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ABSTRACT. In this paper we obtain a higher order asymptotic unbiased estimator for
the expected probability of misclassification (EPMC) of the linear discriminant function
when both the dimension and the sample size are large. Moreover, we evaluate the
mean squared error of our estimator. We also present a numerical comparison between
the performance of our estimator and that of the other estimators based on Okamoto
(1963, 1968) and Fujikoshi and Seo (1998). It is shown that the bias and the mean
squared error of our estimator are less than those of the other estimators.

1. Introduction

For k=1,2, let II; be a p-variate normal population with the mean
vector g, and a common covariance matrix 2, where u; # u,, X is positive
definite and these parameters are unknown. Thus,

11, :Np(”]vz)a HZZNp(:uLE)'

For k =1,2, let X; and S be the sample mean vector and the pooled sample
covariance matrix, based on a sample of N, independent observations from 7,
respectively.

The observation X may be classified by the linear discriminant function
W :R? — R defined by

W(X) = (Xl —Yz)’S_l{X—%(XI —|—Xz)},

where @’ is the transpose of a. The classification rule with W (X) is as follows:
a new observation X is classified as coming from I7; if W (X) > 0 and from I7,
otherwise, that is,

W(X)>0=Xell, W(X)<0= Xell,.
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The performance of the classification rule is evaluated by the following
probabilities of misclassification:

P(2|1) = Pr(the rule classifies X to I1>|X € IT),
P(1|2) = Pr(the rule classifies X to I1||X € II,).

For the optimal linear discriminant rule using the true values of the
parameters, we have P(2|1) = P(1|2) = ®&(—4/2), where @ is the distribution
function of N(0,1) and A is the Mahalanobis distance defined by 4> =
(; — ) 27 (uy — my) (see [1, 5] for example). In the case that the param-
eters u;, u, and X are unknown, we use the expected probabilities of mis-
classification (EPMC), i.e.,

e(2|]1) =Pr(W(X) < 0|X € I1)), e(12) = Pr(W(X) > 0|X € IT,),

as a risk of the rule with W(X). In general, it is hard to obtain the exact
evaluation of the EPMC’s. There is considerable work for their asymptotic
approximations. It may be noted that there are typically two types (type-I,
type-11) of their approximations. The type-I approximations are the ones
under a framework such that

N

p is fixed, Ny, N, — o0, — =
Nk

o(1) (k=1,2),

and the type-Il approximations are the ones under a framework such that

N

Ni, N ==
p7 17 2_>w7 Nk

o k=12, L_ge1),
N

where N=N;+ N, and N—p—2>0. Okamoto [7] gave an asymptotic
expansion for the EPMC of W(X) under the type-I approximation framework.
Moreover, McLachlan [6] gave an asymptotic unbiased estimator of the EPMC
up to terms of O(N~2). Deev [2] gave an asymptotic expansion for the EPMC
of W(X) in the case Ny = N, under the type-Il approximation framework.
Wyman et al. [10] compared the accuracy of several approximations for W (X)
in the case N = N,, and pointed out that the approximation due to Raudys [8§]
had overall the best accuracy for the combinations of the parameters considered
in their study. Fujikoshi and Seo [4] gave an asymptotic approximation as an
extension of Raudys [8]. Fujikoshi [3] gave an asymptotic expansion and its
error bound. However, as their approximations are the function of unknown
parameter 4, it must be estimated in practice. The purpose of this paper is
to construct an asymptotic unbiased estimator of EPMC and to evaluate the
performance of several estimating methods in simulation study.
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The present paper is organized in the following way. In Section 2 an
asymptotic expansion of EPMC, as the type-II approximation, is derived. In
Section 3 we construct a higher order asymptotic unbiased estimator, and
evaluate the mean squared error (MSE) of the estimator in the type-1I approx-
imation framework. In Section 4 we compare the performances of our
estimator with that of the other methods based on [4, 7].

2. Asymptotic expansion

In this section we derive an asymptotic expansion of EPMC under the
type-II approximation framework. We denote the distribution function of
W(X) for X coming from I7; by

Pr(W(X) < w|X € IT}) = g(w; Ny, Na, 4%).
Then, it is easily seen that
Pr(W(X) < w|X € ITy) = 1 — g(—w; N2, Ny, 4%).
The EPMC’s of the classification rule are given by
e(2[1) = g(0: N1, Ny, 4%),  e(1]2) = g(0; N2, Ny, 4%).

