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Abstract. Let Nb 1, 1 < p < y and p� ¼ maxð1; p� 1Þ. Let W be a bounded

domain of RN . We establish the strong maximum principle for the p-Laplace operator

with a nonlinear potential term. More precisely, we show that every super-solution

u A W
1; p �

loc ðWÞ vanishes identically in W, if u is admissible and u ¼ 0 a.e on a set of

positive p-capacity relative to W.

1. Introduction

Let W be a bounded domain of RN ðNb 1Þ. By Dpu, we denote a

p-Laplace operator

Dpu ¼ divðj‘ujp�2‘uÞ; ð1:1Þ

where 1 < p < y and ‘u ¼ ðqu=qx1; qu=qx2; . . . ; qu=qxNÞ:
In this article, we shall study the strong maximum principle on the

following quasilinear operator:

�Dp þ aðxÞQð�Þ: ð1:2Þ

Here a A L1
locðWÞ and Qð�Þ is a nonlinear term satisfying the following properties

½Q0� and ½Q1�.
½Q0�: QðtÞ is a continuous increasing function on ½0;yÞ with Qð0Þ ¼ 0.

½Q1�:

lim sup
t!þ0

QðtÞ
tp�1

< y: ð1:3Þ

Remark 1.1. In view of ½Q0�, ½Q1� can be replaced by the following: For

any T > 0, there exists a positive number CT such that

QðtÞaCT � tp�1 t A ½0;T �:
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Now let us recall some related known results on the strong maximum

principle assuming that QðtÞ ¼ tp�1 for simplicity. The classical strong max-

imum principle for a Laplacian asserts that if u is smooth, ub 0 and �Dub 0

in a domain (a connected open set) W � RN , then either u1 0 or u > 0 in

W. The same conclusion holds when �Du is replaced by �Duþ aðxÞu with

a A LsðWÞ, s > N=2. Later these results were extended to quasilinear operators

�Dpuþ aðxÞup�1 with 1< p<y, a A LsðWÞ, s> N=p. These are consequences

of weak Harnack’s inequalities; see e.g. Stampacchia [21], Trudinger [23];

Theorem 5.2 and its Corollaries, Moser [19, 20] for p ¼ 2, and see e.g.

Stredulinsky [22], Chapter 3 for p > 1 (see also Vázquez [24], Theorem 5).

Another formulation of the same fact says that if uðxÞ ¼ 0 for some point

x A W, then u1 0 in W. However the next example shows that a similar

conclusion does not hold when a B Ls for any s > N=p.

Example 1. Let B1 be a unit ball in RN with a center being 0 and

u ¼ jxja; a > ðp�NÞ=ðp� 1Þ;
aðxÞ ¼ cðp; aÞjxj�p;

cðp; aÞ ¼ ajajp�2ðap� a� pþNÞ:

8><>: ð1:4Þ

Then we see a B LN=pðB1Þ and �Dpuþ aðxÞup�1 ¼ 0 in B1. Clearly uð0Þ ¼ 0

for a > 0, but uD 0 in B1.

On the other hand, if u vanishes on a larger set, then one may conclude

that u1 0 under some weaker condition on a. When p ¼ 2, such a result was

obtained by Bénilan-Brezis [3] in the case where a A L1ðWÞ, ab 0 a.e. in W and

supp u is a compact subset of W (see Theorem C1 in [3]). This maximum

principle has been further extended by Ancona [1], and later a more direct

proof was given by Brezis-Ponce [6] in the split of PDE’s. In the present

article we further study the strong maximum principle in the case where

p A ð1;yÞ adopting a genaral nonlinearlity QðtÞ in stead of tp�1. To this end

we prepare more notations:

We recall that a real valued function u on W is quasicontinuous if there

exists a sequence of open subsets fong of W such that ujWnon
is continuous for

any nb 1 and Cpðon;WÞ ! 0 as n ! y, where Cpðon;WÞ denotes a p-capacity

of on relative to W (see Definition 2.2), and we say that m is a Radon measure

on W if for every o �� W, there exists Co > 0 such that j
Ð
W
j dmjaCokjkLy

for any j A Cy
0 ðoÞ. Note that if m is a Radon measure, then the total mea-

sure of m on o denoted by jmjðoÞ is finite. In order to establish the strong

maximum principle (SMP) involving a Radon measure Dpu with p A ð1;yÞ, we
introduce an admissible class of functions:

Definition 1.1 (Admissible class in W
1; p�

loc ðWÞ). Let 1 < p < y and

p� ¼ maxð1; p� 1Þ. A function u A W
1; p �

loc ðWÞ is said to be admissible if Dpu
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is a Radon measure on W and there exists a sequence fungyn¼1 � W
1;p
loc ðWÞ \

LyðWÞ satisfying the following conditions.

(1) un ! u a.e. in W, un ! u in W
1; p �

loc ðWÞ as n ! y.

(2) Dpun A L1
locðWÞ ðn ¼ 1; 2; . . .Þ and

sup
n

jDpunjðoÞ < y for every o �� W: ð1:5Þ

Remark 1.2. (1) If u A W
1; p �

loc ðWÞ, then Dpu, DpðuþÞ and Dpðu�Þ are

well-defined in D 0ðWÞ. It follows from the condition 1 that Dpun ¼
Dpðuþn Þ � Dpðu�n Þ and Dpun ! Dpu (i.e. DpðuGn Þ ! DpðuGÞ) in D 0ðWÞ as

n ! y. Moreover, it follows from the condition 2 and the weak

compactness of measures that we have Dpun ! Dpu (i.e. DpðuGn Þ !
DpðuGÞ) in the sense of measures as n ! y. In particular if u is

admissible, then uþ and u� are admissible as well.

