The boundary of a fibered face of the magic 3-manifold and the asymptotic behavior of minimal pseudo-Anosov dilatations

Eiko KIN and Mitsuhiko TAKASAWA (Received July 27, 2015)

(Revised July 11, 2016)

ABSTRACT. Let $\delta_{g,n}$ be the minimal dilatation of pseudo-Anosovs defined on an orientable surface of genus g with n punctures. It is proved by Tsai that for any fixed $g \ge 2$, there exists a constant c_g depending on g such that

$$\frac{1}{c_g} \cdot \frac{\log n}{n} < \log \delta_{g,n} < c_g \cdot \frac{\log n}{n} \quad \text{for any } n \ge 3$$

This means that the logarithm of the minimal dilatation $\log \delta_{g,n}$ is on the order of $\log n/n$. We prove that if 2g + 1 is relatively prime to s or s + 1 for each $0 \le s \le g$, then

$$\limsup_{n \to \infty} \frac{n(\log \delta_{g,n})}{\log n} \le 2$$

holds. In particular, if 2g + 1 is prime, then the above inequality on $\delta_{g,n}$ holds. Our examples of pseudo-Anosovs ϕ 's which provide the upper bound above have the following property: The mapping torus M_{ϕ} of ϕ is a single hyperbolic 3-manifold N called the magic manifold, or the fibration of M_{ϕ} comes from a fibration of N by Dehn filling cusps along the boundary slopes of a fiber.

1. Introduction

Let $\Sigma = \Sigma_{g,n}$ be an orientable surface of genus g with n punctures and $Mod(\Sigma)$ the mapping class group of Σ . By Thurston's classification theorem of surface automorphisms, elements of $Mod(\Sigma)$ are either periodic, reducible, or pseudo-Anosov, see [20]. Pseudo-Anosov mapping classes have rich dynamical properties. The hyperbolization theorem by Thurston [21] relates the dynamics of pseudo-Anosovs and the geometry of hyperbolic fibered 3-manifolds. The theorem asserts that $\phi \in Mod(\Sigma)$ is pseudo-Anosov if and

The first author was supported by Grant-in-Aid for Young Scientists (B) (No. 20740031), Grantin-Aid for Scientific Research (C) (No. 15K04875), Japan Society for the Promotion of Science. 2010 *Mathematics Subject Classification*. Primary 57M27, 37E30, Secondary 37B40.

Key words and phrases. Mapping class group, pseudo-Anosov, dilatation, entropy, fibered 3-manifold, magic manifold.

only if the mapping torus M_{ϕ} of ϕ admits a complete hyperbolic metric of finite volume.

Each pseudo-Anosov element $\phi \in \operatorname{Mod}(\Sigma)$ has a representative $\Phi : \Sigma \to \Sigma$ called a pseudo-Anosov homeomorphism. Such a homeomorphism is equipped with a constant $\lambda = \lambda(\Phi) > 1$ called the *dilatation* of Φ . If we let $\operatorname{ent}(\Phi)$ be the *topological entropy* of Φ , then the equality $\operatorname{ent}(\Phi) = \log \lambda(\Phi)$ holds. Moreover $\operatorname{ent}(\Phi)$ attains the minimal entropy among all homeomorphisms which are isotopic to Φ , see [3, Exposé 10]. The *dilatation* $\lambda(\phi)$ of ϕ is defined to be $\lambda(\Phi)$. We call the quantities $\operatorname{ent}(\phi) = \log \lambda(\phi)$ and $\operatorname{Ent}(\phi) = |\chi(\Sigma)| \log \lambda(\phi)$ the *entropy* and *normalized entropy* of ϕ respectively, where $\chi(\Sigma)$ is the Euler characteristic of Σ .

If we fix Σ , the set of dilatations of pseudo-Anosovs defined on Σ is a closed discrete subset of **R**, see [7] for example. In particular there exists a minimum. We denote by $\delta(\Sigma) > 1$, the minimal dilatation of pseudo-Anosov elements in Mod(Σ). The minimal dilatations are determined in only a few cases. (See for example [9] which is a survey on minimal pseudo-Anosov dilatations.)

Let us set $\delta_{g,n} = \delta(\Sigma_{g,n})$ and $\delta_g = \delta_{g,0}$. We write $A \simeq B$ if there exists a universal constant c such that A/c < B < cA. Penner proved in [17] that $\log \delta_g \simeq \frac{1}{g}$. This work by Penner was a starting point for the study of the asymptotic behavior of the minimal dilatations on surfaces varying topology. Later it was proved by Hironaka-Kin [6] that $\log \delta_{0,n} \simeq \frac{1}{n}$, and by Tsai [22] that $\log \delta_{1,n} \simeq \frac{1}{n}$. See also Valdivia [23]. The following theorem of Tsai is in contrast with the cases of genera 0 and 1.

THEOREM 1.1 ([22]). For any fixed $g \ge 2$, there exists a constant c_g depending on g such that

$$\frac{1}{c_g} \cdot \frac{\log n}{n} < \log \delta_{g,n} < c_g \cdot \frac{\log n}{n} \quad for \ any \ n \ge 3.$$

In particular for any fixed $g \ge 2$, we have

$$\log \delta_{g,n} \asymp \frac{\log n}{n}.$$

The following question is due to Tsai.

QUESTION 1.2. What is the optimal constant c_g in Theorem 1.1?

One can also ask the following.

QUESTION 1.3. Given
$$g \ge 2$$
, does $\lim_{n \to \infty} \frac{n(\log \delta_{g,n})}{\log n}$ exist? What is its value?

This is an analogous question, posed by McMullen, which is asking whether $\lim_{g\to\infty} g \log \delta_g$ exists or not, see [15]. Toward Questions 1.2 and 1.3, we prove the following.

THEOREM 1.4. Given $g \ge 2$, there exists a sequence $\{n_i\}_{i=0}^{\infty}$ with $n_i \to \infty$ such that

$$\limsup_{i\to\infty}\frac{n_i\log\delta_{g,n_i}}{\log n_i}\leq 2.$$

Theorem 1.4 improves the previous upper bound on $\log \delta_{g,n}$ by Tsai. In fact for any $g \ge 2$, Tsai's examples in [22] yield the upper bound $\limsup_{n \to \infty} \frac{n(\log \delta_{g,n})}{\log n} \le 2(2g+1)$, which is proved by a similar computation in the proof of Theorem 1.4. As a corollary of Theorem 1.4, we have the following.

