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Abstract. We give a local description of the topology of the space of all geometric

limits of closed abelian subgroups of PSL2ðCÞ. More precisely, we give geometric

descriptions for all possible neighborhoods of a point of this space. Intuition from

hyperbolic geometry plays an important role by identifying PSL2ðCÞ with the group of

isometries of H3. The tools and ideas developed in the authors’ previous paper on

one-generator closed subgroups of PSL2ðRÞ allow one to reduce this problem to a

problem about the geometric limits of certain closed subgroups of C and C�.

1. Introduction

The present article was announced in [3], in which the authors, motivated

by the desire to understand the closure of the faithful discrete type-preserving

PSL2ðCÞ-representations of the fundamental group of the once-punctured torus,

gave a complete description of the closure of the space of one-generator closed

subgroups of PSL2ðRÞ for the Chabauty topology. See [5] for a general

exposition of Chabauty topology; we also included in [3] a mini-History of

Chabauty topology and related topics.

In the world of geometric limits of Kleinian groups, a sequence of infinite

cyclic groups each of which is generated by one hyperbolic isometry can

converge to a subgroup isomorphic to Z2, whose generators are both parabolic

isometries. This fact can be equivalently stated using Chabauty topology, a

topology one puts on the space of the closed subgroups of PSL2ðCÞ. The

existence of such a behaviour was first observed by Jorgensen. See [9], Section

5 and [11], Example 9.14 for more detail.

A natural question arising is how to find conditions on a given sequence of

groups for the limit group to exist, and to describe this limit group.

In this paper we answer this question for an arbitrary sequence of abelian

subgroups of PSL2ðCÞ by using an ‘‘exhaustion of cases’’ approach (see Sub-

section 2.4: Strategy).
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Here is now a summary of the paper.

Section 2. We recall some properties of the Chabauty topology, provide

a reminder of results from [3], and basic properties of subgroups of PSL2ðCÞ.
These have been included mainly for notational purposes.

Section 3. The carefully chosen matrix representation of non-parabolic

isometries of H3 (Subsections 3.1 and 3.2) leads to Propositions 1 and 2: the

space of all non-trivial, non-parabolic, closed abelian subgroups of PSL2ðCÞ
is homeomorphic to Y� ðCðC�Þnf1gÞ; the space of all non-trivial discrete

subgroups of PSL2ðCÞ generated by one elliptic (resp. hyperbolic) generator

is homeomorphic to Y�Nb2 (resp. Y� ðCnDÞ), where Y is the space of

pairs of distinct points on ĈC (Subsection 3.3). The matrix representation of

parabolic isometries of H3 yields Propositions 4 and 5: P 0
1 (resp. P 0

2), the

space of all non-trivial discrete cyclic (resp. abelian) parabolic subgroups of

PSL2ðCÞ is a 4-twist fiber bundle of C� over S2 (resp. is homeomorphic to

S2 � ðC2nf0gÞ).
Section 4. We use the Reduction Lemma introduced in [3] to reduce

the problem of convergence of closed abelian subgroups of PSL2ðCÞ to some

problem of convergence of closed subgroups of C (Subsection 4.1). We give

geometrical interpretations for the parameters introduced (Subsection 4.2) and

for the closed subgroups of C we are left to study in the enrichment case

(Subsection 4.3).

Section 5. We describe the whole exhaustion of cases for sequences of

closed abelian subgroups of PSL2ðCÞ. This exhaustion is radically simplified

by the reducing results in Subsection 4.1, and involves continued fraction in a

rather unexpected way.

Section 6. We provide local models for neighborhoods of parabolic sub-

groups inside the space of all closed abelian subgroups of PSL2ðCÞ. This

section is independent from Section 5.

Section 7. This short section consists only of a Summary Statement,

collection of the di¤erent results in this paper, and of a short conclusion.

2. Preliminaries

2.1. Chabauty topology. Recall that the Chabauty topology of a locally

compact group G is the topology on the space F ðGÞ of all its closed subgroups

induced by the Hausdor¤ distance on the one-point compactification G of G

(see [3] for instance, or [4]). Equipped with this topology, F ðGÞ becomes

a compact metric space; FðGÞ, together with the Hausdor¤ distance dH , will

be usually referred to as the Chabauty space of G. We write it CðGÞ. In the

context of Kleinian groups, the limit of a convergent sequence in the Chabauty

topology is called the geometric limit of the sequence.
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In the previous paper [3] of the authors, we obtained the following

theorem, where C (resp. E, H, P) is the closure of the space of discrete

cyclic subgroups of PSL2ðRÞ (resp. discrete subgroups generated by an elliptic,

hyperbolic, parabolic element of PSL2ðRÞ).

Theorem 1. The space of geometric limits of closed subgroups of PSL2ðRÞ
with one generator is C ¼ EUH=@, where

(1) E is a wedge sum of countably many 2-spheres Dn=qDn, which

accumulate to a disk Dy and to the cone P on the circle qDy.

(see 5 in [3]).

(2) H is the cone on a closed Möbius band, the inside of which is

foliated by ‘‘bent’’ open Möbius bands, which accumulate to an open

Möbius band M0 and the cone P on the circle qM0 (see Figure 6

in [3]).

(3) @ represents the gluing of E and H along P.

The geometric convergence of Kleinian groups is not easy to handle

directly in general; we developed a tool to reduce the problem of the con-

vergence for the Hausdor¤ topology in some complicated space (e.g. CH
CðPSL2ðRÞÞ) to the convergence for the Hausdor¤ topology in a better-known

space (e.g. some particular families of closed subsets of C). See Proposition 6

in Section 4.

2.2. Transformations of PSL2ðCÞ. Note, after identification of PSL2ðCÞ with

the group AutðH3Þ of conformal automorphisms of H3, that each element

of PSL2ðCÞ acts on the sphere at infinity ĈC ¼ qH3. Let us recall that the

conformal automorphisms (i.e. isometries) of H3 are of three types:
� parabolic if they have one fixed point in ĈC ¼ qH3.
� elliptic if they have two fixed points in ĈC, and act on H3 as a rotation

along the axis defined by these fixed points.
� hyperbolic if they have two fixed points in ĈC, and act on H3 as a

translation with skew along the axis defined by these fixed points.

More precisely, elliptic (resp. hyperbolic) elements of PSL2ðCÞ are conjugated

to a map ½z 7! az�, by sending one of the fixed point to 0, and the other to y;

we have a A S1 (resp. a A C�nS1), and we call a the multiplier of the element.

Note that a is only defined up to the inverse mapping ½z 7! z�1�, except when

there is a way to decide which of the fixed points is sent to 0 and which is sent

to y.

2.3. Closed abelian subgroups of PSL2ðCÞ. For each isometry g A AutðH3Þ
let FixðgÞ be the set of fixed points of g on the sphere at infinity ĈC. Recall
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that abelian subgroups of PSL2ðCÞ are exactly the subgroups GHPSL2ðCÞ
such that all elements have the same fixed points at infinity, i.e.

Eg1; g2 A Gnf1g; Fixðg1Þ ¼ Fixðg2Þ

Note that a non-trivial abelian subgroup G of PSL2ðCÞ can be of two

rather di¤erent kinds, namely:
� G is a parabolic subgroup, i.e. each of its non-trivial element is

parabolic and fixes the same point z A ĈC. Then G is conjugated to

a subgroup G of translations of ĈC, under a map sending z to y; for z

fixed, if this map is chosen once and for all, G is entirely and uniquely

described by G (see Section 3.4).
� G is a non-parabolic subgroup, i.e. each of its non-trivial element is

non-parabolic and fixes the same points z1; z2 A ĈC. Then the space of

all multipliers of its elements is a subgroup X of C�, and G is entirely

described by the unordered pair fz1; z2g and by X.

As a generalization of [3], the authors were originally interested solely in

the closure of the space of cyclic closed subgroups of PSL2ðCÞ. Since, as we

will see, this closure already contains the space of abelian closed parabolic

subgroups of PSL2ðCÞ, it is very natural to consider also the closure of the

space of all abelian closed subgroups of PSL2ðCÞ. Thus, let us define C1 (resp.

C2) to be the closure of the space of cyclic (resp. abelian) closed subgroups of

PSL2ðCÞ, for the Chabauty topology on the space CðPSL2ðCÞÞ of all closed

subgroups of PSL2ðCÞ. Also, define P1 (resp. P2) to be the closure of the

space of cyclic (resp. abelian) closed parabolic subgroups of PSL2ðCÞ. There

will be no special need for analogs for the spaces E and H introduced

in [3].

2.4. Strategy. One goal of this article is to understand all limits of

sequences Gn in C2. Let us explain in more detail what we mean by

this. In the present paper, we associate to each G A C2 a finite list of

parameters pj (e.g. fixed points, multiplicity, etc.) that lie in some compact

sets Kj where convergence is well understood (e.g. ½0;y�, S1, SO3). Then,

given a sequence Gn such that all parameters pj;n converge in Kj to some

pj;y, Gn converges to a group G which we describe explicitely from the limit

parameters pj;y.

If Gn ! G, there is a subsequence c such that all parameters pj;cðnÞ
converge (this is because all pj;n lie in compact sets). Call these limit

parameters pj;c. We describe G ¼ Gðp�;cÞ explicitly from them. Moreover,

if we want to know whether a sequence Gn converges, it is enough to look at

all possible subsequences c of Gn such that all pj;cðnÞ converge. Then Gn ! G
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if, and only if all Gðp�;cÞ are equal. In this very specific sense, we regard this

as describing all possible limits of sequences Gn in C2. We used this strategy

in [3] to show Theorem 1.

Here is now a list of the parameters we introduce and a brief description

of them.
� If G is non-parabolic: z1; z2 A ĈC (alternatively ðz1; x1Þ; ðz2; x2Þ A CP1):

the fixed points common to all elements of G; X A CðC�Þ the set of

multipliers of elements of G (see Subsection 3.2).
� If G is parabolic: z A ĈC (alternatively ðz; xÞ A CP1): the fixed point

common to elements of G; G A CðCÞ, the set of multipliers of ele-

ments of G (the multiplier here is not well-defined, so we need some

normalization. See Subsection 3.4 for a precise definition).