(2) In our main result (see Theorem 1, below), the admissibility is assumed

only when p0 2. We note that when p ¼ 2, u A W
1;1
loc ðWÞ is always

admissible if Du is a Radon measure on W:

To see this, let r A Cy
0 ðB1Þ be a radial, nonegative, decreasing,

mollifier. By extending u A L1ðWÞ to the whole space RN so that

u1 0 outside W, we define a mollification of u by

un
r ðxÞ :¼ r1=n � uðxÞ ¼

ð
W

r1=nðx� yÞuðyÞdy Ex A W: ð1:6Þ

We define unðxÞ ¼ un
r ðxÞ ¼ r1=n � uðxÞ ðn ¼ 1; 2; . . .Þ. Then the condi-

tion 1 is clearly satisfied. Moreover if p ¼ 2 and Du is a Radon

measure, then (1.5) is also satisfied. For o �� W, we see that Dun ¼
ðDuÞn and jDunj ¼ ðDunÞþ þ ðDunÞ� ¼ ððDuÞnÞ

þ þ ððDuÞnÞ
� ¼ jðDuÞnj

in o for n su‰ciently large. Hence (1.5) follows from the definition

of the Radon measure.

Here we give an important class of admissible functions:

Example 2. A function u A W
1;p
0 ðWÞ is admissible if Dpu is a Radon

measure on W.

In fact we can construct an approximating sequence fung � W
1;p
0 ðWÞ in

the following way. Let m ¼ Dpu, F ¼ j‘ujp�2‘u A ðL1ðWÞÞN and F n
r ¼ ðF Þnr A

ðCyðRNÞÞN, n ¼ 1; 2; . . . . Let o �� W. Then, we have mn
r ¼ ðDpuÞnr ¼ div F n

r

in o for a su‰ciently large n. Let wn A W
1;p
0 ðWÞ be the unique weak solution

of the boundary value problem for the monotone operator Dp (c.f. [16]):

Dpwn ¼ div F n
r in W

wn ¼ 0 on qW:

�
ð1:7Þ
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Then, it follows from the standard argument (in Appendix) that we have

wn ! u in W
1;p
0 ðWÞ as n ! y; ð1:8Þ

jDwnjðoÞ ¼ jdiv F n
r jðoÞ ¼ jmn

r jðoÞ ! jmjðoÞ as n ! y: ð1:9Þ

Then, taking a subsequence if necessary, fwng satisfies the conditions 1 and 2.

For the detail of proof, see Appendix.

Now we describe our main result:

Theorem 1. Let Nb 1, 1 < p < y and p� ¼ maxð1; p� 1Þ. Let W be a

bounded domain of RN. Assume that Q satisfies the conditions ½Q0� and ½Q1�.
When p ¼ 2, assume that u A L1

locðWÞ, ub 0 a.e. in W, QðuÞ A L1
locðWÞ and Du is

a Radon measure on W.

When p0 2, assume that u A W
1; p �

loc ðWÞ, ub 0 a.e. in W, QðuÞ A L1
locðWÞ and

u is admissible in the sense of Definition 1.1.

Then we have the following:

(1) There exists a quasicontinuous function ~uu : W 7! R such that u ¼ ~uu a.e.

in W.

(2) Let a A L1
locðWÞ, ab 0 a.e. in W. Assume that

�Dpuþ aðxÞQðuÞb 0 in W in the sense of measures; ð1:10Þ

i.e., ð
E

Dpua

ð
E

aQðuÞ for every Borel set E �� W: ð1:11Þ

If ~uu ¼ 0 on a set of positive p-capacity in W, then u ¼ 0 a.e. in W.

Remark 1.3. (1) The definition p-capacity denoted by CpðE;WÞ is given in

§ 2 in connection with quasi continuity of function.

(2) In Example 1, we see that u ¼ jxja satisfies �Dpuþ aðxÞup�1 ¼ 0 in

B1. If p > N, then Cpðf0g;B1Þ > 0 and uð0Þ ¼ 0 hold. But we note

that a B L1
locðB1Þ in this case.

(3) When pa 2� 1=N, as in Example 3 below, we cannot expect the

solution of an equation of the form Dpu ¼ f (a Radon measure or L1)

to be in W 1;1
loc ðWÞ in general. Therefore we cannot take the gradient

of u appearing in the p-Laplacian Dp in the distribution sense. See

[2, 4, 5].

(4) It follows from (1.11) that the positive part ðDpuÞþ should be absolutely

continuous with respect to the Lebesgue measure.

In connection with Remark 1.3 (2), we give an example, which also shows

the necessity of (1.11) for the validity of Theorem 1 when p > N.
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Example 3. Let u ¼ jxja for a ¼ ðp�NÞ=ðp� 1Þ.
(1) u satisfies

Dpu ¼ ajajp�2
cNd;

where d denotes a Dirac mass and cN denotes the surface area of

B1. It is easy to see that j‘uj A L1
locðWÞ if and only if p > 2� 1=N.

(2) When p > 2� 1=N, u is admissible in W 1; p � ðB1Þ. In fact, u ¼ jxja is

approximated by a sequence of admissible functions vaðnÞ ¼ jxjaðnÞ A
L1ðB1Þ where aðnÞ ¼ aþ 1=ðnðp� 1ÞÞ. Then, in the sense of measures

we have

DpvaðnÞ ¼
1

n
jaðnÞjp�2aðnÞjxj1=n�N ! Dpu as n ! y:

Therefore there exits a sequence fnaðnÞg such that fnaðnÞg ! y as

n ! y and a sequence of mollification fðvaðnÞÞnaðnÞr g satisfies the con-

ditions in Definition 1.1.

(3) If p > N, then uð0Þ ¼ 0 and Cpðf0g;B1Þ > 0. But (1.11) is not

satisfied since a > 0.

(4) When 1 < pa 2� 1=N holds, one can consider u as a renormalized

solution. For the detail, see e.g. [2, 4, 5, 17, 18].