COROLLARY 1.5. Given
$$g \ge 2$$
, the following set

$$\begin{cases}
\frac{n}{\log n} \cdot \operatorname{ent}(\phi) \mid \phi \in \operatorname{Mod}(\Sigma_{g,n}) \text{ is pseudo-Anosov, } n \ge 1 \end{cases}$$

has an accumulation point 2.

To state other results which are related to Questions 1.2 and 1.3, we define a polynomial $B_{(q,p)}(t)$ for nonnegative integers g and p:

$$B_{(q,p)}(t) = t^{2p+1}(t^{2q+1}-1) + 1 - 2t^{p+q+1} - t^{2q+1}.$$

We shall see that there exists a unique real root $r_{(g,p)}$ greater than 1 of $B_{(g,p)}(t)$, and these satisfy

$$\lim_{p \to \infty} \frac{p \log r_{(g,p)}}{\log p} = 1$$

(Lemma 4.1). The root $r_{(q,p)}$ gives the following upper bound.

THEOREM 1.6. For $g \ge 2$ and $p \ge 0$, suppose that gcd(2g+1, p+g+1) = 1. Then

$$\delta_{g,2p+i} \le r_{(g,p)}$$
 for each $i \in \{1, 2, 3, 4\}$.

If g satisfies (*) in the next Theorem 1.7, then one can take the sequence $\{n_i\}_{i=0}^{\infty}$ in Theorem 1.4 to be the sequence $\{n\}_{n=1}^{\infty}$ of natural numbers.

THEOREM 1.7. Suppose that $g \ge 2$ satisfies

(*)
$$gcd(2g+1,s) = 1$$
 or $gcd(2g+1,s+1) = 1$ for each $0 \le s \le g$.

Then

$$\limsup_{n \to \infty} \frac{n(\log \delta_{g,n})}{\log n} \le 2$$

For example, (*) holds for g = 4 since 9 is relatively prime to 1,2,4 and 5; (*) does not hold for g = 7 because gcd(15,5) = 5 and gcd(15,6) = 3. We point out that infinitely many g's satisfy (*). In fact if 2g + 1 is prime, then 2g + 1 is relatively prime to s' for each $1 \le s' \le g + 1$.

COROLLARY 1.8. If 2g + 1 is prime for $g \ge 2$, then

$$\limsup_{n \to \infty} \frac{n(\log \delta_{g,n})}{\log n} \le 2$$

REMARK 1.9. One can simplify (*) in Theorem 1.7, since 2g + 1 is relative prime to 1,2 and g. In the case $g \ge 5$, (*) is equivalent to

(**) gcd(2g+1, s) = 1 or gcd(2g+1, s+1) = 1 or each $3 \le s \le g-2$.

Our results are proved by using the theory of fibered faces of hyperbolic and fibered 3-manifolds M, developed by Thurston [19], Fried [4], Matsumoto [14] and McMullen [15], see Section 2. We focus on a fibered face of a particular hyperbolic fibered 3-manifold, called the *magic manifold* N. This manifold is the exterior of the 3 chain link \mathscr{C}_3 , see Figure 1. Our examples of pseudo-Anosovs ϕ 's which provide the upper bounds in Theorems 1.4, 1.6 and 1.7 have the following property: The mapping torus M_{ϕ} of ϕ is homeomorphic to N, or the fibration of M_{ϕ} comes from a fibration of N by Dehn filling cusps along the boundary slopes of a fiber. An explicit construction of these examples is given by the first author, see [8, Example 4.8].

We turn to hyperbolic volumes of hyperbolic 3-manifolds. The set of volumes of hyperbolic 3-manifolds is a well-ordered closed subset in \mathbf{R} of order

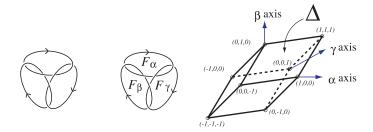


Fig. 1. (left) 3 chain link \mathscr{C}_3 . (center) F_{α} , F_{β} , F_{γ} . (right) Thurston norm ball U_N . (fibered face Δ is indicated.)

274

type ω^{ω} , see [18]. In particular if we fix a surface Σ , then there exists a minimum among volumes of hyperbolic Σ -bundles over the circle. The proofs of Theorems 1.4, 1.7 immediately imply the following.

PROPOSITION 1.10. For each $g \ge 2$, there exists a sequence $\{n_i\}_{i=0}^{\infty}$ with $n_i \to \infty$ such that the minimal volume of Σ_{g,n_i} -bundles over the circle is less than or equal to $vol(N) \approx 5.3334$, the volume of the magic manifold N. In particular, for any $g \ge 2$ satisfying (*) and any $n \ge 3$, the minimal volume of $\Sigma_{g,n}$ -bundles over the circle is less than or equal to vol(N).

We close the introduction by asking

QUESTION 1.11 (cf. Theorems 1.4 and 1.7). Does $\limsup_{n\to\infty} \frac{n(\log \delta_{g,n})}{\log n} \le 2$ hold for all fixed $g \ge 2$?

2. The Thurston norm and fibered 3-manifolds

Let *M* be an oriented hyperbolic 3-manifold with boundary ∂M (possibly $\partial M = \emptyset$). We recall the Thurston norm $\|\cdot\| : H_2(M, \partial M; \mathbf{R}) \to \mathbf{R}$. Let *F* be a finite union of oriented, connected surfaces. We define $\chi_-(F)$ to be

$$\chi_{-}(F) = \sum_{F_i \subset F} \max\{0, -\chi(F_i)\},$$

where F_i 's are the connected components of F and $\chi(F_i)$ is the Euler characteristic of F_i . The Thurston norm $\|\cdot\|$ is defined for an integral class $a \in H_2(M, \partial M; \mathbb{Z})$ by

$$||a|| = \min_{F} \{\chi_{-}(F) \,|\, a = [F]\},\$$

where the minimum ranges over all oriented surfaces F embedded in M. A surface F which realizes this minimum is called a *minimal representative* of a, denoted by F_a . Then $\|\cdot\|$ defined on integral classes admits a unique continuous extension $\|\cdot\|: H_2(M, \partial M; \mathbf{R}) \to \mathbf{R}$ which is linear on the ray through the origin. The unit ball U_M with respect to the Thurston norm is a compact, convex polyhedron. See [19] for more details.