Case 0: If Gn are all parabolic, the parameters zy ¼ lim zn and

Gy ¼ lim Gn completely describe Gy (see Subsection 3.4 and in particular

Corollary 2).

Case 1: If Gn are all non-parabolic, the parameters z1;y, z2;y and Xy

completely describe Gy provided that z1;y 0 z2;y, by Theorem 3.

Case 2: If Gn are all non-parabolic and z1;y ¼ z2;y, we introduce the

following parameters (see Section 4):
� Rb 1: the inverse of the spherical distance between z1 and z2 (in the

case considered, Rn ! y).
� o A ½0; 2p�: the opposite of the angle between the horizontal line and the

line passing through z1 and z2.
� G ¼ R LogðXÞ: multiplying by R is a way of zooming around 0 A Log X

(i.e. around 1 A XHC�).

In Case 2, the limit parameters zy, oy and Gy now completely determine

Gy. Compared to X in Case 1, however, Gy is rather esoteric in that it is

obtained by zooming further and further (as Rn ! y) around 0 A Log Xn, with

Xn (possibly) becoming denser and denser.

As a notational reminder, the letter H (resp. P) will always be reserved

for non-parabolic (resp. parabolic) elements of PSL2ðCÞ, G for subgroups of

PSL2ðCÞ, X for multiplicative subgroups of C� and G for additive subgroups

of C.

Before further study, it will be helpful to have the following example in

mind. Consider a sequence of elements an of PSL2ðCÞ of the form

an : z 7! r2ne
2pi=nðz� anÞ þ an:

Each an is a hyperbolic isometry which fixes both an and y. We will choose

both rn and an so that ðanÞ converges to ½z 7! zþ 1� and ðan
n Þ converges to the

parabolic element ½z 7! zþ g� with g B R.
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For that purpose, set

an ¼
1

1� r2ne
2pi=n

so that anð0Þ ¼ 1. In particular, this forces rn ! 1.

When rn ¼ 1, an
n ¼ id for all n, so ðan

n Þ obviously converges to the identity

map. When rn ¼ 1þ a
n
for some constant a, ðan

n Þ is not convergent. When

rn ¼ 1þ o
�
1
n2

�
then an

n converges to a parabolic element, and when rn is defined

by

rn ¼ 1þ a

n2

then ðan
n Þ converges to the map z 7! z� i a

p

� �
. In this example, the sequence

of infinite cyclic groups hani converges to Z2 generated by ½z 7! zþ 1� and

z 7! z� i a
p

� �
.

This example is a part of Case 2 with Rn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2n þ 1

p
, on ¼ 0 and Log Xn

the lattice generated by 2ip=n and 2 log rn. We saw that it is not easy to

predict the limit subgroup as an ! y (i.e. Rn ! y) and Log Xn gets denser:

this limit subgroup depends crucially on how fast an ! y (so that anð0Þ ¼ 1)

and how fast rn ! 1.

We solve this issue in Subsection 5.3 by introducing a parameter y whose

expansion in continuous fraction contains most of the information we need

to understand explicitely the limit group Gy. See Section 5 for the explicit

algorithm.

3. Matrix representations

3.1. CP1 as a quotient. Of crucial importance in [3] was the particular

matrix representations of elliptic and hyperbolic isometries.

To mimic this (the upshot being Propositions 1 and 2), let us first start by

finding a subspace of C2nf0g mapped homeomorphically to C via the projec-

tivizing map ½ðz; xÞ 7! z=x�, and which stays away from both 0 and y (i.e. has

a compact closure that does not contains 0). The classical choice of such a

subspace as the plane C� f1g does not answer this condition, since it is not

compact; the choice of the sphere in C�RHC2 of radius 1=2 and centered at

(0,1/2), with the south pole removed:

S2nS ¼ fðz; xÞ A C2nf0g; x A ð0; 1�; jzj2 þ ðx� 1=2Þ2 ¼ 1=4g

does not either, since its closure S2 contains the south pole S ¼ ð0; 0Þ.
Let us therefore define Dþ to be the unit upper hemisphere in C�RHC2:

Dþ ¼ fðz; xÞ A C2nf0g; x A ð0; 1�; jzj2 þ x2 ¼ 1g:
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Note that ðz; xÞ 7! ½z : x� induces an homeomorphism

Dþ=S1
x¼0 GCP1:

Remark 1. It is straightforward to see that the stereographic projection

from Dþ to S2 is given by

ðz; xÞ 7! ðzx; x2Þ:

Let us define

D� ¼ ðDþ=S1
x¼0Þnfð0; 1Þg

and

S1
eq ¼ ðz; xÞ A Dþ; x ¼

ffiffiffi
2

p

2

( )
:

Under the stereographic projection, Dþ, D� and S1
eq are respectively

mapped to S2nS, S2nN (where S and N are the south and north poles ð0; 0Þ
and ð0; 1Þ) and to the equator of S2 for which x is constantly 1/2.

3.2. Matrix representations of elliptic and hyperbolic isometries. In this sec-

tion, we show how to represent every elliptic and hyperbolic element of

PSL2ðCÞ as a 2� 2 matrix.

Recall that an elliptic (resp. hyperbolic) element of PSL2ðCÞ fixes a unique

axis joining two distinct points of ĈC, and that it then acts like a rotation

(resp. a screw motion) around this axis. Moreover, an elliptic (resp. hyper-

bolic) element is entirely determined by its two fixed points and its rotational

multiplier (resp. screw motion multiplier).

C

D

Fig. 1. Three models for CP1 with a point removed: the plane C� f1g, the sphere S2 minus its

south pole ð0; 0Þ, and the upper unit hemisphere Dþ.
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Let H be either elliptic or hyperbolic, with multiplier a A C�; suppose first

that the two distinct points z1 and z2 of H are in C. Then it is straightforward

to check that the matrix of PSL2ðCÞ representing H is

1ffiffiffi
a

p
ðz2 � z1Þ

az2 � z1 z1z2ða� 1Þ
1� a z2 � az1

� �
:

Indeed, f ¼ z 7! z�z1
z�z2

h i
is an automorphism of ĈC mapping z1 to 0 and z2 to y;

moreover, the element with multiplier a and fixed points 0 and y is simply

½z 7! az�. Note that exchanging z1 with z2 while replacing a by a�1 does not

change this matrix, thus the ordering of the two fixed point does not matter, as

long as we study the subgroups, not particular elements, of PSL2ðCÞ.
This description using zi A C has the drawback of blowing o¤ when one

of the fixed points approaches y A ĈC. To circumvent this, let us replace z1
and z2 by projectivized quantities z1=x1 and z2=x2, with ðzi; xiÞ A Dþ. Then the

matrix becomes

1ffiffiffi
a

p 1þ mz2x1 mz1z2

�mx1x2 1� mz1x2

� �
with m ¼ a� 1

z2x1 � z1x2
.

Definition 1. For every pair of distinct points ðz1; x1Þ; ðz2; x2Þ A Dþ, and

for every a A C� satisfying jaj ¼ 1 (resp. jaj0 1), the elliptic (resp. hyperbolic)

element of PSL2ðCÞ fixing both ½zi : xi� A CP1 and with multiplier a is written

Hðz1;x1Þ; ðz2;x2Þ;a ¼
1ffiffiffi
a

p 1þ mz2x1 mz1z2

�mx1x2 1� mz1x2

� �
with m ¼ a�1

z2x1�z1x2
.

With the choice of Dþ for representing CP1nf½1 : 0�g, Hðz1;x1Þ; ðz2;x2Þ;a
can be extended continuously when either one of the ðzi; xiÞ approaches the

boundary of Dþ. We write this continuation in the obvious way, e.g. if x1 ¼ 0

(thus jz1j ¼ 1):

Hðz1;0Þ; ðz2;x2Þ;a ¼
1ffiffiffi
a

p 1 mz1z2

0 1� mz1x2

� �
¼ 1ffiffiffi

a
p 1 1� a

0 a

� �
;

which does not depend on z1; thus we can think of the map ½ðx; y; aÞ 7! Hx;y;a�
as taking its first two components inside CP1 ¼ Dþ=S1

q¼0.

Denote by Y the space of pairs of distinct points in S2:

Y ¼ ððCP1 �CP1ÞnDÞ=ððx; yÞ@ ðy; xÞÞ;

8 Hyungryul Baik and Lucien Clavier



where D is the diagonal fðx; xÞ; x A CP1g; we definitely think of CP1 here as

being Dþ=S1
q¼0.

The following two propositions hold.

Proposition 1. The space of all non-trivial non-parabolic closed abelian

subgroups of PSL2ðCÞ is homeomorphic to

Y� ðCðC�Þnf1gÞ:

Proof. It is immediate to see that the desired homeomorphism is induced

by

ððCP1 �CP1ÞnDÞ � ðCðC�Þnf1gÞ ! C2

ðx; y;XÞ 7! fHx;y;a; a A Xg;

where by convention Hx;y;1 is always the identity of PSL2ðCÞ. Indeed, the

map above descends to a homeomorphism from Y� ðCðC�Þnf1gÞ onto its

image, which is the space of all non-trivial non-parabolic closed abelian sub-

groups of PSL2ðCÞ. r

Proposition 2. The space of all non-trivial discrete subgroups of PSL2ðCÞ
generated by one elliptic generator is homeomorphic to

Y�Nb2:

The space of non-trivial discrete subgroups of PSL2ðCÞ generated by one

hyperbolic generator is homeomorphic to

Y� ðCnDÞ;

where D is the unit disk in C.

Proof. This is similar to the proof of Proposition 1. r

Before studying parabolic subgroups, let us give a more recognizable form

to Y.

3.3. Y as a subspace of CP2. This subsection is due to John H. Hubbard,

and we thank him for explaining it to us.

For each pair ð½z1 : x1�; ½z2 : x2�Þ A ðCP1Þ2, consider the polynomial

P½z1:x1�; ½z2:x2�ðxÞ ¼ ðx1x� z1Þðx2x� z2Þ

defined up to a multiplicative constant.

