
Hiroshima Math. J.

46 (2016), 87–96

On the classification of certain ternary codes of length 12

Makoto Araya and Masaaki Harada

(Received July 6, 2015)

(Revised August 17, 2015)

Abstract. Shimada and Zhang studied the existence of polarizations on some super-

singular K3 surfaces by reducing the existence of the polarizations to that of ternary

½12; 5� codes satisfying certain conditions. In this note, we give a classification of

ternary ½12; 5� codes satisfying the conditions. To do this, ternary ½10; 5� codes are

classified for minimum weights 3 and 4.

1. Introduction

A ternary ½n; k� code C is a k-dimensional vector subspace of Fn
3 , where

F3 denotes the finite field of order 3. The weight wtðxÞ of a vector x is the

number of non-zero components of x. The minimum non-zero weight of all

codewords in C is called the minimum weight of C. A ternary ½n; k; d � code
is a ternary ½n; k� code with minimum weight d. Throughout this note, we

denote the minimum weight of a code C by dðCÞ.
Shimada and Zhang [9] studied the existence of polarizations on the

supersingular K3 surfaces in characteristic 3 with Artin invariant 1 (see [9,

Theorem 1.5] for the details). This was done by reducing the problem of the

existence of the polarizations to a problem of the existence of ternary ½12; 5�
codes C satisfying the following conditions:

wtððx1; x2; . . . ; x10ÞÞ1 y1 y2 ðmod 3Þ; ð1Þ

if c is not the zero vector; then wtððx1; x2; . . . ; x10ÞÞb 3; ð2Þ

if wtððx1; x2; . . . ; x10ÞÞ ¼ 3; then ðy1; y2Þ0 ð0; 0Þ; ð3Þ

for any codeword c ¼ ðx1; x2; . . . ; x10; y1; y2Þ A C (see [9, Claim 5.2]). Seven

ternary ½12; 5� codes satisfying the conditions (1)–(3) were found by Shimada

and Zhang [9]. This motivates us to classify all such ternary ½12; 5� codes.

For ternary ½12; 5� codes satisfying the conditions (1)–(3), the following

equivalence is considered in [9]. We say that two ternary ½12; 5� codes
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satisfying the conditions (1)–(3) are SZ-equivalent if one can be obtained from

the other by using the following:

ðx1; . . . ; x10; y1; y2Þ 7! ðð�1Þa1xsð1Þ; . . . ; ð�1Þa10xsð10Þ; ð�1Þbytð1Þ; ð�1Þbytð2ÞÞ; ð4Þ

where a1; . . . ; a10, b A f0; 1g and s A S10, t A S2 (see [9, Remark 5.3]). Here, Sn

denotes the symmetric group of degree n.

The main aim of this note is to give the following classification, which is

based on a computer calculation.

Theorem 1. Any ternary ½12; 5� code satisfying the conditions (1)–(3) is

SZ-equivalent to one of the seven codes given in [9, Remark 5.3].

To complete the above classification, ternary ½10; 5; d � codes are classified

for the cases d ¼ 3 and 4.

2. Characterization of ternary ½12; 5� codes satisfying (1)–(3)

Let C be a ternary ½n; k� code. The code obtained from C by deleting

some coordinates I in each codeword is called the punctured code of C on I .

Throughout this note, we denote the punctured code of a ternary ½12; 5� code
C on f11; 12g by PunðCÞ. Let dmaxðn; kÞ denote the largest minimum weight

among ternary ½n; k� codes. It is known that dmaxð10; 5Þ ¼ 5 and dmaxð12; 5Þ ¼ 6

(see [2], [5]).

Lemma 1. If C is a ternary ½12; 5� code satisfying the condition (2), then

PunðCÞ is a ternary ½10; 5� code and dðPunðCÞÞ A f3; 4; 5g.

Proof. Suppose that PunðCÞ has dimension at most 4. Then we may

assume without loss of generality that C has generator matrix whose first row is

ð0; 0; . . . ; 0; y1; y2Þ, where ðy1; y2Þ0 ð0; 0Þ. This contradicts with the condition

(2). Hence, PunðCÞ is a ternary ½10; 5� code. Again, by the condition (2),

PunðCÞ has minimum weight at least 3. Since dmaxð10; 5Þ ¼ 5, the result

follows.