Hence, it is sufficient to study the distribution of W(X) for X coming from
II,. In the following we assume that X is distributed as N,(u;,Z). Assuming
that the initial sample K = (X1, X,,S) is fixed, W(X) is conditionally dis-
tributed as N(u(K),o*(K)), where u,(K) and ¢*(K) depend on the initial
sample. Then the conditional probability of misclassification, Pk (2|1), can be
expressed as

Pe@) =), 17=tlE) 1)

where

(K) = (61 = X's {3 (% - X},
UZ(K) = (A_’l —Yz)’S*IES*I()Tl —Xz).

The EPMC can be obtained by evaluating Ex[Px(2|1)], where Eg[] is
the expectation with respect to K. Let Z = mX '*(X|,-X,), A=
nX 128312 and

)()71 -X,)'s™! ()72 +%()71 - X>) —ﬂ2>7
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where m = NyN,/N and n=N —2. Then
Z~ N]’(ﬁvlp)7 A~ W[’(nalli)v 21 NN(Ov 1)7

and they are independent, where & = \/mZ~"/*(u; — u,) and 6’6 = m4*. By
using these variables, we can express 7T as

| 1 1
=——T NaTy + = (Ny — No) Ty ¢+ —— 2
— I3 { 2 1+2( 1 2) 2}+ F*Nzly (2)
where
T\=04"'2,  Th=Z'4"'2  T:=2Z'47Z (3)

By using the similar distribution reduction in [4], we have the following
lemma.

LemMmA 1. Suppose that n—p+1>0. Then the statistic (T, T, T53)
in (3) can be expressed in terms of independent standard normal variables z;
(i =2,3) and chi-squared variables y; (i =1,...,5) with f; degrees of freedom as

follows:
1)3 12
VO EET LS
{2 \pa(ys +23) }

1 1
M=+ G Vidl) Ti= st Gt wmf}(l +§),
2

T) =

vmA
2

where fi=fi=p—1, or=n—p+1, fa=n—p+2 and f5=p—2.

The proof of this lemma is given in Appendix. From this lemma, 7 can
be written as the function of y;’s and z’s, ie., T =T(y1,...,¥s,21,22,23).
Note that f;’s tend to infinity as Ni, N, and p become large. Let

)

It is well known that u; is asymptotically distributed as N (0,2) when f; tends to
infinity. Using this property, the expansion of 7" up to a term of O3/, can be
obtained as

T = T(o) + T(l) + T(z) + T(3) + O, (4)

where T ;’s are given in Appendix and O; means a term of jth order with
respect to (N; !, N;!, p~1). Evaluating the expectation E[@(T)], up to a term
of Oy, leads to the following theorem.
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THEOREM 1. Suppose that X comes from I : N,(pu;,X). Then, under the
type-1I approximation framework, e(2|1) can be expanded as

e(2l) = esp(2]1) + 02, eap(21) = D(v) + ¢(v)Fi(4),
where ¢(-) is the density function of N(0,1),

v =v(4?)

L UN=p\P g =N =D [ o NP =D
2\N -1 ]\]1N2 N1N2 )

and F\(A) is the term of O, given in Appendix.

REMARK 1. 4 may tend to infinity depending on p. However,
P(2|]1) - 0 when 4 — co. Hence, in this paper, we assume that 4 = O(1)
even when p — oo.

COROLLARY 1. Under the Type-I approximation framework, e g(2|1) can
be expanded as

eap(2/1) = ‘D(_ g)

(=5 [ (4 + 1200 - 1)

1
164N,

A =11, on-2).

{42 —4(p—1)} +m

+
We can see from Corollary 1 that e g(2|1) is the same as the type-I
approximation of P(2[1) in [7] except for O(N~?) terms.

3. Derivation of the estimator QOryy

Under the type-1 framework, several estimating techniques of EPMC are
reviewed in Siotani et al. [9]. McLachlan [6] derived a higher order asymptotic
unbiased estimator by using asymptotic expansions. In this section, by using a
technique similar to that in [6], we derive a higher order asymptotic unbiased
estimator under the type-II framework.