Note that P½z1:x1�; ½z2:x2� and P½z3:x3�; ½z4:x4� di¤er by a multiplicative constant if

and only if f½z1 : x1�; ½z2 : x2�g coincides with f½z3 : x3�; ½z4 : x4�g as a set. Also,
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we have ½z1 : x1� ¼ ½z2 : x2� if and only if the square-rooted discriminant of

P½z1:x1�; ½z2:x2� ffiffiffiffiffiffi
DP

p
¼Gðz2x1 � z1x2Þ

is zero (remark that this number is, up to sign, the denominator of the quantity

m defined in the matrix representations above, Definition 1).

Therefore, the map

CP1 �CP1 ! CP2

½z1 : x1�; ½z2 : x2� 7! ½x1x2 : �z2x1 � z1x2 : z1z2�

descends to a homeomorphism between Y and CP2 minus the curve (actually a

sphere) of homogeneous equation

Y 2 � 4XZ ¼ 0:

3.4. Matrix representations of parabolic isometries. In this section, we show

how to represent every parabolic element of PSL2ðCÞ as a 2� 2 matrix. This

will lead to a complete description of P1 and P2.

It is well known that any two parabolic elements of PSL2ðCÞ are

conjugate. We saw in [3] that we could find a way of normalizing parabolic

elements, by asking them to be conjugated to a particular parabolic element

by a chosen matrix. This led to a homeomorphism between the space of

non-trivial parabolic elements of PSL2ðRÞ and S1 �R�, the upshot being a

description of the space of parabolic cyclic subgroups of PSL2ðRÞ. We cannot

immediately extend this method to the case of PSL2ðCÞ; we will actually see in

a while that the space of non-trivial parabolic elements of PSL2ðCÞ is a non-

trivial bundle (see Proposition 3).

Write P for the space of all non-trivial parabolic elements of PSL2ðCÞ.
Since for each point z A S2 ¼ ĈC the space of parabolic elements of PSL2ðCÞ
fixing z is homeomorphic to C�, we see that P is a SO2-bundle, with base space

S2 and fiber C�. Recall that a G-bundle with fiber F is a fiber bundle such

that the topological group G acts on F as a group of symmetries, and such that

transition functions between charts are continuous.

Since P is a SO2-bundle over a sphere S2, one can understand its structure

via its clutching map. We briefly recall the basic description here. Consider

S2 as the union of two disks Dþ and D� glued along the equator S1
eq. In

general, if trivialized fiber bundles over DG with fiber F and structure group G,

and a map f : S1
eq ! G (called the clutching map) are given, then one can glue

the two trivial bundles together via f to get a bundle over S2 with fiber F .

Two homotopy-equivalent clutching maps produce equivalent bundles. If a
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G-bundle over S2 is given, f is the transition function between the two charts

DG of S2.

In our case, F ¼ C� and G is the circle SO2. The clutching map

f : S1
eq ! SO2 is determined, up to homotopy, by its twisting number. Let

us compute the twisting number in our case.

We have two local trivializations

Dþ �C� ! PHPSL2ðCÞ

ððz; xÞ; rÞ 7! 1� rzx rz2

�rx2 1þ rzx

� �
and

D� �C� ! PHPSL2ðCÞ

ððz; xÞ; rÞ 7!
1� rzx rjzj2

�r
z

z
x2 1þ rzx

0B@
1CA:

The clutching map associated with these two trivializations is

S1
eq ! SO2

eif 7! ½r 7! e2ifr�;

which represents the number 2 in H1ðSO2ÞGZ. Thus we have reproven the

following known fact:

Proposition 3. The space P of non-trivial parabolic elements of PSL2ðCÞ
is a 2-twist C�-bundle over S2.

3.5. The spaces P1 and P2. Define P 0
1 (resp. P 0

2) to be the space of all non-

trivial discrete cyclic (resp. abelian) parabolic subgroups of PSL2ðCÞ; of course
P 0
i HPi. As above, we see that P 0

i is a fiber-bundle over S2 with fiber the

space of all non-trivial discrete cyclic subgroups (resp. non-trivial discrete sub-

groups) of C. The former fiber is easily seen to be simply C�=ðz@�zÞGC�,

hence SO2 is the structure group of the bundle P 0
1; the latter is known from [7]

to be homeomorphic to ðC2Þ� ¼ R4nf0g, hence SO4 is the structure group of

P 0
2, where SO4 acts on ðC2Þ� in the usual way (namely, as a 4� 4 real-matrix

group acts on ðC2Þ�Þ.

Proposition 4. P 0
1 is a 4-twist C�-bundle over S2.
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Proof. As above we have two trivializations

Dþ � ðC�=ðz@�zÞÞ ! P 0
1

ððz; xÞ; uÞ 7! 1� rzx rz2

�rx2 1þ rzx

� �
; r A hui

� 	
and

D� � ðC�=ðz@�zÞÞ ! P 0
1

ððz; xÞ; uÞ 7!
1� rzx rjzj2

�r
z

z
x2 1þ rzx

0B@
1CA; r A hui

8><>:
9>=>;

where hui is here the additive subgroup of C generated by Gu A C�.

The clutching map associated with these two trivializations is now

eif 7! ½hui 7! e2ifhui�;

which becomes, after identifying C�=ðz@�zÞ with C�:

S1
eq ! SO2 GS1

eif 7! e4if: r

Corollary 1. P1 is the one-point compactification of a 4-twist SO2-bundle

of Dnf0g over S2.

Proof. The closure of the space of discrete cyclic subgroups of C for the

Chabauty topology of C is just a closed disc D (see for instance [7]). Thus it

follows from Proposition 4 that P1nfIdg is a 4-twist bundle of Dnf0g over

S2. One recovers the compact set P1 from P1nfIdg by taking the one-point

compactification. r

Proposition 5. P 0
2 is homeomorphic to S2 � ðC2Þ�.

Proof. The space CdðCÞ of all discrete subgroups of C is homeomor-

phic to C2 via a map F explicited in Section 3 of [7]. This map F is the

inverse of

G 7! 1

60

X
z AGn0

1

z4
;
1

140

X
z AGn0

1

z6

0@ 1A:

One recognizes at once the modular invariants g2 and g3 of an elliptic curve.

Now as above we have two trivializations
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Dþ � ðCdðCÞnf0gÞ ! P 0
2

ððz; xÞ;GÞ 7! 1� rzx rz2

�rx2 1þ rzx

� �
; r A G

� 	
and

D� � ðCdðCÞnf0gÞ ! P 0
2

ððz; xÞ;GÞ 7!
1� rzx rjzj2

�r
z

z
x2 1þ rzx

0B@
1CA; r A G

8><>:
9>=>;:

The clutching map associated with these two trivializations is now

eif 7! ½G 7! e2ifG�
which becomes, using F :

S1
eq ! SO4

eif 7! ½ða; bÞ 7! ðe8ifa; e12ifbÞ�

(see Lemma 2 in [7]). Since SO4 admits S3 � S3 (which is simply connected)

as double cover, and since the clutching map above is the double of some loop

in SO4, we see that it can be homotoped to the trivial loop

eif 7! ½ða; bÞ 7! ða; bÞ� ¼ IdSO4
;

therefore P 0
2 is homeomorphic to S2 � CdðCÞnf0g. r

Corollary 2. P2 is homeomorphic to the one-point compactification of

S2 �R4.

Proof. We can conclude, simply by considering the possible limits of

elements of P2nfIdg, that the homeomorphism described at the end of the

proof of Proposition 5 extends to a homeomorphism between P2nfIdg and

S2 � ðCðCÞnf0gÞ; CðCÞ is homeomorphic to S4 (see [7]), so CðCÞnf0g is

homeomorphic to R4. One recovers the compact set P2 from P2nfIdg by

taking the one-point compactification. r

4. Reduction lemma

4.1. The two reducing arguments. Any non-trivial non-parabolic closed

abelian subgroup of PSL2ðCÞ is well defined by two fixed points and a closed

subgroup of C� (see Proposition 1). Let us consider a sequence ðGnÞ of non-

trivial non-parabolic closed abelian subgroups of PSL2ðCÞ. For all n, let us
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define ððz1Þn; ðx1ÞnÞ; ððz2Þn; ðx2ÞnÞ A Dþ so that ½ðz1Þn : ðx1Þn�; ½ðz2Þn : ðx2Þn� A CP1

are the distinct fixed points of one (hence all) non-trivial element of Gn

(the order does not matter); let us also define Xn to be the subgroup of C�

consisting of the multipliers of the elements of Gn (see Proposition 1). For

notational purposes, let us finally define Rn b 1 and on A R=2pZ by

Rne
ion ¼ 1

ðz2Þnðx1Þn � ðz1Þnðx2Þn
:

Taking extractions if necessary, we can always assume that ððz1Þn; ðx1ÞnÞ
and ððz2Þn; ðx2ÞnÞ converge in Dþ, that ðRnÞ converges in ½1;y� and ðeionÞ
converges in S1. We denote the limits of these quantities by the subscript y.

Theorems 2 and 3 below are the arguments needed to reduce the problem

of the convergence of non-parabolic groups in C2 to problems about conver-

gence in CðCÞ. The former deals with the case where the geometric limit is

parabolic, the latter deals with the easier case where the geometric limit is non-

parabolic.

Let us now recall the Reduction Lemma, a key tool in the reducing

arguments below.

Proposition 6 (Reduction Lemma). Let ðX ; dX Þ, ðY ; dY Þ be two second

countable, locally compact metric spaces. Let ðjnÞ be a sequence of maps from

X to Y, converging to a continuous proper map j, uniformly on every compact

subset. Assume that for every compact subset KHY, the closed subset

6
nbN

j�1
n ðKÞ

is compact for N large enough.

Then whenever a sequence of closed subsets Fn HX converges to a closed

subset F in the Hausdor¤ topology of X, the subsets jnðFnÞ converge to jðFÞ in

the Hausdor¤ topology of Y.

