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Abstract. Let l be a prime number. In the paper, we study the outer Galois action

on the profinite and the relative pro-l completions of mapping class groups of pointed

orientable topological surfaces. In the profinite case, we prove that the outer Galois

action is faithful. In the pro-l case, we prove that the kernel of the outer Galois action

has certain stability properties with respect to the genus and the number of punctures.

Also, we prove a variant of the above results for arbitrary families of curves.

1. Introduction

Let k be a (commutative) field of characteristic zero, X a smooth geomet-

rically connected curve over k, and ðg; nÞ a pair of nonnegative integers such

that 2g� 2þ n > 0 (hyperbolicity). We call X a ðg; nÞ-curve if there exist a

proper smooth genus g curve C over k and a closed subscheme DJC such

that X ¼ CnD and the composite D ,! C ! Spec k is a finite étale covering of

degree n. Let k be an algebraic closure of k. For a ðg; nÞ-curve X , by SGA1

[1], we have a short exact sequence

1! p1ðX nk kÞ ! p1ðXÞ ! Gk ! 1

where p1 denotes the algebraic fundamental group and Gk :¼ Galðk=kÞ is the

absolute Galois group of k. Let Pg;n denote the profinite completion of

the fundamental group p1ðg; nÞ of a compact Riemann surface of genus g with

n points punctured. By the comparison theorem, p1ðX nk kÞ is isomorphic

to Pg;n. We fix an isomorphism p1ðX nk kÞ !
@

Pg;n. Since p1ðXÞ acts on

p1ðX nk kÞ by conjugation in the above short exact sequence, p1ðXÞ also acts

on Pg;n. This gives the diagram

1 Pg;n p1ðXÞ Gk 1???y
???y

???y
1 ���! InnðPg;nÞ ���! AutðPg;nÞ ���! OutðPg;nÞ ���! 1;

�����! �������! ��������! ������!
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where Aut (respectively Inn) denotes the continuous automorphism group

(respectively the inner automorphism group) of Pg;n, and Out denotes the

quotient, so that the horizontal sequences are both exact. The right vertical

map gives the outer Galois representation

rX : Gk ! OutðPg;nÞ:

Note that the kernel of rX is independent of the choice of the isomorphism

p1ðX nk kÞ !
@

Pg;n. Belyı̆ proved that rX is injective when X ¼ P1
knf0; 1;yg

and k is a number field (Corollary to Theorem 4, [5]). Voevodskiı̆ proved the

injectivity of rX when the genus of X is 1 and k is a number field, and sug-

gested a conjecture that rX is injective when X is an a‰ne hyperbolic curve and

k is a number field ([33]). This conjecture was solved by Matsumoto ([19]).

Moreover, the proper case was proved by Hoshi and Mochizuki ([14]). There-

fore, we have the following theorem:

Theorem 1.1 (Belyı̆, Voevodskiı̆, Matsumoto, Hoshi-Mochizuki). The

outer Galois representation rX is injective when X is a hyperbolic curve and

k is a number field.

Grothendieck expected that any hyperbolic curve over a number field

would be anabelian, i.e., the geometry of any hyperbolic curve X over a

number field is determined by rX (the Grothendieck conjecture for algebraic

curves, [11]). This conjecture was proved by Mochizuki ([21, 22]) following

earlier work of Nakamura and Tamagawa. The above theorem can be

regarded as an evidence that rX is highly complicated when k is a number field.

On the other hand, Grothendieck expected that the moduli space of hyper-

bolic curves would be also anabelian ([11]). Therefore, it is a natural problem

whether Voevodskiı̆’s conjecture holds in the case when X is the moduli space

of hyperbolic curves. Let Mg;n be the moduli stack over k of smooth geomet-

rically connected proper curves of genus g with n (ordered) marked points ([8,

17]). It is known that p1ðMg;n n kÞ is isomorphic to the profinite completion

Gg;n of the oriented mapping class group MCGg;n of an n-pointed genus g

topological surface ([28]). As above, we have the diagram

1 Gg;n p1ðMg;nÞ Gk 1???y
???y

???y
1 ���! InnðGg;nÞ ���! AutðGg;nÞ ���! OutðGg;nÞ ���! 1;

�����! �����! ������! ������!

where the horizontal sequences are both exact. The right vertical map gives

the outer Galois representation

rg;n : Gk ! OutðGg;nÞ:
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For the injectivity of rg;n, our result in the present paper is summarized in

the following (cf. Theorem 2.3):

Theorem 1.2. Let k be a number field and ðg; nÞ a pair of nonnegative

integers such that 2g� 2þ n > 0. Then the homomorphism rg;nþ1 is injective.

Remark 1.3. As M0;4 ¼ P1
knf0; 1;yg, the injectivity of r0;4 agrees with

the above theorem of Belyı̆ (Corollary to Theorem 4, [5]).

The proof of Theorem 1.2 yields a variant, where we consider an arbitrary

family of hyperbolic curves instead of the universal family Mg;nþ1 !Mg;n. As

above, for any geometrically connected locally noetherian scheme X over k, we

can consider the outer Galois representation rX : Gk ! Outðp1ðX nk kÞÞ deter-
mined by the exact sequence

1! p1ðX nk kÞ ! p1ðXÞ ! Gk ! 1:

Grothendieck expected that hyperbolic polycurves (i.e., successive families of

hyperbolic curves) would be also anabelian ([11]). The injectivity of rX is

implicit in [14] when X is a hyperbolic polycurve and k is a number field. We

can prove the injectivity of rX when X is an arbitrary family of hyperbolic

curves (cf. Theorem 4.3):

Theorem 1.4. Let k be a number field and ðg; nÞ a pair of nonnegative

integers such that 2g� 2þ n > 0, S a geometrically connected normal scheme of

finite type over k and X ! S a family of ðg; nÞ-curves over S. Then the homo-

morphism rX is injective.

