# The link surgery of $S^{2} \times S^{2}$ and Scharlemann's manifolds 

Motoo Tange

(Received May 24, 2011)
(Revised May 13, 2013)


#### Abstract

Fintushel-Stern's knot surgery has given many exotic 4-manifolds. We show that if an elliptic fibration has two, parallel, oppositely-oriented vanishing cycles (for example $S^{2} \times S^{2}$ or Matsumoto's $S^{4}$ ), then the knot surgery does not change its differential structure. We also give a classification of link surgery of $S^{2} \times S^{2}$ and a generalization of Akbulut's celebrated result that Scharlemann's manifold is standard.


## 1. Introduction

1.1. Knot surgery. We call a pair of manifolds an exotic pair, if they are homeomorphic but non-diffeomorphic. It has been an intriguing question to construct exotic pairs. In particular, 4-dimensional manifolds have given interesting examples. Fintushel-Stern's knot surgery in [7] is a powerful method to construct such 4-dimensional exotic pairs. Given a simply-connected 4-manifold $X$ which contains a torus $T \subset X$ with the trivial normal bundle and a knot $K$ in $S^{3}$, the knot surgery operation $X \rightarrow X_{K}$ is defined by removing the neighborhood of $T$ and regluing $\left(S^{3}-v(K)\right) \times S^{1}$. The symbol $v$ represents the open neighborhood throughout the present article. Under favorable conditions (for example, the case that $X$ contains the regular neighborhood $C$ of the cusp singular fiber and $T$ is a general fiber), the resulting 4-manifold $X_{K}$ is simply-connected and has the same intersection form as $X$, hence it is homeomorphic to $X$ by virtue of Freedman's celebrated theorem.

In [7], the following formula for the Seiberg-Witten invariant ( SW invariant) was establised.

$$
\begin{equation*}
S W_{X_{K}}=S W_{X} \cdot \Delta_{K} \tag{1}
\end{equation*}
$$

Here $\Delta_{K}$ is the Alexander polynomial of $K$. This formula implies the knot surgery gives rise to many exotic pairs. If $S W_{X}$ is non-trivial and $\Delta_{K} \neq 1$, then $\left(X, X_{K}\right)$ is an exotic pair.

[^0]

Fig. 1. Two parallel, oppositely-oriented cusp fibers in $S^{2} \times S^{2}$.

One of the main purposes of this article is to show that there a lot of examples of Fintushel-Stern's knot surgery which do "not" produce exotic pairs. By the above argument, we need to focus on the case where $\Delta_{K}(t)=1$ or $S W_{X}=0$.

It is known that $X=S^{2} \times S^{2}$ has trivial $S W$-invariant. The cusp neighborhood $C$ can naturally be embedded inside $X$. In fact, $X$ is diffeomorphic to the double $\bar{C} \cup C$ where $\bar{C}$ is $C$ with the opposite orientation. Figure 1 describes the achiral elliptic fibration of $X$.

Definition 1. We denote the knot surgery $\bar{C} \cup C_{K}$ by $A_{K}$.
In [3] S. Akbulut showed that $A_{3_{1}}$ is diffeomorphic to $S^{2} \times S^{2}$. The proof essentially uses his other result [2]. Our first main theorem is:

Theorem 1. $A_{K}$ is diffeomorphic to $S^{2} \times S^{2}$ for any knot $K$.
We will prove this theorem in Section 3. The theorem shows the existence of infinitely many exotic embeddings of $C$ into $S^{2} \times S^{2}$.
1.2. Link surgery. Fintushel and Stern [7] defined link surgery, which is a link version of knot surgery. For an $n$-tuple ( $X_{1}, X_{2}, \ldots, X_{n}$ ) of 4-manifolds, each of which contains a (specified) $C$, and an $n$-component (labeled) link $L$ in $S^{3}$, we can define the link surgery $X\left(X_{1}, \ldots, X_{n} ; L\right)$. This is a variation of the fiber-sum operation connecting some manifolds rather than a surgery.

In the case of $X_{i}=S^{2} \times S^{2}$ for any $i$, we denote the link surgery by $A_{L}$. Theorem 1 can be generalized to the link case as follows.