Proof. See Section 4 in [3]. r

Remark 2. If the maps jn are only defined on some domains Wn HX

satisfying that for any compact subset KHX, we can find an integer N such that

for all nbN, KHWn (or, equivalently, if for every neighborhood N of the

infinity-point y A X and for all n large enough, Wc
n HN), then the conclusion of

Proposition 6 still holds if Fn HWn for every n, simply by declaring that fjn sends

every point of Wc
n to y A ~YY (see Section 5 in [3]).

Theorem 2. Let ðGnÞ be a sequence of non-trivial, non-parabolic, closed

abelian subgroups of PSL2ðCÞ such that ðRnÞ converges to Ry ¼ y (equivalently
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ððziÞn; ðxiÞnÞ converges to the same point for i ¼ 1; 2), and ðonÞ converges to

some oy.

For all n, let Gn be the closed subgroup of C defined by Gn ¼ Rn LogðXnÞ.
Then ðGnÞ converges if and only if ðGnÞ converges to some closed subgroup Gy of

C (for the Chabauty topology of C), and in that case the geometric limit of Gn

is the subgroup

Gy ¼ 1þ reioyzyxy reioyz2y

�reioyx2y 1� reioyzyxy

 !
; r A Gy

( )
;

where we defined zy to be ðz1Þy ¼ ðz2Þy and xy to be ðx1Þy ¼ ðx2Þy. Note

that non-trivial elements of Gy (if any) are parabolic elements of PSL2ðCÞ
fixing ½zy : xy� A CP1.

Proof. We will only prove here the indirect implication. The direct

implication follows from Remark 3 which is slightly more general. This is

because convergence of both ðonÞ and ðcGnGnÞ implies convergence of ðGnÞ (see

Remark 3 for notations).

The indirect direction will be proved by applying the Reduction Lemma

twice.

First, let us define for all n a map cn : C ! PSL2ðCÞ by

z 7! ð1þ z=RnÞ�1=2 1þ zeionðz2Þnðx1Þn zeionðz1Þnðz2Þn
�zeionðx1Þnðx2Þn 1� zeionðz1Þnðx2Þn

� �
:

Let us also define c : C ! PSL2ðCÞ by

z 7! 1þ zeioyzyxy zeioyz2y

�zeioyx2y 1� zeioyzyxy

 !
:

We need to check that this family satisfies the condition of the Reduction

Lemma. This will be done through the following lemmas.

Lemma 1. c is proper and continuous.

Proof. This is clear, since whenever z ! y, at least one of the four

entries in the matrix cðzÞ blows o¤ to infinity. r

Lemma 2. ðcnÞ converges uniformly to c on every compact set.

Proof. It is su‰cient to prove it for every compact KM ¼ fz A C;

jzjaMg. Fix some e > 0. Since Rn ! y, we can find for every M > 0

some integer N such that, for all nbN and all z A KM ,

1� ea ð1þ z=RnÞ�1=2
a 1þ e:
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Therefore, we can also find an integer such that for every n larger than this N,

kcnðzÞ � cðzÞka e

holds for every z A KM , thus the proof is completed. r

Lemma 3. For any compact subset K of PSL2ðCÞ, the closed subset of C

6
nbN

c�1
n ðKÞ

is compact for N large enough.

Proof. It is su‰cient to prove that for every M > 0 and for every z with

jzj > M, one of the entries of ðcnðzÞÞ has a modulus greater that some quantity

AðMÞ depending only on M, with AðMÞ ! y as M ! y. Recall that

ðz2Þyðx1Þy, ðz1Þyðz2Þy, ðx1Þyðx2Þy and ðz1Þyðx2Þy cannot vanish at the

same time. Suppose for instance that the first entry does not vanish (other

cases are similar). Then there is a constant c > 0 for which we have

jðz2Þnðx1Þnjb c for every n larger than some integer N. Also by taking a

larger N if necessary, we may assume that Rn bM. Thus we have

jð1þ z=RnÞj�1=2j1þ zeionðz2Þnðx1Þnj

b
jzjc� 1ffiffiffiffiffi

jzj
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1=jzj þ 1=Rn

p b
jzjc� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jzj=M

p b
ffiffiffiffiffiffi
M

p jzjc� 1ffiffiffiffiffiffiffiffi
2jzj

p b ðc=
ffiffiffi
2

p
ÞM � 1ffiffiffi

2
p

and the proof is completed. r
Define for all n the subset Fn HC by

Fn ¼
a� 1

jðz2Þnðx1Þn � ðz1Þnðx2Þnj
; a A Xn

� 	
¼ fRnða� 1Þ; a A Xng:

Putting together Lemmas 1, 2, 3 and Proposition 6, we now see that if

ðFnÞ converges to some closed subset Fy HC for the Hausdor¤ topology,

then ðGnÞ ¼ ðcnðFnÞÞ converges to cðFyÞ for the Chabauty topology, hence

Gy ¼ cðFyÞ. The first step of the proof of Theorem 2 is completed.

The second step consists of applying the Reduction Lemma again. For all

n, define jn : C ! C by

jnðzÞ ¼ Rnðez=Rn � 1Þ:

By the series expansion of exp, we see that the sequence ðjnÞ converges to the

identity map of C, uniformly on every compact subset, which is obviously
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continuous and proper. Since jn is periodic of period 2ipRn, there is no

chance for

6
nbN

j�1
n ðKÞ

to be ever compact. Thus, let us use Remark 2, by defining for all n Wn to be

the band

Wn ¼ fz A C; jImðzÞja pRng;

which satisfies the required conditions of Remark 2, because Rn ! y.

Then, we have the following, where kzky stands for MaxfjReðzÞj; jImðzÞjg:

Lemma 4. For every M > 0, for every z A Wn, kzky bM implies

jjnðzÞjbM=2 provided n is large enough.

Proof. Let us suppose that n is large enough so that Rn bM. If

jReðzÞjbM, then jjnðzÞjbRnðjez=Rn j � 1ÞbRnðeM=Rn � 1ÞbM. Thus, let

us suppose that z is in the closed subset

Un ¼ fz A C; jReðzÞjaM;Ma jImðzÞja pRng:

Now Un is mapped homeomorphically by ½z 7! ez=Rn � onto a horseshoe

fz A C; e�M=Rn a jzja eM=Rn ;M=Rn aArg za 2p�M=Rng

that avoids an open ball of radius sinðM=RnÞ around 1. Thus jnðUnÞ avoids a
ball of radius Rn sinðM=RnÞ around 0. In view of the series expansion of sin,

and since Rn ! y, we must have Rn sinðM=RnÞbM=2 for n large enough,

and the proof is completed. r

Thus, applying Proposition 6 again, we see that if Gn ! Gy, then Fn ¼
jnðGnÞ ! Gy, hence Fy ¼ Gy.

All in all, we have Gy ¼ cðGyÞ, and this completes the proof of Theorem

2 for the indirect direction. r

Remark 3. The equivalence of the convergence of ðGnÞ and the conver-

gence of ðGnÞ in Theorem 2 does not hold in general if ðonÞ does not converge.

In that case, the sequence ðGnÞ could converge while ðGnÞ does not converge. To

prevent this, we could modify ðGnÞ by multiplying it by the adjustment factor

eion . Namely, Theorem 2 actually says that the convergence of ðGnÞ is equiv-

alent to the convergence of ðcGnGnÞ ¼ ðRne
ion LogðXnÞÞ, and of the fixed points

ð fi;nÞ to the same limit fy.

Proof. The indirect implication immediately follows from the proof of

Theorem 2. This is because we can always assume that ðonÞ converges by
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extracting a subsequence. Checking the formula for Gy, we see that it does

not depend on the extraction.

To prove the direct implication, assume ðGnÞ converges. Then it is neces-

sary that the fixed points fi;n converge to zy=xy. Now since the modifiedcGnGn lie in the compact set CðCÞ, it is enough to show that every converging

subsequence of ðcGnGnÞ converges to the same subgroup cGyGy. But applying

Theorem 2 to all converging subsequences for ðGnÞ and ðonÞ produces the

same Gy. Direct inspection shows that this is only possible if all converging

subsequences for ðcGnGnÞ converge to the same subgroup. r

Theorem 3. Let ðGnÞ be a sequence of non-trivial non-parabolic closed

abelian subgroups of PSL2ðCÞ such that ðRnÞ converges to Ry < y (equivalently

ððziÞn; ðxiÞnÞ converge to the distinct points for i ¼ 1; 2). ðGnÞ converges if and

only if ðXnÞ converges to some Xy (for the Chabauty topology of C), and then

the geometric limit of ðGnÞ is the subgroup

Gy ¼ fHððz1Þy; ðx1ÞyÞ; ððz2Þy; ðx2ÞyÞ;a; a A Xyg:

Proof. Applying the Reduction Lemma with cn : C
� ! PSL2ðCÞ defined

by

z 7! z�1=2 1þ ðz� 1ÞRne
ionðz2Þnðx1Þn ðz� 1ÞRne

ionðz1Þnðz2Þn
�ðz� 1ÞRne

ionðx1Þnðx2Þn 1� ðz� 1ÞRne
ionðz1Þnðx2Þn

� �
;

and cy : C� ! PSL2ðCÞ by

z 7! z�1=2 1þ ðz� 1ÞRne
ioyðz2Þyðx1Þy ðz� 1ÞRne

ioyðz1Þyðz2Þy
�ðz� 1ÞRne

ioyðx1Þyðx2Þy 1� ðz� 1ÞRne
ioyðz1Þyðx2Þy

� �
;

we conclude that if ðXnÞ converges to Xy, ðGnÞ ¼ ðcnðXnÞÞ converges to cðXyÞ;
thus Gy ¼ cðXyÞ.

