HirosHIMA MATH. J.
47 (2017), 87-112

Classification of simple quartics up to equisingular deformation
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ABSTRACT. We study complex spatial quartic surfaces with simple singularities up to
equisingular deformations; as a first step, give a complete equisingular deformation
classification of non-special simple quartic surfaces.

1. Introduction

1.1. Principal results. Throughout the paper, all algebraic varieties are over
the field € of complex numbers. A quartic is a surface in IP* of degree 4.
We confine ourselves to simple quartics only, ie., those with A—-D-E type
singularities (see §3.1). Two such quartics are said to be equisingular defor-
mation equivalent if they belong to the same deformation family in which the
total Milnor number stays constant.

Four seems to be the highest degree where one can hope to obtain a
complete equisingular deformation classification. Quartics with a non-simple
singular point (which are typically rational or ruled) have been treated in A.
Degtyarev [3, 4], where the complete classification is obtained and described in
terms of lattice embeddings. An alternative description of some non-simple
sets of singularities in terms of Dynkin diagrams can be found in T. Urabe
[23, 24]. Simple quartics are K3-surfaces, and as such they can be studied
by using the global Torelli theorem [21] and the surjectivity of the period map
[13], combined with V. V. Nikulin’s theory of discriminant forms [19]. This
approach was used by Urabe [25, 26], who showed that the total Milnor
number u of a simple quartic does not exceed 19 and listed (in terms of
perturbations of Dynkin graphs) all realizable sets of singularities with the total
Milnor number u < 17. From a slightly different perspective, also a worth
mentioning is the study of simple real quartics up to equivariant equisingular
deformation, see, e.g., the classification of nonsingular real quartics by V.
Kharlamov [12] or the recent classification of the arrangements of the ten nodes
of a real determinantal quartic by A. Degtyarev and I. Itenberg [7].
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In the present paper, we start a systematic study of the equisingular
stratification of the space of simple quartics. The principal difficulty here is
the great number of strata (about 12 thousands); thus, as a first step, we confine
ourselves to the so-called non-special quartics. The precise definition is rather
technical, and we postpone it till §3.3. In a sense, the non-special quartics are
an analogue of irreducible plane sextic curves admitting no dihedral coverings,
¢f- [1]; in a similar vein, we have the following geometric characterization,
which is proved in §4.1.

THEOREM 1. A simple quartic X C P* is non-special if and only if
H(X\(Sing X UH)) =0,

where Sing X is the set of the singular points of X and H is a generic hyperplane
section of X.

Still, the number of strata is too large to be listed explicitly, and; hence, in
the existence part we adopt the approach of [1] and describe only those strata
that are extremal with respect to degeneration. (Note that, unlike [23, 24, 25,
26], we do not introduce any artificial Dynkin graphs: all sets of singularities
mentioned below and all perturbations thereof are indeed realized by quartics.)
Recall that a set of simple singularities can be identified with a root system,
i.e., a negative definite lattice generated by vectors of square —2 (see Dufree [§]
and §3.1); the rank of this lattice is the total Milnor number of the quartic.
By a perturbation of a set of simple singularities S we mean any set of simple
singularities S’ whose Dynkin graph is an induced subgraph of that of S (see
§4.2). Recall, further, that for a simple quartic X C IP?, one has u(X) <19
(see e.g., [25]); X is called maximizing if u(X) = 19.

Denote by .#(S) the equisingular stratum of simple quartics with a given
set of singularities S. A connected component & C .#(S) is called real if
it is preserved as a set under the complex conjugation map conj: IP* — IP3.
Clearly, this property is independent of the choice of the coordinates in IP?, and
all components of .#(S) split into real and pairs of complex conjugate ones.

Our principal result is a complete description of the equisingular strata
A1 (S) of non-special simple quartics.

THEOREM 2. A set of singularities S is realizable as the set of singularities
of a non-special simple quartic if and only if S can be obtained by a perturbation
from one of the sets of singularities listed in Tables 1 and 2.  The numbers (r,c)

of, respectively, real and pairs of complex conjugate components of the strata
A (S) with u(S) =19 are shown in Table 1. If S is one of

D¢ @ 2Aq, Ds @ 2A6 D Ay, 2A; @ 2A,, 3Ag, 2A6 @ 2A;
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Table 1. The space .#(S) with u(S) =19

Singularities (r,c) Singularities (r,c)

2Es DA, DA, (1,0) Ais @A, (1,1)?
Es®E;, @Ay (1,0) A7 @A (1,1)
Es @ Es ® Ds (1,0) Ajg @A @A (1,0)
Es®Es ® Ay @A (1,0) A5 @ 2A, (0,1)
Es ® D; @ 2A, (1,0) Ay @ A5 (0,2)
Es @ Ao @A (1,0 Ay @A @A (0,2)
Es @ Ay @ Ay (1,0) Az @ Ag (0,2)
Eg @ As @ As (1,0 ApDAL DA (1,0)
Es © A ®As DA (1,0) A ®As ® A (1,1)?
Es @A ®A; ® A, (0,1) An®A;s DA, (1,1)?
Es@2A, @A @A (1,0) Ap DAL DA DA 0,1)
E; ®Es @ Ag (1,0) A ®A; B 2A; (2,0)
E; ©Ap (1,1)? AL ©ADA, (0,2)
E: @A) ® A (0,1) Al ® Ay (1,1)?
E; @ As © Ay (2,0 A @ As DA ©,1)
E; @ 2A¢ (0,1) AgPDAT DA, (0,2)
E'@As DAL DA (1,0) Al DA @ A3 (0,2)
2E¢ @ Dy (1,0) A @A DA, DAY (1,0)
Es @ D13 (1,0) Al DAs D Ay (1,0)
Es @ Dy ® Ay (1,0) A DAL DA DA 0,1)
Es @ A3 (1,0) Ay DA @ A (1, 1)
Ec @A @A (1,0) Ag @ A @ 2A, (1,0)
D5 @ 2A, (1,0) Ag D Ag @ As (1,1)
D1 ®As @ Ay 0,1) Ag DA DAL DAY 0,1)
Dy ® Ag @ 2A, (1,0) AsPDAcDA; DA, (0,3)
D;®AYD A, (0,1) A7 @ 2A¢ 0,2)
D7 @ 2Aq 0,1) A DA DAL DA, (0,1)
D, AAPDAL D A, (0,1) 2A6 D As D Ay (2,0)
D; ®2A4 @24, (1,0 20 DAL DA DA 0,1)
As D2A, DA DA (2,0)

Table 2. Extremal sets of singularities with u(S) = 18

Eg @ Dy Dy @ Ay D @ 3A4
Es ® Dy @ Ay Do @ Ag 2Ds5 @ Ag

2E; @ 2A, Dy @ 2A4 2Ds5 @ 2A4

E; @Dy 2Dy Ds @ Ag @ Ay
E; @Dy @ Ay Dy @ Ay Ds @ Ag @ As
Dig Dy ® As @ Ay Ds ® As ® 2A4

D7 ® Ay
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then M\ (S) consists of two complex conjugate components; in all other cases, the
stratum M\ (S) is connected.

