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Abstract. This paper completes our previous one in the same journal (vol. 42, pp. 37–

75). Let C be a covering of the plane by disjoint complete folding curves which

satisfies the local isomorphism property. We show that C is locally isomorphic to

an essentially unique covering generated by an y-folding curve. We prove that C

necessarily consists of 1, 2, 3, 4 or 6 curves. We give examples for each case; the last

one is realized if and only if C is generated by the alternating folding curve or one

of its successive antiderivatives. We also extend the results of our previous paper to

another class of paperfolding curves introduced by M. Dekking.

1. Definitions, context and main results

In order to simplify some notations, we identify R2 with C and Z2 with

the set Zþ iZ of Gaussian integers. We denote by N� the set of strictly

positive integers.

Concerning folding sequences and folding curves, we use the definitions,

the notations and the results of [4].

We consider sequences ðakÞ1akan�1, ðakÞk AN� , ðakÞk AZ with ak ¼G1 for

each k and associated curves ðCkÞ1akan, ðCkÞk AN � , ðCkÞk AZ such that:

(a) each segment Ck is an oriented interval ½xk; xk þ ek� with xk A Zþ iZ

and ek A f1;�1; i;�ig;
(b) if Ck and Ckþ1 exist, then xk þ ek ¼ xkþ1 and ekþ1 ¼ i ak ek; moreover

the curve is ‘‘rounded’’ in xkþ1 so that it does not pass through that

point.

We call ðCkÞk AZ a complete curve. For each S ¼ ðakÞ1akan�1 (resp. ðakÞk AN � ),

we write S ¼ ð�an�kÞ1akan�1 (resp. ð�a�kÞk A�N � ).

We say that a set of curves C covers the plane (resp. the square S ¼
fxþ uþ iv j u; v A ½0;m�g with x A Zþ iZ and m A N�) if each nonoriented

interval ½z; zþ e� � C (resp. ½z; zþ e� � S) with z A Zþ iZ and e A f1; ig is

the support of exactly one segment of one curve of C. A set of complete

curves which covers the plane will be called a covering.
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Two sets of curves are considered isomorphic if they are equivalent up to

translation. The notion of local isomorphism is defined in [4, p. 58]: two

coverings C, D are locally isomorphic if each bounded fragment of C (resp. D)

is isomorphic to a fragment of D (resp. C); any covering C satisfies the local

isomorphism property if each bounded fragment of C has copies everywhere

in C.

For each n A N�, we consider n-folding sequences ðakÞ1aka2n�1 and as-

sociated n-folding curves ðCkÞ1aka2 n , obtained by folding n times a strip of

paper in two, each time possibly to the left or to the right, then unfolding

it with right angles. These curves, rounded as it is mentioned above, are

self-avoiding. We also consider y-folding sequences ðakÞk AN � , where each

ða1; . . . ; a2 n�1Þ is an n-folding sequence, and associated y-folding curves.

These two types of folding sequences and curves have been considered by

various authors (see for instance [1] and [3]).

In [4], we introduced complete folding sequences ðakÞk AZ, where each tuple

ðakþ1; . . . ; akþlÞ is a subsequence of an n-folding sequence for an integer n, and

associated complete folding curves. For each y-folding sequence S, ðS;þ1;SÞ
and ðS;�1;SÞ are complete folding sequences.

One motivation for introducing them came from two plane filling prop-

erties which are mentioned by various authors:

First, by [4, Th. 3.1], for each m A N�, there exists n A N� such that each

n-folding curve covers a square ½x; xþm� � ½y; yþm� for some ðx; yÞ A Z2. It

follows that each y-folding or complete folding curve covers arbitrarily large

squares.

Second, by [4, Th. 3.15], for each y-folding curve C associated to an

y-folding sequence S, the 4 curves obtained from C by rotations of angles 0,

p=2, p, 3p=2 around its origin are disjoint. They can be connected in two

di¤erent ways in order to form 2 complete folding curves, both associated to

ðS;þ1;SÞ or both associated to ðS;�1;SÞ.
These 2 curves form a covering, except for C belonging to a particular

class. By [4, Th. 3.15], if C belongs to that class, then the 2 curves can

be completed in a unique way to form a covering by 6 curves. The 4

other curves are not associated to sequences of the form ðT ;þ1;TÞ or

ðT ;�1;TÞ.
All these coverings satisfy the local isomorphism property. According to

Theorem 4 below, any covering which satisfies the local isomorphism property

is locally isomorphic to one of them.