For the other direction, assume ðGnÞ converges. For any extraction f

such that ðXfðnÞÞ converges to some Xf, we see that Xf is entirely determined by

G. Since Xn A CðCÞ which is compact, this proves that ðXnÞ converges, and the

proof is completed. r

4.2. Geometric view of Rn and on. Let us give geometric interpretations for

R and o, defined as above by

Reio ¼ 1

z2x1 � z1x2
;

where ðz1; x1Þ; ðz2; x2Þ A Dþ. We already saw in Subsection 3.3 that z2x1 � z1x2
can be interpreted as a square rooted discriminant in a model of CP2.
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Lemma 5. R is the inverse of the ‘‘spherical distance’’ between ½z1 : x1�
and ½z2 : x2� A CP1. Namely, 1=R ¼ jz2x1 � z1x2j is equal to the distance, in

R3 ¼ C�R, between the respective stereographic projections of ðz1; x1Þ and

ðz2; x2Þ A Dþ on the sphere S2 of center ð0; 1=2Þ and radius 1=2 (see Figure 1).

Proof. Recall from Remark 1 that the stereographic projection of Dþ

onto S2nS is given by

ðz; xÞ 7! ðzx; x2Þ:

Now, using that jzij2 ¼ 1� x2i , it is a straightforward computation to show that

jz2x1 � z1x2j2 ¼ jz2x2 � z1x1j2 þ ðx21 � x22Þ
2: r

Lemma 6. o is the opposite of the angle between ½z1 : x1� and ½z2 : x2� A
CP1. Namely, �o ¼ Argðz2x1 � z1x2Þ is equal to the argument, in C� f1g1
C, of the vector z2 � z1 for the respective stereographic projections zi of

ðzi; xiÞ A Dþ on the horizontal plane passing through N ¼ ð0; 1Þ.

Proof. Since multiplying a number by a positive real does not change the

argument, we have

�o ¼ Argðz2x1 � z1x2Þ ¼ Argðz2=x2 � z1=x1Þ: r

4.3. Geometric limits seen with cylinders. We would like now to give a

geometric interpretation of Theorem 2. Let ðGnÞ be a sequence of non-trivial,

non-parabolic, closed abelian subgroups of PSL2ðCÞ as above. Recall nota-

tions for ððz1Þn; ðx1ÞnÞ; ððz2Þn; ðx2ÞnÞ A Dþ, Rn b 1, on A ½0; 2p�. Assuming here

that Rn ! y, i.e. that the distance between the fixed points ½ðz1Þn : ðx1Þn� and
½ðz2Þn : ðx2Þn� A CP1 of Gn tends to 0, recall the notation Gn ¼ Rn LogðXnÞ with

Xn the multiplicative group of multipliers of elements of Gn (see the beginning

of Section 4).

For all n, Gn is a subgroup of C containing 2ipRn. Equivalently,

Gn=2ipRnZ is a subgroup of C=2ipRnZ, which is a cylinder. Let us view

this cylinder in R3 ¼ C�R as being the cylinder with circumference 2ipRn

(i.e. radius Rn) and with center line:

fðz; tÞ A C�R; ImðzÞ ¼ 0 and t ¼ Rng:

This cyclinder intersects the plane C� f0g in the line fImðzÞ ¼ 0 and t ¼ 0g.
For notational convenience, let us denote this cylinder by Cn. Otherwise

put, Cn is the image of C under the map

C ! C�R

xþ iy 7! ðxþ iRn sin y;Rnð1� cos yÞÞ:

19The space of geometric limits of abelian subgroups of PSL2ðCÞ



Better yet, imagine Cn as being rotated by an angle on, as in the following

drawing, Figure 2.

Now when n ! y, Rn ! y also, i.e. the cylinders Cn become wider and

wider; therefore ðCnÞ converges, for the Hausdor¤ topology of R3, to the plane

C� f0g.
The last step of the description is to draw for all n the subgroup

Gn=2ipRnZ on Cn, simply as the image of Gn under the map

C ! C�R

xþ iy 7! ðeionðxþ iRn sin yÞ;Rnð1� cos yÞÞ:

As n ! y and the cylinders Cn become wider and wider, these images

look more and more like a closed subgroup of C� f0g, that we recognize to be

eioyGy.

Finally, plug the values of this subgroup eioyGy HC in the matrix

representation so that we obtain

Gy ¼ 1þ rzyxy rz2y

�rx2y 1� rzyxy

 !
; r A eioyGy

( )
;

which is the geometric limit of Gn.

5. Exhaustion of cases

In this section, we consider a converging sequence ðGnÞ of non-trivial, non-
parabolic, closed abelian subgroups of PSL2ðCÞ, as in Section 4. Our goal is

to provide a way of prescribing the limit subgroup Gy, provided that we allow

extracting subsequences to make the introduced parameters (Rn, on, Xn, etc.)

converge. See notations introduced in Section 4. This will lead to a complete

Fig. 2. Rotated cylinder Cn associated to Gn sitting on the plane C� f0g.
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exhaustion of cases for converging sequences ðGnÞ. See also Subsection 2.4 for

further details about this strategy.

5.1. Case 1: jFixðGyÞj ¼ 2. Let us consider the case where Gy is non-

trivial, non-parabolic. By Theorem 3 the exhaustion of cases for sequences

ðGnÞ reduces (in an explicit way) to the exhaustion for sequences ðn 7! XnÞ A
CðC�Þ, i.e. to the description of the Chabauty space of C�, which is well-

known. See for instance [1] (or [2] with pictures).

It is interesting to note that the Reduction Lemma (Proposition 6) implies

that we could assume without loss of generality that all Gn have the same fixed

points in ĈC:

Fix Gn ¼ f0;yg:

This follows from minor changes in the proof of Lemma 7.

5.2. Case 2: jFixðGyÞj ¼ 1. Let us consider the case where Gy is a non-

trivial parabolic subgroup. By Theorem 2, the exhaustion of cases for

sequences ðGnÞ reduces (in an explicit way) to the exhaustion for sequences

of subgroups

ðGnÞ ¼ ðRn Log Xn A CðCÞÞ:

In order to unify the notation between Section 4 and the Example at the

end of Section 2.4, we write Rn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2n

p
, so that Rn is the inverse of the

spherical distance between the stereographic projections of an A Rb0 H ĈC and

y A ĈC. The following Lemma allows us to assume further that FixðGnÞ ¼
fan;yg with an A Rb0.

Lemma 7. We can assume without loss of generality that the fixed points

of Gn are

FixðGnÞ ¼ fan;yg

with an A Rb0, an ! y.

More precisely, given Rn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2n

p
and Gn, there is a unique subgroup fGnGn

with FixðfGnGnÞ ¼ fan;yg and Gn as group of multipliers. Then ðGnÞ converges

precisely when ðfGnGnÞ converges and then

gGyGy ¼ 1 r

0 1

� �
; r A Gy

� 	
with Gy ¼ lim Gn. Moreover, Gy is obtained from gGyGy by conjugating with an

appropriate rotation.

Proof. We use the Reduction Lemma (Proposition 6).

For any two points z1 0 z2 A ĈC, there is a unique rotation j A SO3 that

sends z2 to y and z1 inside Rb0. Here SO3 acts on ĈC after identifying it with
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S2 via the stereographic projection. Since SO3 acts on PSL2ðCÞ ¼ AutðH3Þ
by conjugation, we think of j as a homeomorphism from PSL2ðCÞ to

itself. We wish to apply the Reduction Lemma with X ¼ Y ¼ PSL2ðCÞ
and the rotations jn. Given a sequence of fixed points z1;n, z2;n converging

to the same limit zy, if ðonÞ (defined in Section 4 as the angle Argðz2;n � z1;nÞ)
converges to some oy A R=2pZ, then ðjnÞ converges uniformly on compact

subsets of PSL2ðCÞ to jy, the only rotation that sends the vector centered at

zy and pointing in direction oy to the vector centered at y and pointing

toward the positive reals.

Now let K be a compact set of PSL2ðCÞ. Since compact sets of PSL2ðCÞ
are exactly the bounded closed subsets and since SO3 is compact, we see that

for any N,

6
nbN

j�1
n ðKÞH SO�1

3 � K

is bounded thus compact. Therefore we can apply the Reduction Lemma and

we conclude that if ðjnðGnÞÞ converges, then ðGnÞ converges. To show the

converse, apply the same argument replacing Gn by jnðGnÞ and jn by j�1
n .

We conclude that ðGnÞ converges if and only if ðfGnGnÞ ¼ ðjnðGnÞÞ converges.

r

With this in mind, we proceed to the exhaustion of cases. It reduces

completely to the exhaustion of cases for sequences ðGnÞ of subgroups of C
satisfying 2ipRn A Gn with Rn ! y, Rn A R.

We can reduce it further, by defining

ln ¼ Inffx > 0 j ix A Gng:

When ln 0 0, the integer 2pRn=ln is the maximal order of an elliptic element

in Gn.

Lemma 8. Let l > 0. The followings are all the closed subgroups G of C
such that ½0; il �VG ¼ f0; ilg or ½0; il �:

� Al :¼ ilZ,
� Bl

z :¼ zZþ ilZ for z A C with ReðzÞ > 0 and ImðzÞ A ½0; l �,
� Cx :¼ xZþ iR for x > 0,
� Dl

t :¼ ilZþ ð1þ itÞR with t A R,
� A0 ¼ Cy :¼ iR,
� C0 :¼ C.

In Remark 4 below, we recall how letters for subgroups G correspond to

di¤erent kinds of non-parabolic subgroups G of PSL2ðCÞ.
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Remark 4. Let G be a non-trivial, non-parabolic, closed abelian subgroup

of PSL2ðCÞ; let G ¼ R Log X (see the beginning of Section 4 for notations).

Then exactly one of the following holds:
� G ¼ A2pR=m if G is generated by an elliptic element of order m,
� G is some B2pR=m

z if G is generated by an elliptic element of

order m and a non-trivial hyperbolic element; these two generators

need to have the same fixed points in CP1 in order for G to be

abelian,
� G is some Cx if G0C, G contains every elliptic element fixing a pair of

points in CP1, and G contains a non-trivial hyperbolic element fixing the

pair of points,
� G is some D

2pR=m
t if G contains exactly m elliptic elements, and has

exactly m connected components homeomorphic to R. Otherwise put,

X ¼ eG is a m-branched logarithmic spiral,
� G ¼ iR if G consists of the elliptic elements sharing the same fixed point

set,
� G ¼ C if G consists of the elliptic and hyperbolic elements sharing the

same fixed point set.

