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Abstract. This note gives a new su‰cient condition of the total energy decay for the

solutions of the initial-boundary value problems to the dissipative wave equations in

exterior domains with non-compactly supported initial data. That condition provides

an example of the damping terms of the dissipative wave equations with the total energy

decay which has a smaller amplitude than those of all examples derived from a su‰cient

condition in Mochizuki and Nakazawa [Publ. Res. Inst. Math. Sci. 32 (1996), 401–414].

1. Introduction and the result

We shall consider the initial-boundary value problems for the dissipative

wave equations

L½w� ¼ q2t wðt; xÞ � Dxwðt; xÞ þ bðt; xÞqtwðt; xÞ ¼ 0 in ½0;yÞ �W;

wðt; xÞ ¼ 0 in ½0;yÞ � qW;

wð0; xÞ ¼ w1ðxÞ; qtwð0; xÞ ¼ w2ðxÞ in W;

8><
>: ð1Þ

where W is an unbounded domain of Rn with smooth boundary qW such that

0 B W and b is a smooth function in ½0;yÞ �W with bounded derivatives of all

orders in ½0;yÞ �W.

N indicates the set of all natural numbers. For each x A Rn, r denotes

the distance of the point x from the origin. For each solution w of (1), Eðt;wÞ
designates the total energy of w at time t, that is, Eðt;wÞ ¼ kwtðt; �Þk2L2ðWÞ þ
k j‘xwðt; �Þj k2L2ðWÞ. In Section 3, we shall use the j times iterated exponential

ej and the j times iterated logarithm log½ j�ðsÞ, j ¼ 0; 1; . . . , videlicet, e0 ¼ 1,

el ¼ eel�1 and log½0�ðsÞ ¼ s, log½l �ðsÞ ¼ logðlog½l�1�ðsÞÞ.
Su‰cient conditions of the total energy decay for the solutions of the

Cauchy problems or the initial-boundary value problems to the equation

L½w� ¼ 0 in unbounded domains with compactly supported initial data have

been studied by many authors, for example see [2], [8], [7] and [1]. We would

like to refer to a series of works by Wirth about wave equations with time-
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dependent dissipation, for example see [9] and [10]. After the work [4],

Mochizuki and Nakazawa [5] proved that the total energy of the solutions

for the equation (1) with non-compactly supported initial data decays, if bt a 0

in ½0;yÞ �W and b0=
Qk

l¼0 log½l �ðek þ tþ rÞa bðt; xÞa b1 with some k A N

and positive constants b0, b1. The purpose of this paper is to improve their

result. We remark that taking over the work [5], Mochizuki and Nakazawa [6]

showed that if nb 3, the complement of W is star-shaped and the damping

term b satisfies conditions similar to those stated above only near infinity, then

the total energy for the equation (1) decays.

For simplicity we shall suppose compactness and smoothness of initial

data, but our results hold for each initial data in some weighted energy spaces,

see Remarks 1 and 3.

Theorem 1. Let bt a 0 hold in ½0;yÞ �W and let one can find a positive

and decreasing function f A C2ð½0;yÞÞ so that f 2 þ f 0 a 0 on ½0;yÞ and

bðt; xÞb 2f ðtþ rÞ in ½0;yÞ �W. Then for each compactly supported smooth

initial data we have with a positive constant C depending only on initial data

and f

Eðt;wÞaC exp �
ð t

0

f ds

� �
on ½0;yÞ: ð2Þ

In particular, Eðt;wÞ decays as time tends to infinity, if f is not integrable

on ð0;yÞ.

We note that the same inequality as (2) is shown in [5] by assuming some

conditions on the second derivative of f besides the hypothesis of Theorem 1,

see [5, Section 2]. We mention that [3], [4] and [5] give su‰cient conditions

of non-decay of the total energy for the solutions to the equation L½w� ¼ 0, see

[3, Theorem 1], [4, Theorem 27.3] and [5, Theorem 2].

2. Proof of the theorem

We shall first show the following lemma in order to obtain an weighted

energy inequality to the equation (1) needed for the proof of Theorem 1.