More generally, it follows from [4, Th. 3.10] that each complete folding

curve can be completed in an essentially unique way into a covering which

satisfies the local isomorphism property. By Theorem 3 below, in such a

covering, each bounded fragment appears with a well determined density.
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By [4, Th. 3.12], any such covering contains at most 6 curves. In the

last part of Section 2, we show that it can actually contain 1, 2, 3 or 4

curves. We also prove that it cannot contain 5 curves and that it contains 6

curves only in the particular case described above. We also consider the

following question: If C is such a covering, for which integers n does there

exist a covering by n curves which is locally isomorphic to C?

In [2], M. Dekking considers another notion of folding sequence. He calls

a folding string any sequence ða1; . . . ; am�1Þ in f�1;þ1g. He introduces the

folding convolution S � T of two folding strings S, T . For each folding string

S, he defines the sequences S�n with S�1 ¼ S and S�ðnþ1Þ ¼ S�n � S for each

n A N�. Then he considers S�y ¼
S

n AN � S�n.

He gives characterizations of the folding strings S which satisfy (1) (resp.

(1) and (2), resp. (1) and (2) and (3)) for the properties (1), (2), (3) below:

(1) S�y is self-avoiding;

(2) each curve associated to S�y covers arbitrarily large squares;

(3) S is perfect in the sense that, for each curve C associated to S�y, the

plane is covered by the 4 curves obtained from C by rotations of

angles 0, p=2, p, 3p=2 around its origin.

Many examples of y-folding sequences are actually constructed in that

way, including the positive folding sequence associated to the dragon curve (see

[4, Example 3.13]) and the alternating folding sequence (see [4, Example 3.14]).

Some of them are used in the present paper.

Some results similar to those of [4] are also true for folding sequences and

curves in Dekking’s sense:

For each folding string S ¼ ða1; . . . ; am�1Þ, we call a complete S-folding

sequence any sequence T ¼ ðbkÞk AZ such that S�y contains a copy of each

ðbkþ1; . . . ; bkþlÞ. A complete S-folding curve is a curve associated to such a

sequence.

It follows from the properties of the convolution � that ðS�y;þ1;S�yÞ
and ðS�y;�1;S�yÞ are complete S-folding sequences, that each complete

S-folding sequence satisfies the local isomorphism property and that any two

such sequences are locally isomorphic.

The following results are true for each folding string S ¼ ða1; . . . ; am�1Þ
which satisfies the properties (1), (2) above. Their proofs are similar to [4]:

Any complete S-folding curve C is self-avoiding and covers arbitrarily

large squares. We have a derivation on C such that m consecutive segments of

C are replaced with one segment. The derivative C 0 of C is also a complete

S-folding curve.

Each complete S-folding curve can be completed, in an essentially unique

way, into a covering by such curves which satisfies the local isomorphism

property. Moreover, all the coverings obtained in that way from complete
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S-folding curves are locally isomorphic. It would be interesting to determine

the number of curves which can appear in such a covering.

The 4 curves considered in the property (3) described above are disjoint.

They can be connected in two di¤erent ways in order to form 2 complete

S-folding curves associated to the string ðS�y;þ1;S�yÞ, or 2 complete

S-folding curves associated to the string ðS�y;�1;S�yÞ. If S satisfies (3),

then these 2 curves form a covering which satisfies the local isomorphism

property.

If S does not satisfy (3), then the 2 curves do not form a covering, but they

can be completed in a unique way into a covering which satisfies the local

isomorphism property. It follows from Theorem 2 below that this covering

contains exactly 6 curves.