Theorem 2 is proved in §4.2. In Table 1, we list the maximizing sets of
singularities, which are all extremal. In most cases the transcendental lattice
(the orthogonal complement of the Néron Severi lattice in H,(X)) is unique
in its genus; in six cases marked with 2 in the table the genus consists of two
lattices. Recall that each maximizing quartic surface is defined over an
algebraic number field and this number of transcendental lattices is a lover
bound for the degree of this field.

A complete list of all possible combinations of simple singularities realized
by a complex quartic surface (not-necessarily non-special) was previously found
by Yang [28]. His technique is also based on Nikulin’s criterion of existence
of lattices [19] and he also represents the result in terms of perturbations of
certain extremal sets. We restrict our attention to non-special quartics and
our extremal sets of singularities are extremal in this restricted class. For this
reason, we can also assert that any perturbation of the set S of simple
singularities is realized by a perturbation of simple quartics.

1.2. Contents of the paper. Our principal result, Theorem 2, is proved by a
reduction to an arithmetical problem [7] (c¢f. also [5]), followed by Nikulin’s
theory of lattice extensions and Nikulin’s existence theorem [19]. The principal
novelty is a systematic usage of the Miranda—Morrison theory [15, 16, 17]
computing the genus groups and a few other bits missing in [19] in the case of
indefinite lattices.

In §2, based on Nikulin’s work [19], we recall the basic notions and re-
sults about integral lattices, discriminant forms and lattice extensions; then,
we outline the fundamentals of Miranda-Morison’s theory [17] which are used
in §4.2. In §3, we discuss the relation between simple quartics and K3-
surfaces, explain the notion of abstract homological type, and recall the reduc-
tion of the classification problem to the arithmetical classification of abstract
homological types. Finally, §4 is devoted to the proofs of our principal
results: the proof of Theorem 1 is purely homotopy theoretical, whereas that
of Theorem 2 depends essentially on the auxiliary material presented in §2
and §3.

1.3. Acknowledgements. I would like to express my gratitude to my advisor
Alex Degtyarev for attracting my attention to the problem, motivating discus-
sions, encouragement and infinite patience. I am also thankful to him for
sharing his results (stated in Table 1) about the moduli space of maximizing
non-special simple quartics.
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2. Preliminaries

2.1. Finite quadratic forms. A finite quadratic form is a finite abelian group
% equipped with a map ¢: % — Q/2Z satisfying g(x + y) = q(x) + q(y) +
2b(x,y) and q(nx) =n’x for all x,ye %, where b: Y@L — QJZ is a
symmetric bilinear form (which is determined by ¢). To reduce the notation
we write x> for ¢(x) and x -y for b(x,y). For a prime p, let %, == ¥ ® Z,,
which is called the p-primary part of . Any finite quadratic form £ can
be written as an orthogonal sum of its p-primary components %, ie.,
£ = @p %, where the summation runs over all primes p. Denote by /(%)
the minimal number of generators of .

Consider a fraction ? € Q/2Z with g.c.d(m,n) =1 and mn = 0 mod 2.
By (%), we denote the finite non-degenerate (see §2.2) quadratic form on Z/nZ
generated by an element of square ' and of order n. For an integer k > 1, let
«(2%) and 7°(2%) be the quadratic forms on Z/2*¥Z ® Z/2*Z defined by the

matrices
0 & .
a2y =, % and (25 =*" ¥ |
5 0 3 3T

Nikulin [19] showed that any finite quadratic form can be written as an
orthogonal sum of cyclic summands of the form () and copies of #(2*) and
7 (25).

The Brown invariant of a finite quadratic form % is the residue
Br & € Z/8Z defined by the Gauss sum

1
exp(zin Br 3) = ||7? Z exp(inx?).
xe¥

The Brown invariants of indecomposable p-primary blocks are as follows:

Br<p§f’,l> = 2(%) - (%) -1, Br<%> =0 (for p odd, s>1 and
g.cd.(a,p) =1),

Br<ﬁ> =a+1k(a®>— 1) mod 8 (for k >1 and odd a e Z),

Br %(2%) = 0,

Br 7" (2K) = 4k mod 8 (for all k > 1).

A finite quadratic form is called even if x> =0 mod Z for all elements
x € & of order two; otherwise it is called odd. This definition implies that a
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quadratic form is odd if and only if it contains (+1) as an orthogonal
summand.

2.2. Integral lattices and discriminant forms. An (integral) lattice is a free
abelian group L of finite rank with a symmetric bilinear form b: L ® L — Z.
For short, we use the multiplicative notation x - y for b(x, y) and x? for b(x, x).
A lattice L is called even if a® is an even integer for all a e L. It is called odd
otherwise. The determinant det(L) is defined to be the determinant of the
Gram matrix of b in any basis of L. Since the transition matrix between any
two integral bases has determinant +1, the determinant of det(L) e Z of L is
well defined. A lattice L is called non-degenerate if det(L) # 0; it is called
unimodular if det(L) = +1.

From now on all lattices considered are even and non-degenerate.

Given a lattice L, the form b: L ® L — Z can be extended by linearity
to a form (L® Q) ®q (L® Q) — Q. If L is non-degenerate, the dual group
L*:=Hom(L,Z) can be identified with the subgroup

{xeL®Q|x-yeZ for all ye L}

Since the original bilinear form » on L is integer valued, L is a finite index
subgroup of its dual. The quotient L*/L is called the discriminant group of
L and is denoted by & or disc L. If {e;,ez,...¢e,} is a basis set for L and
{ef,e5,...,e;} is the dual basis for L*, then the Gram matrix [e; - ¢;] is exactly
the matrix of the homomorphism ¢:L — L* x— [y— x-y]. Hence one
has |#| =|det(L)]. Note that x- ye Z whenever xe L or ye L. Thus, ¥
inherits from L ® @ a non-degenerate symmetric bilinear form by : ¥ ® ¥ —
Q/Z; it is called the discriminant form. 1If L is even, this form by can
be promoted to the quadratic extension g¢g¢: ¥ — Q/2Z, (xmod L)—
(x> mod 2Z). Hence, the discriminant form of an even lattice is a finite
quadratic form. Accordingly, given a prime p, we use the notation disc, L or
%, for the p-primary part of &, ie., ¥, =% ® Z,. Each discriminant group
% decomposes into orthogonal sum & = @p %, of its p-primary components.
The signature of a non-degenerate lattice L is the pair (o4,0_) of its positive
and negative inertia indices. Two non-degenerate integral lattices are said to
have the same genus if their localizations over R and over Z, are isomorphic.
The following few statements give the relation between the genus of an even
integral lattice and its discriminant form.