Suppose that M is a surface bundle over the circle and let F be its fiber. The fibration determines a cohomology class $a^* \in H^1(M; \mathbb{Z})$, and hence a homology class $a \in H_2(M, \partial M; \mathbb{Z})$ by Poincaré duality. Thurston proved in [19] that there exists a top dimensional face Ω on ∂U_M such that a = [F] is an integral class of $int(C_{\Omega})$, where C_{Ω} is the cone over Ω with the origin and $int(C_{\Omega})$ is its interior. Moreover the minimal representative F_a for any integral class a in $int(C_{\Omega})$ becomes a fiber of the fibration associated to a. Such a face Ω is called a *fibered face*, and an integral class $a \in int(C_{\Omega})$ is called a *fibered* class. This work of Thurston tells us that if M has second Betti number greater than 1, then M provides infinitely many pseudo-Anosov monodromies defined on surfaces with variable topology.

The set of integral and rational classes of $int(C_{\Omega})$ are denoted by $int(C_{\Omega}(\mathbf{Z}))$ and $int(C_{\Omega}(\mathbf{Q}))$ respectively. When $a \in int(C_{\Omega}(\mathbf{Z}))$ is primitive, the associated fibration on M has a connected fiber represented by F_a . Let $\Phi_a : F_a \to F_a$ be the monodromy. Since M is hyperbolic, $\phi_a = [\Phi_a]$ is pseudo-Anosov. The *dilatation* $\lambda(a)$ and *entropy* ent $(a) = \log \lambda(a)$ are defined as the dilatation and entropy of ϕ_a respectively. The entropy defined on primitive fibered classes can be extended to rational classes by homogeneity. It is shown by Fried in [4] that $\frac{1}{\text{ent}} : int(C_{\Omega}(\mathbf{Q})) \to \mathbf{R}$ is concave, and in particular ent : $int(C_{\Omega}(\mathbf{Q})) \to \mathbf{R}$ admits a unique continuous extension

ent : $int(C_{\Omega}) \rightarrow \mathbf{R}$.

Moreover Fried proved that the restriction

$$\operatorname{ent}_{int(\Omega)} (= \operatorname{Ent}_{int(\Omega)}) : int(\Omega) \to \mathbf{R}$$

on the open face $int(\Omega)$ has the property that ent(a) goes to ∞ as $a \in int(\Omega)$ goes to a point on $\partial \Omega$. Thus we have a continuous function

$$\operatorname{Ent} = \| \cdot \| \operatorname{ent}(\cdot) : \operatorname{int}(C_{\Omega}) \to \mathbf{R}$$

which is constant on each ray in $int(C_{\Omega})$ through the origin.

These properties give us the following observation: Fix a hyperbolic fibered 3-manifold M with a fibered face Ω as above. For any compact set $\mathcal{D} \subset int(\Omega)$, there exists a constant $C = C_{\mathcal{D}} > 0$ satisfying the following. Let $a \in int(C_{\Omega})$ be any integral class of $H_2(M, \partial M; \mathbb{Z})$. The normalized entropy $\operatorname{Ent}(a)(=\operatorname{Ent}(\phi_a))$ is bounded by C from above whenever $\overline{a} \in \mathcal{D}$, where \overline{a} is the projection of a into $int(\Omega)$.

This observation enables us to investigate the following asymptotic behaviors of minimal dilatations.

- (1) $\limsup n \log \delta_{0,n} \le 2 \log(2 + \sqrt{3})$, see [6, 11].
- (2) $\limsup_{n \to \infty} n \log \delta_{1,n} \le 2 \log \lambda_0, \text{ where } \lambda_0 \approx 2.2966 \text{ is the largest real}$

root of $t^4 - 2t^3 - 2t + 1$, see [10].

(3) $g \log \delta_g \le \log(\frac{3+\sqrt{5}}{2})$, see [2, Appendix] and [5, 1, 12].

We note that for fixed $g \ge 2$, different methods for investigating the asymptotic behavior of $\delta_{g,n}$ varying *n* are necessary. Theorem 1.1 says that there exists no constant C > 0, independent of *n* so that $|\chi(\Sigma_{g,n})| \log \delta_{g,n} < C$. Thus if, for fixed $g \ge 2$, there exists a sequence of fibered classes $\{a_i\}$ with $a_i \in int(C_{\Omega}) \cap H_2(M, \partial M; \mathbb{Z})$ such that the fiber of the fibration associated to a_i is a surface of genus *g* having n_i boundary components with $n_i \to \infty$, then

the accumulation points of the sequence of projective classes $\{\bar{a}_i\}$ must lie on the boundary of Ω . To prove Theorems 1.4, 1.6 and 1.7, we pay special attention to the magic manifold N. In Section 4.3, we choose such a sequence of fibered classes $\{a_i\}$ of N carefully. We analyze the asymptotic behavior of $\lambda(a_i)$'s by using a technique given in Section 3.

The Teichmüller polynomial, developed by McMullen [15] is a certain element Θ_{Ω} (associated to the fibered face Ω) in the group ring ZG, where $G = H_1(M; \mathbb{Z})/\text{torsion}$, i.e, Θ_{Ω} is a finite sum

$$\Theta_{\Omega} = \sum_{g \in G} c_g g,$$

where c_g is an integer. For every fibered class $a \in int(C_{\Omega})$, the specialization of Θ_{Ω} at the cohomology class $a^* \in H^1(M; \mathbb{Z})$ is defined by

$$\Theta_{\Omega}^{(a^*)}(t) = \sum_{g \in G} c_g t^{a^*(g)}$$

which is a polynomial with a variable *t*. It is a result in [15] that for all fibered class $a \in int(C_{\Omega})$, the dilatation $\lambda(a)$ is equal to the largest real root of $\Theta_{\Omega}^{(a^*)}(t)$.

3. Roots of polynomials

This section concerns the asymptotic behavior of roots of families of polynomials. Let

$$g(t) = a_n t^{b_n} + a_{n-1} t^{b_{n-1}} + \dots + a_1 t^{b_1} + a_0$$

be a polynomial with real coefficients a_0, a_1, \ldots, a_n $(a_1, a_2, \ldots, a_n \neq 0)$, where g(t) is arranged in the order of descending powers of t. Let $\mathfrak{D}(g)$ be the number of variations in signs of the coefficients $a_n, a_{n-1}, \ldots, a_0$. For example if $g(t) = +t^4 + t^3 - 2t^2 + t - 1$, then $\mathfrak{D}(g) = 3$; if $h(t) = +t^4 + t^3 - 2t^2 + t + 1$, then $\mathfrak{D}(h) = 2$. Descartes's rule of signs (see [24]) says that the number of positive real roots of g(t) (counted with multiplicities) is equal to either $\mathfrak{D}(g)$ or less than $\mathfrak{D}(g)$ by an even integer.

