one of

D6 l 2A6; D5 l 2A6 lA1; 2A7 l 2A2; 3A6; 2A6 l 2A3

then M1ðSÞ consists of two complex conjugate components; in all other cases

with mðSÞa 18, the stratum M1ðSÞ is connected.

Proof. By Proposition 5, M1ðSÞ is connected if and only if the (unique)

homological type extending S is symmetric; otherwise M1ðSÞ consists of two

complex conjugate components. By Theorem 7, the homological type is

symmetric if and only if there is an isometry a A OðTÞ with detþðaÞ ¼ �1

satisfying dðaÞ A d cðOðSÞÞ, where d c is the map induced by any anti-isometry

c : Sl 1
4

� �
! T. We consider separately the cases jEðTÞj ¼ jEþðTÞj and

jEðTÞj < jEþðTÞj.

Lemma 6. If jEðTÞj ¼ jEþðTÞj, then M1ðSÞ is connected.

Proof. By definition, we have an exact sequence

0 ! G0=G
��
0 � ~SSðTÞ ! EþðTÞ ! EðTÞ ! 0: ð4:2Þ

Hence, jEðTÞj ¼ jEþðTÞj if and only if ~SSðTÞ 6� G��
0 . Then, by Proposition 3,

there exists a þ-disorienting isometry of T inducing the identity on disc T, and

Theorem 7 applies. r

Lemma 7. If jEðTÞj < jEþðTÞj, then M1ðSÞ is connected if and only if

d?
þ : OðSÞ ! EþðTÞ is an epimorphism.

Proof. The non-trivial element of the kernel K :¼ G0=G
��
0 � ~SSðTÞG fG1g

in (4.2) is the image under the composed map OðTÞ ! AutðTÞ ! EþðTÞ of

any element a A OðTÞ with detþðaÞ ¼ �1. Thus, M1ðSÞ is connected if and
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only if Imðd?
þ Þ \ K0 0, i.e., rank d?

þ > rank d? (see Remark 1). On the other

hand, Proposition 5 can be recast in the form rank d? ¼ dim EðTÞ. Since

dim EþðTÞ ¼ dim EðTÞ þ 1, the statement follows. r

Lemma 6 implies the connectedness of M1ðSÞ for 2721 sets of singular-

ities. For the remaining 151 sets of singularities, one has jEðTÞj < jEþðTÞj.
For 118 of them, one has jEðTÞj ¼ 1 and ~SSpðTÞ � G��

0 for some prime p.

Since jEðTÞj ¼ 1, the map d : OðTÞ ! AutðTÞ is surjective and the isomor-

phism

AutðTÞ=OþðTÞ ¼ G0=G
��
0 � ~SSðTÞ ¼ EþðTÞ ¼ fG1g

(see (4.2)) is the descent of detþ, which is well-defined due Proposition 3. In

most cases we can use Lemma 3 to show that there exists an element a A OðSÞ
such that detþðd cðaÞÞ ¼ �1. Namely,

� if p ¼ 2, take for a a nontrivial symmetry of A2, D5, E6 or D9,
� if p ¼ 3, take for a a nontrivial symmetry of A2, D5 or A8,
� if p ¼ 7, take for a a nontrivial symmetry of A2.

The three sets of singularities

D6 l 2A6; D5 l 2A6 lA1; 3A6

with p ¼ 7 are exceptional (and are listed as such in the statement), as Lemma

3 implies detþ 	 d c 1 1. Indeed, the image of d c is generated by the reflec-

tions ra with either
� a A T7, a2 ¼ 6

7 (a nontrivial symmetry of A6),
� a A T7, a2 ¼ 12

7 (a transposition A6 $ A6) or
� a A T2 (a nontrivial symmetry of D6 or D5).

One has d7ðaÞ ¼ jaj7 ¼ �1 in the first two cases and d7ðaÞ ¼ jaj7 ¼ 1 in the last

one.