We consider the following estimator for EPMC:

Orvw = ®(9) + 0, b =v(D7),

where Q, is a term of O, D> = foD*/n— fi/m and D*= (X, - X,)'S" -
(X1 — X3). To construct an asymptotic unbiased estimator up to terms of Oy,
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we define Q; such that the bias of Qryw is O,. The bias of Qpyw can be
expressed as

Bias(Qrvw) = Ex[Pk(2|1) — Qrvw] = e(2|1) — E[@(V)] — Oy,

where E[Q;] = Oi. From Theorem 1, e(2]1) can be expanded as
D(v) + ¢(v)Fi(4) + O, and the expansion of E[P(¥)] up to a term of O is
given in the following lemma.

LemMA 2. Suppose that X comes from Il : Ny(u,2). Then, under the
type-II framework, E[® (V)] can be expanded as

E[®(V)] = @(v) + ¢(v)G1(4) + O3,
where G1(4) is the term of Oy given in Appendix.
From Theorem 1 and Lemma 2, it follows that
Bias(Qrvw) = ¢(V){Fi(4) — Gi(4)} — Q1 + O».

Therefore, for Q) = ¢(v){Fi(4) — G1(4)}, the bias of Qryw becomes O;.
From this, the estimator of EPMC defined by

Orvw = ®(9) + 0, 0, = ¢(M{F1(Dy) — G1(Dy)} (5)

is asymptotically unbiased up to a term of O;. We call this estimating tech-
nique TNW method.
Moreover, v can be expanded as

V= V(l +va) tve + V(3)) + 0,

where v)’s are given in Appendix. Then the variance of our estimator is
given by

Var(Qrvw) = E[Q%y ] — E[Qrvw]’

= V2¢(V)2E[V(21)] + Os3p

¢(v)2(N—p> fi 4 2mAa? L1

4 N\ (fi+mad)? S

(A2 +ﬁ(N+2N2)/N1N2)2
A2+f1N/N1N2

+ 03/2
Thus, we have the mean squared error (MSE) of our estimator as follows:
MSE(Qrvw) = E{Qrvw — P(2[1)}’]

= Var(QTNW) + {E[QTNW] - P(2|1)}2
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_ )’ (N—p> fitams® 1
4 N1 \(fi +ma?? S
y (4% + fi(N 4 2N;) /N N»)*
A% + fiN/N|N

+ 03/2

Therefore, the MSE of our estimator is O; under the type-Il asymptotic
framework.

4. Simulation study

We study the accuracy of asymptotic approximations and the performance
of the estimator of EPMC. Without loss of generality, we assume that g, =
(=4/2,0,...,0)", gy = (4/2,0,...,0)" and X =1,. Let ep(2|1;4) denote the
asymptotic expansion up to the second order with respect to (N; !, Nyt n~1)
due to Okamoto [7]. For the type-Il approximation, Fujikoshi and Seo [4]
gave the asymptotic approximation defined by ers(2|1;4) = ®(y), where

1 (N—p 2 2 P 2 pN e
- (222} 1y Ny —Ny) 44 .
7 2( N ) TN, M) TN

4.1. Comparison of accuracy. First we compare the accuracy of e,g(2|1;4)
with those of eps(2|l;4) and ep(2|1;4). The configuration of the values
of N, N, p and 4 are N;, N, =10,20,30,40, p =5,10,20,30,40 and 4 =
1.05,1.68,2.56,3.29 satisfying N — p—2 > 0. The values of 4 correspond to
the values 0.30, 0.20, 0.10, 0.05 of &(—A4/2), respectively. For each of the
configurations, ¢(2|1) is obtained by Monte Calro simulation as e(2|1) =
B! Zfi 1 ¢i(2]1), where ¢;(2|1) is the conditional probability of misclassifica-
tion, defined by (1), for the ith iteration.

The overall performance of the several asymptotic approximations across
all configurations of parameters is described graphically in Figure 1, which is
a scatter plot of e(2|1) [x-axis| versus each asymptotic approximation [y-axis].
In each graph, the circular (O), plus (4) and triangle (A) marks denote the
approximations e4g(2|1;4), ers(2|1;4) and ep(2|1;4), respectively. Table 1
gives the approximated values of e¢(2|l) by each methods in the case p = 10.
From Figure 1 and Table 1, we see that eqg(2|1;4) is better than the other
ones.