LEMMA 3.1. Let $r \ge 0$, s > 0 and u > 0 be integers. Let

$$P_m(t) = t^{2m+r}(t^s - 1) + 1 - Q(t)t^m - t^u$$
$$= t^{2m+r+s} - t^{2m+r} - Q(t)t^m - t^u + 1$$

be a polynomial for each $m \in \mathbb{N}$, where Q(t) is a polynomial whose coefficients are positive integers. (Q(t) could be a positive constant.)

- (1) Suppose that t^{2m+r+s} is the leading term of $P_m(t)$. Then $P_m(t)$ has a unique real root λ_m greater than 1.
- (2) Given $0 < c_1 < 1$ and $c_2 > 1$, we have

$$m^{c_1/m} < \lambda_m < m^{c_2/m}$$
 for m large.

In particular

$$\lim_{m\to\infty}\frac{m\log\,\lambda_m}{\log\,m}=1.$$

(3) For any real numbers $q \neq 0$ and v, we have

$$\lim_{m \to \infty} \frac{(qm+v) \log \lambda_m}{\log(qm+v)} = q$$

PROOF. (1) Under the assumption on $P_m(t)$, we have $\mathfrak{D}(P_m) = 2$. By Descartes's rule of signs, the number of positive real roots of $P_m(t)$ is either 2 or 0. Since $P_m(0) = 1$ and $P_m(1) = -Q(1) < 0$, the number of positive real roots of $P_m(t)$ is exactly 2. Because $P_m(t)$ goes to ∞ as t does, $P_m(t)$ has a unique real root $\lambda_m > 1$.

(2) We have

$$P_m(t)t^{-(2m+r)} = t^s - 1 + t^{-(2m+r)} - Q(t)t^{-(m+r)} - t^{-(2m+r-u)}.$$

We define $f_m(t)$ and $g_m(t)$ such that $P_m(t)t^{-(2m+r)} = f_m(t) + g_m(t)$ as follows.

$$f_m(t) = t^s - 1 + t^{-(2m+r)},$$
 and
 $g_m(t) = Q(t)t^{-(m+r)} + t^{-(2m+r-u)}.$

We let $t = m^{c/m}$ for c > 0. Then

$$f_m(m^{c/m}) = (m^{c/m})^s - 1 + (m^{c/m})^{-(2m+r)}$$
$$= ((e^{\log m})^{c/m})^s - 1 + m^{-c(2+r/m)}$$
$$= e^{(sc \log m)/m} - 1 + m^{-c(2+r/m)}.$$

By Maclaurin expansion of $e^{(sc \log m)/m}$, we have

$$e^{(sc\log m)/m} = 1 + \frac{sc\log m}{m} + R_2,$$

where

$$R_2 = \frac{e^w}{2} \left(\frac{sc \log m}{m} \right)^2 \quad \text{for some } 0 < w < \frac{sc \log m}{m}.$$

278

Since $\frac{sc \log m}{m}$ goes to 0 as *m* goes to ∞ , we may assume that $\frac{e^w}{2} < B$ for some constant B > 0. Then

$$f_m(m^{c/m}) = \frac{sc \log m}{m} + R_2 + \frac{m^{1-c(2+r/m)}}{m}$$

$$< \frac{sc \log m}{m} + B\left(\frac{sc \log m}{m}\right)^2 + \frac{m^{1-c(2+r/m)}}{m}$$

$$= \frac{sc \log m}{m} + Bs^2c^2\left(\frac{\log m}{m}\right)^2 + \frac{m^{1-c(2+r/m)}}{m}$$

$$< \frac{sc \log m}{m} + Bs^2c^2\left(\frac{\log m}{m}\right) + \frac{m^{1-c(2+r/m)}}{m}$$

$$= \frac{(sc + Bs^2c^2)\log m + m^{1-c(2+r/m)}}{m}.$$

(The last inequality comes from $0 < \frac{\log m}{m} < 1$ for *m* large.) Thus

$$f_m(m^{c/m}) < \frac{(sc + Bs^2c^2)\log m + m^{1-c(2+r/m)}}{m}.$$
 (1)

The first equality $f_m(m^{c/m}) = \frac{sc \log m}{m} + R_2 + \frac{m^{1-c(2+r/m)}}{m}$ above together with $R_2 > 0$ and $\frac{m^{1-c(2+r/m)}}{m} > 0$ tells us that

$$f_m(m^{c/m}) > \frac{sc \log m}{m}.$$
 (2)

Recall that all coefficients of Q(t) (appeared in $P_m(t)$) are positive integers. If we write $Q(t) = \sum_{j=0}^{\ell} a_j t^j$, where $a_j \ge 0$, then $a_m(m^{c/m}) = O(m^{c/m})m^{-c(1+r/m)} + m^{-c(2+r/m-u/m)}$

$$= \left(\sum_{j=0}^{\ell} a_j m^{-c(1+r/m-j/m)}\right) + m^{-c(2+r/m-u/m)}.$$

Thus we obtain

$$g_m(m^{c/m}) = \frac{\left(\sum_{j=0}^{\ell} a_j m^{1-c(1+r/m-j/m)}\right) + m^{1-c(2+r/m-u/m)}}{m}.$$
 (3)

For the proof of the claim (1), it is enough to prove that for $0 < c_1 < 1$ and $c_2 > 1$, we have $f_m(m^{c_1/m}) < g_m(m^{c_1/m})$ and $f_m(m^{c_2/m}) > g_m(m^{c_2/m})$ for m large. First, suppose that $0 < c < \frac{1}{2}$. Let us consider how the following four terms grow.

log
$$m$$
, $m^{1-c(2+r/m)}$, $m^{1-c(1+r/m-j/m)}$ and $m^{1-c(2+r/m-u/m)}$. (4)

The first two terms appear in (1), and the last two are coming from (3). All four terms go to ∞ as *m* does, since the last three terms have the positive powers of *m*. Note that for any C > 0, we have $\log m < m^C$ for *m* large. Keeping this in mind, we observe that among the four terms in (4), $m^{1-c(1+r/m-j/m)}$ is dominant. This is because

$$1 - c\left(1 + \frac{r}{m} - \frac{j}{m}\right) > 1 - c\left(2 + \frac{r}{m} - \frac{u}{m}\right) \ge 1 - c\left(2 + \frac{r}{m}\right)$$

for *m* large. These imply that $f_m(m^{c/m}) < g_m(m^{c/m})$ holds for *m* large, since $m^{1-c(1+r/m-j/m)}$ appears in the numerator of $g_m(m^{c/m})$, see (3).

