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ABSTRACT. This note gives a new sufficient condition of the total energy decay for the
solutions of the initial-boundary value problems to the dissipative wave equations in
exterior domains with non-compactly supported initial data. That condition provides
an example of the damping terms of the dissipative wave equations with the total energy
decay which has a smaller amplitude than those of all examples derived from a sufficient
condition in Mochizuki and Nakazawa [Publ. Res. Inst. Math. Sci. 32 (1996), 401-414].

1. Introduction and the result

We shall consider the initial-boundary value problems for the dissipative
wave equations

L{w] = a2w(t,x) — Aow(t, x) + b(t,x)0,w(t,x) =0 in [0,00) x Q,
w(t,x) =0 in [0,00) X 0Q, (1)
w(0,x) = wi(x), Jw(0,x) =wy(x) in Q,

where Q is an unbounded domain of R” with smooth boundary dQ2 such that
0¢ Q and b is a smooth function in [0, 0) x © with bounded derivatives of all
orders in [0, 0) x Q.

N indicates the set of all natural numbers. For each x € R”, r denotes
the distance of the point x from the origin. For each solution w of (1), E(#;w)
designates the total energy of w at time 7, that is, E(#;w) = ||w,(¢, ')||22(9) +
1V ow(z, )| Hiz(g). In Section 3, we shall use the j times iterated exponential
e; and the j times iterated logarithm logm (s), j=0,1,..., videlicet, ¢y = 1,
e = e and logl¥(s) =5, logl!(s) = log(log!~(s)).

Sufficient conditions of the total energy decay for the solutions of the
Cauchy problems or the initial-boundary value problems to the equation
L[w] =0 in unbounded domains with compactly supported initial data have
been studied by many authors, for example see (2], [8], [7] and [1]. We would
like to refer to a series of works by Wirth about wave equations with time-
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dependent dissipation, for example see [9] and [10]. After the work [4],
Mochizuki and Nakazawa [5] proved that the total energy of the solutions
for the equation (1) with non-compactly supported initial data decays, if b, < 0
in [0,00) x Q and b,/ H[kzo log"(ex +14r) < b(t,x) <b; with some keN
and positive constants by, b;. The purpose of this paper is to improve their
result. We remark that taking over the work [5], Mochizuki and Nakazawa [6]
showed that if n > 3, the complement of Q is star-shaped and the damping
term b satisfies conditions similar to those stated above only near infinity, then
the total energy for the equation (1) decays.

For simplicity we shall suppose compactness and smoothness of initial
data, but our results hold for each initial data in some weighted energy spaces,
see Remarks 1 and 3.

THEOREM 1. Let b, <0 hold in [0,00) x Q and let one can find a positive
and decreasing function f e C?*([0,00)) so that f*+ f' <0 on [0,0) and
b(t,x) =2f(t+r) in [0,00) x Q. Then for each compactly supported smooth
initial data we have with a positive constant C depending only on initial data

and f

E(t,w)<C exp(— J(:f ds) on [0, 00). (2)

In particular, E(t;w) decays as time tends to infinity, if f is not integrable
on (0, 00).

We note that the same inequality as (2) is shown in [5] by assuming some
conditions on the second derivative of f besides the hypothesis of Theorem 1,
see [5, Section 2]. We mention that [3], [4] and [5] give sufficient conditions
of non-decay of the total energy for the solutions to the equation L{w] = 0, see
[3, Theorem 1], [4, Theorem 27.3] and (5, Theorem 2].

2. Proof of the theorem

We shall first show the following lemma in order to obtain an weighted
energy inequality to the equation (1) needed for the proof of Theorem 1.