When QðtÞ ¼ tq�1 for q > 1, QðtÞ clearly satisfies ½Q0�. Then the condi-

tion ½Q1� is satisfied if and only if qb p. In this case we can show the

necessity of the condition ½Q1� for the validity of Theorem 1, namely we have

the following.

Proposition 1.1. Let us set QðtÞ ¼ tq�1 and q > 1. Then, the condition

½Q1� is necessary for the validity of Theorem 1.

The proof of this proposition is given in § 3 by constructing a counter-example.

We collect corollaries which follow immediately from the theorem above:

Corollary 1.1. Let u and a be as in Theorem 1, and assume (1.10) is

satisfied.

(1) If u ¼ 0 on a subset of W with positive measure, then u ¼ 0 a.e. in W.

(2) If u is continuous in W and u ¼ 0 on a subset of W with positive p-

capacity, then u1 0 in W.

Corollary 1.2. Let u and a be as in Theorem 1. Assume that

Dpu; aQðuÞ A L1
locðWÞ. If

�Dpuþ aQðuÞb 0 a:e: in W;

and u ¼ 0 on a subset of W with positive measure, then u ¼ 0 a.e. in W.
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Combing Theorem 1 and Remark 2.1 in § 2, we have the following.

Corollary 1.3. Let u and a be as in Theorem 1. Assume that aQðuÞ A
L1
locðWÞ. If

�Dpuþ aQðuÞb 0 in the distribution sense;

that is ð
W

j‘ujp�2‘u � ‘ja
ð
W

aQðuÞj for any j A Cy
0 ðWÞ; jb 0; ð1:12Þ

and u ¼ 0 on a subset of W with positive measure, then u ¼ 0 a.e. in W.

Remark 1.4. In view of Corollary 1.3, it would seem natural to replace

condition (1.11) by (1.12) in Theorem 1. We note that condition (1.12) makes

sense even if aQðuÞ B L1
locðWÞ (since aQðuÞjb 0 a.e., the right-hand side of

(1.12) is always well-defined, possibly taking the value þy). However, the

strong maximum principle is not true in general (see [6]). See also Remark 2.1.

This article is organized in the following way. In § 2 we collect basic

notations with some remarks. In § 3 we prove Proposition 1.1 by constructing

a counter-example, and in § 4 we prove the quasicontinuity statement of

Theorem 1. In § 5 we prepare two lemmas including Kato’s inequalities

when Dpu is a Radon measure. Theorem 1 is finally established in § 6. In

Appendix we prove that u A W
1;p
0 ðWÞ is admissible if Dpu is a Radon measure

on W.

2. Preliminaries

In this subsection we collect fundamental definitions in the present article

together with some remarks. Let LpðWÞ, 1a p < y, denote the space of

Lebesugue measurable functions, defined on W, for which

k f kL pðWÞ ¼
ð
W

j f jp
� �1=p

< y:

By L
p
locðWÞ we mean the space of functions locally integrable with power p

in W, and by LyðWÞ we mean the space of essentially bounded Lebesgue

measurable functions. As a norm of f in LyðWÞ we take its essential

supremum. Then we define the following Sobolev spaces:

Definition 2.1 ðW 1;pðWÞ and W
1;p
loc ðWÞÞ. For each 1a p < y, we set

W 1;pðWÞ ¼ f f : W 7! R : f A LpðWÞ; qf =qxi A LpðWÞ for i ¼ 1; . . . ;Ng; ð2:1Þ

W
1;p
loc ðWÞ ¼ f f : W 7! R : f A L

p
locðWÞ; qf =qxi A L

p
locðWÞ for i ¼ 1; . . . ;Ng: ð2:2Þ
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Here qf =qxi is taken as a distributional derivative of f for i ¼ 1; . . . ;N. The

space W 1;pðWÞ is equipped with the norm

kukW 1; pðWÞ ¼ kj‘ujkL pðWÞ þ kukL pðWÞ: ð2:3Þ

By W
1;p
0 ðWÞ we denote the completion of Cy

0 ðWÞ in the norm kukW 1; pðWÞ.

Definition 2.2 (A p-capacity relative to W). Let 1 < p < y. For each

compact set K � W we define a p-capacity of K relative to W by

CpðK ;WÞ ¼ inf

ð
W

j‘jjp : j A Cy
0 ðWÞ; jb 1 in some neighborhood of K

� �
:

We prepare a fundamental lemma (for the proof, see e.g. [22]; Chapter 2).

Lemma 1. (1) If u A W
1;p
loc ðWÞ, then u can be redefined almost everywhere

so as to be quasicontinuous.

(2) If u A W
1;p
loc ðWÞ, then u is continuous o¤ open sets of arbitrarily small

p-capacity, and if jn A CyðWÞ and jn ! u in W
1;p
loc ðWÞ as n ! y, then

jnj ! u point wise quasi-everywhere for some subsequence fnjg.

Remark 2.1. Let m be a Radon measure on W and f a measurable function,

f b 0 a.e. in W. Here are two possible definitions A and B for the inequality

ma f in W:

A: We shall write ma1 f in W, if
Ð
E
dma

Ð
E
f for every Borel set E �� W.

B: We shall write ma2 f in W, if
Ð
j dma

Ð
f j Ej A Cy

0 ðWÞ, jb 0 in W.

(1) If ma1 f in W, then ma2 f in W. However, the converse is not true

in general. Note that f jb 0 a.e., in B so that the right-hand side is

always well-defined, possibly taking the value þy.

(2) If we assume in addition that f A L1
locðWÞ, then ma1 f in W, if and only

if, ma2 f in W.

3. Proof of Proposition 1.1

We prove Proposition 1.1 by contradiction. If 1 < q < p and QðtÞ ¼ tq�1,

then there exists an admissible sub-solution of (1.10) such that ~uu ¼ 0 on a set of

positive p-capacity in W but not equal to 0 a.e. in B1. In order to see this, we

prepare the following.