Next, we suppose that $\frac{1}{2} \le c < 1$. We can check that $m^{1-c(1+r/m-j/m)}$ is still dominant among the four in (4). (The second and fourth terms are bounded as *m* goes to ∞ .) Therefore we still have $f_m(m^{c/m}) < g_m(m^{c/m})$ for *m* large.

Finally we suppose that c > 1. Clearly, the last three terms in (4) go to 0 as m goes to ∞ . Thus the numerator of $g_m(m^{c/m})$, see (3), goes to 0 as m tends to ∞ . On the other hand, $f_m(m^{c/m}) > \frac{sc \log m}{m}$ holds (see (2)), and hence the numerator of

$$\frac{sc \log m + mR_2 + m^{1-c(2+r/m)}}{m} (= f_m(m^{c/m}))$$

goes to ∞ as *m* does. Thus $f_m(m^{c/m}) > g_m(m^{c/m})$ for *m* large. This completes the proof of the first part of the claim (2).

Taking logarithms on both sides of $m^{c_1/m} < \lambda_m < m^{c_2/m}$ yields

$$c_1 < \frac{m \log \lambda_m}{\log m} < c_2$$
 for *m* large.

Since $0 < c_1 < 1$ and $c_2 > 1$ are arbitrary, we have the desired limit. This completes the proof of the second half of the claim (2).

(3) By the claim (2),

$$\frac{c_1 \log m}{m} < \log \lambda_m < \frac{c_2 \log m}{m} \qquad \text{for } m \text{ large.}$$

Let us set n = qm + v. We substitute $m = \frac{n-v}{q}$ above:

$$\frac{c_1 \log\left(\frac{n-v}{q}\right)}{\frac{n-v}{q}} < \log \lambda_m < \frac{c_2 \log\left(\frac{n-v}{q}\right)}{\frac{n-v}{q}}.$$

Hence

$$\frac{qc_1(\log(n-v)-\log q)}{n-v} < \log \lambda_m < \frac{qc_2(\log(n-v)-\log q)}{n-v}.$$

We multiply all sides above by $\frac{n}{\log n} > 0$ (for *n* large). Then

$$\frac{qc_1n(\log(n-v)-\log q)}{(n-v)\log n} < \frac{n(\log \lambda_m)}{\log n} < \frac{qc_2n(\log(n-v)-\log q)}{(n-v)\log n}.$$

Note that $\frac{n(\log(n-v)-\log q)}{(n-v)\log n}$ goes to 1 as n (and hence m) goes to ∞ . Since $0 < c_1 < 1$ and $c_2 > 1$ are arbitrary, it follows that

$$\lim_{m \to \infty} \frac{n(\log \lambda_m)}{\log n} = \lim_{m \to \infty} \frac{(qm+v) \log \lambda_m}{\log(qm+v)} = q.$$

4. The magic 3-manifold N

Monodromies of fibrations on N have been studied in [10, 11, 12]. In Sections 4.1 and 4.2, we recall some results which tell us that the topology of fibered classes a and the actual value of $\lambda(a)$. In Section 4.3, we find a family of fibered classes $a_{(g,p)}$ of N with two variables g and p, and we shall prove that it is a suitable family to prove theorems in Section 1 (cf. Remark 4.4).

Recall that $\Sigma_{g,n}$ is an orientable surface of genus g with n punctures. Abusing the notation, we sometimes denote by $\Sigma_{g,n}$, an orientable surface of genus g with n boundary components.

4.1. Fibered face Δ . Let K_{α} , K_{β} and K_{γ} be the components of the 3 chain link \mathscr{C}_3 . They bound the oriented disks F_{α} , F_{β} and F_{γ} with 2 holes, see Figure 1. Let $\alpha = [F_{\alpha}]$, $\beta = [F_{\beta}]$, $\gamma = [F_{\gamma}] \in H_2(N, \partial N; \mathbb{Z})$. The set $\{\alpha, \beta, \gamma\}$ is a basis of $H_2(N, \partial N; \mathbb{Z})$. Figure 1 illustrates the Thurston norm ball U_N for N which is the parallelepiped with vertices $\pm \alpha$, $\pm \beta$, $\pm \gamma$, $\pm (\alpha + \beta + \gamma)$ ([19, Example 3 in Section 2]). Because of the symmetry of \mathscr{C}_3 , every top dimensional face of U_N is a fibered face.

We denote a class $x\alpha + y\beta + z\gamma \in H_2(N, \partial N; \mathbf{R})$ by (x, y, z). We pick a fibered face Δ with vertices $\alpha = (1, 0, 0), \ \alpha + \beta + \gamma = (1, 1, 1), \ \beta = (0, 1, 0)$ and $-\gamma = (0, 0, -1)$, see Figure 1. The open face $int(\Delta)$ is written by

 $int(\varDelta) = \{ (X, Y, Z) \mid X + Y - Z = 1, X > 0, Y > 0, X > Z, Y > Z \}.$

A class $a = (x, y, z) \in H_2(N, \partial N; \mathbf{R})$ is an element of $int(C_{\Delta})$ if and only if x > 0, y > 0, x > z and y > z. In this case, we have ||a|| = x + y - z.