Lemma 1. Under the assumption in Theorem 1, for each solution w of (1)

with compactly supported smooth initial data we haveð
W

Xðt; xÞdxa
ð
W

Xð0; xÞdx for all t A ½0;yÞ ð3Þ

where X ¼ 2�1jðw2
t þ j‘xwj2Þ þ jtwtwþ 2�1jtðb� jtt=jtÞw2 and jðt; xÞ ¼

expð
Ð tþr

0 f dsÞ with the function f in Theorem 1.
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Proof. We see from the antecedents of b and f that

jtðt; xÞ ¼ jðt; xÞ f ðtþ rÞ > 0; ‘xjðt; xÞ ¼ jtðt; xÞx=r;
jttðt; xÞ ¼ jðt; xÞð f 2 þ f 0Þðtþ rÞa 0; ðjtbÞt a 0;

Dxjtðt; xÞ ¼ jtttðt; xÞ þ jttðt; xÞðn� 1Þ=r

8<
: ð4Þ

in ½0;yÞ �W. By using L½w� ¼ 0 and the last equality of (4) we have

qtX ¼ ‘x � Y þ Z in ½0;yÞ �W ð5Þ

where Y ¼ jwt‘xwþ jtw‘xw� 2�1w2‘xjt and Z ¼ jfð3jtÞ=ð2jÞ � bgw2
t �

2�1jtj‘xwj2 � ð‘xj � ‘xwÞwt þ 2�1ðjtbÞtw2 þ ðn� 1Þð2rÞ�1
jttw

2. On the other

hand, (4), the Schwarz inequality and the hypothesis about b yield Za 0 in

½0;yÞ �W. Hence, by integrating both sides of (5) over W and applying the

finite propagation speed for the equation (1) and the divergence theorem, it

follows that the integral of X over W monotonically decreases on time. The

proof is complete. r

Proof of Theorem 1. The Schwarz inequality and (4) give

X b
1

4
jðw2

t þ j‘xwj2Þ þ
1

2
jt b� 2

jt
j

� �
w2 in ½0;yÞ �W;

Xð0; xÞa jðw2
t þ j‘xwj2Þjt¼0 þ

1

2
jt bþ jt

j
� jtt

jt

� �
w2

����
t¼0

in W:

Accordingly, by using the hypothesis about b and (4) we have

X b
1

4
exp

ð t

0

f ds

� �
ðw2

t þ j‘xwj2Þ in ½0;yÞ �W; ð6Þ

X ð0; xÞa exp

ð r

0

f ds

� �
½w2

2 þ j‘xw1j2 þ ðbð0; xÞ f ðrÞ � f 0ðrÞÞw2
1 � ð7Þ

in W. Therefore, from Lemma 1 we can conclude that this theorem is true.

r

Remark 1. (6) and (7) imply that the estimate (2) holds for each initial

data in the Hilbert space which is the completion of Cy
0 ðWÞ � Cy

0 ðWÞ with

respect to the norm

kðu; vÞk ¼ kkvkL2ðWÞ þ kkj‘xuj kL2ðWÞ þ kkðbð0; xÞ f ðrÞ � f 0ðrÞÞ1=2ukL2ðWÞ

where kðxÞ ¼ expðð1=2Þ
Ð r

0 f dsÞ.

We remark that the same inequalities as that in Lemma 1 are shown in

[4, Theorem 27.1] and [5, Lemma 2.1]. In [4], r�ðn�1Þ=2‘xðrðn�1Þ=2wÞ is used

instead of ‘xw.
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Remark 2. Theorem 1 holds for the Cauchy problems in the whole space

under the same condition as that in Theorem 1. Indeed, in the proof of Lemma

1 by taking a positive number e, by integrating ‘x � Y over frb eg instead of W

and by letting e ! þ0 we see that (3) is correct in the the whole space, because

for each t A ½0;yÞ the integral of ‘x � Y over frb eg converges to zero when

nb 2 and wðt; 0Þ2jttðt; 0Þ ða 0Þ when n ¼ 1 as e ! þ0. Hence the same

argument as that of the proof of Theorem 1 verifies that (2) is valid in the

whole space.

3. An example of the damping terms

We shall state a new example of the damping terms of the equation (1)

with the total energy decay below.

Proposition 1. For each number g A ð0; 1� one can find a damping term b

so that we have

0 < bðt; xÞa g
Yk�1

l¼0

1

log½l �ðtþ rÞ
ð8Þ

when tþ r A ½ek;yÞ, kb 2, and for each compactly supported smooth initial data

we have with a positive constant C depending only on initial data

Eðt;wÞaC expð�gðk � 2Þ=40Þ when t A ½ek;yÞ; kb 2: ð9Þ

In particular, Eðt;wÞ decays as time tends to infinity. In addition, for each

a A N and b A Nn we have with a positive constant ~CC depending only on a, b

jqa
t q

b
xbðt; xÞja ~CCðtþ rÞ�a

r�jbj
Yk�1

l¼0

1

log½l �ðtþ rÞ
ð10Þ

when tþ r A ½ek;yÞ, kb 2.