Example 4. Let W ¼ B1. Let m be a nonnegative integer such as ma

N � 1. Let M0 ¼ f0g and let Mm � RN for m > 0 be an m dimensional linear

subspace defined by

Mm ¼ fy ¼ ðy1; y2; . . . ; yNÞ A RN : ymþ1 ¼ ymþ2 ¼ � � � yN ¼ 0g; ð3:1Þ
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and we put Km ¼ Mm \ B1=2. Let us define

dmðxÞ ¼ distðx;MmÞ1
XN

k¼mþ1

x2
k

 !1=2
: ð3:2Þ

Then clearly dm A CyðRNnMmÞ, Lipschitz continuous in B1 and j‘dmðxÞj ¼ 1 in

RNnMm. Now we construct a null solution Um for (1.2) in B1 of the form

UmðxÞ ¼ dmðxÞa ð3:3Þ

as before. By a direct calculation we see that Um is admissible for a large a > 0

and DpUm satisfies

�DpUm þ aðxÞQðUmÞ ¼ 0 in D 0ðB1Þ; ð3:4Þ

where

aðxÞ ¼ DpUm

QðUmÞ
¼ U q�1

m

QðUmÞ
ap�1ðdmDdm þ ða� 1Þðp� 1ÞÞd aðp�qÞ�p

m :

Here we note that

dmðxÞDdmðxÞ ¼ N �m� 1 and QðtÞ ¼ tq�1: ð3:5Þ

Then we have for a su‰ciently large a > 0

0a aðxÞaCdmðxÞaðp�qÞ�p A L1ðB1Þ; for some positive constant C:

Clearly Um is an admissible sub-solution of (1.10) such that Um ¼ 0 on Km but

not equal to 0 a.e. in B1.

Proof of Proposition 1.1. In Example 4, let us choose a nonnegative

integer m such that N � p < maN � 1. Then, it follows from a fundamen-

tal property of relative p-capacity that CpðKm;B1Þ > 0. Clearly Um ¼ 0 on

Km � Mm and Um D 0. Therefore Um becomes a counter-example. For

precise properties of relative p-capacity, see e.g. Lemma 1 in Dupaigne-Ponce

[8], Proposition 3.1 in Horiuchi [10]. r

4. Proof of the quasicontinuity statement of Theorem 1

In this section we prove the quasicontinuity statement of Theorem 1.

Given k > 0, we denote by Tk : R ! R a truncation function

TkðsÞ :¼
k if sb k;

s if �k < s < k;

�k if sa�k:

8<: ð4:1Þ
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Recall the following satndard inequality (see, e.g., Lemma 1 in [6]):

Lemma 2. Assume that u A L1
locðWÞ and Du is a Radon measure. Then

TkðuÞ A W 1;2
loc ðWÞ; Ek > 0: ð4:2Þ

Moreover, given o �� o 0 �� W, there exists positive constant C such thatð
o

j‘TkðuÞj2 a k

ð
o 0
jDuj þ C

ð
o 0
juj

� �
; ð4:3Þ

where positive constant C are independent on each u. Moreover, there exists a

quasicontinuous function ~uu : W 7! R such that u ¼ ~uu a.e. in W.

When p ¼ 2, the existence of a quasicontinuous function ~uu (the statement

1 of Theorem 1) follows from Lemma 2. When p0 2, this fact is a con-

sequence of Lemma 3 below:

Lemma 3. Let W � RN be an open set. Assume that u A W
1; p �

loc ðWÞ is

admissible. Then

TkðuÞ A W
1;p
loc ðWÞ; Ek > 0: ð4:4Þ

Moreover, given o �� o 0 �� W, there exists positive constant C such thatð
o

j‘TkðuÞjp aCk

ð
o 0
jDpuj þ

ð
o 0
j‘ujp�1

� �
; ð4:5Þ

where positive constant C are independent on each u. Moreover, there exists a

quasicontinuous function ~uu : W ! R such that u ¼ ~uu a.e. in W.

Proof of Lemma 3. We shall split the proof into two steps.

Step 1. Proof of (4.4) and (4.5).

By the hypotheses on u and ‘u, we can take the gradient of u appearing in

the p-Laplacian Dp in the distribution sense. Then, it follows from a standard

argument that Dpu ¼ DpðuþÞ � Dpðu�Þ in D 0ðWÞ. In fact, we see that for any

j A Cy
0 ðWÞ

hDpu; ji ¼ hdiv j ðj‘ujp�2‘ðuþ � u�ÞÞ; ji

¼ �
ð
W

ðj‘ujp�2ð‘uþ � ‘u�Þ � ‘j

¼ �
ð
W

j‘uþjp�2
‘uþ � ‘jþ

ð
W

j‘u�jp�2
‘u� � ‘j

¼ hDpðuþÞ � Dpðu�Þ; ji:

Hence we may assume that ub 0 a.e. in W from now on.
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Since u is admissible in W
1; p �

loc ðWÞ, there exists a sequence fungyn¼1 �
W

1;p
loc ðWÞ \ LyðWÞ satisfying the conditions 1 and 2 in Definition 1.1. Since uþ

is also admissible, we may assume un b 0 by taking uþn for un, namely:

(1) 0a un ! u a.e. in W, un ! u in W
1; p �

loc ðWÞ as n ! y.