Hoshi and Tamagawa informed the author of a di¤erent proof of Theorem

1.2. In fact, their proof gave a result stronger than Theorem 1.2, as we will

see shortly. By Oda’s theory ([28]) and using the Birman exact sequence

(Chapter 4, [9])

1! p1ðg; nÞ !MCGg;nþ1 !MCGg;n ! 1;

we have the following exact sequence (cf. Lemma 2.1 in [20]):

1! Pg;n ! p1ðMg;nþ1Þ ! p1ðMg;nÞ ! 1:

This exact sequence gives the universal monodromy representation

runiv
g;n : p1ðMg;nÞ ! OutðPg;nÞ:

It is known that the homomorphism runiv
g;n is injective if and only if runiv

g;n jGg; n
is

injective (Corollary 6.5, [14]).

Remark 1.5. The problem of the injectivity of runiv
g;n jGg; n

is called the

congruence subgroup problem for MCGg;n. The congruence subgroup
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problem was solved in the a‰rmative for ga 1 by Asada ([4]) and for g ¼ 2,

n > 0 by Boggi ([6]). Boggi called the image of runiv
g;n jGg; n

the geometric

profinite completion of MCGg;n in [6].

We denote by

rgeom
g;n : Gk ! G

g;n
k ! Outðruniv

g;n ðGg;nÞÞ

the natural homomorphism determined by the commutative diagram

1 Gg;n p1ðMg;nÞ Gk 1???y
???y

???y
1 ���! runiv

g;n ðGg;nÞ ���! runiv
g;n ðp1ðMg;nÞÞ ���! G

g;n
k ���! 1;

������! ��������! ������! ����!

where G
g;n
k :¼ runiv

g;n ðp1ðMg;nÞÞ=runiv
g;n ðGg;nÞ, and the horizontal sequences are

exact.

Theorem 1.6 (Hoshi-Tamagawa). Let k be a number field and ðg; nÞ a

pair of nonnegative integers such that 3g� 3þ n > 0. Then the homomorphism

rgeom
g;n is injective. In particular, rg;n is injective.

We remark that Boggi also announced the same result (Corollary 7.6, [7]).

Boggi’s proof depends on the theory of complexes of profinite curves developed

by him. On the other hand, our proof depends on the combinatorial anabelian

geometry developed by Hoshi-Mochizuki.

Next, we consider a pro-l version of Theorem 1.6, where l is a prime

number. Let P l
g;n denote the pro-l completion of the fundamental group of

a Riemann surface of genus g with n points punctured. For a ðg; nÞ-curve X

over k, by the functoriality of pro-l completion, we obtain

r l
X : Gk ! OutðP l

g;nÞ:

As above, we have the pro-l universal monodromy representation

runiv; l
g;n : p1ðMg;nÞ ! OutðP l

g;nÞ:

Therefore, we also have the natural homomorphism

rgeom; l
g;n : Gk ! G

l;g;n
k ! Outðruniv; l

g;n ðGg;nÞÞ

determined by the commutative diagram

1 Gg;n p1ðMg;nÞ Gk 1???y
???y

???y
1 ���! runiv; l

g;n ðGg;nÞ ���! runiv; l
g;n ðp1ðMg;nÞÞ ���! G

l;g;n
k ���! 1;

������! ���������! �������! ����!
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where G
l;g;n
k :¼ runiv; l

g;n ðp1ðMg;nÞÞ=runiv; l
g;n ðGg;nÞ, and the horizontal sequences are

exact. The field determined by imðkerðruniv; l
g;n Þ ! GkÞ(¼ kerðGk ! G

l;g;n
k Þ) can

be regarded as a field of definition of the Teichmüller modular function field

with l-power level structures. Oda conjectured that this field is independent of

ðg; nÞ ([27]). This conjecture was proved by using the weight filtration and the

universal deformation of a maximally degenerate stable curve ([26, 25, 19, 16,

32]). We prove the second main result in the present paper by using Oda’s

conjecture (cf. Theorem 3.4):

Theorem 1.7. Let ðg; nÞ be a pair of nonnegative integers such that

3g� 3þ n > 0, and that either ðg; nÞ0 ð1; 1Þ or l ¼ 2. Then the kernel of

the homomorphism rgeom; l
g;n coincides with the kernel of the homomorphism

r l
P1
knf0;1;yg

: Gk ! OutðP l
0;3Þ:

We apply Theorem 1.7 to the relative pro-l representation (Corollary 3.8).

The present paper is organized as follows: In section 2, we study the

profinite case. First, we prove a technical lemma (Lemma 2.2) in group theory

and we derive Theorem 1.2 from this lemma. Secondly, we explain a proof

of Theorem 1.6 due to Hoshi and Tamagawa by using a geometric version of

the Grothendieck conjecture. In section 3, we prove Theorem 1.7 by using

a geometric version of the Grothendieck conjecture and Oda’s conjecture.

Finally, we study the kernel of the relative pro-l representation. In section 4,

we prove a variant of Theorem 1.2 (including Theorem 1.4) which does not

follow from the method of Hoshi and Tamagawa.

Notations and Conventions

Numbers: The notation Z will be used to denote the set, group, or ring of

rational integers and the notation Q will be used to denote the set, group,

or field of rational numbers. We shall refer to a finite extension of Q as a

number field. For a prime number l, the notation Zl will be used to denote

the set, group, or ring of l-adic integers and the notation Ql will be used to

denote the set, group, or field of l-adic numbers. We shall refer to a finite

extension of Ql as an l-adic local field. The notation C will be used to denote

the set, group, or field of complex numbers.

Groups: If G is a topological group, and HJG is a closed subgroup of G,

then we shall write ZGðHÞ for the centralizer of H in G, i.e.,

ZGðHÞ :¼ fg A G j ghg�1 ¼ h for any h A HgJG;

and we shall write NGðHÞ for the normalizer of H in G, i.e.,

NGðHÞ :¼ fg A G j gHg�1 ¼ HgJG:
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If G is a topological group, then we shall denote by AutðGÞ the group of

automorphisms of G, by InnðGÞ the group of inner automorphisms of G, by

OutðGÞ the quotient of AutðGÞ by the normal subgroup InnðGÞJAutðGÞ.
For a discrete group G and a prime number l, we shall say that G is

conjugacy l-separable if, for any g; h A G, it holds that either g is conjugate to

h or there exists a homomorphism j : G ! P such that P is an l-group and

jðgÞ is not conjugate to jðhÞ. For a discrete group G, we shall say that G has

Property A if, for any a A AutðGÞ such that aðgÞ is conjugate to g for any

g A G, it holds that a A InnðGÞ.