THEOREM 3 (Nikulin [19]). The genus of an even integral lattice L is
determined by its signature (o,L,6_L) and discriminant form disc L.

The existence of an even integral lattice L with a given signature is given
by Nikulin’s existence theorem (see Theorem 5).
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THEOREM 4 (van der Blij [27]). For any non-degenerate even integral lattice
L, one has Br ¥ =0, —o_ mod 8.

We denote by g(L) the set of all isomorphism classes of all non-degenerate
even integral lattices with the same genus as L. Each set g(L) is known to
contain finitely many isomorphism classes.

Given a prime p, we define the determinant det,(%) as the determinant of
the matrix of the quadratic from on .%, in an appropriate basis (see [18] and
[19] for details). Unless p =2 one has det,(¥) = u/|-%,| where u is a well
defined element of ueZ;/ (Z;)z. If p=2, the determinant det,(%) is well
defined only if %, is even.

THEOREM 5 (Nikulin [19]). Let &£ be a finite quadratic form and let o4
be a pair of integers. Then, the following four conditions are necessary and
sufficient for the existence of an even integral lattice L whose signature is
(04,0_) and whose discriminant form is %:

(1) 04=0and o, +o_ =>/((&).

(2) o4 —o0_-=Br ¥ mod8.

(3) For each p#2, either o, +o_>{,(L) or det,(¥)=(-1)" -

| £ mod(Z))*.

(4)  Either 6, +0_ > (%), or &5 is odd, or dety( L) = +|.%| mod(Z5)°.

2.3. Automorphisms of lattices. An isometry of integral lattices is a homo-
morphism of abelian groups preserving the forms. The group of auto-
isometries of L is denoted by O(L). There is a natural homomorphism
d:O(L) — Aut(¥), where Aut(#) denotes the group of automorphisms of
& preserving the discriminant form ¢ on #. Obviously, one has Aut(¥) =
[, Aut(Z,), where the product runs over all primes. The restrictions of d to
the p-primary components are denoted by d, : O(L) — Aut(%,).

Given a vector u in L with u # 0, the reflection against its orthogonal
hyperplane is the automorphism

r,:L— L
(x-u)u

X—x—2 5
u

The reflection r, is well-defined whenever u € (%)L* Note that r,f =id, ie., r,

is an involution. Each image d,(r,) € Aut(%,) is also a reflection (see §2.6).
If 4> = 41 or u? = 42, then the induced automorphism d(r,) is the identity.

2.4. Lattice extensions. For a non-degenerate even lattice S, an even integral
lattice L containing S is called an extension of S. An isomorphism between
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two extensions L; D S and L, D S is an isometry between L; and L, taking S
to S. In particular, if the isomorphism L; — L, restricts to id on S, the
extensions L and L, are called strictly isomorphic. For a given subgroup A of
O(S), we define A-isomorphisms of extensions of S as those which restrict to an
element of 4 on S.

Recall that S is assumed to be non-degenerate, hence given a finite index
extension L D S, one has L C S§*. Thus there are inclusions S C L C L* C S$*
which imply L/S C §*/S=. The subgroup # = L/S of & is called the
kernel of the finite index extension L O S. Since L is an even integral lattice,
the discriminant quadratic form on & restricts to zero on 4, ie., A 1is
isotropic.

ProposITION 1 (Nikulin [19]). Let S be a non-degenerate even lattice, and
fix a subgroup A C O(S). The map Lw— A = L/S C & establishes a one-to-
one correspondence between the set of A-isomorphism classes of finite index
extensions L O S and the set of A-orbits of isotropic subgroups # C . Under
this correspondence one has L = {xe S*|(xmod S) e A} and &L = #"*/ .

ProposiTiION 2 (Nikulin [19]). Let L D S be a finite index extension of a
lattice S and let A" C & be its kernel.  Then an auto-isometry S — S extends to
L if and only if the induced automorphism of & preserves A .

An extension L D S is called primitive if L/S is torsion free. Following
Nikulin [19], we confine ourselves to the special case where L is unimodular.
If S is a primitive non-degenerate sublattice of a unimodular lattice L then S*
is also primitive in L and L is a finite index extension of S @ S*. Further-
more, since disc L =0, the kernel .# C ¥ @® %+ is the graph of an anti-
isometry  : & — disc S*. Hence the genus ¢(S*) is determined by the
genera ¢(S) and g(L). Conversely, given a lattice N € g(S*) and an anti-
isometry ¢ : & — A where ./ is the discriminant group of N, the graph of
is an isotropic subgroup # C . @ ¥+ and the corresponding finite index
extension S ® N — L is a unimodular primitive extension of S with S+ =~ N.
Any anti-isometry ¥ :.% — disc S* induces a homomorphism dV : O(S) —
Aut(A47). Recall that there is a natural homomorphism d : O(N) — Aut(.A").
Thus, since also an indefinite unimodular lattice is unique in its genus, we have
the following theorem.

THEOREM 6 (Nikulin [19]). Let L be an indefinite unimodular even lattice
and S C L a non-degenerate primitive sublattice. Fix a subgroup A C O(S).
Then the A-isomorphism class of a primitive extension S C L is determined by

(1) a choice of a lattice N € g(S*) and

(2) @ choice of a double coset cy € d¥(A)\Aut(A")/Imd (for a given N

and some anti-isometry : ¥ — N inducing dV ).
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THEOREM 7 (Nikulin [19]). Let L be an indefinite unimodular even lattice,
S C L a non-degenerate primitive sublattice and  : & — N~ the anti-isometry
where, N = S*.  Then a pair of isometries as € O(S) and ay € O(N) extends to
L if and only if d¥(as) = d(ay).