(2) Dpun A L1
locðWÞ ðn ¼ 1; 2; . . .Þ and

sup
n

jDpunjðoÞ < y for every o �� W: ð4:6Þ

For k > 0 fixed, we have TkðunÞ A W
1;p
loc ðWÞ and

‘TkðunÞ ¼ w½junj<k�‘un; ð4:7Þ

where w½junj<k� denotes the characteristic function of the set ½junj < k�.
Given o �� o 0 �� W, let j A Cy

0 ðo 0Þ be such that 0a ja 1 in o 0 and

j1 1 on o. First, using (4.7) and integrating by parts, we have

I ¼
ð
j‘TkðunÞjpjp ¼

ð
j‘unjp�2

‘un � ‘TkðunÞjp

¼ �
ð
TkðunÞ divðjpj‘unjp�2‘unÞ ðDpun A L1

locðWÞ; j‘unj A L
p �

locðWÞÞ

¼ �
ð
TkðunÞDpunj

p �
ð
TkðunÞj‘unjp�2‘un � ‘jp

¼ J1 þ J2:

Since TkðunÞa k, we have

jJ1j ¼
ð
TkðunÞDpunj

p

���� ����a k

ð
jDpunjjp; ð4:8Þ

and

jJ2ja p

ð
j‘TkðunÞjp�1

TkðunÞj‘jjjp�1
a pk

ð
j‘unjp�1j‘jj: ð4:9Þ

From (4.8) and (4.9) we have

I a k

ð
jDpunjjp þ p

ð
j‘unjp�1j‘jj

� �
:

In particular,ð
o

j‘TkðunÞjp aCk

ð
o 0
jDpunj þ k‘jkLy

ð
o 0
j‘unjp�1

� �
: ð4:10Þ
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It follows from the condition 1 on un and the statement 2 of Lemma 8 that we

have ð
o 0
j j‘unjp�2‘un � j‘ujp�2‘uj ! 0 as n ! y: ð4:11Þ

Therefore we see as n ! yð
Dpunj ¼ �

ð
j‘unjp�2‘un � ‘j ! �

ð
j‘ujp�2‘u � ‘j ¼

ð
Dpuj; ð4:12Þ

that is,

Dpun ! Dpu in D 0ðWÞ as n ! y: ð4:13Þ

Together with supnjDpunjðo 0Þ < y and jDpujðo 0Þ < y for any o 0 �� W, we see

Dpun ! Dpu in the sense of measures: ð4:14Þ

By the weak compactness of Radon measures and the uniqueness of weak limit,

we also have

lim
n!y

jDpunj ¼ jDpuj in the sense of measures:

Letting n ! y, we conclude that TkðuÞ A W
1;p
loc ðoÞ and the inequality (4.5)

holds.

Step 2. Under the assumptions of the Lemma 1, there exists a function

~uu : W 7! R quasicontinuous such that u ¼ ~uu a.e. in W.

Proof of Step 2. By (4.4), for each k > 0 there exists gTkðuÞTkðuÞ : W 7! R

quasicontinuous such that TkðuÞ ¼ gTkðuÞTkðuÞ a.e. in W. Let vk :¼ 1
k
TkðuÞ, so that

vk ! 0 as k ! y in LqðWÞ, Eq A ½1;yÞ. In fact, we see that

when q ¼ 1;
Ð
W
jvkj ¼ 1

k

Ð
W
jTkðuÞja 1

k

Ð
W
juj ! 0 ðk ! yÞ;

when q > 1;
Ð
W
jvkjq ¼ 1

k q

Ð
W
jTkðuÞjq�1jTkðuÞja 1

k

Ð
W
juj ! 0 ðk ! yÞ:

(

By (4.5), we see thatð
o

j‘vkjp ! 0 ðk ! yÞ Eo �� W:

In particular, vk ! 0 in W
1;p
loc ðWÞ, which implies that there exists a subset

P � W with 0 p-capacity such that

~vvkðxÞ ¼
1

k
gTkðuÞTkðuÞðxÞ ! 0; Ex A WnP:
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We conclude that

Cp
gjTkðuÞjjTkðuÞj >

k

2

� �
;W

� �
¼ Cp

gjvkjjvkj >
1

2

� �
;W

� �
! 0 ðk ! yÞ: ð4:15Þ

Set

wðxÞ :¼ supk ANf gTkðuÞTkðuÞðxÞg if supk AN j gTkðuÞTkðuÞðxÞj < y;

0 otherwise,

(
ð4:16Þ

so that w ¼ u a.e. in W. By (4.15) and the quasicontinuity of the functionsgTkðuÞTkðuÞ, it is easy to see that w is quasicontinuous in W. This concludes the

proof of the Lemma 3. r

5. Kato’s inequalities when Dpu is a Radon measure

We retain the same notations as in the previous section. Since TkjRþ
is

concave, by the standard L1-version of Kato’s inequality (see [6, 11, 13]) we

have the following lemma.

Lemma 4. Assume that v A W
1;p
loc ðWÞ, Dpv A L1

locðWÞ and vb 0 a.e. in W.

Then, we have

DpðTkðvÞÞa tkðvÞDpv in D 0ðWÞ; ð5:1Þ

where the function tk : Rþ 7! R is given by

tkðsÞ :¼
1 if 0a sa k;

0 if s > k:

�
ð5:2Þ

Proof. Let fFng be a sequence of smooth concave functions in R such

that FnðtÞ ¼ t if ta k and jFnðtÞ � kja1=n if t > k. In particular, 0aF 0
na1

in R. Then we define

Fn;hðtÞ ¼ FnðtÞ þ ht for h > 0: ð5:3Þ

We may assume that v is smooth by the approximation argument. By a direct

calculation

DpðFn;hðvÞÞ ¼ F 0
n;hðvÞ

p�1Dpvþ ðp� 1ÞF 0
n;hðvÞ

p�2F 00
n;hðvÞj‘vj

p

aF 0
n;hðvÞ

p�1Dpv ðF 00
n;h ¼ F 00

n a 0 by concavity of FnÞ

Letting h ! 0, we clearly have

DpðFnðvÞÞaF 0
nðvÞ

p�1
Dpv in W: ð5:4Þ

As n ! y, we finnally get the inequality (5.1). r
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Then we prove the following lemma which is due to Ancona [1] and

Brezis-Ponce [6], if p ¼ 2.