Surface groups and mapping class groups: For a pair ðg; nÞ of nonnegative

integers and a prime number l, the notation Pg;n will be used to denote the

profinite completion of the fundamental group p1ðg; nÞ of a compact Riemann

surface Rg;n of genus g with n points punctured, the notation P l
g;n will be used

to denote the pro-l completion of p1ðg; nÞ, the notation MCGg;n will be used to

denote the mapping class group of ðg; nÞ-type, namely the discrete group of

isotopy classes of orientation preserving self-di¤eomorphisms of an orientable

surface of genus g with n points marked which fix the n points pointwise, the

notation MCGg; ½n� will be used to denote the discrete group of isotopy classes

of orientation preserving self-di¤eomorphisms of an orientable surface of genus

g with n points punctured which preserve the set of punctures, and the notation

Gg;n will be used to denote the profinite completion of MCGg;n. We shall

denote by OutCðPg;nÞ the subgroup of OutðPg;nÞ consisting of elements which

preserve the set of conjugacy classes of the cuspidal inertia subgroups of Pg;n,

and by OutCðP l
g;nÞ the subgroup of OutðP l

g;nÞ consisting of elements which

preserve the set of conjugacy classes of the cuspidal inertia subgroups of P l
g;n.

Here, a conjugacy class of a cuspidal inertia subgroup of Pg;n (respectively,

P l
g;n) means a conjugacy class of the closure of the image of an inertia sub-

group of a point punctured of Rg;n in p1ðg; nÞ by the natural homomorphism

p1ðg; nÞ ! Pg;n (respectively, p1ðg; nÞ ! P l
g;n).

Curves: Let f : X ! S be a morphism of schemes. Then for a pair ðg; nÞ of
nonnegative integers such that 2g� 2þ n > 0, we shall say that f is a family of

ðg; nÞ-curves over S if there exist a proper smooth geometrically connected

morphism f cpt : X cpt ! S whose geometric fibers are of dimension one and

of genus g, and a relative divisor DJX cpt which is finite étale over S of

degree n such that X and X cptnD are isomorphic over S. We shall say that

f cpt : X cpt ! S is a compactification of f : X ! S and DJX cpt is a divisor at

infinity of f : X ! S. We shall say that a family of ðg; nÞ-curves X ! S is

split if a finite étale covering D! S obtained by a divisor at infinity of X ! S

is trivial, i.e., D is isomorphic to the disjoint union of n copies of S over S.

Note that the pair ðX cpt;DÞ is unique up to canonical isomorphism if S is
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normal (e.g., Section 0, [23]). In particular, we shall refer to a family of ðg; nÞ-
curves over the spectrum of a field k as a ðg; nÞ-curve over k.

Fundamental groups: Let l be a prime number, k a field, and k an algebraic

closure of k. For a scheme X which is a geometrically connected and of finite

type over k, we shall write p1ðX nk kÞ l for the maximal pro-l quotient of

p1ðX nk kÞ, and p1ðXÞl for the quotient of p1ðXÞ by the kernel of the natural

surjection p1ðX nk kÞ ! p1ðX nk kÞ l .

2. Profinite mapping class groups

In the present section, we prove Theorems 1.2, 1.6. Let k be a field of

characteristic zero, ðg; nÞ a pair of nonnegative integers such that 2g� 2þ n >

0, Q the algebraic closure of Q determined by a fixed algebraic closure k of k,

and GQ :¼ GalðQ=QÞ. The following theorem was proved by Matsumoto and

Tamagawa (Theorem 1.1, [20]) in the a‰ne case, and more recently by Hoshi

and Mochizuki (Corollary 6.4, [14]) in the proper case.

Theorem 2.1. Let X be a ðg; nÞ-curve over k. Then the subgroup

r�1X ðruniv
g;n ðGg;nÞÞJGk

of Gk is contained in the kernel of the homomorphism

Gk ! GQ

determined by the natural inclusion Q ,! k.

Lemma 2.2. Consider the following commutative diagram of groups where

the vertical and horizontal sequences are exact:

1 1???y
???y

1 ���! K ���! G 0 ���! G ���! 1???y
???y

1 G G 0???y
???y

H H???y
???y

1 1:

���! ���!
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Let rG : H ! OutðKÞ, rG 0 : H ! OutðG 0Þ, rG 0 : G ! OutðKÞ denote the nat-

ural homomorphisms determined by the above commutative diagram. Then the

subgroup

rGðkerðrG 0 ÞÞJOutðKÞ

of OutðKÞ is contained in the image of rG 0 .

Proof. Let h be an element of the kernel of rG 0 . Since G surjects onto

H, we can take h 0 A G mapped to h A H. By the injectivity of the homo-

morphism G ! G 0, we may regard h 0 as an element of G 0. Then there exists

an element g of G 0 such that Innðh 0Þ acts on G 0 by InnðgÞ. In particular,

Innðh 0Þ acts on K by InnðgÞ. This means rGðhÞ A imðrG 0 Þ. r

Theorem 2.3. Let ðg; nÞ be a pair of nonnegative integers such that

2g� 2þ n > 0. Then the kernel of the homomorphism rg;nþ1 is contained in

the kernel of the homomorphism

Gk ! GQ

determined by the natural inclusion Q ,! k.

In particular, if k is a number field or an l-adic local field, then the

homomorphism rg;nþ1 is injective.

Proof. The morphism Mg;nþ1 !Mg;n given by forgetting the last marked

point induces the commutative diagram

1 ���! Gg;nþ1 ���! p1ðMg;nþ1Þ ���! Gk ���! 1???y?y
???y?y

����
1 Gg;n p1ðMg;nÞ Gk ���! 1����! �����! ����!

where the horizontal sequences are exact, and the vertical arrows are surjective.