4.2. A comparison of performance of EPMC estimators. Next, we compare
our estimator in (5) with the other estimating methods. Under the type-I
approximation framework, McLachlan [6] suggested an estimating method
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Fig. 1. True EPMC values [x-axis| versus asymptotic approximations values [y-axis].

called M method. The bias of its estimator is O3 under the type-I approxima-
tion framework. Under the type-II approximation framework, we can con-
sider two estimating methods, which are based on e4g(2|1;4) and eps(2|1; 4)
with 4% replaced by 42, respectively. We call them AE and FS methods,
respectively. A% is given by

n—p-— 3D2 PN
A2 = n N1N2
0 otherwise

it 4>0

A? is a consistent estimator of 4 under both of the approximation frame-
works. The values of Ny, N, p and 4 are chosen as follows:

N1, N, = 10,20, 30, N =N+ N, p/N:0.270.3,...,0.8,
A4 =1.05,1.68,2.56,3.29, satisfying N — p—2 > 0.

The performance of each estimator is evaluated by the MSE

B
By {a21) — e},
=1
where B is the number of iterations in Monte Calro simulation and é&;(2|1)
denotes the estimation of ¢(2|1) in the ith iteration.
Figure 2 shows the box plot of bias E[e(2|1)] — e(2|1) for several config-
urations of Nj, N, and p. Figure 3 shows the box plots of the difference
of MSE for AE, FS and M versus TNW for several configurations of Nj,
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Table 1. Values of approximations and simulation in the case p = 10.
(N1, N2) 4 e(1) o) ers@lid)  ear(2l;4)
(10, 10) 1.05 0.41378 0.67276 0.41243 0.41423
1.68 0.32707 0.38883 0.32477 0.32757
2.56 0.21887 0.20270 0.21411 0.21956
3.29 0.14977 0.10625 0.14261 0.15021
(10,20) 1.05 0.43789 0.63900 0.43941 0.43794
1.68 0.32245 0.35939 0.32418 0.32306
2.56 0.19271 0.17791 0.19192 0.19315
3.29 0.11767 0.09130 0.11495 0.11778
(20, 10) 1.05 0.34516 0.42634 0.34254 0.34527
1.68 0.25910 0.28092 0.25707 0.25948
2.56 0.15752 0.15509 0.15512 0.15785
3.29 0.09714 0.08458 0.09394 0.09694
(20,20) 1.05 0.37076 0.44067 0.37099 0.37080
1.68 0.26532 0.28023 0.26595 0.26552
2.56 0.15127 0.14725 0.15091 0.15136
3.29 0.08742 0.07808 0.08644 0.08748
(10,30) 1.05 0.44907 0.62125 0.45188 0.44894
1.68 0.32061 0.34608 0.32351 0.32086
2.56 0.18131 0.16766 0.18202 0.18192
3.29 0.10473 0.08506 0.10358 0.10505
(30, 10) 1.05 0.31524 0.35036 0.31177 0.31508
1.68 0.23233 0.24230 0.22931 0.23203
2.56 0.13513 0.13503 0.13280 0.13519
3.29 0.07897 0.07394 0.07679 0.07896
(20,30) 1.05 0.38022 0.44019 0.38178 0.38023
1.68 0.26554 0.27638 0.26724 0.26570
2.56 0.14649 0.14212 0.14664 0.14634
3.29 0.08176 0.07431 0.08137 0.08179
(30,20) 1.05 0.34213 0.37860 0.34166 0.34215
1.68 0.24208 0.25070 0.24223 0.24232
2.56 0.13496 0.13336 0.13441 0.13485
3.29 0.07556 0.07102 0.07499 0.07569
(30,30) 1.05 0.35168 0.38389 0.35259 0.35177
1.68 0.24412 0.25068 0.24520 0.24429
2.56 0.13253 0.13078 0.13281 0.13261
3.29 0.07261 0.06874 0.07249 0.07272
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Fig. 2. Box plots of the bias E[¢(2]1)] — e(2]1).
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Fig. 3. Box plots of the MSE of other estimators — MSE(TNW).