Lemma 5. Let W � RN be an open set. Assume that Q satisfies ½Q0� and
½Q1�. Let u A L1

locðWÞ if p ¼ 2 and let u A W
1; p �

loc ðWÞ if p0 2. Assume that

ub 0 a.e. in W, QðuÞ A L1
locðWÞ and Dpu is a Radon measure on W. Moreover

if p0 2, assume that u is admissible in the sense of Definition 1.1. Then,

DpðTkðuÞÞ is a Radon measure Ek > 0:

Moreover, for any a A LyðWÞ, ab 0 a.e. in W, we have

DpðTkðuÞÞ � aQðTkðuÞÞa ðDpu� aQðuÞÞþ: ð5:5Þ

Proof of Lemma 5. We shall establish this lemma in the case where

p0 2, using the same notation as in the proof of Lemma 3. Since u ¼ uþ

is admissible in W
1; p �

loc ðWÞ, there exists a nonnegative sequence fungyn¼1 �
W

1;p
loc ðWÞ \ LyðWÞ satisfying the conditions 1 and 2 in Definition 1.1.

When p ¼ 2 holds, the same argument with Lemma 2 works by replacing un
by un; a sequence of mollifications of u defined by (1.6) in Remark 1.2. By

Lemma 4, we have

DpðTkðunÞÞa tkðunÞDpun in D 0ðWÞ; En; ð5:6Þ

where the function tk : Rþ 7! R is given by (5.2). Since TkðsÞb tkðsÞs, Esb 0,

un b 0 and ab 0 a.e. in W, it follows from (5.6) that

DpTkðunÞ � aQðTkðunÞÞa tkðunÞDpun � aQðTkðunÞÞ

a tkðunÞðDpun � aQðunÞÞ

a ðDpun � aQðunÞÞþ in D 0ðWÞ: ð5:7Þ

In other worlds, we have for Ej A Cy
0 ðWÞ, jb 0 in Wð

DpðTkðunÞÞj� aQðTkðunÞÞja
ð
ðDpun � aQðunÞÞþj; ð5:8Þ

and we haveð
DpðTkðunÞÞj� aQðTkðunÞÞj ¼ �

ð
j‘TkðunÞjp�2‘TkðunÞ � ‘jþ aQðTkðunÞÞj:

Note that a A Ly and TkðuÞ A W
1;p
loc ðWÞ by Lemma 3. Letting n ! 0 we get

the left side of ð5:8Þ ¼ �
ð
j‘TkðuÞjp�2‘TkðuÞ � ‘jþ aQðTkðuÞÞj: ð5:9Þ
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In the proof of Lemma 3 we showed that Dpun ! Dpu in D 0ðWÞ and jDpunj !
jDpuj on any open set o 0 �� W in the sense of measures as n ! y, where jDpuj
denotes the total measure of Dpu. Therefore, by letting n ! y we haveð

DpðTkðuÞÞj� aQðTkðuÞÞja
ð
ðDpu� aQðuÞÞþj: ð5:10Þ

So that, DpðTkðuÞÞ is a Radon measure. r

Lemma 6. Assume the same hypotheses of Lemma 5. Let a A L1
locðWÞ,

ab 0 a.e. in W. Assume that

�Dpuþ aQðuÞb 0 in W in the sense of measures;

i.e., ð
E

Dpua

ð
E

aQðuÞ for every Borel set E �� W:

Then

�DpðTkðuÞÞ þ aQðTkðuÞÞb 0 in D 0ðWÞ; Ek > 0: ð5:11Þ

Proof of Lemma 6. By the preceding Lemma applied with ai :¼ TiðaÞ,
where i is a positive integer, we know that

DpðTkðuÞÞ � aiQðTkðuÞÞa ðDpu� aiQðuÞÞþ in D 0ðWÞ: ð5:12Þ

On the other hand, from (5.10), for every Borel set E � W, we getð
E

Dpu� aiQðuÞa
ð
E

ða� aiÞQðuÞ: ð5:13Þ

Since ða� aiÞQðuÞb 0 a.e. in W, for every Borel set E � W, (5.12) implies

that

0a

ð
E

ðDpu� aiQðuÞÞþ a

ð
E

ða� aiÞQðuÞ: ð5:14Þ

Hence, ðDpu� aiQðuÞÞþ is a nonnegative measure, which is absolutely contin-

uous with respect to Lebesgue measure. Therefore, we have

ðDpu� aiQðuÞÞþ A L1ðWÞ Ei ¼ 1; 2; . . . : ð5:15Þ

We now return to (5.13) to conclude that

0a ðDpu� aiQðuÞÞþ a ða� aiÞQðuÞ a:e: in W:
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In particular,

ðDpu� aiQðuÞÞþ # 0 a:e: in W as i ! y: ð5:16Þ

It follows from (5.15) and (5.16) that

ðDpu� aiQðuÞÞþ ! 0 in L1ðWÞ as i ! y: ð5:17Þ

Finally, for any j A Cy
0 ðWÞ, jb 0 in W by (5.12) and (5.17) we haveð

DpðTkðuÞÞj� aQðTkðuÞÞja
ð
ðDpu� aiQðuÞÞþj ! 0 ði ! yÞ: ð5:18Þ

Then we conclude

�DpðTkðuÞÞ þ aQðTkðuÞÞb 0 in D 0ðWÞ Ek > 0: r

6. End of Proof of Theorem 1

It follows from Lemma 1 that, under the hypotheses of theorem, there

exists ~uu : W 7! R quasicontinuous such that u ¼ ~uu a.e. in W. Let us assume

that ~uu ¼ 0 on a set of positive capacity E � W. We shall prove that u ¼ 0

a.e. in W. We split the proof into two steps:

Step 1.

Claim. Under the hypotheses of the theorem, if we assume in addition

that u A LyðWÞ, then u ¼ 0 a.e. in W.