Theorem 2. Let $L$ be an $n$-component link. $A_{L}$ is diffeomorphic to

$$
\begin{cases}\#^{2 n-1} S^{2} \times S^{2}, & \text { if } L \text { is a proper link } \\ \#^{2 n-1} \mathbf{C} P^{2} \#^{2 n-1} \overline{\mathbf{C} P^{2}}, & \text { otherwise } .\end{cases}
$$

In the proof, we give handle pictures of the link surgery $X(C, \ldots, C ; L)$ for a split link $L=K_{1} \cup K_{2}$ or the Hopf link $L=H$.
1.3. Scharlemann's manifolds. Let $S_{p}^{3}(K)$ be the $p$-surgery along $K$ in $S^{3}$, and $\gamma(\varepsilon)$ an embedded framed curve in $S_{p}^{3}(K)$. Here $\gamma$ is a simple closed curve in $S^{3}-v(K) \subset S_{p}^{3}(K)$ and $\varepsilon$ is a framing of $\gamma$. The embedded curve induces a framed knot $\tilde{\gamma}$ in $S_{p}^{3}(K) \times S^{1}$ through $S^{1} \xrightarrow{\gamma} S_{p}^{3}(K) \hookrightarrow S_{p}^{3}(K) \times S^{1}$. Here we obtain a manifold $B_{K, p}(\gamma(\varepsilon))$ (Scharlemann's manifold) by surgering out the neighborhood of $\tilde{\gamma}$ in $S_{p}^{3}(K) \times S^{1}$ and regluing $S^{2} \times D^{2}$. Since the diffeomorphism type of $B_{K, p}(\gamma(\varepsilon))$ depends only on ( $K, p$ ) and the free isotopy type of $\tilde{\gamma}$, we are concerned with the free homotopy class of $\gamma(\varepsilon)$. Thus the framings have two types in general.

If $\gamma$ gives a normal generator in $\pi_{1}\left(S_{p}^{3}(K)\right)$, then $B_{K, p}(\gamma(\varepsilon))$ is homeomorphic to $S^{3} \times S^{1} \# S^{2} \times S^{2}$ or $S^{3} \times S^{1} \# \mathbf{C} P^{2} \# \overline{\mathbf{C} P^{2}}$ as can be seen from results presented in [8]. In the case of $p=-1$ we drop the suffix $p$ of $B_{K, p}(\gamma(\varepsilon))$ as $B_{K}(\gamma(\varepsilon))$.

Scharlemann [15] studied the case where $(K, p)=\left(3_{1},-1\right)$ and $\gamma=\gamma_{0}$ (the meridian of $3_{1}$ ) and showed that $B_{3_{1}}\left(\gamma_{0}(1)\right)$ has a fake self-homotopy structure on $S^{3} \times S^{1} \# S^{2} \times S^{2}$. At that time the diffeomorphism type of $B_{K}(\gamma(\varepsilon))$ was not determined. After that, Akbulut [2] proved the following theorem using an amazingly difficult handle calculus.

Theorem 3 ([2]). $\quad B_{3_{1}}\left(\gamma_{0}(1)\right)$ is diffeomorphic to $S^{3} \times S^{1} \# S^{2} \times S^{2}$.
It has been unknown whether Theorem 3 can be generalized to an arbitrary knot. We will prove the following as the third main theorem.

Theorem 4. Let $K$ be any knot in $S^{3}$ and $\gamma_{0} \subset S_{-1}^{3}(K)$ the meridian of $K$ in the diagram. $\quad B_{K}\left(\gamma_{0}(1)\right)$ is diffeomorphic to $S^{3} \times S^{1} \# S^{2} \times S^{2}$.

In the second half of Section 5.2, we will consider the diffeomorphism type of $B_{3_{1}}(\gamma(\varepsilon))$ for homotopy classes except $\gamma_{0}(\varepsilon)$.

Theorem 1 and 4 are proven by S. Akbulut in [5] independently. Our proofs are based on Lemma 5 regarding knot surgery in some achiral elliptic fibration.

## Acknowledgement

The problem of whether $A_{K}$ is an exotic $S^{2} \times S^{2}$ or not, was asked by Professor Manabu Akaho ([1]). This paper gives a negative but complete answer to his question. I thank him for motivating me to study the attractive 4-dimensional world.

I thank Masaaki Ue, Kouichi Yasui, Shohei Yamada and Çağrı Karakurt for their many useful comments. I would also like to thank the anonymous referee for reading my manuscript intensively and patiently and giving helpful advice and comments in our correspondence.