Lemma 2. Let C be a ternary ½12; 5� code satisfying the conditions (1)–(3).

( i ) dðPunðCÞÞ A f4; 5g if and only if dðCÞ ¼ 6.

(ii) dðPunðCÞÞ ¼ 3 if and only if dðCÞ ¼ 4.

Proof. By Lemma 1, PunðCÞ is a ternary ½10; 5� code and dðPunðCÞÞ A
f3; 4; 5g. It is trivial that dðCÞ � dðPunðCÞÞ A f0; 1; 2g.

Suppose that dðPunðCÞÞ A f4; 5g. Let x ¼ ðx1; . . . ; x10Þ be a codeword of

PunðCÞ. If wtðxÞ ¼ 4 (resp. 5), then any corresponding codeword ðx1; . . . ; x10;
y1; y2Þ of C has weight 6 (resp. 7), by the condition (1). Since dmaxð12; 5Þ ¼ 6,
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we have that dðCÞ ¼ 6. Conversely, if dðCÞ ¼ 6, then it follows from

dmaxð10; 5Þ ¼ 5 that dðPunðCÞÞ A f4; 5g.
Suppose that dðPunðCÞÞ ¼ 3. Let x ¼ ðx1; . . . ; x10Þ be a codeword of

PunðCÞ. If wtðxÞ ¼ 3, then any corresponding codeword ðx1; . . . ; x10; y1; y2Þ
of C has weight 4, by the conditions (1) and (3). Hence, we have that

dðCÞ ¼ 4. Conversely, suppose that dðCÞ ¼ 4. Then dðPunðCÞÞ A f2; 3; 4g.
By the condition (2), dðPunðCÞÞ A f3; 4g. From the statement (i), dðPunðCÞÞ
¼ 3.

Recall that two ternary codes are equivalent if one can be obtained from

the other by permuting the coordinates and (if necessary) changing the signs

of certain coordinates. For ternary ½10; 5� codes, we consider this usual

equivalence.

Lemma 3. Let C and C 0 be ternary ½12; 5� codes satisfying the conditions

(1)–(3). Suppose that C and C 0 are SZ-equivalent. Then PunðCÞ and PunðC 0Þ
are equivalent.

Proof. Suppose that C is obtained from C 0 by (4). Then PunðCÞ can be

obtained from PunðC 0Þ by

ðx1; . . . ; x10Þ 7! ðð�1Þa1xsð1Þ; . . . ; ð�1Þa10xsð10ÞÞ:

By considering the inverse operation of puncturing, one can construct

ternary ½12; 5� codes satisfying the conditions (1)–(3) as follows. Throughout

this note, we denote the ternary code having generator matrix G by CðGÞ.
Suppose that CðGÞ is a ternary ½10; 5� code and dðCðGÞÞ A f3; 4; 5g. Let gi
denote the ith row of G. Consider the following generator matrix:

a1 b1

G ..
. ..

.

a5 b5

0
B@

1
CA; ð5Þ

where

ðai; biÞ ¼
ð0; 0Þ; ð0; 1Þ; ð0; 2Þ; ð1; 0Þ; ð2; 0Þ if wtðgiÞ1 0 ðmod 3Þ;
ð1; 1Þ; ð2; 2Þ if wtðgiÞ1 1 ðmod 3Þ;
ð1; 2Þ; ð2; 1Þ if wtðgiÞ1 2 ðmod 3Þ:

8><
>:

We denote this generator matrix by Gða; bÞ, where a ¼ ða1; . . . ; a5Þ and

b ¼ ðb1; . . . ; b5Þ. The set of the codes CðGða; bÞÞ contains all ternary ½12; 5�
codes C satisfying the conditions (1) and PunðCðGða; bÞÞÞ ¼ CðGÞ. Hence,

in this way, every ternary ½12; 5� code satisfying the conditions (1)–(3) can be

obtained from some ternary ½10; 5� code. Here, by Lemma 2, its minimum

weight is 3, 4 or 5. In addition, if CðGÞ and CðG 0Þ are equivalent ½10; 5�
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codes, then the sets of all codes CðGða; bÞÞ satisfying the conditions (1)–(3) is

obtained from the set of all codes CðG 0ða; bÞÞ satisfying the same conditions

by considering (4) with b ¼ 0 and t is the identity permutation. Hence, it is

su‰cient to consider only inequivalent ternary ½10; 5; d � codes with d A f3; 4; 5g
for the classification of ternary ½12; 5� codes satisfying the conditions (1)–(3).