N, and p. From Figures 2 and 3, we can see that M is worse than TNW,
AE and FS. The MSE of TNW is not less than AE and FS, but the bias
of TNW is better than AE and FS. Tables 2 and 3 give the values of
estimators by M, FS, AE and TNW in the case that p/N =1/5 and 4/5,
respectively. From Tables 2 and 3, we can see that TNW has the smaller
bias than the other methods. Tables 4 and 5 give the values of 100 x (the
MSE of other estimators — MSE(TNW)) in the case that p/N = 1/5 and 4/5,
respectively.

From the above results, our estimator is better than the other estimators.
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Table 2. Bias of M, FS, AE and TNW in the case p/N =1/5.

53

(N1, N2) 4 M FS AE TNW
(20,20) 1.05 0.01998 0.01677 0.01636 0.01074
1.68 0.00132 0.01504 0.01425 0.00930
2.56 —0.00556 0.01195 0.01182 0.00718
3.29 —0.00750 0.00952 0.00996 0.00485
(10,30) 1.05 0.03717 0.02412 0.02074 0.01024
1.68 —0.00112 0.02697 0.02375 0.01148
2.56 —0.01427 0.01843 0.01727 0.00867
3.29 —0.01417 0.01390 0.01426 0.00650
(30, 10) 1.05 0.00962 0.00794 0.01118 0.01193
1.68 0.00264 0.01192 0.01462 0.01142
2.56 —0.00226 0.01020 0.01231 0.00803
3.29 —0.00453 0.00865 0.01045 0.00544
Table 3. Bias of M, FS, AE and TNW in the case p/N =4/5.
(N1, N2) A M FS AE TNW
(20,20) 1.05 —0.30832 —0.00095 0.00057 0.00984
1.68 —0.32088 0.01801 0.02068 0.01379
2.56 —0.30083 0.02651 0.03166 0.01667
3.29 —0.26022 0.02617 0.03363 0.01765
(10,30) 1.05 —0.41857 —0.00330 —0.00446 0.01011
1.68 —0.41307 0.02108 0.02124 0.01162
2.56 —0.36602 0.03978 0.04294 0.01686
3.29 —0.30990 0.04062 0.04697 0.01851
(30,10) 1.05 —0.28121 —0.00801 —0.00365 0.01390
1.68 —0.28706 0.00651 0.01170 0.01508
2.56 —0.26659 0.01817 0.02515 0.01715
3.29 —0.23129 0.02109 0.02982 0.01822
Appendix
A.1. Proof of the consistency of 4> and D2. Let

Then

jzz”*P*lDz

n

PN

NN,
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Table 4. Values of the MSE of other estimators — MSE(TNW) in the case p/N =1/5.

(N1, N) 4 M FS AE
(20,20) 1.05 0.472 —0.036 —0.030
1.68 0.064 0.030 0.026
2.56 0.004 0.010 0.005
3.29 —0.005 0.008 0.006
(10,30) 1.05 2.082 —0.191 —0.200
1.68 0.295 0.133 0.104
2.56 0.019 0.058 0.035
3.29 —-0.014 0.029 0.022
(30, 10) 1.05 0.164 —0.114 —0.104
1.68 0.016 —0.012 0.002
2.56 —0.004 —0.006 0.001
3.29 —0.006 0.001 0.006
Table 5. Values of the MSE of other estimators — MSE(TNW) in the case p/N =4/5.
(N1,N2) A M FS AE
(20,20) 1.05 10.553 —-0.383 —0.416
1.68 10.394 —0.137 —-0.177
2.56 8.363 0.078 0.037
3.29 5913 0.077 0.047
(10,30) 1.05 17.924 —0.897 —0.956
1.68 16.388 —0.434 —0.525
2.56 12.055 0.152 0.042
3.29 8.200 0.274 0.179
(30, 10) 1.05 8.437 —0.331 —0.360
1.68 8.162 —0.220 —0.245
2.56 6.506 —0.052 —-0.073
3.29 4.624 —0.007 —0.017

where N =N+ N,, n=N —2.

Then

D?=—

n (z+ \/r%A)z + 1

m

In fact, D? can be expressed as

(m :NlNz/N).
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EDpY)=—" (E + A2>,
n—p—1\m
n? (n—p—1)2p+4ma*) + 2(p + ma)*
m? (n=p=1)*(n—p—3) '
Thus, E[4%] = 4% and Var(4?) — 0. Therefore 42 is a consistent estimator

of 4%, From this, we can easily show that 42 and D? are consistent estimators
of 42, as desired.