Let a = (x, y, z) be a fibered class in $int(C_A)$. The minimal representative of this class is denoted by F_a or $F_{(x,y,z)}$. We recall some formula which tells us that the number of the boundary components of F_a . We denote the tori $\partial \mathcal{N}(K_{\alpha})$, $\partial \mathcal{N}(K_{\beta})$, $\partial \mathcal{N}(K_{\gamma})$ by T_{α} , T_{β} , T_{γ} respectively, where $\mathcal{N}(K)$ is a regular neighborhood of a knot K in S³. Let us set $\partial_{\alpha}F_{(x,y,z)} = \partial F_{(x,y,z)} \cap T_{\alpha}$ which consists of the parallel simple closed curves on T_{α} . We define the subsets $\partial_{\beta}F_{(x,y,z)}$, $\partial_{\gamma}F_{(x,y,z)} \subset \partial F_{(x,y,z)}$ in the same manner. By [11, Lemma 3.1], the number of the boundary components

$$\#(\partial F_{(x,y,z)}) = \#(\partial_{\alpha}F_{(x,y,z)}) + \#(\partial_{\beta}F_{(x,y,z)}) + \#(\partial_{\gamma}F_{(x,y,z)})$$

is given by

$$#(\partial F_{(x,y,z)}) = \gcd(x, y+z) + \gcd(y, z+x) + \gcd(z, x+y)$$
(5)

where $\#(\partial_{\alpha}F_{(x,y,z)}) = \gcd(x, y+z), \ \#(\partial_{\beta}F_{(x,y,z)}) = \gcd(y, z+x), \ \#(\partial_{\gamma}F_{(x,y,z)}) = \gcd(z, x+y) \text{ and } \gcd(0, w) \text{ is defined by } |w|.$

4.2. Dilatations and stable foliations of fibered classes *a*'s. The Teichmüller polynomial associated to the fibered face Δ is computed in [11, Section 3.2], and it tells us that the dilatation $\lambda_{(x,y,z)}$ of a fibered class $(x, y, z) \in int(C_{\Delta})$ is the largest real root of

$$f_{(x, y, z)}(t) = t^{x+y-z} - t^x - t^y - t^{x-z} - t^{y-z} + 1,$$

see [11, Theorem 3.1]. (In fact, $\lambda_{(x,y,z)}$ is a unique real root greater than 1 of $f_{(x,y,z)}(t)$ by Descartes's rule of signs.)

Let $\Phi_{(x,y,z)}: F_{(x,y,z)} \to F_{(x,y,z)}$ be the monodromy of the fibration associated to a primitive class $(x, y, z) \in int(C_d)$. Let $\mathscr{F}_{(x,y,z)}$ be the stable foliation of the pseudo-Anosov $\Phi_{(x,y,z)}$. The components of $\partial_{\alpha}F_{(x,y,z)}$ (resp. $\partial_{\beta}F_{(x,y,z)}$, $\partial_{\gamma}F_{(x,y,z)}$) are permuted cyclically by $\Phi_{(x,y,z)}$. In particular the number of prongs of $\mathscr{F}_{(x,y,z)}$ at a component of $\partial_{\alpha}F_{(x,y,z)}$ (resp. $\partial_{\beta}F_{(x,y,z)}$, $\partial_{\gamma}F_{(x,y,z)}$) is independent of the choice of the component. By [12, Proposition 3.3], the stable foliation $\mathscr{F}_{(x,y,z)}$ has the following properties.

- Each component of $\partial_{\alpha} F_{(x,y,z)}$ has $x/\gcd(x, y+z)$ prongs.
- Each component of $\partial_{\beta} F_{(x,y,z)}$ has $y/\gcd(y, x+z)$ prongs.
- Each component of $\partial_{\gamma} F_{(x,y,z)}$ has $(x + y 2z)/\gcd(z, x + y)$ prongs.
- $\mathscr{F}_{(x,y,z)}$ does not have singularities in the interior of $F_{(x,y,z)}$.

4.3. Proofs of theorems. Let a = (1, 1, 0) and b = (0, 1, 1). For $g \ge 0$ and $p \ge 0$, define a fibered class $a_{(a,p)}$ as follows.

$$a_{(g,p)} = (p+g+1)\mathfrak{a} + (p-g)\mathfrak{b} = (p+g+1, 2p+1, p-g) \in int(C_{\mathcal{A}}).$$

The class $a_{(g,p)}$ is primitive if and only if 2g + 1 and p + g + 1 are relatively prime. One can check the identity

$$B_{(g,p)}(t) = f_{(p+g+1,2p+1,p-g)}(t)$$

(see Section 1 for the definition of $B_{(g,p)}(t)$). We denote by $r_{(g,p)}$, the dilatation $\lambda(a_{(g,p)})$ of the fibered class $a_{g,p}$. (Thus the dilatation $r_{(g,p)} = \lambda(a_{(g,p)})$ of $a_{(g,p)}$ is a unique real root of $B_{(g,p)}(t)$ which is greater than 1, see Section 4.2.)

LEMMA 4.1. We fix $g \ge 0$. Given $0 < c_1 < 1$ and $c_2 > 1$, we have

$$p^{c_1/p} < r_{(q,p)} < p^{c_2/p}$$
 for p large.

In particular

$$\lim_{p \to \infty} \frac{p \log r_{(g,p)}}{\log p} = 1.$$

PROOF. Apply Lemma 3.1 to the polynomial $B_{(q,p)}(t)$.

LEMMA 4.2. Suppose that $a_{(g,p)}$ is primitive. The minimal representative $F_{a_{(g,p)}}$ is a surface of genus g with 2p + 4 boundary components, and the stable foliation $\mathscr{F}_{a_{(g,p)}}$ has the following properties. If p + g is odd (resp. even), then $\#(\partial_{\alpha}F_{a_{(g,p)}}) = 2$ (resp. 1) and $\#(\partial_{\gamma}F_{a_{(g,p)}}) = 1$ (resp. 2). A component of $\partial_{\alpha}F_{a_{(g,p)}}$ has $\frac{p+g+1}{2}$ prongs (resp. (p+g+1) prongs), and a component of $\partial_{\gamma}F_{a_{(g,p)}}$ has (p+3g+2) prongs (resp. $\frac{p+3g+2}{2}$ prongs).