This is a reason why we consider the classification of ternary ½10; 5; d � codes

with d A f3; 4; 5g in the next section.

3. Ternary ½10; 5; d � codes with d A f3; 4; 5g

There is a unique ternary ½10; 5; 5� code, up to equivalence [6]. In this

section, we give a classification of ternary ½10; 5; d � codes with d A f3; 4g, which
is based on a computer calculation.

We describe how ternary ½10; 5; 3� codes and ½10; 5; 4� codes were classified.

Let C be a ternary ½10; 5; 3� code (resp. ½10; 5; 4� code). We may assume

without loss of generality that C has generator matrix of the following form:

G ¼ ð I5 A Þ;

where A is a 5� 5 matrix over F3 and I5 denotes the identity matrix of order

5. Thus, we only need consider the set of A, rather than the set of generator

matrices. The set of matrices A was constructed, row by row, as follows, by

a computer calculation. Let ri be the ith row of A. Then, we may assume

without loss of generality that r1 ¼ ð0; 0; 0; 1; 1Þ (resp. r1 ¼ ð0; 0; 1; 1; 1Þ), by

permuting and (if necessary) changing the signs of the columns of A.

Let e1; . . . ; e5 denote the vectors ð1; 0; 0; 0; 0Þ; . . . ; ð0; 0; 0; 0; 1Þ, respec-

tively. We denote the ternary code generated by vectors y1; y2; . . . ; ys by

hy1; y2; . . . ; ysi. For x ¼ ðx1; . . . ; x5Þ A F5
3 , consider the following conditions:

� the first nonzero element of x is 1,
� wtðxÞb 2 (resp. wtðxÞb 3),
� the ternary code hðe1; r1Þ; ðe2; xÞi has minimum weight 3 (resp. 4),
� x1 a x2 a x3 a 1 and x4 a x5 (resp. x1 a x2 a 1 and x3 a x4 a x5),

where we consider a natural order on the elements of F3 ¼ f0; 1; 2g
by 0 < 1 < 2.

The determination of the minimum weights was done by a computer calcu-

lation for all codes in this note. Let X1 be the set of vectors x A F5
3 satisfying

the first three conditions. Let X2 be the set of vectors x A X1 satisfying the

fourth condition. Our computer calculation shows that ðaX1;aX2Þ ¼ ð115; 18Þ
(resp. ð88; 14Þ). Define a lexicographical order on X1 induced by the above

order of F3, that is, ða1; . . . ; a5Þ < ðb1; . . . ; b5Þ if a1 < b1, or a1 ¼ b1; . . . ; ak ¼ bk
and akþ1 < bkþ1 for some k A f1; 2; 3; 4g. The matrices A were constructed,

row by row, satisfying the following conditions:

90 Makoto Araya and Masaaki Harada



� the ternary code hðes; rsÞ j s ¼ 1; 2; 3i has minimum weight 3 (resp. 4),

where r2 A X2, r3 A X1,
� the ternary code hðes; rsÞ j s ¼ 1; 2; 3; 4i has minimum weight 3 (resp. 4),

where r2 A X2, r3; r4 A X1 ðr3 < r4Þ,
� the ternary code hðes; rsÞ j s ¼ 1; 2; 3; 4; 5i has minimum weight 3 (resp.

4), where r2 A X2, r3; r4; r5 A X1 ðr3 < r4 < r5Þ.
It is obvious that the set of the matrices A which must be checked to achieve

a complete classification, can be obtained in this way.