In particular, by the surjectivity of the left-hand vertical arrow of the above

diagram and the right-hand vertical equality of the above diagram, the middle

vertical arrow of the above diagram induces an injection

Zp1ðMg; nþ1ÞðGg;nþ1Þ=ZGg; nþ1ðGg;nþ1Þ ,! Zp1ðMg; nÞðGg;nÞ=ZGg; n
ðGg;nÞ:

Therefore, since the surjection p1ðMg;nÞ !! Gk (respectively, p1ðMg;nþ1Þ !! Gk)

induces the natural isomorphism

Zp1ðMg; nÞðGg;nÞ=ZGg; n
ðGg;nÞ !@ kerðrg;nÞ

ðrespectively; Zp1ðMg; nþ1ÞðGg;nþ1Þ=ZGg; nþ1ðGg;nþ1Þ !@ kerðrg;nþ1ÞÞ;

it holds that kerðrg;nþ1ÞJ kerðrg;nÞ. Thus, we may assume that n is small,

so that there exists a ðg; nÞ-curve X over k such that a divisor at infinity of
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X ! Spec k is split. (Indeed, the case where g < 2 is trivial, and the case

where gb 2 follows from the consideration of a hyperelliptic curve.) Since

Mg;nþ1 is the universal curve over Mg;n (see [17]), we obtain a cartesian square

X Spec k???y j
???y

Mg;nþ1 Mg;n:

�����!

����!
This induces a commutative diagram

1 1???y
???y

1 Pg;n Gg;nþ1 ���! Gg;n ���! 1???y
???y

1 ���! p1ðXÞ ���! p1ðMg;nþ1Þ???y
???y

Gk Gk???y
???y

1 1;

����! �����!

where the vertical and horizontal sequences are exact. Then Lemma 2.2

implies that

rX ðkerðrg;nþ1ÞÞJ imðGg;n ! OutðPg;nÞÞ:

By using Theorem 2.1, the result follows. r

Next, we explain a di¤erent proof of Theorem 2.3 due to Hoshi and

Tamagawa, using a geometric version of the Grothendieck conjecture. In fact,

their proof gives a result stronger than Theorem 2.3. The following theorem

plays an essential role in their proof.

Theorem 2.4 (Theorem D, [15]). Let ðg; nÞ be a pair of nonnegative

integers such that 3g� 3þ n > 0 and l a prime number.

(i) The group ZOutCðPg; nÞðr
univ
g;n ðGg;nÞÞ is isomorphic to

Z=2� Z=2 if ðg; nÞ ¼ ð0; 4Þ;
Z=2 if ðg; nÞ A fð1; 1Þ; ð1; 2Þ; ð2; 0Þg;
f1g if ðg; nÞ B fð0; 4Þ; ð1; 1Þ; ð1; 2Þ; ð2; 0Þg:

8><
>:
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(ii) Suppose that

ðg; nÞ0 ð1; 1Þ:

Then the group ZOutCðP l
g; nÞðr

univ; l
g;n ðGg;nÞÞ is isomorphic to

Z=2� Z=2 if ðg; nÞ ¼ ð0; 4Þ;
Z=2 if ðg; nÞ A fð1; 2Þ; ð2; 0Þg;
f1g if ðg; nÞ B fð0; 4Þ; ð1; 2Þ; ð2; 0Þg:

8><
>:

(iii) Suppose that l ¼ 2: Then the group ZOutCðP l
1; 1Þ
ðruniv; l

1;1 ðG1;1ÞÞ is iso-

morphic to Z=2:

The proof of Theorem 2.4 is very sophisticated, using the theory of

profinite Dehn twists developed in [15].

Theorem 2.5 (Hoshi-Tamagawa). Let ðg; nÞ be a pair of nonnegative

integers such that 3g� 3þ n > 0. Then the kernel of the homomorphism rgeom
g;n

is contained in the kernel of the homomorphism

Gk ! GQ

determined by the natural inclusion Q ,! k.

In particular, if k is a number field or an l-adic local field, then the

homomorphisms rgeom
g;n and rg;n are injective.

Proof. We denote by Mg;n=Q the moduli stack over Q of smooth

geometrically connected proper curves of genus g with n (ordered) marked

points. Then the natural morphism Mg;n !Mg;n=Q determined by the natural

inclusion Q ,! k induces the commutative diagram

1 1???y
???y

runiv
g;n ðGg;nÞ runiv

g;n ðGg;nÞ???y
???y

p1ðMg;nÞ=kerðGg;n !! runiv
g;n ðGg;nÞÞ ���! p1ðMg;n=QÞ=kerðGg;n !! runiv

g;n ðGg;nÞÞ???y
???y

Gk GQ???y
???y

1 1

���������������������������!
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where the vertical sequences are exact. In particular, rgeom
g;n factors through

rgeom
g;n in the case where k is Q. Therefore, to verify Therem 2.5, it su‰ces

to verify the injectivity of rgeom
g;n in the case where k is Q. Thus, suppose that

k is Q. Note that G
g;n
Q :¼ runiv

g;n ðp1ðMg;nÞÞ=runiv
g;n ðGg;nÞ is isomorphic to GQ by

Theorem 2.1. Also, by Theorem 2.3 and the injectivity of runiv
g;n when g is zero

(Theorem 3A, [4]), we may assume that g > 0: Then the commutative

diagram

1 runiv
g;n ðGg;nÞ runiv

g;n ðp1ðMg;nÞÞ GQ 1???y
???y

???y
1 ���! Innðruniv

g;n ðGg;nÞÞ ���! Autðruniv
g;n ðGg;nÞÞ ���! Outðruniv

g;n ðGg;nÞÞ ���! 1

�����! �����! ��������! ��������!

induces an isomorphism

Zr univ
g; n ðp1ðMg; nÞÞðruniv

g;n ðGg;nÞÞ=Zr univ
g; n ðGg; nÞðruniv

g;n ðGg;nÞÞ

F kerðGQ ! Outðruniv
g;n ðGg;nÞÞÞ:

Therefore, it is enough to prove

Zr univ
g; n ðp1ðMg; nÞÞðruniv

g;n ðGg;nÞÞ=Zr univ
g; n ðGg; nÞðruniv

g;n ðGg;nÞÞ ¼ f1g:

Note that the image of runiv
g;n is contained in OutCðPg;nÞ. By the injectivity of

MCGg; ½n� ! Outðp1ðg; nÞÞ (e.g., Theorem 8.8, in [9]) and Outðp1ðg; nÞÞ !
OutðPg;nÞ (Lemma 3.2.1 in [2] for n > 0 and [10] for n ¼ 0), we have the

commutative diagram

MCGg;n ���! Outðp1ðg; nÞÞ

 
��� L

???y
MCGg; ½n� OutðPg;nÞ:K���!������

���!