PROOF. By (5), we have that $\#(\partial_{\beta}F_{a_{(a,p)}}) = 2p + 1$. We have

$$\#(\partial_{\alpha}F_{a_{(a,p)}}) = \gcd(p+g+1, 3p-g+1) = \gcd(p+g+1, 2(2g+1)).$$

Since $a_{(g,p)}$ is primitive, p + g + 1 and 2g + 1 must be relatively prime. Hence $\#(\partial_{\alpha}F_{a_{(g,p)}}) = 1$ (resp. 2) if p + g is even (resp. odd). Let us compute $\#(\partial_{\gamma}F_{a_{(g,p)}})$. We have

$$\#(\partial_{\gamma}F_{a_{(a,p)}}) = \gcd(3p+g+2, p-g) = \gcd(2(2g+1), p-g).$$

Since gcd(2g+1, p-g) = gcd(2g+1, p+g+1) = 1, we have that $\#(\partial_{\gamma}F_{a_{(g,p)}}) = 2$ (resp. 1) if p-g is even (resp. odd), equivalently p+g is even (resp. odd). The genus of $F_{a_{(g,p)}}$ is computed from the identities $||a_{(g,p)}|| (= |\chi(F_{a_{(g,p)}})|) = 2p + 2g + 2$ and $\#(\partial F_{a_{(g,p)}}) = 2p + 4$.

The singularity data of $\mathscr{F}_{a_{(g,p)}}$ is obtained from the formula at the end of Section 4.2.

By Lemma 4.2, it is straightforward to prove the following.

LEMMA 4.3. Suppose that $a_{(g,p)}$ is primitive. Then $(g, p) \notin \{(0,0), (0,1), (1,0)\}$ if and only if $\mathscr{F}_{a_{(g,p)}}$ does not have a 1 prong on each component of $\partial_{\alpha}F_{a_{(g,p)}} \cup \partial_{\gamma}F_{a_{(g,p)}}$. In particular if $g \ge 2$ and $p \ge 0$, then $\mathscr{F}_{a_{(g,p)}}$ does not have a 1 prong on each component of $\partial_{\alpha}F_{a_{(g,p)}} \cup \partial_{\gamma}F_{a_{(g,p)}}$.

We are now ready to prove theorems in Section 1.

PROOF OF THEOREM 1.4. There exists a sequence of primitive fibered classes $\{a_{(g,p_i)}\}_{i=0}^{\infty}$ with $p_i \to \infty$. (In fact, if we take $p_i = (g+1) + (2g+1)i$, then 2g+1 and $p_i + g + 1$ are relatively prime. Hence $a_{(g,p_i)}$ is primitive.) Then N is a $\Sigma_{g,2p_i+4}$ -bundle over the circle whose monodromy of the fibration has the dilatation $r_{(g,p_i)}$. Therefore $\delta_{g,2p_i+4} \leq r_{(g,p_i)}$. If we set $n_i = 2p_i + 4$, then

$$\frac{n_i \log \delta_{g,n_i}}{\log n_i} \le \frac{n_i \log r_{(g,p_i)}}{\log n_i} = \frac{(2p_i + 4)r_{(g,p_i)}}{\log(2p_i + 4)}.$$

The right hand side goes to 2 as *i* goes to ∞ , see Lemmas 3.1(3) and 4.1. This completes the proof.

PROOF OF THEOREM 1.6. The monodromy $\Phi_{a_{(g,p)}}$ of the fibration associated to the primitive fibered class $a_{(g,p)}$ is defined on the surface of genus g with 2p + 4 boundary components. It has the dilatation $r_{(g,p)}$, and hence $\delta_{g,2p+4} \leq r_{(g,p)}$.

Now let us prove $\delta_{g,2p+1} \leq r_{(g,p)}$. The fibration associated to $a_{(g,p)}$ extends naturally to a fibration on the manifold obtained from N by Dehn filling two cusps specified by the tori T_{α} and T_{γ} along the boundary slopes of the fiber. Then $\Phi_{a_{(g,p)}} : F_{a_{(g,p)}} \to F_{a_{(g,p)}}$ extends to the monodromy $\hat{\boldsymbol{\Phi}} : \hat{F} \to \hat{F}$ of the extended fibration, where the extended fiber \hat{F} is obtained from $F_{a_{(g,p)}}$ by filling each disk bounded by each component of $\partial_{\alpha}F_{a_{(g,p)}} \cup \partial_{\gamma}F_{a_{(g,p)}}$. Thus \hat{F} has the genus g with 2p + 1 boundary components, see Lemma 4.2. By Lemma 4.3, $\mathscr{F}_{a_{(g,p)}}$ does not have 1 prong at each component of $\partial_{\alpha}F_{a_{(g,p)}} \cup \partial_{\gamma}F_{a_{(g,p)}}$. Hence $\mathscr{F}_{a_{(g,p)}}$ extends canonically to the stable foliation $\hat{\mathscr{F}}$ of $\hat{\Phi}$. Therefore $\hat{\phi} = [\hat{\Phi}]$ is pseudo-Anosov with the same dilatation as $\Phi_{a_{(g,p)}}$. This implies that $\delta_{g,2p+1} \leq$ $r_{(g,p)}$.

The proofs of the rest of the bounds $\delta_{g,2p+2} \leq r_{(g,p)}$ and $\delta_{g,2p+3} \leq r_{(g,p)}$ are similar. In fact, the extended fiber of the fibration on the manifold obtained from N by Dehn filling a cusp specified by T_{α} or T_{γ} along the boundary slope of the fiber has the genus g with 2p + 2 or 2p + 3 boundary components, see Lemma 4.2. Lemma 4.3 ensures that the extended monodromy is pseudo-Anosov with the same dilatation as $\Phi_{a_{(g,p)}}$. **PROOF OF THEOREM 1.7.** By Theorem 1.6 together with the assumption (*) in Theorem 1.7, we have that for any $p \ge 0$ and for $j \in \{3, 4\}$,

$$\delta_{g,2p+j} \le r_{(g,p)}$$
 or $\delta_{g,2p+j} \le r_{(g,p+1)}$.

Thus

$$\frac{(2p+j)\log \delta_{g,2p+j}}{\log(2p+j)} \le \frac{(2p+j)\log r_{(g,p)}}{\log(2p+j)} \quad \text{or} \\ \frac{(2p+j)\log \delta_{g,2p+j}}{\log(2p+j)} \le \frac{(2p+j)\log r_{(g,p+1)}}{\log(2p+j)}.$$

By Lemma 3.1, it is easy to see that the both right hand sides in the above two inequalities go to 2 as p goes to ∞ . Thus

$$\limsup_{p \to \infty} \frac{(2p+j)\log \delta_{g,2p+j}}{\log(2p+j)} \le 2.$$

Since this holds for $j \in \{3, 4\}$, the proof is done.