2.5. Miranda—Morrison’s theory. Let p be a prime. Define
L= {1} x Q/(Q)),
Ty = {1} x {£1} € {£1} x Q*/(Q")".

It is convenient to introduce the following subgroups related to /:
o I,o:={(1,1),(1,u,),(—-1,1),(—1,u,)} C I}; here, p is odd and u, is
the only nontrivial element of Z;/ (Z;)z,
o Ioo:={(1,1),(1,3),(1,5),(1,7),(=1,1),(=1,3),(=1,5),(=1,7)} C I3,
o I = {1y < ZX)(Z)) C T,
* Inyi= {(171)’(175)}CF2++7
. Fé,O = Fz,o/rz,z (and 1—}7/70 = [},_0 for p # 2),
o Iy ={(1,1),(-1,-1)} C Iy.
Let, further,

FA’()Z:HI—},,oCFAZ:FA,o'ZIVP
P P

where “-” denotes the sum of the subgroups. Note that

P

I'p = {(dp,sp) € HI",, | (dy,sp) € I, o for almost all p}

The natural map Q*/(Q*)* — Q,/ ((Q;)2 induces canonical maps
g/)p IF0—>I_VFA’0. (21)

Let N be an indefinite lattice with rk(N) >3. We will use certain
subgroups Z;(N) CI,o and X,(N) CI,. In the notation of [17] (which
slightly differs from the notation in [15, 16]), one has ij(N) =IHN®Z,)
and X,(N) := 2(N ® Z,); we refer the reader to [17] (see chapter 7, section 4)
for the precise definitions. The subgroups Z,E(N ) are computed explicitly in
[17] (see Theorems 12.1, 12.2, 12.3 and 12.4 in chapter 7).

Another object defined in [17] (see chapter 8, sections 5, 6 and 7) is the
IF,-module

E(N) := FAVO/H ZA(N) - I (2.2)
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This module is finite. Indeed, following [17] (see Definition 7.4 in chapter 8),
we call a prime p regular with respect to N if ZIE(N ) =1,0. An important
point here is the fact that a prime p is regular unless p|det(N); thus, (2.2)
reduces to finitely many primes p:

p)= 1 fof T] 210 23

plaet(v)  /pldei(w)

THEOREM 8 (Miranda—Morrison [17]). Let N be a non-degenerate indef-
inite even lattice with tk(N) > 3. Then there is an exact sequence

O(N) L Aut(N) S E(N) — g(N) — 1, (2.4)
where g(N) is the genus group of N.
A simplified version of (2.3) computing the numeric invariants
&(N) =0 TN and  Z,(N) =g, (ZHN) C T,

can be found in [15, 16]. This gives us the size of the group E(N): one has
[E(N)| = —=— (2.5)
where

e(N):=]]e(N), (V) =) Z,(N),

and the product and intersection run over all primes p or, equivalently, over all
primes p|det(N).
The following theorem can be deduced from Theorems 6 and 8.

THEOREM 9 (Miranda—Morrison [15, 16]). Let S be a primitive sublattice
of an even unimodular lattice L such that N := S* is a non-degenerate indefinite
even lattice with tk(N) > 3. Then the strict isomorphism classes of primitive

extensions S — L are in a canonical one-to-one correspondence with the group
E(N).

As explained §2.4, given a unimodular lattice L and a primitive sublattice
S C L, one has an anti-isometry  : & — A" (where N = S*), which induces a
homomorphism d¥ : O(S) — Aut(.4/"). If N is indefinite and rk(N) > 3, then
dV(0(S)) C Aut(.4") is a normal subgroup with abelian quotient (see (2.4)) and
we have a homomorphism d* : O(S) — Aut(./") — E(N) independent of the
choice of an anti-isometry . The next statement follows from Theorems 8
and 6.



Classification of simple quartics 97

COROLLARY 1. Let S be a primitive sublattice of an even unimodular lattice
L such that N := S* is a non-degenerate indefinite even lattice with tk(N) > 3
and let A C O(S) be a subgroup. Then, the A-isomorphism classes of primitive
extensions S — L are in a one-to-one correspondence with the IFy-module
coker d*| .

2.6. Reflections. Recall that Aut(.4") =[], Aut(.4},) where p runs over all
primes. Let s be a prime and o € ./ such that

2
sfa=0 and o®= S—Z mod 27Z, g.cd(u,s) =1, keN. (2.6)

We denote by ../ the set of all elements oe . /; satisfying (2.6) and let
Nt =J, 4. Then one can define a map,

2x-
Ny — Z)s*Z, X % mod s*

where o € JV;T. Thus, there is a reflection r, € Aut 4§ given by

2(x - a)
o

Py X X —

If «> =1 modZ and 22 =0 then r, = id.
Let p be a prime and consider the homomorphism

Aut(N) = [IAut —»IIZ‘ )/ZE(N

which is the product of the epimorphisms

introduced in Miranda—Morrison [17] (see chapter 8, section 7). The images
of the homomorphism ¢, can be computed on reflections as follows: For a
prime s and an element o € ./, the image of the reflection rm € Aut(/5) under
¢, is given by ¢ (r,) = (=1, us* ), see (2.6). If s=2 and «?> =0 mod Z, then
¢,(r,) is only well-defined modulo I57*. If s=2 and o’ =1 modZ, then
@y(ry) is well-defined modulo I>,. In these cases to determine the value
of ¢,(ry), we need more information about o and N.

Given another prime p, we define the p-norm |o|, € {1} of ve N
by

] = 2p(s) if s # p,
P xpw) i s=p,
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where the homomorphism y, : Z;/(ZPX)2 — {£1} is defined as

1p0) = {(5) tp=s
umod4 if p=2.

Note that |x|, is undefined when p =2 and o> =0mod Z. Following [1],
given primes p, s and a vector x €./, we introduce the group

{+1} if p=1mod4 and e,(N)-|Z,(N)| =8,
1 otherwise,

E,(N) := {
the map q;p : N1 — E,(N),

_ 1 if E,(N)=1,
Pp(2) = |of, otherwise,

and the map B, : A1 — I,

_ [ ©Bp(e) - |af,, 1) if p=1mod 4,
By(2) = Op(e) x |al, otherwise,

where the map 6, : A, — {£1} is defined by
By(3) = (~1)"

(here J, ; is the conventional Kronecker symbol). Note that we have the
assignment

ra = (0p(), lol,) € T .

The following lemmas provide an explicit description for the group E(N) and
compute the image of the homomorphism e on the reflections r, for the special
case when N has one or two irregular primes.

LemMmA 1 (Akyol-Degtyarev [1]). Let N be a non-degenerate indefinite
even lattice with tk(N) > 3, Z;(N) D I, and assume that N has one irregular
prime p. Then E(N) = E,(N) and e(r,) = g/;p(oc) for any ae N1,

LemMAa 2 (Akyol-Degtyarev [1]). Let N be a non-degenerate indefinite
even lattice with tk(N) > 3, Z;(N) D I, and assume that N has two irregular
primes p, q. Then

E(N) = E)(N) x E((N) x (In/2,(N) - Z,(N)),
e(rl) = ¢_p(fx) X ¢_q(OC) X (ﬁ_p(a) 'ﬁ_q(a))v

for any awe N1 such that o> #0mod Z if p=2 or q=2.
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COROLLARY 2 (Akyol-Degtyarev [1]). Under the hypothesis of Lemma 2,
assume, in addition, that |E(N)| = |E,(N)|=2. Then E(N)=E,(N) and
e(ry) = |al, for any o e AT,

2.7. Positive sign structure. Let N be a non-degenerate lattice. The orthog-
onal projection of any maximal positive definite subspace in N ® IR to any
other such subspace is an isomorphism of vector spaces. Thus a choice of an
orientation of one maximal positive definite subspace in N ® R defines a
coherent orientation of any other. A choice of an orientation of a maximal
positive definite subspace of N ® IR is called a positive sign structure. We
denote by O (N) the subgroup of O(N) consisting of the isometries preserving
a positive sign structure. Obviously either OT(N) = O(N) or OT(N) is a sub-
group of O(N) of index 2. In the latter case, each element of O(N)\O™(N)
is called a +-disorienting isometry of N. Following [17], we define the map
det, : O(N) — {1} as

+1 if a preserves the positive sign structure,

det, (a) := {

—1 if a reserves the positive sign structure.
Note that Ker(det,) = O"(N).