Then, by a computer calculation, we found 4328352 (resp. 650051)

matrices A. Our computer calculation shows the 4328352 ternary ½10; 5; 3�
codes (resp. 650051 ternary ½10; 5; 4� codes) are divided into 527 (resp. 64)

classes by comparing their Hamming weight enumerators. For each Hamming

weight enumerator, to test equivalence of codes, we use the algorithm given in

[7, Section 7.3.3] as follows. For a ternary ½n; k� code C, define the digraph

GðCÞ with vertex set

ðC � f0gÞU ðf1; 2; . . . ; ng � ðF3 � f0gÞÞ
and arc set

fðc; ð j; cjÞÞ j c ¼ ðc1; . . . ; cnÞ A C � f0g; cj 0 0; 1a ja ng

U fðð j; 1Þ; ð j; 2ÞÞ; ðð j; 2Þ; ð j; 1ÞÞ j 1a ja ng:

Then, two ternary ½n; k� codes C and C 0 are equivalent if and only if GðCÞ
and GðC 0Þ are isomorphic. We use the package GRAPE [10] of GAP [4] for

digraph isomorphism testing. After checking whether codes are equivalent or

not by a computer calculation for each Hamming weight enumerator, we have

the following:

Proposition 1. There are 135 ternary ½10; 5; 4� codes, up to equivalence.

There are 1303 ternary ½10; 5; 3� codes, up to equivalence.

We denote the 135 ternary ½10; 5; 4� codes by C10;4; i ði ¼ 1; 2; . . . ; 135Þ,
and we denote the 1303 ternary ½10; 5; 3� codes by C10;3; i ði ¼ 1; 2; . . . ; 1303Þ.
Generator matrices of all codes can be obtained electronically from [1].

The unique ternary ½10; 5; 5� code C10;5 is formally self-dual, that is, the

Hamming weight enumerators of the code and its dual code are identical. In

addition, the supports of the codewords of minimum weight in C10;5 form a

3-design [3]. We verified by a computer calculation that 38 ternary ½10; 5; 4�
codes and 242 ternary ½10; 5; 3� codes are formally self-dual. In addition, we

verified by a computer calculation that the supports of the codewords of

minimum weight in only the code C10;4;132 form a 2-design and the supports

of the codewords of minimum weight in C10;4; i form a 1-design for only i ¼
6; 86; 87; 89; 132.
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4. Ternary ½12; 5� codes satisfying (1)–(3)

In this section, we give a classification of ternary ½12; 5� codes satisfying the

conditions (1)–(3), which is based on a computer calculation. This is obtained

from the classification of ternary ½10; 5; d � codes with d A f3; 4; 5g, by using the

method given in Section 2.

4.1. From the ½10; 5; 5� code and the ½10; 5; 4� codes. As described in the

previous section, there is a unique ternary ½10; 5; 5� code, up to equivalence [6].

It follows from [3] that this code C10;5 has generator matrix G10;5 ¼ ð I5 A Þ,
where A is the following circulant matrix:

A ¼

12210

01221

10122

21012

22101

0
BBBBBB@

1
CCCCCCA
:

In order to construct all ternary ½12; 5� codes C satisfying the conditions (1) and

PunðCÞ ¼ C10;5, we consider generator matrices G10;5ða; bÞ of the form (5).

Since the weight of each row of G10;5 is 5, ðai; biÞ ¼ ð1; 2Þ or ð2; 1Þ for i ¼
1; 2; 3; 4; 5. By (4), we may assume that ða1; b1Þ ¼ ð1; 2Þ. Since the weight of

the sum of the first row and the second row of G10;5 is 5, ða2; b2Þ must be

ð1; 2Þ. Similarly, we have that ðai; biÞ ¼ ð1; 2Þ for i ¼ 3; 4; 5, since A is circu-

lant. In addition, we verified by a computer calculation that this code satisfies

the condition (1). Note that the code automatically satisfies the conditions (2)

and (3). We denote the code by C12;1.