PROOF OF PROPOSITION 1.10. We prove the claim in the second half. (The proof in the first half is similar.) If $g \ge 2$ satisfies (*), then for any $p \ge 0$ there exist a $\Sigma_{g,2p+3}$ -bundle and a $\Sigma_{g,2p+4}$ -bundle over the circle obtained from N, see proof of Theorem 1.7. More precisely such a bundle is homeomorphic to N or it is obtained from N by Dehn filling cusps along the boundary slopes of the fiber. Thus Proposition 1.10 holds from the result which says that the hyperbolic volume decreases after Dehn filling, see [16, 18].

REMARK 4.4. To address Question 1.3, we explored fibered classes of the magic manifold whose dilatations have a suitable asymptotic behavior. We found a family of primitive fibered classes $a_{(g,p)}$ by computer. By Lemma 4.2, most of the components of $\partial F_{a_{(g,p)}}$ lie on the torus T_{β} . The pseudo-Anosov stable foliation associated to $a_{(g,p)}$ has the property that each component of $\partial_{\beta}F_{a_{(g,p)}}$ has 1 prong. The striking property of $a_{(g,p)}$ is that the slope of the components of $\partial_{\beta}F_{a_{(g,p)}}$ is exactly equal to -1. Moreover, for any fixed g, the projective class $\bar{a}_{(g,p)}$ goes to a single point $(\frac{1}{2}, 1, \frac{1}{2}) \in \partial \Delta$ as p goes to ∞ . It is proved by Martelli and Petronio [13] that the manifold N(-1) obtained from N by Dehn filling a cusp along the boundary slope -1 is not hyperbolic. The property that each component of $\partial_{\beta}F_{a_{(g,p)}}$ has 1 prong can also be seen from the fact hat N(-1) is a non hyperbolic manifold.

Acknowledgement

We would like to thank Eriko Hironaka for helpful conversations and comments.

References

- J. W. Aaber and N. M. Dunfield, Closed surface bundles of least volume, Algebr. Geom. Topol. 10 (2010), 2315–2342.
- [2] I. Agol, C. J. Leininger and D. Margalit, Pseudo-Anosov stretch factors and homology of mapping tori, preprint (2014), arXiv:1409.6983(math.GT)
- [3] A. Fathi, F. Laudenbach and V. Poenaru, Travaux de Thurston sur les surfaces, Astérisque, 66–67, Société Mathématique de France, Paris (1979).
- [4] D. Fried, Flow equivalence, hyperbolic systems and a new zeta function for flows, Comment. Math. Helv. 57 (1982), 237–259.
- [5] E. Hironaka, Small dilatation mapping classes coming from the simplest hyperbolic braid, Algebr. Geom. Topol. 10 (2010), 2041–2060.
- [6] E. Hironaka and E. Kin, A family of pseudo-Anosov braids with small dilatation, Algebr. Geom. Topol. 6 (2006), 699–738.
- N. V. Ivanov, Stretching factors of pseudo-Anosov homeomorphisms, Journal of Soviet Mathematics, 52 (1990), 2819–2822, which is translated from Zap. Nauchu. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 167 (1988), 111–116.
- [8] E. Kin, Dynamics of the monodromies of the fibrations on the magic 3-manifold, New York J. Math. 21 (2015), 547–599.
- [9] E. Kin, Notes on pseudo-Anosovs with small dilatations coming from the magic 3-manifold, Representation spaces, twisted topological invariants and geometric structures of 3-manifolds, RIMS Kokyuroku 1836 (2013), 45–64.
- [10] E. Kin, S. Kojima and M. Takasawa, Minimal dilatations of pseudo-Anosovs generated by the magic 3-manifold and their asymptotic behavior, Algebr. Geom. Topol. 13 (2013), 3537–3602.
- [11] E. Kin and M. Takasawa, Pseudo-Anosov braids with small entropy and the magic 3-manifold, Comm. Anal. Geom. 19 (4) (2011), 705–758.
- [12] E. Kin and M. Takasawa, Pseudo-Anosovs on closed surfaces having small entropy and the Whitehead sister link exterior, J. Math. Soc. Japan 65 (2) (2013), 411–446.
- [13] B. Martelli and C. Petronio, Dehn filling of the "magic" 3-manifold, Comm. Anal. Geom. 14 (2006), 969–1026.
- [14] S. Matsumoto, Topological entropy and Thurston's norm of atoroidal surface bundles over the circle, J. Fac. Sci., Univ. of Tokyo, Section IA. Mathematics 34 (1987), 763–778.
- [15] C. McMullen, Polynomial invariants for fibered 3-manifolds and Teichmüler geodesic for foliations, Ann. Sci. Éc. Norm. Supér. 33 (2000), 519–560.
- [16] W. D. Neumann and D. Zagier, Volumes of hyperbolic three-manifolds, Topology 24 (3) (1985), 307–332.
- [17] R. C. Penner, Bounds on least dilatations, Proc. Amer. Math. Soc. 113 (1991), 443-450.
- [18] W. Thurston, The geometry and topology of 3-manifolds, Lecture Notes, Princeton University (1979).
- [19] W. Thurston, A norm of the homology of 3-manifolds, Mem. Amer. Math. Soc. 339 (1986), 99–130.
- [20] W. Thurston, On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Amer. Math. Soc. 19 (1988), 417–431.
- W. Thurston, Hyperbolic structures on 3-manifolds II: Surface groups and 3-manifolds which fiber over the circle, preprint, arXiv:math/9801045
- [22] C. Y. Tsai, The asymptotic behavior of least pseudo-Anosov dilatations, Geom. Topol. 13 (2009), 2253–2278.

The boundary of a fibered face of the magic 3-manifold

- [23] A. D. Valdivia, Sequences of pseudo-Anosov mapping classes and their asymptotic behavior, New York J. Math. 18 (2012), 609–620.
- [24] X. Wang, A simple proof of Descartes's rule of signs, Amer. Math. Monthly 111 (6) (2004), 525–526.

Eiko Kin Department of Mathematics, Graduate School of Science Osaka University Toyonaka, Osaka 560-0043, Japan E-mail: kin@math.sci.osaka-u.ac.jp URL: http://www.math.sci.osaka-u.ac.jp/~kin/

Mitsuhiko Takasawa Department of Mathematical and Computing Sciences Tokyo Institute of Technology Ohokayama, Meguro, Tokyo 152-8552, Japan E-mail: takasawa@is.titech.ac.jp URL: http://www.is.titech.ac.jp/~takasawa/