## 2. Preliminaries

2.1. The neighborhoods of singular fibers and the knot surgery. First we recall the fishtail neighborhood $F$ and cusp neighborhood $C$. The definition of such singular fibers can also be seen in [9]. We define two more neighborhoods of some singular fibers.

Definition 2 (Fishtail (or cusp) neighborhood). A fishtail (or cusp) neighborhood $F$ (or $C$ ) is an elliptic fibration over $D^{2}$ with one fishtail (or cusp) singular fiber. The handle picture is the top-left (or top-right) in Figure 2. The neighborhood $C$ (or $F$ ) includes self-intersection 0 torus as the general fiber.

Definition 3 (Symmetric fishtail (or cusp) neighborhood). We denote a fiber-sum of two parallel oppositely-oriented fishtail (or cusp) fibers over $D^{2}$ by $S y F$ (or $S y C$ ). The handle picture is the bottom-left (or bottom-right) in Figure 2. The neighborhood $S y F$ (or $S y C$ ) includes self-intersection 0




Fig. 2. $F, C, S y F$, and $S y C$.
torus as the general fiber. We call SyC (or SyF) symmetric cusp (or fishtail) neighborhood.

The diagrams in Figure 2 give the obvious embeddings $F \hookrightarrow S y F$ and $C \hookrightarrow S y C$.

Let $X$ be a 4-manifold that contains $C$ or $F$, and $K$ a knot in $S^{3}$. The symbol $\bar{v}$ represents the closed neighborhood.

Definition 4. We define Fintushel-Stern's knot surgery $X_{K, n}$ as

$$
X_{K, n}:=[X-v(T)] \cup_{\varphi_{n}}\left[\left(S^{3}-v(K)\right) \times S^{1}\right] .
$$

Here the gluing map is the following:

$$
\varphi_{n}: \partial \bar{v}(K) \times S^{1} \rightarrow \partial \bar{v}(T)=T^{2} \times \partial D^{2}
$$

such that the map $\varphi_{n}$ induces the following on the 1 st homology:

$$
[\{\text { the meridian of } K\} \times\{\mathrm{pt}\}], \quad\left[\{\mathrm{pt}\} \times S^{1}\right] \mapsto \alpha, \beta
$$

[\{the longitude of $K\} \times\{\mathrm{pt}\}]+n[\{$ the meridian of $K\} \times\{\mathrm{pt}\}]$

$$
\begin{equation*}
\mapsto\left[\{\mathrm{pt}\} \times \partial D^{2}\right] \tag{2}
\end{equation*}
$$

where $\alpha, \beta$ are generators of $H_{1}\left(T^{2}\right)$. When $X$ contains $F$, we assume that $\alpha$ is the class of the vanishing cycle. In the case of $n=0$, we denote the result of the knot surgery simply by $X_{K}$.
2.2. The logarithmic transformation. The purpose of the present section is to define the logarithmic transformation. Let $X$ be an oriented 4 -manifold and $T \subset X$ an embedded torus with self-intersection 0 .

Definition 5. Let $\gamma$ be an essential simple closed curve in $T$ and $\varphi$ a homeomorphism $\partial D^{2} \times T^{2} \rightarrow \partial v(T)$ satisfying $\varphi\left(\partial D^{2} \times\{\mathrm{pt}\}\right)=q(\{\mathrm{pt}\} \times \gamma)+$ $p\left(\partial D^{2} \times\{\mathrm{pt}\}\right)$. Removing $v(T)$ from $X$ and regluing $D^{2} \times T^{2}$ via $\varphi$, we obtain the following manifold:

$$
X(T, p, q, \gamma):=[X-v(T)] \cup_{\varphi} D^{2} \times T^{2}
$$

We call this manifold the logarithmic transformation with the data $(T, p, q, \gamma)$.
It is well-known that the diffeomorphism type of the logarithmic transformation depends only on the data $(T, p, q, \gamma)$. The integer $p$ is the multiplicity of the logarithmic transformation, $\gamma$ the direction and $q$ the auxiliary multiplicity.

If $p=1$, then we call $X(T, 1, q, \gamma)$ a $q$-fold Dehn twist of $\partial v(T)$ along $T$ parallel to $\gamma$.