Proof. Let w be a smooth function on R such that 0a wa 1 on R, w ¼ 0

on ð�y; 1� and w ¼ 1 on ½2;yÞ. Let us put

gðsÞ ¼
ð s

0

h duþ 1

� ��1

; hðsÞ ¼ exp

ð s

0

Xy
l¼1

wðu=elÞ
Yl
j¼0

1

log½ j�ðuÞ
du

" #

on ½0;yÞ. Then we see that g and h are smooth, that hb 1 on ½0;yÞ and

that

g 0 ¼ �hg2; h 0ðsÞ ¼ hðsÞ
Xy
l¼1

wðs=elÞ
Yl
j¼0

1

log½ j�ðsÞ
b 0 ð11Þ
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on ½0;yÞ. Hence integration by parts giveð s

0

h du ¼ shðsÞ �
ð s

0

uh 0ðuÞdua shðsÞ on ½0;yÞ; ð12Þ

and by using the second equality of (11) we have

ð s

0

uh 0ðuÞdua
Xy
l¼1

Yl

j¼1

1

log½ j�ðelÞ

ð s

0

h du

by means of log½k�ðejÞ ¼ ej�k for jb k

a
Xy
l¼1

ð1=eÞ l�1

ð s

0

h du ¼ e

e� 1

ð s

0

h du ð13Þ

on ½0;yÞ. Consequently it follows from (12) and (13) that we have

1

2

1

shðsÞ a gðsÞa 3
1

shðsÞ on ½1;yÞ: ð14Þ

On the other hand, the Taylor expansion formula and induction on l induce

log½l �ð2ekÞa ek�l þ logð2Þ
Qk�1

i¼k�ðl�1Þ e
�1
i , kb lb 2, and especially log½l �ð2elÞa

1þ logð2Þe�ðl�1Þ, l A N. Accordingly, on ½ek; ekþ1�, kb 2, we have

hðsÞb exp
Xk�1

l¼1

ð s

2el

Yl

j¼0

1

log½ j�ðuÞ
du

" #
b

Yk�1

l¼1

log½l �ðsÞ
1þ logð2Þe�ðl�1Þ

b exp½�ðlogð2Þe=ðe� 1Þ�
Yk�1

l¼1

log½l �ðsÞb 3

10

Yk�1

l¼1

log½l �ðsÞ;

hðsÞa exp
Xk

l¼1

ð s

el

Yl
j¼0

1

log½ j�ðuÞ
du

" #
a

Yk
l¼1

log½l �ðsÞ:

Therefore (14) deduces

1

2

Yk
l¼0

1

log½l �ðsÞ
a gðsÞa 10

Yk�1

l¼0

1

log½l �ðsÞ
on ½ek; ekþ1�; kb 2 ð15Þ

and hence we getð s

e2

g dub
k � 2

2
on ½ek;yÞ;

ð s

e2

g dua 20ðk � 2Þ on ½e2; ek�; ð16Þ

kb 2. It follows inductively from (11) that for each j A NU f0g we have

jhð jÞðsÞjaCj;1hðsÞs�j with a positive constant Cj;1 on ð0;yÞ. Moreover, we
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see inductively that ðg2Þð jÞ, j A NU f0g, can be written in the form of a linear

combinations of gp
Q j

q¼0ðhðqÞÞ
lq where p ¼ 2; . . . ; j þ 2, l0; . . . ; lj A NU f0g,

lj ¼ 0,
P j

q¼0 lq ¼ p� 2 and
P j

q¼0 qlq ¼ j � ðp� 2Þ. Hence for each i A
NU f0g we get from (11) and the Leibniz formula

jgðiþ1ÞðsÞjaCi;2

Xi

j¼0

hðsÞs�ði�jÞ
Xjþ2

p¼2

gðsÞphðsÞp�2
s�ð j�ðp�2ÞÞ:

Consequently, owing to (14) and (15), we obtain

jgðiþ1ÞðsÞjaCi;3s
�ðiþ1Þ

Yk�1

l¼0

1

log½l �ðsÞ
on ½ek;yÞ; kb 2; ð17Þ

where Ci;2 and Ci;3 are positive constants depending only on i. For each

number g A ð0; 1� let us put bðt; xÞ ¼ 2f ðtþ rÞ in ½0;yÞ �W with f ¼ ðg=20Þg.
Then we see that b satisfies the hypothesis of Theorem 1. Moreover, (15)