Since an element of MCGg; ½n� induces an action on the set of conjugacy classes

of cuspidal inertia subgroups of p1ðg; nÞ, an element of MCGg; ½n� induces an

action on the set of conjugacy classes of cuspidal inertia subgroups of Pg;n.

Note that there exits a canonical bijection between the set of conjugacy classes

of cuspidal inertia subgroups of p1ðg; nÞ and the set of conjugacy classes

of cuspidal inertia subgroups of Pg;n. Hence, the image of MCGg; ½n� ,!
OutðPg;nÞ is contained in OutCðPg;nÞ. In particular, we have the natural

inclusion ZMCGg; ½n� ðMCGg; ½n�Þ ,! ZOutCðPg; nÞðr
univ
g;n ðGg;nÞÞ. Also, by Theorem 2.4

(i), and section 4 of Chapter 3 in [9], the cardinality of ZMCGg; ½n� ðMCGg; ½n�Þ is
finite, and is equal to the cardinality of ZOutCðPg; nÞðr

univ
g;n ðGg;nÞÞ. Thus, the

above inclusion ZMCGg; ½n� ðMCGg; ½n�Þ ,! ZOutCðPg; nÞðr
univ
g;n ðGg;nÞÞ is an isomor-

phism. If the image s 0 of an element s of ZMCGg; ½n� ðMCGg; ½n�Þ is not con-
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tained in runiv
g;n ðGg;nÞ, then s is not contained in MCGg;n. Since the action of

MCGg; ½n�=MCGg;n on the set of conjugacy classes of cuspidal inertia subgroups

of p1ðg; nÞ is faithful, s induces a nontrivial action on the set of conjugacy

classes of cuspidal inertia subgroups of p1ðg; nÞ. Therefore, s 0 induces a non-

trivial action on the set of conjugacy classes of cuspidal inertia subgroups of

Pg;n. Since the action of runiv
g;n ðp1ðMg;nÞÞ on the set of conjugacy classes of

cuspidal inertia subgroups of Pg;n is trivial by the definition of p1ðMg;nÞ, s 0 is
not contained in runiv

g;n ðp1ðMg;nÞÞ. Hence, we have Zr univ
g; n ðp1ðMg; nÞÞðruniv

g;n ðGg;nÞÞ=
Zr univ

g; n ðGg; nÞðruniv
g;n ðGg;nÞÞ ¼ f1g. r

3. Pro-l mapping class groups

In the present section, we prove Theorem 1.7. Let l be a prime number

and assume that the base field k is a field of characteristic zero.

Lemma 3.1. Let ðg; nÞ be a pair of nonnegative integers such that 2g� 2þ
n > 0. Then the natural homomorphism p1ðg; nÞ ! P l

g;n is injective.

Proof. It follows immediately from the fact that p1ðg; nÞ is conjugacy

l-separable (Theorem 3.2, Theorem 4.1 in [29]). r

By the above lemma, we can consider p1ðg; nÞ as a subgroup of P l
g;n.

Lemma 3.2. Let ðg; nÞ be a pair of nonnegative integers such that 2g� 2þ
n > 0. Then the group NP l

g; n
ðp1ðg; nÞÞ is equal to p1ðg; nÞ. In particular, the

natural homomorphism Outðp1ðg; nÞÞ ! OutðP l
g;nÞ induced by p1ðg; nÞ ,! P l

g;n is

injective.

Proof. It is clear that NP l
g; n
ðp1ðg; nÞÞK p1ðg; nÞ by the definition of

normalizer. Let a be an element of NP l
g; n
ðp1ðg; nÞÞ. Then, for any element

g of p1ðg; nÞ, g is conjugate to aga�1 in p1ðg; nÞ by the fact that p1ðg; nÞ is

conjugacy l-separable (Theorem 3.2, Theorem 4.1 in [29]). Therefore, since

p1ðg; nÞ has Property A (Lemma 1, Theorem 3 in [10] (cf. ‘‘Groups’’ in

Notations and Conventions for the definition of Property A)), there exists an

element h of p1ðg; nÞ such that aga�1 ¼ hgh�1 for any element g of p1ðg; nÞ.
Since P l

g;n is center-free (Proposition 1.4 in [24]) and p1ðg; nÞ is dense in P l
g;n,

we have a ¼ h A p1ðg; nÞ. r

Remark 3.3. These lemmas may be well-known. At least, Lemma 3.2

was proved for special cases by several people (e.g., Proposition 1, [18],

Corollary 2 to Proposition B2, [3]).

Theorem 3.4. Let ðg; nÞ be a pair of nonnegative integers such that

3g� 3þ n > 0, and that either ðg; nÞ0 ð1; 1Þ or l ¼ 2. Then the kernel of the
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homomorphism rgeom; l
g;n coincides with the kernel of the homomorphism

r l
P1
knf0;1;yg

: Gk ! OutðP l
0;3Þ:

Proof. First, suppose that g is equal to 0. We denote by G l
g;n the

maximal pro-l quotient of Gg;n, and by i lg;n : OutðGg;nÞ ! OutðG l
g;nÞ the homo-

morphism determined by the natural surjection Gg;n !! G l
g;n. Then, since Mg;n

is isomorphic to a configuration space of P1
knf0; 1;yg, the kernel of the

composite of rg;n and i lg;n is equal to the kernel of r l
P1
knf0;1;yg

(Theorem C, (i),

[14]), and there exists an isomorphism G l
g;n !