A simple example of that situation is obtained with S ¼ ðþ1;�1;�1Þ.
Then S�y is the alternating folding sequence. It follows from [4, Th. 3.15]

that all coverings by 6 folding curves are obtained from y-folding sequences

R � S�y with R finite.

Many other examples exist for folding curves in the sense of Dekking.

One of them is given in [2, Fig. 18] with S ¼ ðþ1;�1;þ1;þ1;�1;�1;�1;

þ1;�1Þ.

2. Detailed results and proofs

First we introduce some notions which will be useful both for classical

folding curves and for folding curves in the sense of Dekking.

For each curve C, we denote by aðCÞ the initial point of the first segment

of C and bðCÞ the terminal point of the last segment of C, if they exist.

From now on, we consider sets C of disjoint self-avoiding curves such that,

for each endpoint z ¼ xþ iy A Zþ iZ of a segment of a curve of C, one of

the two following possibilities is realized, depending on the parity of xþ y:

(a) the oriented segments of curves of C which have z as an endpoint are

among ½z; zþ 1�, ½z; z� 1�, ½zþ i; z�, ½z� i; z�;
(b) they are among ½zþ 1; z�, ½z� 1; z�, ½z; zþ i�, ½z; z� i�.

We note that this property is necessarily true if C consists of one curve. It

follows that it is also true if C is a covering which satisfies the local iso-

morphism property and if each curve in C covers arbitrarily large squares.

For any such sets C, D, we write CGD if there exists a translation t such

that tðCÞ ¼ D. We write C < D if C0D, if each curve of C is contained in

a curve of D, and if any consecutive segments of a curve of D which belong

to curves of C are consecutive in one of them. We write CfD, if C < D and

if, for each segment A of a curve of C, the 6 segments which form two squares

with A belong to curves of D.
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If C and D are coverings, we say that a map D from the set of segments

of C to the set of segments of D is a derivation if:

(a) there exists a sequence S ¼ ða1; . . . ; am�1Þ in fþ1;�1g such that, for

each segment A of a curve of D, D�1ðAÞ is a subcurve of a curve of

C associated to S or to S, depending on the parity of xþ y where

aðAÞ ¼ xþ iy;

(b) for any consecutive segments A, B of a curve of D, D�1ðAÞ and

D�1ðBÞ are consecutive subcurves of a curve of C.

(c) there exists a direct similitude s such that sðaðAÞÞ ¼ aðD�1ðAÞÞ and

sðbðAÞÞ ¼ bðD�1ðAÞÞ for each segment A of a curve of D.

The composition of two derivations is a derivation. If C is a covering

by folding curves which satisfies the local isomorphism property, then, by

[4, Prop. 3.3], the derivation D defined in [4] satisfies the properties above

with m ¼ 2 and DðCÞ is a covering by folding curves which satisfies the

local isomorphism property. For each folding string S ¼ ða1; . . . ; am�1Þ which

satisfies the properties (1), (2) considered in Section 1, we have a derivation D

associated to S on each covering C by S-folding curves which satisfies the

local isomorphism property and DðCÞ is a covering by S-folding curves which

satisfies the local isomorphism property. In both cases, the n-th derivation

Dn is defined on C for each n A N.

For each covering C, each set of curves F < C, each derivation D : C ! C

and each n A N such that Dn is defined on C, we denote by D�nðFÞ the union

of the sets ðDnÞ�1ðAÞ for A a segment of a curve of F.

Proposition 1. Consider a covering C with a derivation D : C ! C, a set

of curves F < C and a translation t such that tðFÞfD�1ðFÞ. For each n A N,

denote by tn the translation such that tnðD�nðFÞÞ ¼ D�nðtðFÞÞ � D�n�1ðFÞ.
Then the inductive limit of the sets D�nðFÞ relative to the translations tn is a

covering D with the same number of curves as F. Moreover, D is locally

isomorphic to C if C satisfies the local isomorphism property.

Proof. It su‰ces to prove that tnðD�nðFÞÞfD�n�1ðFÞ for each n A N�.