ProposiTION 3 (Miranda—Morrison [17]). Let N be a non-degenerate
indefinite even lattice with tk(N) > 3. Then one has X(N) C Iy~ if and only
if det.(a) =1 for all aeKerld: O(N) — Aut(A)].

Hence, if X~ C I, o, the map det; : Imd — {+1} is the descent of det,
which is well-defined by the proposition above. The following lemma com-
putes the images of the function det, on reflections.

LemMA 3 (Akyol-Degtyarev [1]). Let N be a non-degenerate indefinite
even lattice with tk(N) > 3, E;(N ) D 11,2, and assume that there exists a prime
p such that fp(N) C Iy ™. Then, for an element o € NV such that r, e Im d
and o> #0mod Z if p =2, one has det (ry) = dy(x) - o],

Defined in [16], we introduce the group
E*(N) := FM/H ZAN) Ty (2.7)
P

(Similar to (2.2) and (2.3) the actual computation reduces to finitely many
primes p|det(N).) As in Theorem 8 there is an exact sequence

0 (N) %L Aut(N) & E¥(N) — g(N) — 1.
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The size of the group E*(N) is also computed in [16]: one replaces [I : Z(N)]
in (2.5) with [I ™ : X(N)NTy~]. For an irregular prime p, we put f;(N) =
Z,(N)nT; .

Given a unimodular even lattice L and a primitive sublattice S C L such
that N := S+ is a non-degenerate indefinite lattice with rk(N) > 3, we have a
well-defined homomorphism d- : O(S) — E*(N), ¢f. see §2.5 for the definition
of d*.

Let p and s be two irregular primes and choose an element o € ,/VST as in
(2.6), we introduce the group

EH(N) = E,(N) if p=1mod4,
r T\ To/Z,(N)- Iy~ otherwise,

the map (/;Ij c N — EfF(N),

q;p(oc) if p=1mod 4,
§) (@) =S 0p(2) - |af, if p#1mod4 and ES(N) # 1,
1 if p#1mod4 and ES(N) =1,
and the map B : N1 — I57,
Op(a) - faf, if p=1mod4,

B (2) = ||, if p#1mod4 and ES(N) # 1,
proj(B,(«)) if p #1mod4 and ES(N)=1,

where proj : Iy — I'y/Z,(N) = I'; ~ is the projection map. Next lemma com-
putes the group E1(N) and the values of the homomorphism et on the
reflections r,

LemMmA 4 (Akyol-Degtyarev [1]). Let N be a non-degenerate indefinite
even lattice with tk(N) > 3, Zg(N) D I and assume that N has two irregular
primes p, q. Then

EY(N) = B/ (N) x B} (N) x (g~ /Z5 (N) - £/ (N)
e (1) = ¢, (%) x 4, (o) x (B} () - B ()
for any awe N1 such that o> #0mod Z if p=2 or q=2.

2.8. Root Systems. A root in a lattice L is an element ve L of square
—2. A root system is a negative definite lattice generated by its roots. Each
root system splits uniquely into orthogonal sum of its irreducible components.
As explained in [2], the irreducible root systems are A,, n > 1, D,,, m > 4 and
E¢, E;, Es. The corresponding discriminant forms are as follows:
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. . 2k +1
dlSCAn=<—nil>, dlSCD2k+1:<_T+>7

1 .
disc Dgi 42 = 2<$§>, disc Dg; = %(2), disc Dgry4 = 77(2),

disc Eg = <§>, disc E; = <%>, disc E; = 0.

Given a root system S, the group generated by reflections (defined by the roots
of S) acts simply transitively on the set of Weyl chambers of S. The roots
constituting a single Weyl chamber form a standard basis for S; these roots are
naturally identified with the vertices of the Dynkin graph I" := I's. Thus, ones
has an obvious homomorphism

Sym(I") — O(S) — Aut(¥)

where Sym(7") denotes the symmetries of I". Irreducible root systems corre-
spond to connected Dynkin graphs. The following statement follows imme-
diately from the classification of connected Dynkin graphs (see N. Bourbaki

(2])-

LemMma 5. Let I'=1TI's be the connected Dynkin graph of an irreducible
root system S. Then one of the following holds:

(1) If S is Ay, E; or Eg, then Sym(I") = 1.

(2) If S is Dy, then Sym(I') = S;.

(3) For all other types, Sym(I') = Z/2Z.

If Sis A,, p>2, Dy or Eg, then the only nontrivial symmetry of I’
induces —id on . If S is Eg then ¥ =0 and if S is Ay, A; of Dy, the
groups & are IF, modules and —id =id on Aut &.

Further details on irreducible root systems can be found in N. Bourbaki

2]

3. Simple quartics

3.1. Quartics and K3-surfaces. A quartic is a surface X C IP? of degree
four. A quartic is simple if all its singular points are simple, i.e., those of type
A, D, E. Isomorphism classes of simple singularities are known to be in a
one-to-one correspondence with those of irreducible root systems (see Dufree [§]
for details). Hence, a set of simple singularities can be identified with a root
system, the irreducible summands of the latter (see §2.8) correspond to the
individual singularity points.
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Let X C IP® be a simple quartic and consider its minimal resolution of
singularities X. It is well known that X is a K3-surface; hence, H,(X) =
2Eg @ 3U, where U is the hyperbolic plane defined as U :=Zu; @ Zu,,

u?=u3 =0 and u; -up = 1. Note that 2Eg @ 3U is the only even unimodular

lattice of signature (o,,0_) = (3,19). We fix the notation Ly := H>(X) and
L :=2Es @ 3U.