Let us continue the exhaustion of cases by mentioning easy cases first.

Note that by extracting a subsequence if necessary, we may assume that all Gn

are of the same type (A, B, C or D) described in Lemma 8, and that ðlnÞ
converges in ½0;y�.

If ln ! 0 (resp. ln ! l with l A ð0;yÞ), explicit limits Gy for ðGnÞ can be

computed, with Gy ¼ Cx for x A ½0;y� (resp. a subgroup of letter A, B or D).

This is performed by separating cases as in [2]. The whole description is

somewhat tedious so we refer to [2] for the general picture.

Now we see that we are left with the problem of exhaustion of cases

for convergent sequences ðGnÞ such that there is an ln > 0 with iln A Gn,

½0; iln�VGn ¼ f0; ilng and ln ! y. The following lemma deals with the easier

cases.

Lemma 9. In the Chabauty topology, we have the following convergence

results, for ln ! y throughout.
� Aln ! f0g,

� Bln
zn
!

f0g if ReðznÞ ! y

ðxþ iyÞZ if ReðznÞ ! x with x > 0; and fyn ! y

for fyn the unique ðImðznÞ mod ilnÞ in ð�ln=2; ln=2�
f0g if ReðznÞ ! x with x > 0 and fyn !Gy;

8>>><>>>:
� Dln

tn !
ð1þ itÞR if tn ! t A R
Cx if tn !Gy and

jlnj
jtnj ! x A ½0;y�:

(
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Proof. These assertions result from elementary manipulation of Haus-

dor¤ limits. r

Here again when all the Gn are of type B, we can further assume that

ðReðznÞÞ converges in ½0;y� and we see that the case Gn ¼ Bln
zn
with ln ! y and

ReðznÞ ! 0 is the only remaining case. It will be studied separately in

Subsection 5.3 below. Note that this case exactly describes the exhaustion

of cases for sequences of abelian subgroups generated by an elliptic element

of order mn (this condition being vacuous for mn ¼ 1) and by a non-trivial

hyperbolic element, and such that Rn=mn ! y. In particular, this case

englobes the exhaustion of cases for sequences of cyclic subgroups of PSL2ðCÞ
generated by one hyperbolic element, converging to a parabolic group (example

in Section 1, with ln ¼ 2p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2n

p
, xn ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2n

p
lnðrnÞ, yn ¼ 1=n).

5.3. Remaining case. We will now study the convergence of lattices Gn HC
of the form

Gn ¼ hiln; xn þ iynlni

with ln > 0, xn > 0 and yn A ½0; 1�, in the case where ln ! y and xn ! 0.

Taking extractions if necessary, we can assume that yn ! yy A ½0; 1�.
The strategy to describe the explicit limit of the sequence ðGnÞ is to replace

the generators ðiln; xn þ iylnÞ by a ‘‘better’’ pair of generators, ‘‘better’’ here

meaning roughly ‘‘closer to the origin’’. The intuition is that while ðilnÞ and

ðxn þ iylnÞ converge/diverge possibly in very di¤erent speeds, linear combina-

tions of these generators may very well end up close to the origin. Better

generators will prevent this enrichment behavior to happen.

This is where the continued fractions enter to the picture. See for instance

[6] for a geometry-flavoured exposition to continued fraction.

We write y ¼ ½a0; a1; a2; a3; . . .� for the expansion in continued fraction of y:

y ¼ a0 þ
1

a1 þ 1
a2þ 1

a3þ���

with a0 A Z and ai b 1 for ib 1.

Recall that for j less than or equal to the length of the expansion in

continued fraction of y (this condition being vacuous for y irrational), the jth

convergent

pj

qj
¼ ½a0; a1; a2; . . . ; aj�

with pj, qj coprime, satisfies the following properties.
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Lemma 10. By convention, p�1 ¼ 1, p0 ¼ a0, q�1 ¼ 0, q0 ¼ 1. For all

jb 1,

(1) pj ¼ aj pj�1 þ pj�2, qj ¼ ajqj�1 þ qj�2,

(2) qjþ1pj � qj pjþ1 ¼ ð�1Þ j ,
(3) pj=qj alternates around y. More precisely, signðy� pn=qnÞ ¼ ð�1Þn,
(4) jy� pj=qj j < 1=qjqjþ1 < 1=q2j .

Proof. These are standard facts. For instance, see [10]. r

Recall the previous notations Gn ¼ hiln; xn þ iynlni with ln > 0, xn > 0,

yn A ½0; 1�, ln ! y, xn ! 0 and yn ! yy A ½0; 1�. Let as before yn ¼
½0; an;1; . . . ; an; j; . . .� be the continued fraction expansion of yn.

Define for all integers n and j

un; j ¼ qn; jxn þ ilnðqn; jyn � pn; jÞ:

Note that we always have Gn ¼ hun; j; un; jþ1i. Indeed, fun; j ; un; jþ1g is

linearly independent by Lemma 10-(3) and generates Gn since (2) and (4) imply

that there is no point of Gn in the interior of the triangle with vertices 0, un; j
and un; jþ1.

At this point, it does not seem that the way we expressed Gn using

the continued fraction expansion of yn is by any mean more concrete that the

Weierstrass elliptic function used in [7]. Contrary to this appearance, the

following two lemmas show that a lot of the properties of the pair ðun; j; un; jþ1Þ
can be ‘‘read’’ in the continued fraction expansion of yn.

Lemma 11. rn;k ¼ Reðun;kþ1Þ
Reðun;kÞ

has continued fraction expansion

rn;k ¼ ½an;kþ1; an;k; an;k�1; . . . ; an;1�;

and hn;k ¼ Imðun;kþ1Þ
Imðun;kÞ





 



 has continued fraction expansion

hn;k ¼ ½0; an;kþ2; an;kþ3; . . .�:

In other words, rn;k is obtained by reading the continued fraction of yn back-

wards, starting at the index k þ 1, and hn;k is obtained by reading the continued

fraction of yn forwards, starting at the index k þ 2.

Proof. We prove the first assertion by a simple induction on k for

rn;kþ1 ¼ qn;kþ1=qn;k, using Lemma 10-(1). Indeed, rn;1 ¼ qn;1=qn;0 ¼ an;1 and

rn;kþ1 ¼
qn;kþ1

qn;k
¼ an;kþ1qn;k þ qn;k�1

qn;k
¼ an;kþ1 þ

1

rn;k
:
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Similarly for the second assertion, define for all k

hn;kþ1 ¼
qn;kþ1yn � pn;kþ1

qn;kyn � pn;k





 



:
Then hn;0 ¼ yn and by (1)

hn;kþ1 ¼ � qn;kþ1yn � pn;kþ1

qn;kyn � pn;k
¼ �an;kþ1 þ

1

hn;k
: r

Lemma 12. The set of lattices of C generated by a pair of vectors u; v A C
satisfying

0 < ReðuÞ < ReðvÞ;
0 < jImðvÞj < jImðuÞj;
ImðuÞ � ImðvÞ < 0;

ReðvÞ=ReðuÞ A RnQ;

8>>><>>>:
is dense in the space of closed subgroups of C, for the Chabauty topology.

Proof. This follows from a standard density argument. r

The following theorem translates in the world of PSL2ðCÞ as saying that

we can obtain any parabolic group P as the limit of a sequence of cyclic groups

Hn with hyperbolic generators. Additionally, this remains true even if we

ask the fixed points of Hn to converge radially. More precisely, suppose for

instance that the fixed point of P is 0 A ĈCGCP1 and choose some preferred

angle o. Then we can find a sequence ðHnÞ converging to P with FixðHnÞ ¼
f0; fng and Arg fn ¼ �o for all n.

Theorem 4. Let G be any closed subgroup of C, and y A ½0; 1Þ. Then

there exist sequences ln ! y, xn ! 0 and yn ! y such that the sequence of

lattices

ðGnÞ ¼ ðhiln; xn þ iynlniÞ

converges to G in the Chabauty topology.

Proof. Assume that y A ½0; 1�nQ (the case y A Q is only di¤erent in the

fact that the expansion in continued fractions of y is finite; it can be dealt with

by minor changes to the present proof ). Assume that G is generated by a pair

of vectors u; v A C satisfying the condition of Lemma 12, and consider r ¼
ReðvÞ=ReðuÞ and h ¼ jImðvÞ=ImðuÞj.

Suppose for instance that ImðuÞ > 0, the case ImðuÞ < 0 being similar.

Also, define the following continued fraction expansions:
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y ¼ ½0; a1; a2; . . .�;
r ¼ ½b0; b1; b2; . . .�;
h ¼ ½0; g1; g2; . . .�:

8><>:
Here by assumption, the first two expansions are infinite, b0 > 0, and the last

expansion is either finite or infinite.

Let us define the sequence yn by:

yn ¼ ½0; a1; a2; . . . ; an; bn; bn�1; . . . ; b0; g1; g2; . . .�:

Recall that pn;2n and qn;2n are defined by

pn;2n=qn;2n ¼ ½0; a1; a2; . . . ; an; bn; bn�1; . . . ; b1�:

Set xn and ln so that xnqn;2n ¼ ReðuÞ and lnðqn;2nyn � pn;2nÞ ¼ ImðuÞ, and let

Gn ¼ hiln; xn þ iynlni. By definition of xn and ln, we have that un;2n ¼ u, and

we want to prove that un;2nþ1 ! v. But by Lemma 11, rn;2n and hn;2n verify

rn;2n ¼ ½b0; b1; . . . ; bn; an; . . . ; a1�;
hn;2n ¼ ½0; g1; g2; . . .�;

�
therefore un;2nþ1 ¼ rn;2n Reðun;2nÞ � hn;2n Imðun;2nÞ ! r ReðuÞ � h ImðuÞ ¼ v.

Because u and v are linearly independent, Gn ¼ hun;2n; un;2nþ1i ! G ¼ hu; vi
and the proof is completed for this case.