We show that, for each segment S of D�nðFÞ, the segments S1; . . . ;S6 which

form two squares with tnðSÞ all belong to D�n�1ðFÞ.
Write U0 ¼ V0 ¼ tðDnðSÞÞ. Consider the segments U1;U2;U3;V1;V2;V3

A D�1ðFÞ such that U0; . . . ;U4 (resp. V0; . . . ;V4) are consecutive segments of

a square.

Consider the closed curve A ¼ D�nðU0Þ [ � � � [ D�nðU3Þ and the closed

region P limited by A. Note that, for each i A f0; . . . ; 3g, the last segment

of D�nðUiÞ and the first segment of D�nðUiþ1Þ form a right angle directed to

the exterior of P (here we identify 3þ 1 with 0). As C is a covering and

D�nðU0Þ; . . . ;D�nðU3Þ are subcurves of curves of C, it follows that no curve
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of C can cross the frontier A of P. Consequently, the interior of P contains

no segment.

We prove in the same way that the interior of the closed region Q limited

by B ¼ D�nðV0Þ [ � � � [ D�nðV3Þ contains no segment. As S1; . . . ;S6 are nec-

essarily contained in P [Q, it follows that they belong to A [ B � D�n�1ðFÞ.
9

Concerning folding curves in the sense of Dekking, we have:

Theorem 2. Let S be a folding string which satisfies the properties (1), (2)

of Section 1, but not the property (3). Let C be a covering by S-folding curves

which satisfies the local isomorphism property and contains a curve C associated

to ðS�y;H1;S�yÞ. Then C contains exactly 6 curves.

Proof. We consider a covering D and a derivation D : C ! D associated

to S. We have DðCÞGC. Consequently, we can suppose DðCÞ ¼ C, which

implies D ¼ C since C can be extended into a unique covering which satisfies

the local isomorphism property. We can also suppose without restricting the

generality that S begins with þ1 and that the two first segments of C are ½0; 1�
and ½1; 1þ i�.

It follows from [2, Th. 5] and its proof that C contains at least 6 curves:

Two of them including C are associated to ðS�y; e;S�yÞ with e ¼H1. Each of

these 2 curves contains 2 of the segments ½0; 1�, ½0;�1�, ½i; 0�, ½�i; 0�. On the

other hand, they do not contain the segments ½1þ i; i�, ½�1;�1þ i�, ½�1� i;�i�,
½1; 1� i�, which necessarily belong to 4 other curves.

We are going to prove that FfD�2ðFÞ for the set of 6 disjoint curves

F < C which consists of the 8 segments ½0; 1�, ½0;�1�, ½i; 0�, ½�i; 0�, ½1þ i; i�,
½�1;�1þ i�, ½�1� i;�i�, ½1; 1� i�. Then it follows from Proposition 1 applied

to the derivation D2 that
S

n AN D�2n ðFÞ � C is a covering by 6 curves, and

therefore C contains exactly 6 curves.

By symmetry, it su‰ces to show that the 6 segments which form 2

squares with ½1þ i; i� belong to D�2ðFÞ. Our hypotheses imply ½0; 1� A
D�1ð½0; 1�Þ, ½1; 1þ i� A D�1ð½0; 1�Þ, ½i; 0� A D�1ð½i; 0�Þ. They also imply ½1þ i; i� A
D�1ð½1þ i; i�Þ since ½1þ i; i� does not belong to D�1ð½0; 1�Þ, D�1ð½1; 1þ i�Þ and

D�1ð½i; 0�Þ which are contained in the 2 curves of C associated to ðS�y; e;S�yÞ.
As D satisfies the property (c) of the definition of derivations, there exists

z A ðZþ iZÞ � f0; 1;�1; i;�ig such that z ¼ bðD�1ð½0; 1�ÞÞ ¼ aðD�1ð½1; 1þ i�ÞÞ,
ð1þ iÞz ¼ bðD�1ð½1; 1þ i�ÞÞ ¼ aðD�1ð½1þ i; i�ÞÞ and iz ¼ bðD�1ð½1þ i; i�ÞÞ ¼
aðD�1ð½i; 0�ÞÞ. It follows that aðD�1ð½1þ i; i�ÞÞ0 1þ i and bðD�1ð½1þ i; i�ÞÞ
0 i. Consequently, D�1ð½1þ i; i�Þ contains ½1þ 2i; 1þ i� and ½i; 2i�.