For each simple singular point p of X the components of the exceptional
divisor are smooth rational (—2)-curves spanning a root lattice in Ly. These
sublattices are obviously orthogonal and their orthogonal sum, which is
identified with the set of singularities of X, is denoted by Sy. The rank
rk(Sy) equals the total Milnor number u(X). Since 6_(L) =19 and Sy C L is
negative definite, one has u(X) <19 (see [25], cf., [20]). If w(X) =19, the
quartic is called maximizing. We introduce the following objects:

* Sy C Ly: the sublattice generated by the set of classes of exceptional

divisors contracted by the blow-up map X — X;

* hy € Ly: the class of the pull-back of a generic plane section of X;

* Sys=Sx® Zhy C Ly;

* Sy C Sy, C Ly: the primitive hulls of Sy and Sy j, respectively, i.e.,

Sy :=(Sx®Q)NLy and Sy ; := (Sx,» ® Q) N Ly;
* oy C Ly ® R: the oriented 2-subspace spanned by the real and imag-
inary parts of the class of a holomorphic 2-form on X (the period
of X).
The triple (Sx,hx,Ly) is called the homological type of X.

3.2. Abstract homological types. As explained above the set of singularities
of a quartic X C IP* can be viewed as a root lattice S C L.

DerINITION 1. A configuration (extending a given set of singularities S) is
a finite index extension S, DS, :=S @ Zh, h? =4, satisfying the following
conditions:

(1) Each root re (S® Q) NS, with r> = -2 is in S.

(2) S, does not have an element v with v> =0 and v-h = 2.
An automorphism of a configuration S;, is an auto-isometry of S, preserving
h. The group of automorphisms of Sy, is denoted by Auth(Sh). One has the
obvious inclusions Aut,(S;) € O(S) € O(S), the latter is due to the condition
(1) in Definition 1, since S is recovered as the sublattice in 4+ C S, generated
by roots.

DEFINITION 2. An abstract homological type extending a fixed set of
singularities S is an extension of S, :=S @ Zh, h*> =4, to a lattice L iso-
morphic to 2Eg @ 3U, such that the primitive hull S, of S, in L is a
configuration.
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An abstract homological type is uniquely determined by the triple # =
(S,h,L). An isomorphism between two abstract homological types #; =
(Si,hi, Li), i=1,2, is an isometry L; — Ly, taking /;; and S; to A, and S,,
respectively (as a set).

Given an abstract homological type # = (S,h,L), we let S := (S® Q) NL
and S, := (Sh®Q)NL be the primitive hulls of S and S;, respectively.
Note that S :héh, ie., S is also the primitive hull of A%. The orthogonal
complement S,lL is a non-degenerate lattice with ¢,S;" =2. It follows that
all positive definite 2-subspaces in ShL ® R can be oriented in a coherent way

(see §2.7).

DEerFINITION 3. An orientation of an abstract homological type # =
(S,h,L) is a choice 0 of one of the coherent orientations of positive definite
2-subspaces of Shl ® R.

An isomorphism between two oriented abstract homological types (#,6;),
i=1,2, is an isomorphism #]; — >, taking 6, to 6,. An abstract homo-
logical type J is called symmetric if (A, 0) is isomorphic to (#, —6) for some
orientation 8 of ), i.e., # admits an automorphism reversing the orientation.

3.3. Classification of singular quartics. Due to Saint-Donat [22] and Urabe
[25], a triple # = (S,h,L) is isomorphic to the homological type (Syx,/x,Lx)
of a simple quartic X  IP? if and only if # is an abstract homological type in
the sense of Definition 2. In this case, the oriented 2-subspace wy introduced
in §3.1 defines an orientation of .

THEOREM 10 (see Theorem 2.3.1 in [7]). The map sending a simple quartic
surface X C 1P3 to its oriented homological type establishes a one to one corre-
spondence between the set of equisingular deformation classes of quartics with a
given set of simple singularities S and the set of isomorphism classes of oriented
abstract homological types extending S. Complex conjugate quartics have
isomorphic homological types that differ by the orientations.

DEerFINITION 4. A quartic X is called non-special if its homological type is
primitive, ie., S, C L is a primitive sublattice.

Note that the homological type # = (S,h,L) is primitive if and only if
S, =S, in this case, one has discS, = . @ () and Aut,(S;) = O(S).

For a given set of simple singularities S, the corresponding equisingular
stratum of quartics is denoted by .#(S). Our primary interest is the family
A\ (S) C A (S) constituted by the non-special quartics with the set of singu-
larities S. More generally, since the kernel #° of the finite index extension
S, CS;, is obviously invariant under equisingular deformations, one can
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consider the strata .#.(S) C .4 (S) where the subscript * is the sequence of
invariant factors of the kernel 7.

4. Proofs

4.1. Proof of Theorem 1. Note that X\(Sing X U H) =~ X\(E U H), where
X is the minimal resolution of X and E is the exceptional divisor of the blow
up X — X. Recall that Sy is the sublattice in Ly = H,(X) generated by the
components of E (see §3.1). Thus, one has Hy(EUH) =Sy ® Zhy C Ly =
Hy(X). N
We have the following cohomology exact sequence of pair (X,EU H):
L@ L EE S BX EUE D B - -
——
0

Hence, H? (X' ,EUH) =coker i*. By universal coefficients, since all groups
involved are free, i* is the adjoint of the map

Iy : Hz(EUH) — HQ(X),
which is the inclusion Sy , — Ly. Thus, we have an exact sequence
O — Hz(EUH) i) HZ(X) — SX,/I/SX,h (—BF — 07

where F is a finitely generateq free abelian group. This sequence can be
regarded as a free resolution of Sy /Sy » @ F and, by the definition of derived
functor, we have the following isomorphisms

coker i* = EXt(SXTh/SX,h (—B F, Z) = EXt(SX,h/SX,ha Z)

Combining these observations with Poincaré—Lefschetz duality H,(X\(EU H))
= H3*(X,EUH), we conclude that

H{(X\(EUH)) = Ext(Sy.4/Sx.in, Z) = Sx.1/Sx.h

(the last isomorphism being not natural). In particular H;(X\(EU H)) = 0 if
and only if Sy, =Sy, ie, if and only if X is non-special. O

4.2. Proof of Theorem 2. For the reader’s convenience, we divide the proof
into three propositions; Theorem 2 is their immediate consequence.