Now, consider the ternary ½10; 5; 4� codes C10;4; i ði ¼ 1; 2; . . . ; 135Þ. By

considering generator matrices of the form (5), we found all ternary ½12; 5�
codes C satisfying the conditions (1) and PunðCÞ ¼ C10;4; i. This was done by

a computer calculation. We denote by G10;4; i the generator matrix ð I5 A Þ
of C10;4; i for each i. Since the weight of the first row of A is 3 (see Section

3), by (4), we may assume that ða1; b1Þ ¼ ð1; 1Þ in (5). Under this situation,

we verified by a computer calculation that only the codes C10;4;60 and C10;4;132

give ternary ½12; 5� codes satisfying the condition (1). Note that these codes

automatically satisfy the conditions (2) and (3). In Table 1, we list the

matrices A and ðaT ; bTÞ in G10;4; iða; bÞ for i ¼ 60; 132, where aT denotes the

transposed of a vector a. It can be seen by hand that the two codes

CðG10;4;60ða; bÞÞ are SZ-equivalent. By Lemma 3, there are two ternary

½12; 5� codes C satisfying the conditions (1)–(3) and the condition that PunðCÞ
is a ternary ½10; 5; 4� code. We denote the two codes by C12;2 and C12;3,

respectively (note that take the first ðaT ; bTÞ for i ¼ 60).

92 Makoto Araya and Masaaki Harada



Lemma 2 shows that there are no other ternary ½12; 5; 6� codes satisfying

the conditions (1)–(3). Hence, we have the following:

Lemma 4. Up to SZ-equivalence, there are three ternary ½12; 5; 6� codes

satisfying the conditions (1)–(3).

4.2. From the ½10; 5; 3� codes. By considering generator matrices of the form

(5), we found all ternary ½12; 5� codes C satisfying the conditions (1) and

PunðCÞ ¼ C10;3; i ði ¼ 1; 2; . . . ; 1303Þ. This was done by a computer calcula-

tion. We denote by G10;3; i the generator matrix ð I5 A Þ of C10;3; i for each i.

Since the weight of the first row of A is 2 (see Section 3), by (4), we may

assume that ða1; b1Þ ¼ ð0; 1Þ in (5). Under this situation, we verified by a

computer calculation that only the codes C10;3; i give ternary ½12; 5� codes

satisfying the condition (1) for

i ¼ 302; 639; 662; 666; 667; 756; 878; 957; 958; 987;

1210; 1215; 1241; 1245; 1263; 1285; 1297; 1298; 1299:

In this case, there are codes satisfying the condition (1), but not (3). We

verified by a computer calculation that only the codes C10;3; i give ternary ½12; 5�
codes satisfying the conditions (1) and (3) for i ¼ 302; 666; 987; 1245. Note

that these four codes automatically satisfy the condition (2). In Table 2, we

list the matrices A and ðaT ; bTÞ in G10;4; iða; bÞ for i ¼ 302; 666; 987; 1245. By

Lemma 3, there are four ternary ½12; 5� codes satisfying the conditions (1)–(3)

and the condition that PunðCÞ is a ternary ½10; 5; 3� code. We denote the four

codes by C12; i ði ¼ 4; 5; 6; 7Þ, respectively.

Table 1. Generator matrices G10; 4; iða; bÞ ði ¼ 60; 132Þ

i A ðaT ; bT Þ

60

00111

01011

10101

11001

12210

0
BBBBBB@

1
CCCCCCA

11

22

22

11

12

0
BBBBBB@

1
CCCCCCA
;

11

22

22

11

21

0
BBBBBB@

1
CCCCCCA

132

00111

01011

10101

11001

11111

0
BBBBBB@

1
CCCCCCA

11

22

22

11

00

0
BBBBBB@

1
CCCCCCA
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Lemma 2 shows that there are no other ternary ½12; 5; 4� codes satisfying

the conditions (1)–(3). Hence, we have the following:

Lemma 5. Up to SZ-equivalence, there are four ternary ½12; 5; 4� codes

satisfying the conditions (1)–(3).

Up to SZ-equivalence, seven ternary ½12; 5� codes satisfying the conditions

(1)–(3) are known (see [9, Remark 5.3]). Lemmas 4 and 5 show that there

are no other ternary ½12; 5� codes satisfying the conditions (1)–(3). Therefore,

we have Theorem 1.