It follows that ½i; 0�, ½0; 1�, ½1; 1þ i�, ½1þ 2i; 1þ i�, ½i; 2i� belong to D�1ðFÞ.
Now it su‰ces to show that ½2i; 1þ 2i� A D�2ð½1þ i; i�Þ.
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We observe that D�1ð½1þ 2i; 1þ i�Þ and D�1ð½i; 2i�Þ necessarily have a

common vertex since D�1ð½0; 1�Þ and D�1ð½1þ i; i�Þ have the common vertex

1þ i. As C is a covering, it follows that ½2i; 1þ 2i� A D�1ð½1þ 2i; 1þ i�Þ [
D�1ð½1þ i; i�Þ [ D�1ð½i; 2i�Þ � D�2ð½1þ i; i�Þ. 9

From now on, we consider a covering C by folding curves which satisfies

the local isomorphism property. We do not mention the orientation of the

curves when it is not necessary.

The definition of the sets EnðCÞ for n A N [ fyg and FnðCÞ for n A N is

given in [4]. Their existence follows from [4, Prop. 3.3]. When there is no

ambiguity, we write En and Fn instead of EnðCÞ and FnðCÞ.
For each n A N and each z A En, the 4 nonoriented subcurves of curves

of C with endpoint z and length 2n are all obtained from one of them by

successive rotations of center z and angle p=2.

We say that z ¼ xþ iy A Zþ iZ is even (resp. odd ) if xþ y is even (resp.

odd).

For each n A N and each u A Zþ iZ, we have:

F2n ¼ fuþ 2nv j v A Zþ iZ eveng if u A F2n;

E2nþ1 ¼ fuþ 2nv j v A Zþ iZ eveng if u A E2nþ1;

F2nþ1 ¼ fuþ 2nþ1v j v A Zþ iZg if u A F2nþ1;

E2nþ2 ¼ fuþ 2nþ1v j v A Zþ iZg if u A E2nþ2:

For each u A Zþ iZ, the translation tu : v ! uþ v preserves (resp. inverses)

the orientation of the segments of curves of C if u is even (resp. odd).

For n A N and u A Zþ iZ even, we have t2 nuðF2nÞ ¼ F2n. For each

v A F2n, the connections between the 4 segments which have v as an endpoint

are preserved by t2 nu if and only if u A 2ðZþ iZÞ.
For n A N and u A Zþ iZ, we have t2nþ1uðF2nþ1Þ ¼ F2nþ1. For each v A

F2nþ1, the connections between the 4 segments which have v as an endpoint

are preserved by t2 nþ1u if and only if u is even.

It follows that, for each n A N, each u A Zþ iZ and each set of curves

B < C, we have t2 nþ1uðBÞ < C if B contains no pair of consecutive segments

with a common vertex in E2nþ1.

We denote by Rþ (resp. R�
þ) the set of non-negative (resp. strictly positive)

real numbers. For each set of curves B < C which is bounded in R2, we say

that B has the density d A Rþ in C if, for each e A R�
þ, there exists r A R�

þ such

that, for each s A R�
þ with sb r and each z A C,

s2dð1� eÞ < jfF < C jFGB and F � SsðzÞgj < s2dð1þ eÞ;
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where SsðzÞ ¼ fzþ xþ iy j x; y A ½0; s�g. The density of B in C is uniquely

determined.

Theorem 3. Each bounded set of curves B < C has a density d > 0 in C.

Remark. As the definition of density is local, B has the same density in

any covering D which is locally isomorphic to C.

Proof. First we give a lower bound for d. As C satisfies the local

isomorphism property and jEyja 1, there exists a copy of B with no vertex

in Ey. Let n be the smallest integer such that some A < C with AGB

has no vertex in E2nþ1. Then we have t2 nþ1zðAÞ < C for each z A Zþ iZ, and

therefore db 1=22nþ2.