Var(D?) =

A.2. Proof of Lemma 1. Suppose that the p x p orthogonal matrices H and
Q are given by

H = ((z'z) " *2.{6'(I, — I1,)8} (I, — I1,)8, Hy),

Q= ((0'9)7"75.0)).
Let A=H'A'H and A be partitioned as

- A A _
A:<~“ ~”>7 A 1x1.
Ay Ap

Then, A is distributed as W,(n,I,), and

A”—(O °/)+( : )A-‘ (1 —Apdy)
0 Agzl —A2_21A2] 11.2 12423 )5

1 5 o o
+< i1 >A1_1%z(1+A12A222A21)(1 —AnAs)),
—A;, Az

where 4112 = A1y —A~12A~2’21A~21. Moreover, A2, A» and 14521/21{21 are mu-
tually independent, and ANHQ, A>», and Jil/zziz] are distributed as )(,ffp Tl
Wy_1(n,I,—1) and N,_1(0,1,_;), respectively (see [1, 5] for example). There-
fore, we have

Ti=0A4A"'7=0HH'A""HH';
5 1\ 1/2
_ ((Z/Z)_1/2(5/Z), {5/(1;7 _ HZ)J}I/Z,O/)AA <(Z ZO) )

= 1‘11711‘2{5/7- - (z/z)l/z{él(lp - Hz)é}l/zeiz‘iz_zlz‘le},

(e1 = (1,0,...,0) s (p— 1) x 1)
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= 4;],(0'00'z — {mA*(z'0Q'z) — (5'0Q'2)°} '
8/A~71A~21 ~ o~ o~ ~
W{(AIZAzzl/z)Azzl(A221/2A21)}]/2
1249y A2]

:yi[MAZZ+MA2_{MA2<y1+(22+\/%A>2)_(\/%A22+mA2)2}1/2
2

Z3 V3 172
()
(vs+23)"* \ 4

_Vm4 {22—|— Jm —§3<—y1y3 ))1/2}

2 ya(ys + 22
y 1/2

_Vm awmm(%) (= —EEm~NOD),
» ya(ys +23)

T»=7A4""72=7HH' A"'HH'z

~ ~ 1+ (z2 + /m4a 2
= Alll.Z(z/z) = A111,2(z/QQ,z) = ( v vind)

and
Ti=z7A2z=7HH A*HH'z
= (z'2) A5 (1 + Andy Ao)
= (700D A o{1 + (Aindy, ) Ay (A " A1)

_ 0+ (et yma)? (1 +£)
J’% Y4

A.3. Calculation of Fi(4). The expansions of 7;’s, up to O; terms, can be
given by

Ti=tio(l +ti1+ti2+13)+ 0, i=1,2,3,

where #;; (j=0,1,2,3) are given by
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o= Z3 M ﬁfﬂf_
v\ s\ VE VA

u_%_ u2 Zr + 23 M
T T\ TN As )

5 N _u_12 u:  u? u_%
“’3‘4WA\/f4fs< AN

2u1u3 2141144 2u1u5

2
Z3

/5

NN

3 u3 Y
T hvh Sama\ 2T\ L

L) ﬁfs( LM U
2\ AA\VE VR VA

fi + ma? , _2ymdz + \fim

o= 2,1 =
Lo fi + ma?

3w wymaz )

b=

fi+md* fo VA +ma?)

%)

fys = us (2\/%4'22 ++\/fiur) _ Z%uz _
N S(fi +ma?) V(i +ma?)

fao = (fi +mA*)(fs + f4)

3,0 =

fifa ’

Vi + 2y/mAz; B %4_ Vs + \/faus _ug

131 = -

L Y/ A
, 22 N 3u3  2y/fiur +4y/mdz;
32 = —= =

fi+ma* fo VA(fi +ma?)