Lemma 1 (Lemma 2.2 in [10]). Suppose $N=D^{2} \times S^{1} \times S^{1}$ is embedded in a 4-manifold $X$. Suppose there is a disk $D \subset X$ intersecting $N$ precisely in $\partial D=\{q\} \times S^{1}$ for some $q \in \partial D^{2} \times S^{1}$, and that the normal framing of $D$ in $X$ differs from the product framing on $\partial D \subset \partial N$ by $\pm 1$ twist. Then the diffeomorphism type of $X$ does not change if we remove $N$ and reglue it by a $k$-fold Dehn twist of $\partial N$ along $S^{1} \times S^{1}$ parallel to $\gamma=\{q\} \times S^{1}$.

The submanifold $N \cup v(D)$ in Lemma 1 is diffeomorphic to the fishtail neighborhood $F$. Lemma 1 implies the following.

Lemma 2. Let $X$ be a 4-manifold containing $F$. Then a $k$-fold Dehn twist of a neighborhood of the general fiber parallel to the vanishing cycle of the fishtail fiber does not change the differential structure.

## 3. Knot surgery case

3.1. 1-strand twist. Let $X$ be a 4-manifold containing $C, K_{1}$ any knot in $S^{3}$, and $K_{2}$ the meridian of $K_{1}$. The torus $T_{2}:=K_{2} \times S^{1} \subset\left[S^{3}-v\left(K_{1}\right)\right] \times S^{1} \subset$ $X_{K_{1}}$ has self-intersection 0 . We denote the trivial normal bundle by $N_{2}:=$ $v\left(K_{2}\right) \times S^{1}$.

Definition 6 ( 1 -strand twist). We call the $n$-fold Dehn twist $X_{K_{1}}\left(T_{2}, 1\right.$, $n, K_{2}$ ) (n-fold) 1-strand twist of $X_{K_{1}}$ along $K_{2}$.

Lemma 3. The $n$-fold 1 -strand twist of $X_{K_{1}}$ along $K_{2}$ does not change the differential structure.

Proof. Any parallel copy $K_{2}^{\prime} \subset \partial N_{2}$ of $K_{2}$ moved through the use of obvious trivialization of $N_{2}$ is isotopic to one of vanishing cycles of $C_{K_{1}}$. Thus there exists a disk $D \subset C_{K_{1}}$ with $\partial D=K_{2}^{\prime}$ whose framing of $\partial D$ coming from the trivialization of $v(D)$ differs from the normal framing of the trivialization of $N_{2}$ by -1 . Hence $N_{2} \cup v(D)$ is diffeomorphic to the fishtail neighborhood.

Therefore Lemma 2 gives the following:

$$
X_{K_{1}, n} \cong X_{K_{1}, 0}=X_{K_{1}}
$$

This diffeomorphism can also be seen using handle calculus as in Figure 3, which was pointed out by S. Akbulut in [2]. The left in Figure 3 is the $4_{1}$ surgery of the cusp neighborhood. The dashed circle in Figure 3 is the inverse image of $\{\mathrm{pt}\} \times \partial D^{2}$ via $\varphi_{0}$ (see (2)). Sliding the top -1 -framed 2-handle over one of two 0 -framed 2 -handles below, we get the right-top one in Figure 3. Sliding the upper 0 -framed 2 -handle over the -1 -framed 2 -handle, we have the right-bottom picture. This diffeomorphism changes the gluing map $\varphi_{0}$ to $\varphi_{1}$. Iterating the process or the inverse one, we obtain Lemma 3.


Fig. 3. A diagram $C_{4_{1}}$ as an example with the attaching circle (the dashed circle) and the framing change.


Fig. 4. $L=K_{1} \cup K_{2}$ and $\ell_{1}, \ell_{2}, \ell_{3}$.
3.2. 3-strand twist. Finding a hidden fishtail neighborhood in $S y F_{K}$ or $S y C_{K}$, we give a diffeomorphism using 3 -strand twist.

Let $L$ be a 2-component link as in Figure 4. The left box is some tangle which presents $K_{1}$. Let $X$ be a 4 -manifold containing $S y C$ or $S y F$. Along the general torus fiber in the fibration, we perform the knot surgery $X_{K_{1}}$. The torus $T_{2}=K_{2} \times S^{1} \subset\left[S^{3}-v\left(K_{1}\right)\right] \times S^{1}$ has the trivial neighborhood in $X_{K_{1}}$. We denote the neighborhood of the torus by $N_{2}$.