PROPOSITION 4.  The realizable sets are all sets of singularities that can be
obtained by a perturbation from either the 59 maximizing sets of singularities
listed in Table 1 or 19 sets of singularities with the Milnor number 18 listed in
Table 2.
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PrOOF. According to Theorems 10 and Definition 4, a set of singularities
S is realized by a non-special quartic if and only if S extends to a primitive
homological type. Thus, we are interested in primitive extensions S, — L =
3U @ 3Es.  Since the homological type is primitive, one has disc S, = % @ (1),
and the realizable sets are easily found by using Nikulin’s Existence Theorem
(Theorem 5) applied to the genus of the transcendental lattice T := S;-, which is
determined by S, see §2.4. Implementing the algorithm in GAP [10], we found
that 2872 sets of simple singularities are realized by non-maximal non-special
quartics and 59 sets of simple singularities are realized by maximal non-special
quartics. According to E. Looijenga [14], deformation classes of perturbations
of an individual simple singularity of type S are in a one-to-one correspondence
with the isomorphism classes of primitive extensions S’ < S of root lattices, see
§2.8 and §2.4. As shown in [9], the latter is the case if and only if the Dynkin
graph of S’ is an induced subgraph of that of S. Hence, given a simple
quartic X, any perturbation X to a simple quartic X’ gives rises to a pertur-
bation of the set of singularities S of X to the set of singularities S’ of X”.
Conversely, any induced subgraph of the Dynkin graph of a simple quartic X
is that of an appropriate small perturbation X’ of X. Proof of this statement
repeats, almost literally, the proof of a similar theorem for plane sextic curves
(see Proposition 5.1.1 in [6]). Accordingly, the list of 2872 sets of simple
singularities realized by non-maximal non-special quartics is compared against
the list of all perturbations of the 59 maximizing sets of singularities given in
Table 1 and 19 sets of singularities with Milnor number 18 given in Table 2.
The two lists coincide. O]

Let S be one of the realizable sets of singularities and T a representative
of the genus g(Shl). By Theorem 10, the connected components of the space
1 (S) modulo the complex conjugation conj : IP* — IP® are enumerated by the
isomorphism classes of primitive homological types extending S. We inves-
tigate these isomorphism classes separately for the maximizing case, ie.,
1(S) =19, and non-maximizing case, i.e., u(S) < 18.

If u(S) =19, the transcendental lattice T is a positive definite sublattice
of rank 2, and the numbers (r, ¢) of connected components of the space .#(S)
listed in Table 1 can easily be computed by Gauss theory of binary quadratic
forms [11] (A. Degtyarev, private communication); details will appear else-
where. Thus, throughout the rest of the proof we assume u(S) < 18.

PROPOSITION 5. For each realizable set of singularities S with u(S) < 18,
the space (S)/conj is connected.

Proor. If u(S) < 18, then T is an indefinite lattice with tk T > 3 and we
can apply Mirranda—Morison’s theory. We try to enumerate primitive homo-
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logical types # = (S,h,L) extending S, i.e., the primitive extensions S, — L.
Since the extension is primitive, S, =S, one has discS, =& @ (i) and
Aut,(S;) = O(S). Then we have a well-defined homomorphism d* : O(S) —
E(T), and by Corollary 1,

o (A1 (S)/conj) = Coker(d* : O(S) — E(T)). (4.1)

Thus, the space .#(S)/conj is connected (equivalently, the primitive homo-
logical type extending S is unique up to isomorphism) if and only if the map
d* is surjective, and we shall prove the latter statement is true.

Out of the 2872 sets of singularities realized by non-special non-
maximizing quartics, for 2830 sets of singularities one gets E(T) = 1 by using
(2.5), and the assertion follows automatically.

For the remaining 42 cases, one has |E(T)| # 1. Among these, there
are 18 set of singularities containing a point of type A4 and satisfying the
hypothesis of Lemma 1 or Corollary 2 with p =5. For these set of singu-
larities one has |E(T)| =2 and a nontrivial symmetry of any type A4 point
maps to the generator —1 € E(T).

There are 8 sets of singularities containing a point of type A, and
satisfying the hypothesis of Lemma 2 with p =2, ¢ =3. For these 8 cases,
one has |E(T)| =2 and a nontrivial symmetry of any type A, point maps to
the generator —1 € E(T). For the following 4 sets of singularities,

Dy ® Az @ 3A,, D; @ Ds @ 3A,,
Al @ Az @ 2A,, Ag @ 2A3 @ 2A,,

one has |E(T)| =4. Each of these 4 sets has two irregular primes p =2,
g =3, and for all of them the homomorphism given by Lemma 2 is

e(ry) = (02(2) - 93(2), [l - [of3) € {£1} x {£1}.

A symmetry of any type A, point and a transposition A, < A, give rise to
reflections r,,7, € 7 with o> =2 and (0)> =%. The images e(r,) = (-1,~1)
and e(r,) = (—1,1) are linearly independent, thus generating the group E(T).

The 9 sets of singularities listed in Table 3 still satisfy the assumptions of
Lemma 2, which yields |E(T)| =2. Also shown in the table are the irregular
primes (p, g), the homomorphism e : Aut(7 ) — E(T), and an automorphism of
S generating E(T).

Finally, what remains are the three sets of singularities

D4y @ 2A4 @ 3A,, 2A @24 2A4 @ 2A5 @ 2A,

to which Lemmas 1, 2 or Corollary 2 can not be applied. For them, we
compute the group E(T) directly from the definition (2.2) which can be



Classification of simple quartics 107

Table 3. Extremal singularities

Singularities (p:9) e:Aut(7) — E(T) generators of E(T)
Eg ®2A3 @ 2A2 (2‘ 3) e(rm) = 52(0() 53(0{) . ‘{le . \1|3 Az ad Az
2Es @ 2A3 (2,3) | e(ry) =0a(a) - 03(c) - oty - |et]5 symmetry of Aj
D1 ®A; @24, (2,3) | e(ra) =02(er) - 03(2) ol - forly | Az = Ao
2D7 ®2A2 (2‘ 3) e(ra) = 52(0() 53(0{) . ‘{le . \1|3 Az ad Az
2D5 @ 2A4 (2, 5) e(ri) = 52(0() 55(3() A4 — A4
Ds @A @ A; D2Ar | (2,3) | e(ry) =0da(x) - d3(a) - |or], - |or]5 As — Ay
ATOAI DA D24y | (23) | e(ra) =0a() - 03(2) - [aly - [ols | Ax = Ay
2A6 @ 2A; (2,7) | e(ry) = o, - |l symmetry of Aj
2A6 @ 3A; (3,7) | e(ry) =03(x) - 07(ax) - |l - |l As — Ay

restated as
E(T) = / H IHT) - p(I),
p\del pldet(T

where we identify the inclusion Iy — I, ¢ with the product ¢ := Hp 9, (see
2.1). For example, for the case

2A4 ®2A3 @ 2A,,

the computation can be summarized in the following table:

I'so I3 I

generator of Zg(T) -1 -1 1 1 1 1
generator of Zg(T) 1 1] -1 1 1 1
generator of Zg(T) 1 1 1 1 1 1
p(—1,1) -1 1| -1 1| -1 1
p(1,—1) 1 1 1 -1 1 -1

Os | [-ls | 03 | I3 | 02 ||,
a symmetry of Ay -1| -1 1| -1 1 1

a transposition Ay — A4 | —1 1 1| -1 1 1

a symmetry of A; 1] -1 ] -1 1 1] —1

a transposition A, < A, 1| -1 |-1] -1 1| -1

The rank of the matrix composed by the 9 rows of the table (see, Remark
1) is 6 =dim Iy , +dim I'3 o + dim I's o, which implies that d is surjective.
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For the remaining two cases
Dy @ 2A4 @ 3A,, 2A7 @ 2A,,

the computation is almost literally the same. For 2A; @ 2A,, where
Zg(T) 2 I, we have to modify |-|, by replacing y, with y,(u) = u mod 8
€{1,3,5,7} :ZZX/(sz)2 and consider the full group I instead of I},.