Proof. Since u A LyðWÞ, we have aQðuÞ A L1
locðWÞ. It follows from

(1.10) and Remark 2.1(2) that

�Dpuþ aQðuÞb 0 in D 0ðWÞ: ð6:1Þ

By Lemma 2 and Lemma 3, we know that TkðuÞ A W
1;p
loc ðWÞ, Ek > 0. Since

supkfTkðuÞg ¼ u holds, we have u A W
1;p
loc ðWÞ as well. Therefore it follows

from Remark 1.2(2) that u is automatically admissible when p ¼ 2. Then, for

any p A ð1;yÞ we can choose a nonnegative sequence fungyn¼1 � W
1;p
loc ðWÞ \

LyðWÞ satisfying the conditions 1 and 2 in Definition 1.1. We set

�Dpuþ aQðuÞ ¼ �Dpun þ aQðunÞ þ fn þ gn; ð6:2Þ

where fn ¼ Dpun � Dpu and gn ¼ aðQðuÞ �QðunÞÞ. Since aQðuÞ A L1
locðWÞ

and u A LyðWÞ, we see that gn ! 0, ðas n ! yÞ in L1
locðWÞ, and it follows
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from (4.13) that fn ! 0 ðas n ! yÞ in D 0ðWÞ. Then we have the next

lemma.

Lemma 7. Under the hypotheses of the theorem, if we assume in addition

that u A LyðWÞ, then for any d > 0 we have

(1) lim
n!y

ð
fn

ðdþ unÞp�1
j ¼ 0 for any j in Cy

0 ðWÞ.

(2) lim
n!y

ð
gn

ðdþ unÞp�1
j ¼ 0 for any j in Cy

0 ðWÞ.

Proof. Since gn ! 0 in L1ðWÞ, the assertion 2 is clear. By a direct

calculation, we have for any nð
fn

ðdþ unÞp�1
j ¼

ð�Dpun þ Dpu

ðdþ unÞp�1
j

¼
ð
ð�j‘unjp�2‘un � j‘ujp�2‘uÞ � ‘j 1

ðdþ unÞp�1

þ
ð
ð�j‘unjp�2‘un � j‘ujp�2‘uÞ � ‘un

j

ðdþ unÞp
ð1� pÞ: ð6:3Þ

Here we recall that u ¼ TkðuÞ A W
1;p
loc ðWÞ, if kb kukLy . Hence by Young’s

nequality we have

ð
fn

ðdþ unÞp�1
j

�����
�����a

ð
ðj‘unjp�1 þ j‘ujp�1Þj‘jj 1

ðdþ unÞp�1

þ
ð
ðj‘unjp þ j‘ujp�1j‘unjÞjjj

p� 1

ðdþ unÞp

aCðd; jÞ
ð
supp j

ðj‘ujp þ j‘unjpÞ < y; ð6:4Þ

where Cðd; jÞ denotes a positive number independent of n. Then the assertion

1 follows from the dominated convergence theorem (see e.g. [9]; Section 4 in

Chapter II). r

Let o �� o 0 �� W and let 0a j A Cy
0 ðo 0Þ with jb 1 on o. Multiplying

(6.2) by jp=ðun þ dÞp�1 with 0a j A Cy
0 ðo 0Þ, we get

jpDpun

ðdþ unÞp�1
a

aQðunÞjp

ðdþ unÞp�1
þ ð fn þ gnÞjp

ðdþ unÞp�1
in o 0; En: ð6:5Þ
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Then we haveð j‘unjp

ðdþ unÞp
jp ¼

ð j‘unjp�2‘un � ‘unjp

ðdþ unÞp

¼ 1

1� p

ð
jpj‘unjp�2‘un � ‘

1

ðun þ dÞp�1

 !

¼ 1

p� 1

ð
Dpun

ðun þ dÞp�1
jp þ p

p� 1

ð
jp�1‘j � j‘unjp�2‘un

ðun þ dÞp�1

a
1

p� 1

ð
aQðunÞjp

ðdþ unÞp�1
þ p

p� 1

ð j‘jj j‘unjp�1jp�1

ðun þ dÞp�1

þ 1

p� 1

ð ð fn þ gnÞjp

ðdþ unÞp�1
:

By Young’s inequality and Lemma 7, for any h > 0, there is some Ch b 0 such

that ð j‘jj j‘unjp�1
jp�1

ðun þ dÞp�1
a h

ð j‘unjpjp

ðdþ unÞp
þ Ch

ð
j‘jjp ðEh > 0; EnÞ:

Hence there exists a positive number C independent of n such that we haveð j‘unjpjp

ðdþ unÞp
aC

ð
aQðunÞjp

ðdþ unÞp�1
þ
ð
j‘jjp þ

ð ð fn þ gnÞjp

ðdþ unÞp�1

 !

aC

ð
ajp þ

ð
j‘jjp þ

ð ð fn þ gnÞjp

ðdþ unÞp�1

 !
ð½Q0�; ½Q1�; u A LyÞ: ð6:6Þ

Since ‘un=ðun þ dÞ ¼ ‘ logðdþ unÞ ¼ ‘ logðun=dþ 1Þ, the estimate above may

be rewritten asð
W

‘ log 1þ un

d

� ����� ����pjp
aC

ð
W

ajp þ j‘jjp þ ð fn þ gnÞjp

ðdþ unÞp�1

 !
; ð6:7Þ

log
un

d
þ 1

� �
A W

1;p
loc ðWÞ Ed > 0; En:

Letting n ! y we haveð
‘ log

u

d
þ 1

� ����� ����pjp
aC

ð
ðajp þ j‘jjpÞ Ej A Cy

0 ðWÞ: ð6:8Þ
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Let E � W be a set of positive capacity such that ~uu ¼ 0 on E. Without any

loss of generality, we may assume that E � o �� o 0 �� W and o is an open

connected. We haveð
o

‘ log
u

d
þ 1

� ����� ����p aC

ð
W

ðaj p þ j‘jjpÞ: ð6:9Þ

Since the quasicontinuous representative glogðu=dþ 1Þlogðu=dþ 1Þ ¼ logð~uu=dþ 1Þ of

logðu=dþ 1Þ equals 0 on E � W with CpðE;WÞ > 0, it follows from a variant

of Poincare’s inequality that there exists positive number C (depending only on

E and W) such thatð
o

log
u

d
þ 1

� ����� ����p aC

ð
aj p þ j‘jjp Ed > 0: ð6:10Þ

In particular, the integral in the left-hand side remains bounded as d # 0. On

the other hand,

log
u

d
þ 1

� �p

! þy a:e: in onfu ¼ 0g as d # 0: ð6:11Þ

By (6.10) and (6.11), we conclude that u ¼ 0 a.e. in o. Since o is an arbitrary

connected neighborhood of E in o 0, we conclude that u ¼ 0 a.e. in W. r

Step 2. From Lemma 5, we know that DpðT1ðuÞÞ is a Radon measure

and

�DpðT1ðuÞÞ þ aQðT1ðuÞÞb 0 in D 0ðWÞ:

We note that DpðT1ðunÞ ! DpðT1ðuÞÞ in D 0ðWÞ and aQðT1ðunÞÞ ! aQðT1ðuÞÞ in

L1
locðWÞ as n ! y. In addition, gT1ðuÞT1ðuÞ ¼ T1ðuÞ ¼ 0 on E � W with CpðE;WÞ >

0. By Setp 1, we have T1ðuÞ ¼ 0 a.e. in W and so u ¼ 0 a.e. in W. After all

we have the desired result. r

7. Appendix

Proof of the properties (1.8) and (1.9). We prove that u A W
1;p
0 ðWÞ is

admissible if Dpu is a Radon measure on W. Let wn A W
1;p
0 ðWÞ be the unique

weak solution of the boundary value problem for the monotone operator Dp

(see e.g. [16]): For n ¼ 1; 2; . . . ,

Dpwn ¼ div F n
r in W;

wn ¼ 0 on qW;

�
ð7:1Þ

where F ¼ j‘ujp�2‘u A ðL1ðWÞÞN and F n
r ¼ ðj‘ujp�2‘uÞnr A ðCyðRNÞÞN is a

mollification of F defined by (1.6). Let us set o �� W and Dpu ¼ div F ¼ m.
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Since jmjðoÞ < y, we see div F n
r ¼ ðdiv FÞnr ¼ ðDpuÞnr ¼ mn

r in o provided that

n is su‰ciently large. Hence we clearly have for every o �� W

jDwnjðoÞ ¼ jdiv F n
r jðoÞ ¼ jmn

r jðoÞ ! jmjðoÞ as n ! y:

This proves (1.9). Next we show (1.8), that is:

wn ! u in W
1;p
0 ðWÞ as n ! y: ð7:2Þ

We need the next elementary lemma, see e.g. [5, 12].

Lemma 8. Let 1 < p < y.

(1) There exist positive constants c1ðpÞ and c2ðpÞ depending on p such that

for every x; h A RN we have

jx� hj2ðjxj þ jhjÞp�2
a c1ðpÞðjxjp�2x� jhjp�2hÞ � ðx� hÞ: ð7:3Þ

In particular if p > 2 we have

jx� hjp a c1ðpÞðjxjp�2
x� jhjp�2

hÞ � ðx� hÞ; ð7:4Þ

and if 1 < p < 2 we have for any e A ð0; 1Þ

jx� hjpac2ðpÞeðp�2Þ=pðjxjp�2x� jhjp�2hÞ � ðx� hÞ þ eðjxj þ jhjÞp: ð7:5Þ

(2) There exist positive constants d1ðpÞ, d2ðpÞ and d3ðpÞ depending on p

such that for every x; h A RN we have

j jxjp�2
x� jhjp�2

hja d1ðpÞjx� hjðjxj þ jhjÞp�2
if pb 2;

j jxjp�2x� jhjp�2hja d2ðpÞjx� hjp�1
if 1 < p < 2:

(
ð7:6Þ

In particular if p > 2, then we have for any e A ð0; 1Þ,

j jxjp�2
x� jhjp�2

hja d3ðpÞe�1=ðp�2Þjx� hjp�1 þ eðjxj þ jhjÞp�1: ð7:7Þ

First we treat the case where pb 2: By using wn � u A W
1;p
0 ðWÞ as a test

function, we have

�hDpwn � Dpu;wn � ui ¼
ð
ðj‘wnjp�2

‘wn � j‘ujp�2
‘uÞ � ‘ðwn � uÞ

b c1ðpÞ�1

ð
j‘ðwn � uÞjp ðby ð7:4ÞÞ: ð7:8Þ

In the left-hand side, using Young’s inequality for d > 0 we have

�hDpwn � Dpu;wn � ui

¼
ð
ðF n

r � FÞ � ‘ðwn � uÞ

aCðdÞ
ð
jF n

r � F jp
0
þ d

ð
j‘ðwn � uÞjp for some CðdÞ > 0: ð7:9Þ
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Noting jF n
r j

p 0
and jF jp

0
with p 0 ¼ p=ðp� 1Þ are bounded in L1ðWÞ, it follows

from (7.6) and the dominated convergence theorem we see that wn ! u in

W
1;p
0 ðWÞ. Then, taking a subsequence if necessary, fwng satisfies the property

wn ! u, ‘wn ! ‘u a.e. as n ! y.

Lastly we treat the case where 1 < p < 2. In this case the proof can be

done using (7.5) instead of (7.4) in a quite similar way. Hence we omit the

detail.
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[ 1 ] A. Ancona, Une propriété d’invariance des ensembles absorbants par perturbation d’un
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