Now by Lemma 12 and by a standard density and diagonal argument, the

proof is completed in all the remaining cases. r

Finally, let us describe explicitely the limit of a converging sequence ðGnÞ
as above, using only the sequences ðlnÞ, ðxnÞ and the coe‰cients ai of the

expansion in continued fraction of y. Let us start with an easy lemma.

Lemma 13. For any n, two minimal values of the sequence ð j 7! kun; jkyÞ
for the max norm kxþ iyky ¼ Maxðjxj; jyjÞ are obtained for two consecutive

integers, that we write ð jmin
n ; jmin

n þ 1Þ. Then un; jmin
n

and un; jmin
n þ1 are also

minimal for the max norm amongst all non-zero elements of Gn.

Proof. Since ð j 7! qn; jxnÞ is increasingly converging to y and

ð j 7! lnjqn; jyn � pn; jjÞ is decreasingly converging to 0,

j 7! kqn; jxn þ ilnðqn; jyn � pn; jÞky
is first decreasing and then increasing; this proves the first assertion. The

second follows from Lemma 10-(2) and (4). r

Definition 2. For all n, define un, vn by

un ¼ un; jmin
n

;

vn ¼ un; jmin
n þ1:

�
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Theorem 5. Suppose that for instance ImðunÞ > 0 for all n (the case

ImðunÞ < 0 for all n is similar, and we can assume either one of the two by

extracting subsequences if necessary). Define tu ¼ lim Arg un A ½0; p=2�, tv ¼
lim Arg vn A ½�p=2; 0�, assuming these limits exist by taking an extraction if

necessary. If tu and tv are neither both 0 nor bothGp=2, then the limit subgroup

Gy ¼ limhun; vni is the one we expect, namely

Gy ¼ Gu þ Gv

with

Gu ¼ limhuni ¼
ð1þ ituÞR if un ! 0;

uyZ if un ! uy A Cnf0g;
f0g if un ! y:

8><>:
and similarly for v.

If tu and tv are either both 0 or both Gp=2, then:
� Gy ¼ iyZþR if tu ¼ tv ¼ 0, un ! 0 and

ImðunÞ
ReðunÞ ReðvnÞ þ jImðvnÞj ! y,

with by convention yZ ¼ R if y ¼ 0, yZ ¼ f0g if y ¼ y,
� Gy ¼ xZ if tu ¼ tv ¼ 0 and un ! x A R, x > 0,
� Gy ¼ xZþ iR if tu ¼ þp=2, tv ¼ �p=2, vn ! 0 and ImðunÞ ReðvnÞ

jImðvnÞj þ
ReðunÞ ! x, with by convention xZ ¼ R if x ¼ 0, xZ ¼ f0g if x ¼ y,

� Gy ¼ iyZ if tu ¼ þp=2, tv ¼ �p=2 and vn ! �iy, y > 0.

Proof. The first part follows easily from the minimality of the generators

ðun; vnÞ, see Lemma 13. The two cases tu ¼ tv ¼ 0 and tu ¼ þp=2, tv ¼ �p=2

are similar; let us prove only the result for the former case.

If tu ¼ tv ¼ 0 and un ! 0, draw the line passing through vn and parallel

to the line through 0 and un; consider its intersection �iyn with the vertical

axis. It is easy to see that yn ¼ ImðunÞ
ReðunÞ ReðvnÞ þ jImðvnÞj, and since un ! 0 and

tu ¼ 0, we conclude that Gy ¼ iyZþR.

If tu ¼ tv ¼ 0 and un ! x with x > 0, then consider Figure 3. By the

minimality of the generators ðun; vnÞ for the max norm, there can not be any

element of Gn ¼ hun; vni in the two left shaded squares. As a consequence,

there can not be any element of Gn in any of the shaded region. Now

jImðvnÞj < ImðunÞ, so ReðvnÞ must be bigger than the real part of the point

represented by z on Figure 3, which is easily seen to be ReðzÞ ¼
ReðunÞ
ImðunÞ ðReðunÞ � ImðunÞÞ. Since un ! x > 0 we conclude that Gy ¼ xZ, and

the proof is completed. r

6. Local models for C2

We would like now to provide local models for neighborhoods of elements

in C2. Recall that the space of non-trivial, non-parabolic elements of C2 is
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homeomorphic to Y� ðCðC�Þn1Þ (see Proposition 1). Since we know how to

describe geometrically CðC�Þ (see [2]), we have a clear enough picture of what

a neighborhood of a non-trivial, non-parabolic element of C2 looks like.

6.1. Local models in terms of marked subgroups of C. Let G be a parabolic

group in C2. For clarity, assume that its fixed point is 0. In the following,

we will look at groups H in C2 close enough to G that:
� if H is parabolic, its fixed point is not y. In this case, we get

‘‘the’’ subgroup G associated to H, via the specific local trivialization

D� �C� ! P from Section 3.4.
� if H is non-parabolic, its fixed point set does not include y. Therefore

it makes sense to talk about the argument o of z2 � z1, for zi A C the

stereographic projections for the two fixed points fi on ĈC.

Call G1 the subgroup of C associated to G.

Non-parabolic groups in C2 are specified by two fixed points f1 and f2,

and by a closed subgroup G ¼ Reio Log X A CðCÞ. G contains the element

d ¼ 2ipReio with Rb 1 (see Subsection 4.3). Note that for notational pur-

poses, G in this section refers to ĜG from Remark 3 (the hat symbol is dropped).

This should not introduce any confusion.

Alternatively, non-parabolic groups can be specified by the giving of one

fixed point f1, and by a marked closed subgroup ðG; dÞ, the marking d being

of absolute valueb 2p. This is because we can recover f2 from f1, R and o.

Thus, let us define:

M ¼ fðG; dÞ;G A CðCÞ; d A GU fyg; jdjb 2pg:

0

un

vn

z

un; j min
n �1

Fig. 3. If un ! x with x A R, x > 0, then ReðvnÞ ! y.
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We put on M the topology inherited by inclusion into CðCÞ � ðCU fygÞ.
Consider the fixed point exchange map ð f1; d ¼ 2ipReioÞ 7! f2, where f2

are defined by dð f1; f2Þ ¼ 1=R and o is the angle between the horizontal line

and the line through f1 and f2.

Theorem 6. Let B be an open ball around 0 inside S2, small enough

that y B B (recall the choice of S2 as a subset of C2 in Subsection 3.1). Let

N be a neighborhood of ðG1;yÞ A M, small enough that: Ef1 A B, EðG; dÞ A N,

f2 0y. Then the following map is a homeomorphism onto its image:

ðB�NÞ=ðð f1;G; dÞ@ ð f2;G;�dÞÞ ! C2

ð f1;G; dÞ 7! Hð f1;G; dÞ;

where Hð f1;G; dÞ is the non-parabolic group with fixed points f1, f2 and the

associated group G if d0y, or the parabolic group with a fixed point f1 and the

associated group G if d ¼ y.

Proof. Injectivity comes from the classification of abelian subgroups of

PSL2ðCÞ. Remark 3 implies that a sequence in the source space converges if

and only if its image converges in the target space. r

Theorem 6 reduces the problem of describing neighborhoods of parabolic

groups in C2 to the one of describing the neighborhoods of marked subgroups

ðG1;yÞ A M. The authors produced several pictures of these neighborhoods

depending on the type of G as a subgroup of C. Describing these pictures in

detail would require lengthy explanations that we decided not to include in the

present paper. We will discuss accumulation behavior depending on the type

of G1.

6.2. Dichotomy of accumulation behavior. As the space C2 accumulates to

P2, we face the situation of a 6-dimensional space accumulating on another

6-dimensional space. We expect spiraling behaviors of some sort; this sub-

section is an attempt to make this precise.

In general, there is one simple nice dichotomy for the case when an

n-dimensional space X accumulates to another n-dimensional space Y (say X ,

Y metric spaces). Let p A Y be a limit point of X . Then either there is a

continuous path g : ½0; 1� ! X UY such that gð½0; 1ÞÞHX and gð1Þ ¼ p A Y , or

there is no such a path. Otherwise put, either for every neighborhood U of p

in X UY the arcwise-connected component of U containing p contains an

element of X , or for every neighborhood U of p in X UY the arcwise-

connected component of U containing p contains no element of X . We would

like to reserve the term ‘‘spiraling of X toward p in Y ’’ for the latter behavior,
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since it is similar to ½1;yÞHR accumulating onto S1 via x 7! 1� 1
x

� �
eix A C.

We do not think that this terminology is standard.

Let us see an example in dimension 2 showing the two di¤erent situations.

See Figure 4.

For notational convenience, define now X ¼ C2nP2 to be the space of

all non-trivial non-parabolic closed abelian subgroups of PSL2ðCÞ. In the

following subsections, we will prove the following theorem.

Theorem 7. Let G be a group in P2. Then

1. if G is isomorphic to Z2, then X accumulates towards G in a spiraling

way.

2. if G is not isomorphic to Z2, X accumulates toward G in a non-spiraling

way.

Fig. 4. In both pictures, a 2-dimensional space X is accumulating onto a 2-dimensional space

Y . In the picture, we only show the approximation of a pleating of one end of X . It looks like

an accordion with more and more pleating. As a limit of this process, X finally accumulates onto

a the square Y . The fundamental di¤erence between these two cases is captured by the paths g.

In the first case, if you pick a point p in X , then there is no finite path starting at this point and

reaching Y . But such a path exists in the second case.
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6.3. The spiraling case. In this subsection, we prove Theorem 7, part 1.

Let G be a parabolic group in C2 isomorphic to Z2. We can assume

without loss of generality that its fixed point is 0 and its associated subgroup G1

is Zþ iZHC.

Assume there is a path t A ½0; 1� 7! Gt A C2 such that Gt A X for every

t A ½0; 1�, and with G1 ¼ G. We would like to find a contradiction. It

is su‰cient to look at the induced path in the space M introduced in

Section 6.1.