O

REMARK 1. Here and below, when speaking about ranks and dimensions,
we regard all groups I, E, E*, etc. as Fy-vector spaces. In particular, when
computing the rank of a matrix, we need to switch from the multiplicative
notation {1,—1} to the additive {0,1}.

COROLLARY 3. For all sets of singularities S with u(S) < 18, the corre-
sponding transcendental lattice T is unique in its genus, ie., g(T)=1.

ProposITION 6. If' S is one of
Ds @ 2A¢, Ds @ 2A¢ @ Ay, 2A7 @ 2A,, 3As, 2A6 @ 2A;

then M\ (S) consists of two complex conjugate components; in all other cases
with u(S) < 18, the stratum 4\ (S) is connected.

ProoF. By Proposition 5, .#)(S) is connected if and only if the (unique)
homological type extending S is symmetric; otherwise .#;(S) consists of two
complex conjugate components. By Theorem 7, the homological type is
symmetric if and only if there is an isometry a e O(T) with det,(a) = —1
satisfying d(a) € d¥(O(S)), where d” is the map induced by any anti-isometry
Yy S @) — 7. We consider separately the cases |E(T)|=|E*(T)| and
E(T)| < [E*(T).

Lemma 6. If |E(T)| = |ET(T)|, then #(S) is connected.
ProOOF. By definition, we have an exact sequence
0— Iy/Ty - 2(T) — EY(T) — E(T) — 0. (4.2)

Hence, |E(T)| = |E*(T)| if and only if 2(T) ¢ I'; ~. Then, by Proposition 3,
there exists a +-disorienting isometry of T inducing the identity on disc T, and
Theorem 7 applies. ]

Lemma 7. If |E(T)| < |ET(T)|, then .4\(S) is connected if and only if
dt:O0(S) — E*(T) is an epimorphism.

Proor. The non-trivial element of the kernel K := I'y/I; ~ - 2(T) = {£1}
in (4.2) is the image under the composed map O(T) — Aut(7 ) — E*(T) of
any element a € O(T) with det.(a) = —1. Thus, .#,(S) is connected if and
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only if Im(d-) N K # 0, i.e., rank di > rank d* (see Remark 1). On the other
hand, Proposition 5 can be recast in the form rank d* = dim E(T). Since
dim E.(T) = dim E(T) + 1, the statement follows. O

Lemma 6 implies the connectedness of .#(S) for 2721 sets of singular-
ities. For the remaining 151 sets of singularities, one has |E(T)| < |E*(T)|.
For 118 of them, one has |E(T)| =1 and X,(T) C I, for some prime p.
Since |E(T)| =1, the map d: O(T) — Aut(7) is surjective and the isomor-
phism

Aut(7)/0N(T) = Iy/Ty~ - 2(T) = EF(T) = {+1}

(see (4.2)) is the descent of det,, which is well-defined due Proposition 3. In
most cases we can use Lemma 3 to show that there exists an element a € O(S)
such that det,(d¥(a)) = —1. Namely,

e if p =2, take for a a nontrivial symmetry of A;, Ds, Eg or Do,

e if p =3, take for a a nontrivial symmetry of A;, Ds or Ag,

e if p=7, take for a a nontrivial symmetry of Aj.
The three sets of singularities

D¢ @ 2As, Ds @ 2A6 @ A4, 3A¢

with p = 7 are exceptional (and are listed as such in the statement), as Lemma
3 implies det, od” = 1. Indeed, the image of d¥ is generated by the reflec-
tions r, with either

s o€y, o> =% (a nontrivial symmetry of Ag),

s oeJy, o> =1 (a transposition Ag <> Ag) or

* o€ 7, (a nontrivial symmetry of Dgs or Ds).
One has d7(o) = |o|; = —1 in the first two cases and J7(a) = |a|; = 1 in the last
one.

There are 30 other sets of singularities still satisfying the condition
I, C Eg(T) and having two irregular primes, so that we can apply Lemma
4. Among them, 13 sets of singularities contain two type A, points and have
(p,q) = (2,3) and |E*(T)| =4. A nontrivial symmetry of any type A, point
and a transposition A, < A, map to two linearly independent elements gen-
erating E7(T). The remaining 17 sets of singularities are listed in Table 4,
where we indicate the irregular primes (p,q), order of E* := E*(T) and a
collection of isometries of S whose images generate ET(T). The set of
singularities S = 2A¢ @ 2A3; marked as exceptional is one of the special cases
listed in the statement. We have |E*(T)| =4 and the group O(S) is generated
by

* a nontrivial symmetry of Aj, mapped to (1,1) e E*(T),

* the transposition A3 < Az, mapped to (1,1) e E*(T),
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* a nontrivial symmetry of Ag, mapped to (—1,1) e E*(T) or
* the transposition Ag < Ag, mapped to (—1,1) e ET(T).

It follows that dj is not surjective.
Finally, what remains are the 3 sets of singularities

D, @ 2A4 @ 3A,, 2A7 @ 2A,, 2A4 @ 2A; @ 2A,

to which Lemma 4 can not be applied and we need to compute the groups
E*(T) directly from the definition (2.7). For

S =2A; @ 2A,,

Table 4. Extremal singularities

Singularities (p,q) | |ET| | isometries of S generating E*(T)
2E¢ @ 2A3 (2,3) 4 symmetry of Eg; A3 < Aj
Dy @ Az @ 3A, (2,3) 8 symmetries of A, Asz; Ay < A
Ds ® Ag @ 2A, 2,3) | 2 Ay & A,
Ds ® A; @ 3A; 2,3) 2 Ay — Ay
D; @ Ds @ 3A, (2,3) 8 symmetries of A, Ds; Ay — A,
D7 eDs D 3A2 (2, 3) 2 Az — Az
Ds @ 2A4 @ 2A, (3,5) 2 symmetry of A;
2Ds @ 2A4 (2,5) 4 symmetry of Ds; Ay < Ay
Ds ®2A4 ®2