There are 30 other sets of singularities still satisfying the condition

G2;2 � S
]
2ðTÞ and having two irregular primes, so that we can apply Lemma

4. Among them, 13 sets of singularities contain two type A2 points and have

ðp; qÞ ¼ ð2; 3Þ and jEþðTÞj ¼ 4. A nontrivial symmetry of any type A2 point

and a transposition A2 $ A2 map to two linearly independent elements gen-

erating EþðTÞ. The remaining 17 sets of singularities are listed in Table 4,

where we indicate the irregular primes ðp; qÞ, order of Eþ :¼ EþðTÞ and a

collection of isometries of S whose images generate EþðTÞ. The set of

singularities S ¼ 2A6 l 2A3 marked as exceptional is one of the special cases

listed in the statement. We have jEþðTÞj ¼ 4 and the group OðSÞ is generated
by

� a nontrivial symmetry of A3, mapped to ð1; 1Þ A EþðTÞ,
� the transposition A3 $ A3, mapped to ð1; 1Þ A EþðTÞ,
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� a nontrivial symmetry of A6, mapped to ð�1; 1Þ A EþðTÞ or
� the transposition A6 $ A6, mapped to ð�1; 1Þ A EþðTÞ.

It follows that d?
þ is not surjective.

Finally, what remains are the 3 sets of singularities

D4 l 2A4 l 3A2; 2A7 l 2A2; 2A4 l 2A3 l 2A2

to which Lemma 4 can not be applied and we need to compute the groups

EþðTÞ directly from the definition (2.7). For

S ¼ 2A7 l 2A2;

which is the last exceptional case listed in statement, we have S
]
2ðTÞ 6� G2;2 and

j � j2 needs to be modified by replacing w2 with w2ðuÞ ¼ u mod 8 A f1; 3; 5; 7g ¼
Z�

2 =ðZ�
2 Þ

2 and we have to consider the full group G2;0 instead of G 0
2;0. The

computation can be summarized as follows:

G3;0 G2;0

generator of S
]
3ðTÞ �1 �1 1 1 1

S
]
2ðTÞ ¼ f1g 1 1 1 1 1

jð�1;�1Þ �1 �1 �1 �1 1

Table 4. Extremal singularities

Singularities ðp; qÞ jEþj isometries of S generating EþðTÞ

2E6 l 2A3 ð2; 3Þ 4 symmetry of E6; A3 $ A3

D9 lA3 l 3A2 ð2; 3Þ 8 symmetries of A2, A3; A2 $ A2

D8 lA6 l 2A2 ð2; 3Þ 2 A2 $ A2

D8 lA3 l 3A2 ð2; 3Þ 2 A2 $ A2

D7 lD5 l 3A2 ð2; 3Þ 8 symmetries of A2, D5; A2 $ A2

D7 lD4 l 3A2 ð2; 3Þ 2 A2 $ A2

D6 l 2A4 l 2A2 ð3; 5Þ 2 symmetry of A2

2D5 l 2A4 ð2; 5Þ 4 symmetry of D5; A4 $ A4

D5 l 2A4 l 2A2 lA1 ð3; 5Þ 4 symmetry of A2; A2 $ A2

D4 l 2A6 lA2 ð2; 7Þ 2 symmetry of A6

A11 lA3 l 2A2 ð2; 3Þ 8 symmetries of A2, A3; A2 $ A2

A8 l 2A3 l 2A2 ð2; 3Þ 8 symmetries of A2, A3; A2 $ A2

2A6 l 2A3 ð2; 7Þ 4 exceptional

2A6 l 3A2 ð3; 7Þ 4 symmetries of A2, A6

2A5 l 2A4 ð3; 5Þ 2 symmetry of A4

3A4 l 2A2 l 2A1 ð3; 5Þ 4 symmetry of A2; A2 $ A2

2A4 l 4A2 ð2; 3Þ 2 A2 $ A2
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d3 j � j3 d2 j � j2
a symmetry of A2 �1 1 1 �1 �1

a transposition A2 $ A2 �1 �1 1 �1 �1

a symmetry of A7 1 1 �1 �1 1

a transposition A7 $ A7 1 �1 �1 �1 1

The rank of the matrix composed by the 7 rows of the table (see Remark 1) is

4 < dim G3;0 þ dim G2;0, which implies that d?
þ is not surjective. For the other

two cases, there are three irregular primes and the computation repeats literally

that at the end of the proof of Proposition 5; in both cases, the map d?
þ turns

out to be surjective. r
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