implies (8) and (17) implies (10). The estimate (9) is derived from (16) and

Theorem 1. The proof is complete. r

Remark 3. When n0 2, the estimate (9) is valid for each initial data

in the Hilbert space which is the completion of Cy
0 ðWÞ � Cy

0 ðWÞ with respect

to the norm kðu; vÞk ¼ kkvkL2ðWÞ þ kkj‘xuj kL2ðWÞ where kðxÞ ¼ expð
Ð r

0 f ds=2Þ.
Indeed, for each x A W with r A ½ek; ekþ1�, kb 2, the first equality of (11) gives

kðxÞ2ðbð0; xÞ f ðrÞ � f 0ðrÞÞa C1

20
exp

1

20

ð r

e2

g ds

� �
ðgðrÞ2 þ hðrÞgðrÞ2Þ

by applying ð14Þ

a
3

10
C1 exp

1

20

ð r

e2

g ds

� �
gðrÞ
r

by using ð15Þ and the second inequality of ð16Þ

a 3C1
1

r2
expðk � 1Þ

Yk�1

l¼1

1

log½l �ðekÞ
a 3C1

1

r2

where C1 ¼ expð
Ð e2
0 g ds=20Þ. Hence 0a kðxÞðbð0; xÞ f ðrÞ � f 0ðrÞÞ1=2 aC2r

�1

holds in W for some positive constant C2. Consequently we get from the Hardy

inequality kkðbð0; xÞ f ðrÞ � f 0ðrÞÞ1=2ukL2ðWÞ a 2C2ðn� 2Þ�1k j‘xuj kL2ðWÞ for all

u A Cy
0 ðWÞ which deduces the conclusion from Remark 1.

Remark 4. Proposition 1 for the Cauchy problems in the whole space is

valid. Indeed, let us set bðt; xÞ ¼ ðg=10Þgðtþ hxiÞ and f ðsÞ ¼ ðg=20Þgðsþ 1Þ
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where hxi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2

p
and g is the function defined in the proof of Proposition 1.

Then we see that bðt; xÞb 2f ðtþ rÞ in ½0;yÞ � Rn and the other assumptions of

Theorem 1 (in the whole space) are satisfied. Hence the same statement in the

whole space as that of Proposition 1 is derived from an argument similar to that

of the proof of Proposition 1.

Acknowledgement

The author would like to express his sincere gratitude to Professor Tatsuo

Nishitani for guidance over a long period. Furthermore the author would like

to thank Doctor Yuta Wakasugi for incentive to this study. The author would

also like to thank the referee for useful comments on this paper.

References

[ 1 ] J. S. Kenigson and J. J. Kenigson, Energy decay estimates for the dissipative wave equation

with space-time dependent potential, Math. Methods Appl. Sci. 34 (2011), no. 1, 48–62.

[ 2 ] A. Matsumura, Energy decay of solutions of dissipative wave equations, Proc. Japan Acad.

Ser. A Math. Sci. 53 (1977), no. 7, 232–236.

[ 3 ] K. Mochizuki, Scattering theory for wave equations with dissipative terms, Publ. Res. Inst.

Math. Sci. 12 (1976), no. 2, 383–390.

[ 4 ] K. Mochizuki, Scattering theory for wave equations (Japanese), Kinokuniya Book Store,

Tokyo (1984).

[ 5 ] K. Mochizuki and H. Nakazawa, Energy decay and asymptotic behavior of solutions to the

wave equations with linear dissipation, Publ. Res. Inst. Math. Sci. 32 (1996), no. 3, 401–414.

[ 6 ] K. Mochizuki and H. Nakazawa, Energy decay of solutions to the wave equations with

linear dissipation localized near infinity, Publ. Res. Inst. Math. Sci. 37 (2001), no. 3,

441–458.

[ 7 ] G. Todorova and B. Yordanov, Weighted L2-estimates for dissipative wave equations with

variable coe‰cients, J. Di¤erential Equations 246 (2009), no. 12, 4497–4518.

[ 8 ] H. Uesaka, The total energy decay of solutions for the wave equation with a dissipative

term, J. Math. Kyoto Univ. 20 (1980), no. 1, 57–65.

[ 9 ] J. Wirth, Wave equations with time-dependent dissipation I. Non-e¤ective dissipation,

J. Di¤erential Equations 222 (2006), no. 2, 487–514.

[10] J. Wirth, Wave equations with time-dependent dissipation II. E¤ective dissipation,

J. Di¤erential Equations 232 (2007), no. 1, 74–103.

Hideo Ueda

Center for Education in Liberal Arts and Sciences

Osaka University

Toyonaka, Osaka 560-0043, Japan

E-mail: u-hideo@oecu.jp

193Energy decay for wave equations