Now we prove that d exists. For each u A C and each s A R�
þ, we con-

sider EsðuÞ ¼ fF < C jFGB and F � SsðuÞg. We show that, for large s

and for u; v A C, jEsðvÞj � jEsðuÞj is small compared to s2.

We consider two integers r, s such that s is large compared to 2r and 2r is

large compared to the size of B. There exists z A Zþ iZ such that v� u �
2rþ1z ¼ xþ iy with supfjxj; jyjga 2 r. We have jEsðuÞja jEsðvÞj þmþ n

where

m ¼ jfF < C jFGB;F � SsðuÞ and t2 rþ1zðFÞ 6� SsðvÞgj; and

n ¼ jfF < C jFGB;F � SsðuÞ and t2 rþ1zðFÞACgj:

The integer m is small compared to s2 since s is large compared to 2r. The

integer n is small compared to s2 because 2 r is large compared to the size of B,

and because we have t2 rþ1zðFÞ < C if F < C contains no pair of consecutive

segments with a common vertex in E2rþ1.

It follows that jEsðuÞj � jEsðvÞj is small compared to s2 if it is positive.

The same result is true for jEsðvÞj � jEsðuÞj. 9

From now on, we do not use the identification of R2 with C.

Theorem 4. C is locally isomorphic to a covering generated by a curve

associated to an y-folding sequence.

Proof. For n A N and ðu; vÞ A EnðCÞ, we denote by Cnðu; vÞ the set

of curves obtained from C by keeping only the segments contained in

½u� 2n; uþ 2n� � ½v� 2n; vþ 2n�. For m < n, Cmðu; vÞ is the restriction of

Cnðu; vÞ to ½u� 2m; uþ 2m� � ½v� 2m; vþ 2m�.
By König’s lemma, there exists a sequence ðXnÞn AN A

Q
n AN EnðCÞ such

that, for m < n, the translation Xm ! Xn induces an embedding of CmðXmÞ in

CnðXnÞ. As C satisfies the local isomorphism property, the inductive limit of
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ðCnðXnÞÞn AN relative to these embeddings is a covering D which is locally

isomorphic to C and satisfies the local isomorphism property. The image X

of the elements Xn in D belongs to EyðDÞ. Each of the two halves of curves

of D which start at X is associated to an y-folding sequence. 9

Remark. According to [4, Th. 3.10], the covering D given by Theorem 4

is essentially unique: two such coverings only di¤er by a translation or/and a

change in the connections at the Ey point.

For each ðx; yÞ A Z2, the unit square ½x; xþ 1� � ½y; yþ 1� is essentially

contained in one of the connected components of R2 � C, but each of its 4

vertices can belong to that component or to another one. We say that two

unit squares S, T are connected if they have exactly 1 common vertex X and

if X and their centers belong to the same component.

For each X A Z2, we say that X satisfies the condition ðPÞ if X A E2 and

if each unit square with the vertex X is connected to 2 unit squares without

the vertex X .

Lemma 5. There exists A A Z2 such that fX A Z2 jX satisfies ðPÞg ¼
fAþ rð2;�2Þ þ sð2; 2Þ j r; s A Zg.

Proof. For each X A E2, the 4 nonoriented subcurves of curves of C

with endpoint X and length 4 are all obtained from one of them by succes-

sive rotations of center X and angle p=2. Consequently, for each of them, X

satisfies the condition ðPÞ if and only if the second and the third segment

starting from X are obtained from the first one by turning left then right, or

right then left.

It follows that each X A E2 satisfies P if and only if X þ ð2; 0Þ (resp.

X þ ð0; 2Þ) does not satisfy P. 9

Notation. We denote by O the point ð0; 0Þ A R2.

Theorem 6. One of the two following properties is true:

(1) C consists of 1, 2, 3 or 4 curves;

(2) C consists of 6 curves and C is generated by a curve associated to the

alternating folding sequence or to one of its primitives.

Proof. By [4, Th. 3.15], if EyðCÞ0q, then C consists of 2 curves or the

property (2) above is true. It remains to be proved that, if EyðCÞ ¼ q, then

C consists of at most 4 curves.