@
runiv; l
g;n ðGg;nÞ that is compatible

with the outer actions of Gk on either side (Remark to Theorem 1, [4]). There-

fore, Theorem 3.4 holds in the case where g is equal to 0. Thus, we may

assume that g > 0. As in the proof of Theorem 2.5, we can show that the

natural homomorphism

G
l;g;n
k ! Outðruniv; l

g;n ðGg;nÞÞ

is injective. Here, G
l;g;n
k is the group

runiv; l
g;n ðp1ðMg;nÞÞ=runiv; l

g;n ðGg;nÞ:

Indeed, the arguments of the proof of Theorem 2.5 go well as they are, if

we replace Theorem 2.4 (i) with Theorem 2.4 (ii), (iii) and the injectivity of

Outðp1ðg; nÞÞ ! OutðPg;nÞ with the injectivity of Outðp1ðg; nÞÞ ! OutðP l
g;nÞ

(Lemma 3.2). Therefore, it is su‰cient to prove that

kerðGk ! G
l;g;n
k Þ ¼ kerðr l

P1
knf0;1;yg

Þ:

Let pg;n : p1ðMg;nÞ ! Gk be the natural homomorphism. Then we have

kerðGk ! G
l;g;n
k Þ ¼ pg;nðkerðruniv; l

g;n ÞÞ:

However, it is known that pg;nðkerðruniv; l
g;n ÞÞ coincides with kerðr l

P1
knf0;1;yg

Þ
(Oda’s conjecture, cf. Theorem 3.3, [32]). This completes the proof. r

Next, we consider the relative pro-l case. Since all mapping class groups

in genus g are perfect when gb 3, their pro-l completions are trivial.

However, Hain and Matsumoto developed a theory of relative pro-l completion

of groups, and showed that the natural relative pro-l completions of mapping

class groups are large and more closely reflect their structure ([12]). We

explain below their theory.

Let G be a discrete or profinite group, P a profinite group, and r : G ! P

a continuous dense homomorphism. (Here, a dense homomorphism means a

homomorphism with dense image.) The relative pro-l completion G rel-l;r of G

with respect to r is characterized by a universal mapping property: If G is a

profinite group, c : G ! P a continuous homomorphism with pro-l kernel, and
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if f : G ! G is a continuous homomorphism whose composition with c is r,

then there is a unique continuous homomorphism G rel-l;r ! G that extends f:

G
r

G rel-l;r ���! P:::::::::X

G
�����

��!

 ��
���

 
���

���
���

��

 �����
�������

�

f

c

The following properties are direct consequences of the universal mapping

property:

Proposition 3.5 (Proposition 2.1, [12]). Let r : G ! P be a dense homo-

morphism from a discrete group to a profinite group, and r : ĜG ! P the homo-

morphism obtained from the profinite completion of G to P. Then the natural

homomorphism G ! ĜG induces a natural isomorphism G rel-l;r ! ĜG rel-l;r.

Proposition 3.6 (Proposition 2.3, [12]). Let G1, G2 be both discrete groups

or both profinite groups, and P1, P2 profinite groups. Suppose that r1 : G1 ! P1

and r2 : G2 ! P2 are continuous dense homomorphisms. If

G1 ���!r1 P1

fG

???y
???yfP

G2 ���!r2 P2

is a commutative diagram of topological groups, then there is a unique continuous

homomorphism frel-l : G
rel-l;r1
1 ! G

rel-l;r2
1 such that the diagram

G1 ������������!r1
P1

G
rel-l;r1
1

f rel-l

???y
G

rel-l;r2
2

G2 ������������!
r2

P2

fG

?????????????????y

fP

?????????????????y

 ��
���

����
�!

�����
!

 ���
��

commutes.
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Proposition 3.7 (Proposition 2.4, [12]). Let P1, P2, P3 be profinite groups,

and r1 : G1 ! P1, r2 : G2 ! P2, r3 : G3 ! P3 continuous dense homomorphisms

of topological groups. Suppose that G1, G2 and G3 are all discrete groups or all

profinite groups. If the diagram

1 ���! G1 ���! G2 ���! G3 ���! 1

r1

???y r2

???y r3

???y
1 ���! P1 ���! P2 ���! P3 ���! 1

of topological groups commutes and has two rows exact, then the sequence

G
rel-l;r1
1 ! G

rel-l;r2
2 ! G

rel-l;r3
3 ! 1

is exact.

Let Ag be the moduli stack of principally polarized abelian varieties of

dimension g. It is known that the orbifold fundamental groups porb
1 ðMg;nðCÞÞ

and porb
1 ðAgðCÞÞ of Mg;nðCÞ and AgðCÞ are isomorphic to MCGg;n and SpgðZÞ

respectively. Here, SpgðAÞ is the group of symplectic 2g� 2g matrices with

entries in a commutative ring A. Let

rperiod : MCGg;n ! SpgðZÞ

be the surjective homomorphism determined by the period map Mg;nðCÞ !
AgðCÞ which takes the moduli point ½C� of a compact Riemann surface C

(equipped with n marked points) to that of its jacobian ½JacðCÞ� (also see

Chapter 6, [9]). Then rperiod induces the continuous dense homomorphism

rperiod; l : MCGg;n ! SpgðZlÞ:

Hain and Matsumoto defined the relative pro-l completion of the mapping

class group by

G rel-l
g;n :¼MCG rel-l;rperiod ; l

g;n :

Let rperiod; l : Gg;n ! SpgðZ=lÞ be the homomorphism determined by rperiod .

Then, by using Proposition 3.5 and the universal mapping property, we have

the natural isomorphism

G rel-l
g;n FG rel-l;r period ; l

g;n :

This means that G rel-l
g;n is an almost pro-l group (i.e. there exists a closed

subgroup of G rel-l
g;n with finite index that is a pro-l group). Also, Hain and

Matsumoto proved that the natural homomorphism MCGg;n ! G rel-l
g;n is injec-

tive for n > 0 (Proposition 3.1, [12]). (In fact, since the injectivity of
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MCGg;n ! G rel-l
g;n is reduced to the injectivity of MCGg;nþ1 ! G rel-l

g;nþ1 by using

Lemma 3.2, we also have the injectivity of MCGg;0 ! G rel-l
g;0 (for g > 1).)

The functoriality of relative pro-l completion implies that there is an outer

Galois action

r rel-l
g;n : Gk ! OutðG rel-l

g;n Þ:

Since the representation r rel-l
g;n is unramified outside l when k is a number field

(Theorem 3, [12]), rrel-l
g;n is not injective. By using Theorem 3.4, we have the

following corollary.