Jalfs + 14)

f3u3u4 " f3u3 <\/ﬁu1 + 2%1’22

AN AR

fi +m4a
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2 RELYE -~ Saus \/f?ul-l-Z\/rWAZz
(f+ VA (/) i +m4

Sauauy

! VRANA

. \/]71u1+2\/_A22 2Urzy 3 4u§
B3 fz fi +ma? (f1 +mA)Nfh o AV

Viuwu;  faug
Jalfs+ 1) (fs+fa)fifa

N fui Viiw +2ymA’z )\ 2fupud
VAVER LY Ja(

fi+ma’? i+ VPR

_ fusuy <\/j71u1 + ZﬁA22> n 2/ frususuy

(L SVEN\  fi+ma? (fs + S/ o fa
N Vfuaz3 N 3/ faudus

s+ )i +ma?)  (+fa)fa
B 2/ fauouz \/]71-”1 + ZﬁAZQ

(A+fVA\ fitma?

Sfsuaz3 3fsusus

B+ AmIDNe (Bt LA
2f3u2u4 (\/]711,11 + 2\/17—1A22> .

BTN AT

Using these expressions, 7(;)’s in (4) can be written as

To) = a1 + ay,
T T 3,1 +ait1 +axiz g 4—\/]v )

) 1 1 1
131 132 + a; l1,2—§l3,111,1 + a lz,z—zls,llz,l )

|
t31+ l311322l33)
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1 3 ) 1
+ai| h,3 —513,1&,2 +§11,1l3,1 —2f1,1t3,2

+ar|t lz t —|—3t 2 11 t
a - A Y Y b
2\ 23 —5Babatghalsy — 50l

where «a ZaNzl‘Lo, a) = a(N1 —N2)1270/2 and a:N*I(mt3,0). Then F](A)
can be obtained by calculating

Fi(4) = E[Tp)] = — E[T(),
where the moments of ¢ ;’s are given by
E[t11] =E[1] = E[t3,1]] =0 E[ ]—2 E[t22] = 1 +£
11 2,1 3.1 ; Ll =7 2,2 HamA f
1 6 2f3
Elzp] =———5+—+—7— —
f3.] fi+md* o falfs+ fa)

E[t13] =0, E[t 3] = E[t3,3] = O,

B[ ] = — (1+M>+3 E[zz}—zf‘H’”"z 2

= — R _74,_’
Y\ ffs)  f U mad)? S
2fi + 4ma® 8 2f;

ER]=2—FS5+-+ ,

=1l (f+ma®? fo falfs+ fa)

2 2 2 4
Etiih] =—=+—, Elti i3] =——— +—,
[1.12,1} f1+mA2 I [1,13,1} f1+mA2 I
2fi +4mAa* 4

Elt1631] = /

7+_7
(fi + ma*? S
and the remainder of the moments of #;’s are O.

A4. Proof of Corollary 1. From Theorem 1, we have the following result
under the type-l1 approximation:

4 3(p-1) p—1 4d(p-1)

_ = _ -2
Tor==5""4an, ~aaw, Tav—1) TOWV )

ag=—-——A+0N7", a=-
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E[13,] = 22 +§,+ O(N7?),

Elt 2] = Az+§]+ O(N7?), Elt1.11 2] :%+%+0(N*2)7

Bl )= b g+ 0N, Elaa =t 2 O(N)

Elt11631] = 22+:,+0( %), Elsani]= 22+;+0(N72)
Then

A = {5+ 3+ O )

Therefore, Corollary 1 can be proved immediately from the above results.

A.5. Calculation of Gy(4). D? can be expanded as
D} =47 +v + Oy,

where v; is given by

\/flu1+2\/—Azz)\/qu <A2 f1>

Then the moment of Fi(D;) is given by
E[Fi(Dy)] = Fi(4) + F{(4)E[v1] + 02 = Fi(4) + 0».
v can be expanded as
V=v(14+vu) + v +vaE) + 0,

where v(;)’s are given
3 1 1
<§—>t21, <8é—z>t§71+(é—2>t2,z,
3 5
( >l23+< )’21122+<85—g>’§,1

_ L+ (p-HN/NN
A2+ (p — 1)(N1 —Nz)/N]Nz'

with
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Then Gj(4) can be obtained by calculating

V2
Gi(a) = (D) - S E0R ).

The necessary moments of #, ;’s are given above. Moreover, the moment of
G (Dy) is given by E[G)(Dy)] = G1(4) + 0.
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