For each X A R2 and each curve D, we denote by dðX ;DÞ the minimum

distance between X and a vertex of D. In the proof of [4, Th. 3.12], we saw

that there exist k A N and X A R2 such that dðX ;DÞ < 1:16 for each D in the

k-th derivative CðkÞ of C. Moreover, C and CðkÞ have the same number of
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curves and EyðCÞ ¼ q implies EyðCðkÞÞ ¼ q. Consequently, we can replace

C with CðkÞ, and therefore suppose for the remainder of the proof that there

exists ðx; yÞ A R2 such that dððx; yÞ;CÞ < 1:16 for each C A C.

Now we apply Lemma 5 to C. There exists A A Z2 such that

fB A Z2 jPðBÞg ¼ Aþ Zð2;�2Þ þ Zð2; 2Þ, and therefore ðc; dÞ A Z2 such that

Pðc; dÞ and jx� cj þ jy� dja 2.

For each n A N, we consider the images ðcn; dnÞ and ðxn; ynÞ of ðc; dÞ and

ðx; yÞ in CðnÞ. We have jxn � cnj þ jyn � dnja 2. In the proof of [4, Th. 3.12],

we saw that dððx; yÞ;CÞ < 1:16 for each C A C implies dððxn; ynÞ;DÞ < 1:16 for

each D A CðnÞ.

As EyðCÞ ¼ q, there exists a maximal integer k such that ðck; dkÞ satisfies
the condition ðPÞ for CðkÞ. Replacing C with CðkÞ if necessary, we can assume

k ¼ 0. We can also assume ðc0; d0Þ ¼ ðc1; d1Þ ¼ O. Then we have two cases:

(a) O A F2ðCÞ;
(b) O A E3ðCÞ and, in the derived covering C 0, each unit square with

vertex O is connected to exactly one unit square without vertex O.

Figures 1A and 1B represent these two cases. Whatever the case, there

are 2 possible dispositions for the subcurves of length 4 with endpoint O

of the curves of C. We only consider one of them since the other one is

equivalent modulo a symmetry. Similarly, we only consider one of the 2

possible choices for the connections in O. We note that the ball Bððx; yÞ; 1:16Þ
is contained in the interior of the square ðZ1;Z2;Z3;Z4Þ because ðx; yÞ belongs

to the square ðX1;X2;X3;X4Þ.
In Figure 1A, the connections in Y1, Y3 are imposed by the connections

in O, since the property O A F2ðCÞ implies X1;X2;X3;X4 A E3ðCÞ. Because of

Fig. 1A Fig. 1B
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the existence of connections in X1, X2, X3, X4, all the subcurves represented are

contained in at most 4 curves of C. As no other curve of C can reach the

vertices in Bððx; yÞ; 1:16Þ, C contains at most 4 curves.

In Figure 1B, the connections in X1, X2, X3, X4 are imposed since, in C 0,

each unit square with vertex O is connected to only one unit square without

vertex O. Consequently, C contains at most 2 curves with segments in the

interior of the square ðY1;Y2;Y3;Y4Þ. As at most 2 other curves of C can

reach the vertices in Bððx; yÞ; 1:16Þ, it follows that C contains at most 4

curves. 9

By [4, Th. 3.2, Cor. 3.6 and Th. 3.7], C is locally isomorphic to a covering

by 1 curve. We also have:

Proposition 7. C is locally isomorphic to a covering by 2 curves.

Proof. By Theorem 4, we can suppose that C is generated by a curve

associated to an y-folding sequence S. Then, by [4, Th. 3.15], C itself consists

of 2 curves except if S is the alternating folding sequence or one of its

primitives. So we can suppose for the remainder of the proof that there

exists k A N such that S ðkÞ is the alternating folding sequence T . Then CðkÞ is

generated by a curve associated to T .

If there exists a covering D by 2 curves which is locally isomorphic to

CðkÞ, then there exists a k-th primitive E of D which is locally isomorphic to

C, and E also consists of 2 curves. So we can suppose k ¼ 0. Then C is the

covering shown in [4, Fig. 8].