By shortening Gt if necessary, we can assume that for all t, the fixed points

of Gt, f1ðtÞ and f2ðtÞ are not y. Let Gt ¼ RðtÞeioðtÞ Log XðtÞ A CðCÞ, and

dðtÞ ¼ 2ipRðtÞeioðtÞ A Gt. Then since G1 ¼ G is parabolic and d is continuous,

dðtÞ ! y as t ! 1. The space of lattices being an open subset of CðCÞ, we
may assume that Gt is a lattice for any t A ½0; 1�. We can define generators

g1ðtÞ, g2ðtÞ of Gt so that g1ðtÞ ! 1 and g2ðtÞ ! i as t ! 1. For small e > 0, let

Ne be a neighborhood of G1 in CðCÞ such that the following holds: Gt lies in

Ne if and only if j1� g1ðtÞj < e and ji � g2ðtÞj < e. For each t, there are some

integers k1ðtÞ, k2ðtÞ such that k1ðtÞg1ðtÞ þ k2ðtÞg2ðtÞ ¼ dðtÞ. But since t 7! kiðtÞ
is continuous and ½0; 1� is connected, k1, k2 are constant maps. This contra-

dicts the fact that d blows up to y when approaching 1. Hence a continuous

path t 7! Gt cannot exist, and the proof of Theorem 7 is completed in the first

case.

6.4. Non-spiraling cases. There are several subcases that we would like to

investigate now. In each case, we will provide conditions for the existence of

continuous paths starting at particular points in X.

(1) G is parabolic, isomorphic to Z,
(2) G is parabolic, isomorphic to R� Z,
(3) G is parabolic, isomorphic to R,

(4) G is parabolic, isomorphic to C,

(5) G is the trivial subgroup f1g.
(1) Let G be a parabolic group in C2 isomorphic to Z. We can assume

without loss of generality that its fixed point is 0 and that its associated

subgroup G1 is ZHC. For small e > 0, let Ne be the neighborhood of G1

in CðCÞ consisting of the cyclic groups hg1i and of the lattices hg1; g2i with

j1� g1j < e and g2 A fjReðzÞj < 1 and ImðzÞ > 1=eg. Take G0 A X in a small

ball U around G in C2 for which every element has its associated subgroup

in Ne. Write G0 for the associated subgroup of G0; it equals either g1ð0ÞZ
or hg1ð0Þ; g2ð0Þi. An argument in Subsection 6.3 would show easily that if

dð0Þ ¼ k1g1 then there are no continuous paths t 7! Gt A U such that G1 ¼ G.

Moreover, each di¤erent choice for k1 > 0 corresponds to a di¤erent connected

component for U .
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Now if dð0Þ ¼ k1g1 þ k2g2 with k2 > 0, the path in U defined by

Gt ¼ hg1ðtÞ; g2ðtÞi, f1ðtÞ ¼ ð1� tÞ f1, dðtÞ ¼ k1g1ðtÞ þ k2g2ðtÞ with g1ðtÞ ¼
ð1� tÞg1 þ t and g2ðtÞ ¼ g2 þ i

1�t
connects G0 to G1.

(2) Let G be a parabolic group in C2 isomorphic to Z�R. We may

again assume that its fixed point is 0 and its associated subgroup G1 is Rþ iZ.
For small e > 0, let Ne be a neighborhood of G1 in CðCÞ consisting of the

subgroups hg1; g2i with jg1j < e, jArgðg1Þj < e and ji � g2j < e, and of sub-

groups of C isomorphic to Z�R which are close enough to G1. Now, as

above, let U be a neighborhood of G for which every element has its associated

subgroup in Ne. Discussions as before show that lattice subgroups in Ne with

a choice dð0Þ ¼ k1g1 þ k2g2, k2 > 0 each corresponds to one connected com-

ponent of U that intersects P2 non-trivially. The novelty in the case k2 ¼ 0

is that g1 can be made to converge to 0 continuously. In the process,

dðtÞ ¼ k1g1ðtÞ has to get close to 0 also, thus Gt needs to exit U at some

point.

(3) The case where G is isomorphic to R is very similar to the case (2)

but slightly more complicated, since now it is possible to approach G by groups

of type Z, and we will not elaborate further.

Case (4) is somewhat wilder. Indeed, assuming again G1 has fixed point

0 and G1 ¼ C, neighborhoods of G1 include copies of the neighborhood of

the wedge point of the D-bouquet in the Chabauty space of C� (see [2]). We

will only attempt to show that G1 possesses arbitrary small neighborhoods U

such that both U and XVU are arcwise connected; this statement somewhat

represent an ultimate non-spiraling behavior.

Lemma 14. Given any subgroup G0, with marked point d ¼ dð0Þ and close

enough to G1 ¼ C for the Chabauty topology dCðCÞ, there is a path t 7!
ðGt; dðtÞÞ A M such that t 7! dCðCÞðGt;G1Þ is decreasing and dðtÞ is constant.

Proof. Since G0 is close to C, it has to be of type R� Z or a lattice.

First, consider G0 to be a subgroup of C of type R� Z. Let L1 be

the line passing through 0 and d, and L2 any line through 0 distinct from

L1 and not included in G0. Then the path t 7! Gt with Gt obtained from G0 by

applying the linear shear TtðL1;L2Þ that leaves L1 pointwise fixed and contracts

the direction L2 by a factor 1=ð1� tÞ satisfies that the distance be-

tween two consecutive copies of R in Gt continuously decreases, while dðtÞ A L1

stays fixed.

Now consider G0 to be a lattice. Let L1 be the line passing through 0 and

d, and L2 a line passing through 0 and any point in G0nL1. Then applying

TtðL1;L2Þ to G0 yields a path from G0 to a subgroup of type R� Z, with dCðCÞ
decreasing and dðtÞ fixed. Concatenating this path with the path described

above finishes the proof. r
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Corollary 3. There exist arbitrary small neighborhoods U HC2 of G1

such that both U and XVU are arcwise connected.

Proof. For e > 0, consider Ue to be the neighborhood of G1 consisting of

all groups in C2 with a fixed point j f1j < e, with corresponding G either of type

R� Z and then the distance between two consecutive copies of R in G is less

than e, or a lattice with generators g1 and g2, jg1j; jg2j < e, and in both cases

with d A G verifying jdj > 1=e.

Now let G;G 0 A Ue. We want to show there exists a path in Ue from G to

G 0, with the additionnal requirement that if both groups are in X, the path is

in X. By Lemma 14, we can assume that both G and G 0 have corresponding

group G ¼ C. Then, by concatenating if necessary with a path that moves a

fixed point to 0 while leaving G and d constant, we can assume that G and G 0

have f1 ¼ 0. But then, by concatenating with a path that connects the d of G

and G 0 via a segment, we see that the claim holds. r

(5) fIdg has arbitrary small arcwise connected neighborhoods U , but

XVU always has infinitely many arcwise connected components. First, for

e > 0, let Ue be the neighborhood consisting of all groups in C2 with fixed

points j fij < e and with GVBCð0; 1=eÞ ¼ f0g. Then for any group G0 in Ue,

the path in Ue that moves f1 to 0 (for instance in a straight line) while

expanding G0 by a factor 1=ð1� tÞ continuously deforms G0 into Id. There-

fore Ue is path-connected. The second claim holds because for any given

neighborhood U of Id, and any integer k > 0 there are groups G A U such that

½0; d�VG contains exactly k þ 1 points. As argued before, di¤erent choices for

k yield di¤erent connected components of U VX.

7. Summary statement

The following statement collects and summarizes all results in this paper.

Summary Statement The space X of non-trivial, non-parabolic, closed abelian

subgroups of PSL2ðCÞ is homeomorphic to

Y� ðCðC�Þnf1gÞ;

where YGCP2nCP1 is the space of pairs of points of a 2-sphere (see Sub-

section 3.3) and CðC�Þ is the Chabauty space of C� (see for instance [2]). See

Proposition 1.

Moreover, the space of non-trivial discrete cyclic subgroups of PSL2ðCÞ
generated by an elliptic generator is homeomorphic to

Y�Nb2;
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and the space of non-trivial discrete cyclic subgroups of PSL2ðCÞ generated by

a hyperbolic generator is homeomorphic to

Y� ðCnDÞ:

See Proposition 2.

The closure P1 of the space of cyclic parabolic subgroups in C1 HC2 is

the one-point compactification of a 4-twist SO2-bundle of Dnf0g over S2 (see

Corollary 1). It lies inside the space P2 of parabolic closed abelian subgroups

of PSL2ðCÞ; P2 is homeomorphic to the one-point compactification of S2 �R4

(see Corollary 2).

Reducing arguments (Theorems 2 and 3) show that the problem of

convergence of sequences of elements of C2 can be reduced to a problem

about convergence of the associated closed subgroups of C.

The way X ¼ C2nP2 is attached to P2 derives from Theorem 2. It results

from a blow-up phenomenon corresponding to cylinders getting wider and

wider; see Subsection 4.3. In spirit, this attachment is very similar to the

bending described in [3] (recall Theorem 1).

The whole exhaustion of cases for sequences of closed abelian subgroups

of PSL2ðCÞ is described in Section 5. The last case, englobing in particular

the case of cyclic hyperbolic subgroups Hn of X converging to a point in

P2, involves the expansion in continued fraction of the multiplier yn of a

generator of H, by stopping at some index and then reading the expansion

from right to left, and from left to right starting at this index. See Sub-

section 5.3.

Finally, the description of local models for neighborhoods in C2 of

parabolic groups G A C2 is reduced to a problem about marked subgroups

of C; see Subsection 6.1. In the generic case where G is isomorphic to Z2,

X accumulates towards G in a spiraling way. When G is not isomorphic to

Z2, X accumulates toward G in a non-spiraling way (see Section 6 for more

details).

An interesting direction in generalizing this work would be to study the

case of elementary subgroups of PSL2ðCÞ. Since those are precisely the sub-

groups of PSL2ðCÞ with finite index abelian groups, it seems reasonable to

expect that the Chabauty space of elementary groups is not too much more

complicated.

Also, along the way of Subsection 5.3 we discovered that it was possible

to relate some aspects of geometric limits to the continued fraction of some

quantity (namely yn) by reading its expansion, first backwards starting from

some index j þ 1, then forwards starting at the index j þ 2. We would be very

interested in finding other occurences of these relations in other parts of

mathematics.
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