4.3. Some properties. For the ternary ½12; 5� codes C satisfying the conditions

(1)–(3), instead of the Hamming weight enumerators, we consider the weight

enumerators
P

ðx1;...;x10; y1; y2Þ AC
xwtððx1;...;x10ÞÞyn1zn2 , where n1 and n2 are the numbers

of 1’s and 2’s in ðy1; y2Þ, respectively. We verified by a computer calculation

that the codes C12; i ði ¼ 1; 2; . . . ; 7Þ have the following weight enumerators Wi:

W1 ¼ 1þ 72x5yzþ 60x6 þ 90x8yzþ 20x9;

W2 ¼ 1þ 9x4z2 þ 9x4y2 þ 18x5yzþ 24x6 þ 36x6zþ 36x6yþ 18x7z2

þ 18x7y2 þ 36x8yzþ 2x9 þ 18x9zþ 18x9y;

W3 ¼ 1þ 15x4z2 þ 15x4y2 þ 60x6 þ 60x7z2 þ 60x7y2 þ 20x9

þ 6x10z2 þ 6x10y2;

W4 ¼ 1þ 2x3zþ 2x3yþ 4x4z2 þ 4x4y2 þ 24x5yzþ 18x6 þ 38x6zþ 38x6y

þ 22x7z2 þ 22x7y2 þ 30x8yzþ 8x9 þ 14x9zþ 14x9yþ x10z2 þ x10y2;

Table 2. Generator matrices G10; 3; iða; bÞ ði ¼ 302; 666; 987; 1245Þ

i A ðaT ; bT Þ i A ðaT ; bT Þ

302

00011

01100

10101

11010

11221

0
BBBBBB@

1
CCCCCCA

01

01

22

22

01

0
BBBBBB@

1
CCCCCCA

987

00011

00101

01010

01100

11221

0
BBBBBB@

1
CCCCCCA

01

20

20

01

00

0
BBBBBB@

1
CCCCCCA

666

00011

01100

10101

11010

12222

0
BBBBBB@

1
CCCCCCA

01

01

22

22

20

0
BBBBBB@

1
CCCCCCA

1245

00011

00101

01010

01100

01111

0
BBBBBB@

1
CCCCCCA

01

20

20

01

12

0
BBBBBB@

1
CCCCCCA
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W5 ¼ 1þ 3x3zþ 3x3yþ 3x4z2 þ 3x4y2 þ 18x5yzþ 24x6 þ 39x6zþ 39x6y

þ 21x7z2 þ 21x7y2 þ 36x8yzþ 2x9 þ 12x9zþ 12x9yþ 3x10z2 þ 3x10y2;

W6 ¼ 1þ 4x3zþ 4x3yþ 5x4z2 þ 5x4y2 þ 24x5yzþ 18x6 þ 34x6zþ 34x6y

þ 20x7z2 þ 20x7y2 þ 30x8yzþ 8x9 þ 16x9zþ 16x9yþ 2x10z2 þ 2x10y2;

W7 ¼ 1þ 6x3zþ 6x3yþ 9x4z2 þ 9x4y2 þ 36x5yzþ 24x6 þ 42x6z

þ 42x6yþ 18x7z2 þ 18x7y2 þ 18x8yzþ 2x9 þ 6x9zþ 6x9y;

respectively. These weight enumerators guarantee that the codes C12; i

ði ¼ 1; 2; . . . ; 7Þ satisfy the conditions (1)–(3). By putting y ¼ z ¼ 1, the above

weight enumerators determine the Hamming weight enumerators of PunðC12; iÞ
ði ¼ 1; 2; . . . ; 7Þ. This implies that C12;1 is SZ-equivalent to C7 in [9, Table 5.1].

In addition, by comparing generator matrices, it is easy to see that C12; i

ði ¼ 2; 3; . . . ; 7Þ are equal to C6, C5, C3, C4, C2 and C1 in [9, Table 5.1],

respectively.

Remark 1. Shimada and Zhang [9] also considered the existence of ternary

½12; 4; 6� codes satisfying the condition that all codewords have weight divisible by

three, in the proof of Theorem 1.4 (see [9, Claim 6.2]). We point out that a

code satisfying the condition is self-orthogonal. There is a unique self-orthogonal

ternary ½12; 4; 6� code, up to equivalence [8, Table 1].
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