LEmMMA 1. Under the assumption in Theorem 1, for each solution w of (1)
with compactly supported smooth initial data we have

J X(t,x)dx < J X (0, x)dx for all te]0, ) (3)
Q Q

where X =27 Yp(w2 + [V.ow|*) + gww + 21 0,(b — 9, /o)w*  and  ¢(1,x) =
exp( OHr f ds) with the function [ in Theorem 1.
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ProoF. We see from the antecedents of b and f that

(Pt(t7 X) = (p(l, X)f(l + r) >0, Vx(p(t’ X) = (Pt(ta x)x/r,
{ Pu(t;x) = p(t, X)(f> + f) (1 +1) <0, (pb), <0, (4)
A:0,(1,X) = 0, (1, X) + 0, (1, X)(n = 1) /1

in [0,00) x 2. By using L[w] =0 and the last equality of (4) we have
X =V, - Y+Z in [0,00) x 2 (5)

where Y = pw,V,w + o wVw —2"'w2V.p, and Z = ¢p{(3¢,)/(2¢) — b}w? —
271, |Vow]? = (Ve - Vow)w, + 27Yp,b) w? + (n — 1)(2r) 'p,w2. On the other
hand, (4), the Schwarz inequality and the hypothesis about b yield Z <0 in
[0,00) x 2. Hence, by integrating both sides of (5) over Q and applying the
finite propagation speed for the equation (1) and the divergence theorem, it
follows that the integral of X over € monotonically decreases on time. The
proof is complete. O

ProOF OF THEOREM 1. The Schwarz inequality and (4) give

1 1 .
x> o+ W)+ 30, (522w in 0,0) x 2

1
XO.) < o0 + WP+ 30 (b + 2202 g
2 (ﬂ (pt =0
Accordingly, by using the hypothesis about » and (4) we have
1 t
X > 1 exp([ fds) (w2 + [Vow]?) in [0,00) x Q, (6)
0

X(0,x) < eXp(J f dS> (w3 + Vw4 (B(0,x) £ (r) = £/(r))wi] (7)

0
in Q. Therefore, from Lemma 1 we can conclude that this theorem is true.
]

REMARK 1. (6) and (7) imply that the estimate (2) holds for each initial
data in the Hilbert space which is the completion of C§(L2) x C° () with
respect to the norm

1, 0) 11 = (ko 2y + 1K1V stal [ 2y + N (B0, X).1 () = £ (1)) 2ull 2
where k(x) = exp((1/2) [y / ds).

We remark that the same inequalities as that in Lemma 1 are shown in
[4, Theorem 27.1] and [5, Lemma 2.1]. In [4], r~"=D/2y (+("=D/2) is used
instead of V., w.
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REMARK 2. Theorem 1 holds for the Cauchy problems in the whole space
under the same condition as that in Theorem 1. Indeed, in the proof of Lemma
1 by taking a positive number ¢, by integrating V- Y over {r > &} instead of Q
and by letting ¢ — +0 we see that (3) is correct in the the whole space, because
Jor each t€[0,00) the integral of V- Y over {r > e} converges to zero when
n>2 and w(1,0)%p,(t,0) (<0) when n=1 as &¢— +0. Hence the same
argument as that of the proof of Theorem 1 verifies that (2) is valid in the
whole space.

3. An example of the damping terms

We shall state a new example of the damping terms of the equation (1)
with the total energy decay below.

PROPOSITION 1. For each number y € (0,1] one can find a damping term b
so that we have

0 < b(t,x) <ynm (8)

when t +r € [ex, 00), k = 2, and for each compactly supported smooth initial data
we have with a positive constant C depending only on initial data

E(t;w) < Cexp(—y(k — 2)/40) when t € [ex, ), k > 2. 9)

In particular, E(t;w) decays as time tends to infinity. In addition, for each
o€ N and e N" we have with a positive constant C depending only on o, f

o‘éﬁblx l+r — Il 10
ozelb(s, )| < Mt (10)

when t+r € [ex, ), k> 2.