Corollary 3.8. Let ðg; nÞ be a pair of natural numbers such that 3g� 3þ
n > 0, and that either ðg; nÞ0 ð1; 1Þ or l ¼ 2. Then the kernel of the homo-

morphism rrel-l
g;n is contained in the kernel of the homomorphism

r l
P1
knf0;1;yg

: Gk ! OutðP l
0;3Þ:

Proof. The commutative diagram

1 ���! Pg;n ���! Gg;nþ1 ���! Gg;n ����! 1???y
???y

???y
1 ���! P l

g;n ���! G rel-l
g;nþ1 ���! G rel-l

g;n ���! 1;

where the horizontal sequences are exact (Proposition 3.1 (2), [12]), induces the

commutative diagram

Gg;n �����! G rel-l
g;n???y

OutðP l
g;nÞ:

 ���
����

r
univ; l
g; n

Therefore, we have the commutative diagram

1 G rel-l
g;n p1ðMg;nÞ=kerðGg;n ! G rel-l

g;n Þ Gk 1???y
???y

???y
1 ���! runiv; l

g;n ðGg;nÞ runiv; l
g;n ðp1ðMg;nÞÞ G

l;g;n
k ���! 1;

������! �����! ����! ����!

�������! �������!
where the horizontal sequences are exact and the vertical homomorphisms are

surjective. Hence, this induces

kerðrrel-l
g;n ÞJ kerðrgeom; l

g;n Þ ¼ kerðr l
P1
knf0;1;yg

Þ:

This completes the proof of Corollary 3.8. r
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Remark 3.9. It is not clear to the author at the time of writing whether

or not a result similar to the results stated in Theorem 3.4 holds in the case

where ðg; nÞ ¼ ð1; 1Þ and l > 2. Nevertheless, Yuichiro Hoshi and the author

proved that a result similar to the results stated in Corollary 3.8 holds in the

case where ðg; nÞ ¼ ð1; 1Þ and l > 2 (cf. Theorem 4.3 in [13]).

4. The case of an arbitrary family of hyperbolic curves

In the present section, we prove a variant of Theorem 2.3. Let l be

a prime number, k a field of characteristic zero, and k an algebraic closure

of k. For any geometrically connected normal scheme S of finite type

over k and any family X ! S of ðg; nÞ-curves over S, we denote by

j l
X=S : p1ðSnk kÞ ! AutðP ab

g;n nZ ðZ=lÞÞ the natural monodromy action arising

from the family of ðg; nÞ-curves X ! S. Here, the group P ab
g;n is the abelia-

nization of Pg;n.

Proposition 4.1. Let ðg; nÞ be a pair of nonnegative integers such that

2g� 2þ n > 0, S a geometrically connected normal scheme of finite type over k,

and X ! S a family of ðg; nÞ-curves over S. Then the natural sequence

1! Pg;n ! p1ðX Þ ! p1ðSÞ ! 1

is exact. Moreover, if the image of j l
X=S is an l-group, then the natural

sequence

1! P l
g;n ! p1ðXÞl ! p1ðSÞl ! 1

is exact.

Proof. It is enough to prove the case of k ¼ k. First, we prove the

profinite case. Then we have the exact sequence

Pg;n ! p1ðX Þ ! p1ðSÞ ! 1

by [1]. Let X cpt ! S be the compactification of X ! S and DJX cpt the

divisor at infinity of X ! S. Then we can take a finite étale (connected)

Galois covering S 0 ! S such that the finite étale covering D�S S 0 ! S 0 is

split. We put X 0 :¼ X �S S 0, X 0cpt :¼ X cpt �S S 0, D 0 :¼ D�S S 0. Then the

natural projection X 0 ! S 0 is a family of ðg; nÞ-curves and X 0cpt (respectively

D 0) is the compactification (respectively the divisor at infinity) of X 0 ! S 0.

Since D 0 ! S 0 is split, by Proposition 2.3 in [31], the natural sequence

1! Pg;n ! p1ðX 0Þ ! p1ðS 0Þ ! 1
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is exact. Moreover, by the definition of X 0 ! S 0, we have the commutative

diagram

1 ���! Pg;n ���! p1ðX 0Þ ���! p1ðS 0Þ ���! 1����
???y

???y
Pg;n ���! p1ðXÞ ����! p1ðSÞ ���! 1:

Now, since the natural projection X 0 ! X is a finite étale covering, p1ðX 0Þ !
p1ðX Þ is injective. This completes the proof for the profinite case.

Next, we consider the pro-l case. Since the image of j l
X=S is an l-group,

by using Lemma 4.5.5 in [30], the natural homomorphism p1ðSÞ ! OutðPg;nÞ
! OutðP l

g;nÞ factors through the maximal pro-l quotient p1ðSÞ l of p1ðSÞ.
Therefore, the commutative diagram

1 Pg;n p1ðX Þ p1ðSÞ 1???y
???y

???y
1 ���! InnðP l

g;nÞ ���! AutðP l
g;nÞ ���! OutðP l

g;nÞ ���! 1

�����! �������! ������! �����!

induces the commutative diagram

P l
g;n p1ðX Þ l p1ðSÞ l 1

o

???y
???y

???y
1 ���! InnðP l

g;nÞ ���! AutðP l
g;nÞ ���! OutðP l

g;nÞ ���! 1;

������! ������! �����!

where the horizontal sequences are exact and the left vertical homomorphism is

isomorphism by Proposition 1.4 in [24]. This completes the proof for the pro-l

case. r

In the notation of the above proposition, we have the natural homo-

morphisms jS : p1ðSÞ ! OutðPg;nÞ, j l
S : p1ðSÞ ! OutðP l

g;nÞ determined by the

exact sequence

1! Pg;n ! p1ðX Þ ! p1ðSÞ ! 1:

Note that G0;4 (respectively G rel-l
0;4 ) is canonically isomorphic to P0;3 (respec-

tively P l
0;3). By a similar argument to the one used in the proof of Theorem

2.1 (Theorem 1.1, [20] or Corollary 6.4, [14]), we can prove the following

proposition.