For each n A N� and each r A Z, two bounded subcurves of distinct curves

of C form a covering Cn; r, in the sense given in the proof of [4, Example 3.8],

of the triangle Tn; r ¼ ðð0; ð2rÞ2nÞ; ð2n; ð2rþ 1Þ2nÞ; ð�2n; ð2rþ 1Þ2nÞÞ. For each

s A Z, the translation X ! X þ ð0; s2nþ1Þ induces an isomorphism from Cn; r to

Cn; rþs.

Now, for each n A N�, we consider the embedding pn : C2n;0 ! C2n;1 �
C2nþ2;0 induced by the translation tn : X ! X þ ð0; 22nþ1Þ. We observe that
S

n AN t�1
1 ð. . . ðt�1

n ðT2nþ2;0ÞÞ . . .Þ ¼ R2. It follows that the inductive limit of

ðC2n;0Þn AN � relative to the embeddings pn is a covering by 2 curves which is

locally isomorphic to C. 9

We do not know presently for which coverings C there exists a covering

D consisting of 3 or 4 curves which is locally isomorphic to C. However, we

are going to give examples of the two situations. Here, for any sets of curves

F, G, we say that F is interior to G if FfG.

Example 8. Let C be a covering generated by a dragon curve associated

to the y-folding sequence ðakÞk AN � with a2 n ¼ þ1 for each n A N. Then C is
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locally isomorphic to two coverings by 3 curves, one where each pair of curves

has common vertices and one with two curves separated by the third one.

Proof. For the first covering, we apply Proposition 1 to the set of curves

D shown in Figure 2A with horizontal and vertical segments. It is embedded

in C since it appears in [4, Fig. 7] between ð2; 0Þ and ð2; 2Þ.
We consider the first primitive of D, shown in Figures 2A and 2B

with diagonal segments, and the second primitive, shown in Figure 2B with

horizontal and vertical segments. They are also embedded in C. By Figure

2B, the second primitive contains the image of D under a rotation by �p=2;

we note that this image is not interior to it because the condition is not satisfied

for one of the segments, but it is satisfied at the following step. Repeating this

process 3 more times, we obtain a copy of D which is interior to the 8-th

primitive of D.

For the second covering, we apply Proposition 1 to the set of curves E

shown in Figure 3A (page 13) with horizontal and vertical segments. It is

embedded in C since it appears in [4, Fig. 7] between O and ð0; 3Þ.
We consider the first primitive of E, shown in Figures 3A and 3B, and the

second primitive, shown in Figure 3B. They are also embedded in C. By

Figure 3B, an image of E under a rotation by p is interior to the second

primitive of E. Repeating this process 1 more time, we obtain a copy of E

which is interior to the 4-th primitive of E. 9

Example 9. Let C be a covering generated by a curve associated to the

y-folding sequence ðakÞk AN � with a24n ¼ a24nþ1 ¼ þ1 and a24nþ2 ¼ a24nþ3 ¼ �1 for

each n A N. Then C is locally isomorphic to a covering by 4 curves.

Proof. The covering C is represented in Figure 4 (page 13). We apply

Proposition 1 to the set of curves D shown in Figure 5A (page 14) with

Fig. 2A Fig. 2B
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horizontal and vertical segments. It is embedded in C since it appears in

Figure 4 between ð�3; 0Þ and O.

We consider the first primitive of D, shown in Figures 5A and 5B, and

the second primitive, shown in Figure 5B. The second primitive is embedded

in the covering generated by a curve associated to the y-folding sequence

ðakÞk AN � with a24n ¼ a24nþ1 ¼ �1 and a24nþ2 ¼ a24nþ3 ¼ þ1 for each n A N.

According to Figure 5B, it contains a copy of the image of D under the

reflection about the y-axis; we note that this copy is not interior to it because

the condition is not satisfied for one of the segments, but it is satisfied at the

following step.

Fig. 3A Fig. 3B

Fig. 4
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Then, by applying a process which is the image of the previous one under

the reflection about the y-axis, we obtain a copy of D which is interior to the

4-th primitive of D. 9
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