Proor. Let y be a smooth function on R such that 0 <y <1 onR, y =0
on (—oo,1] and y =1 on [2,00). Let us put

g(s) = (Eh du + 1)1, = exp “ Z;{ (u/er) ﬁ

n [0,00). Then we see that g and /& are smooth, that 4 >1 on [0,c0) and
that

/

o = —hg’, W)=k xs/en ]
=1

=0 log

—
B
N
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n [0,00). Hence integration by parts give
J h du = sh(s) — J uh'(u)du < sh(s) on [0, c0), (12)
0 0

and by using the second equality of (11) we have

JS Siﬁ Jhdu

0

by means of log"l(e;) = ¢; 4 for j >k

< Z(1/e)1—1j h du = J h du (13)
=1 0 e — 1
n [0,00). Consequently it follows from (12) and (13) that we have
S <9l <3 1,0) (14)
2 sh(s) =9 = sh(s) %)

On the other hand, the Taylor expansion formula and induction on / induce
logm(Zek) < E’k l+10g( )Hl’ k(1 1)5’1 , k>1>2, and especially log[](Zez) <

1 +log(2)e "=, IeN. Accordingly, on [ex,ert1], k > 2, we have
k=1 I k=1
5 log
h(s) = exp J
) l; 2e,/]'110g ] ] H 1 +log(2 -1
k=l =
= exp[-(log(2)e/(e — 1)] [ [ 1og"(s) = 35 H
=1 I=1

s

h(s) < exp [ZJ ﬁ

e j=0 log

Therefore (14) deduces

on [ek,€k+1}, k>2 (15)

and hence we get
) k72 s
J g du > —— on [ex, o0), J gdu<20(k—2) on [eyer], (16)
e )

k>2. Tt follows inductively from (11) that for each jeNU{0} we have
|k (s)| < Cj1h(s)s™ with a positive constant C;; on (0,00). Moreover, we
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see inductively that (gz)@, j € NU{0}, can be written in the form of a linear
combinations of g” Hé:o(h@)l" where p=2,...,j+2, h,...,[;eNU {0},
=0, >/ oly=p—2 and >/ (qly=j—(p—2). Hence for each ie
NU{0} we get from (11) and the Leibniz formula

Jj+2
| z+1 (5)| < szzh Z (s)"h(s)"~ 2-0=(p-2))

p=2
Consequently, owing to (14) and (15), we obtain

k—1

|g(i+l( |<C3S (i+1) H
lolog s)

on [eka OO), k> 2; (17)

where C;, and C;3 are positive constants depending only on i. For each
number y € (0, 1] let us put b(t,x) = 2f(t+r) in [0, 00) x Q with f = (y/20)g.
Then we see that b satisfies the hypothesis of Theorem 1. Moreover, (15)
implies (8) and (17) implies (10). The estimate (9) is derived from (16) and
Theorem 1. The proof is complete. O

REMARK 3. When n #2, the estimate (9) is valid for each initial data
in the Hilbert space which is the completion of Ci°(Q) x C;°(Q) with respect
to the norm ||(u,v)|| = [|kv|| 2q) + [IkIVsuul |20y where k(x) = exp( [y f ds/2).
Indeed, for each x € Q with r € [ex, er1], k =2, the first equality of (11) gives

K(x)2(6(0,x)£ () — £1(r) < S exp (ij g ds> (6()* + h(P)g(n)?)
by applying (14)

1 C1 exp(zloj ds) (r)

by using (15) and the second inequality of (16)

<3C16Xp lﬁ ! <3C1
1 - 7, =-°Ci3
-1 log (er) r?

where Cy = exp([,> g ds/20). Hence 0 <k(x)(b(0,x)f(r)— f’(r))l/2 < Cyr!
holds in Q for some positive constant C,.  Consequently we get from the Hardy

inequality |[k(b(0,x)/(r) = f'(n) " ull ) < 2C2(n = 2) || IVtdl [l ) Sor all
ue Cy (L) which deduces the conclusion from Remark 1.

REMARK 4. Proposition 1 for the Cauchy problems in the whole space is
valid. Indeed, let us set b(t,x) = (y/10)g(t +<x)>) and f(s)= (y/20)g(s+ 1)
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where {xy = /1 +1? and g is the function defined in the proof of Proposition 1.
Then we see that b(t,x) = 2f(t+r) in [0,00) x R" and the other assumptions of
Theorem 1 (in the whole space) are satisfied. Hence the same statement in the
whole space as that of Proposition 1 is derived from an argument similar to that
of the proof of Proposition 1.
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