Proposition 4.2. Let ðg; nÞ be a pair of nonnegative integers such that

2g� 2þ n > 0, S a geometrically connected normal scheme of finite type over
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k with a k-rational point s, X ! S a family of ðg; nÞ-curves over S, Xs the fiber

of X ! S at s, and rXs
(respectively r l

Xs
) the homomorphism Gk ! OutðPg;nÞ

(respectively Gk ! OutðP l
g;nÞ) associated to the ðg; nÞ-curve Xs over k. Then

the subgroup

r�1Xs
ðjSðp1ðSnk kÞÞÞJGk ðrespectively ðr l

Xs
Þ�1ðj l

Sðp1ðSnk kÞÞÞJGkÞ

of Gk is contained in the kernel of the homomorphism

r0;4 : Gk ! OutðP0;3Þ ðrespectively rrel-l
0;4 : Gk ! OutðP l

0;3ÞÞ:

Proof. Since the pro-l case can be proved by exactly the same argument,

we prove only the profinite case. Let is be the section Gk ! p1ðSÞ induced

by the k-rational point s, kðSÞ the function field of S, kðSÞ an algebraic

closure of kðSÞ, XkðSÞ :¼ X �S Spec kðSÞ, rXkðSÞ
the homomorphism GkðSÞ :¼

GalðkðSÞ=kðSÞÞ ! OutðPg;nÞ associated to the ðg; nÞ-curve XkðSÞ over kðSÞ.
Then we have jS � is ¼ rXs

, and, since S is geometrically connected and

normal, the natural outer homomorphism GkðSÞ ! p1ðSÞ (which is determined

up to p1ðSÞ-inner automorphism) is surjective. Assume that there exist g A
p1ðSnk kÞ and s A Gk such that jSðgÞ is equal to rXs

ðsÞ. By the surjectivity

of the above (outer) homomorphism, we can take ~gg; ~ss A GkðSÞ mapped to

g; isðsÞ A p1ðSÞ, respectively. Since the diagram

GkðSÞ �����!�����! p1ðSÞ???yjS

OutðPg;nÞ

 ���
����

rXkðSÞ

is commutative, ~gg~ss�1 is contained in the kernel of rXkðSÞ
. Hence, by Corollary

6.2, in [14], ~gg~ss�1 is contained in the kernel of the natural homomorphism

GkðSÞ ! OutðP0;3Þ. Now, since the diagram

GkðSÞ �����! Gk???yr0; 4

OutðP0;3Þ

 ���
���

is commutative and g is contained in the kernel of p1ðSÞ ! Gk, s is contained

in the kernel of r0;4. r

For a scheme X which is geometrically connected and of finite type over k,

we denote by

r l
X : Gk ! Outðp1ðX nk kÞ lÞ
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the composite of rX : Gk ! Outðp1ðX nk kÞÞ and the natural homomorphism

Outðp1ðX nk kÞÞ ! Outðp1ðX nk kÞ lÞ. The following theorem is a variant of

Theorem 2.3. (Note that Mg;nþ1 !Mg;n is a family of ðg; nÞ-curves.)

Theorem 4.3. Let ðg; nÞ be a pair of nonnegative integers such that

2g� 2þ n > 0, S a geometrically connected normal scheme of finite type over

k, X ! S a family of ðg; nÞ-curves over S. Then the kernel of the homomor-

phism rX is contained in the kernel of the homomorphism

r0;4 : Gk ! OutðP0;3Þ:

Moreover, if the image of j l
X=S is an l-group, then the kernel of the homomor-

phism r l
X is contained in the kernel of the homomorphism

rrel-l
0;4 : Gk ! OutðP l

0;3Þ:

In particular, if k is a number field or an l-adic local field, then the homo-

morphism rX is injective.

Proof. First, we prove the profinite case. Let kðSÞ be the function field

of S, kðSÞ an algebraic closure of kðSÞ, XkðSÞ :¼ X �S Spec kðSÞ, X
kðSÞ :¼

X �S Spec kðSÞ, SkðSÞ :¼ Snk kðSÞ. Then the diagonal map S ! S �Spec k S

induces a section Spec kðSÞ ! SkðSÞ of the natural projection SkðSÞ !
Spec kðSÞ. Note that we have the diagram

1 p1ðXkðSÞÞ p1ðXkðSÞÞ ���! GkðSÞ ���! 1

o

???y
???y

???y
1 ���! p1ðX nk kÞ p1ðX Þ Gk 1:

����! ����!

����! �����! ����!
This diagram induces the commutative diagram

GkðSÞ ������! Gk???yrX

Outðp1ðX nk kÞÞ:

 ���
����

rXkðSÞ

Also, since S is geometrically connected over k, the natural (outer) homo-

morphism GkðSÞ ¼ GalðkðSÞ=kðSÞÞ ! Gk (which is determined up to Gk-inner

automorphism) is surjective. In particular, kerðrXkðSÞ
Þ surjects onto kerðrX Þ.

Therefore, if kerðrXkðSÞ
Þ is included in kerðGkðSÞ ! OutðP0;3ÞÞ, kerðrX Þ is

included in kerðGk ! OutðP0;3ÞÞ by the commutative diagram

226 Yu Iijima



GkðSÞ �����!�����! Gk???y
OutðP0;3Þ:

 ���
����

Hence, replacing X ! S ! Spec k by XkðSÞ ! SkðSÞ ! Spec kðSÞ if necessary,

we may assume that S has a k-rational point. Let s be a k-rational point

of S, s a k-rational point over s, Xs the fiber of X ! S at s, Xs the fiber

of X ! S at s. The above k-rational point s of S induces a cartesian

square

Xs ���! Spec k???y j
???y

X S:�����!
This induces a commutative diagram

1 1???y
???y

1 Pg;n p1ðX nk kÞ ���! p1ðSnk kÞ ���! 1???y
???y

1 ���! p1ðXsÞ p1ðXÞ???y
???y

Gk Gk???y
???y

1 1;

����! ����!

�����!

where the vertical and horizontal sequences are exact. Then Lemma 2.2

implies that

rXs
ðkerðrX ÞÞJ imðjS : p1ðSnk kÞ ! OutðPg;nÞÞ:

Here, rXs
is the homomorphism Gk ! OutðPg;nÞ associated to the hyperbolic

curve Xs over k. Hence, by using Proposition 4.2, the result follows for the

profinite case.

For the pro-l case, since we have the commutative diagram
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p1ðSÞ �����!�����! p1ðSÞl???y
OutðP l

g;nÞ;

 ���
����

j l
S

we can prove the assertion by exactly the same argument. r

Remark 4.4. It is trivial that Theorem 2.5 implies Theorem 2.3. How-

ever, it seems that Theorem 2.5 (or its proof ) does not imply Theorem 4.3.
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