Definition 7 (3-strand twist). Let $X$ be a 4-manifold containing $C$ or $F$. We call the $n$-fold Dehn twist $X_{K_{1}}\left(T_{2}, 1, n, K_{2}\right)$ ( $n$-fold) 3-strand twist along $K_{2}$.

Lemma 4. For a manifold $X$ containing SyC or SyF, the 3-strand twist of $X_{K_{1}}$ along $K_{2}$ does not change the differential structure.

Proof. Our main strategy here is to construct a fishtail neighborhood in which $K_{2} \times S^{1}$ is a general fiber. Here we can find an obvious three-punctured


Fig. 5. An isotopy of $\varphi_{0}\left(\ell_{i}\right)$.


Fig. 6. $A_{1}$.
disk $P$ whose boundaries are $K_{2}, \ell_{1}, \ell_{2}$, and $\ell_{3}$ as indicated in Figure 4. Here each meridian $\ell_{i}$ lies in the boundary of $N_{1}$ which is the neighborhood of $K_{1}$. Figure 5 describes the submanifold of $S y F$ and $S y C$ in Figure 2 which is modified as follows. We take the middle 1-handle and two 2-handles running the 1-handle in Figure 2, and add a 1-framed 2-handle, which is cancelled with a 3-handle by one slide to another 1-framed 2-handle. Each image $\varphi_{0}\left(\ell_{i}\right)$ is parallel to two vanishing cycles of $S y C$ or $S y F$ in $X_{K_{1}}$ as in Figure 5.

We construct mutually disjoint three annuli $A_{1}, A_{2}$ and $A_{3}$ such that one component of each $\partial A_{i}$ is $\varphi_{0}\left(\ell_{i}\right)$. In addition, these annuli and $P$ are also disjoint because $P$ is embedded in the $\left[S^{3}-v\left(K_{1}\right)\right] \times S^{1}$ part. $A_{1}$ is indicated in Figure 6 and the right side of $\partial A_{1}$ is $\varphi_{0}\left(\ell_{1}\right) . A_{2}$ and $A_{3}$ are indicated in the left and right in Figure 7 respectively. $A_{3}$ runs through the carved 2-handle (the dotted 1-handle) once. The right sides of $\partial A_{2}$ and $\partial A_{3}$ are $\varphi_{0}\left(\ell_{2}\right)$ and $\varphi_{0}\left(\ell_{3}\right)$. From the pictures obviously $A_{1}, A_{2}$ and $A_{3}$ are disjoint annuli in $X_{K_{1}}$.

The other sides of $\partial A_{i}$ coincide with the boundaries of 2-disks parallel to the cores of the 2-handles in Figure 5. The three 2-disks are disjoint from $P \cup A_{1} \cup A_{2} \cup A_{3}$ since these 2-handles are disjoint from $P$ and $A_{i}$. Capping


Fig. 7. Two embedded annuli $A_{2}, A_{3}$.
the 2-disks $C_{1}, C_{2}$ and $C_{3}$ to three components of $\partial\left(P \cup A_{1} \cup A_{2} \cup A_{3}\right)-K_{2}$, we obtain an embedded disk

$$
D:=P \cup A_{1} \cup A_{2} \cup A_{3} \cup C_{1} \cup C_{2} \cup C_{3}
$$

in $X_{K_{1}}$ whose boundary is $K_{2}$.
The restriction on $\partial v(D)$ of the normal framing of $v(D)$ differs from the framing of $K_{2}$ induced by the normal bundle of $N_{2}$ by $-1+1+1=1$. Therefore $N_{2} \cup v(D)$ is diffeomorphic to $\bar{F}$.

Alternatively, sliding the canceling 0 -framed 2 -handle to the -1 -framed 2-handle, we can construct an embedding $F \hookrightarrow X_{K_{1}}$, in which the general fiber of $F$ is $T_{2}$.

Applying Lemma 2 to this situation, we obtain the assertion of Lemma 4.

For a 4-manifold $X$ satisfying the assumption of Lemma 4, we can also prove that any odd-strand twist does not change the differential structure.

### 3.3. Proof of Theorem 1.

Proof. Since $\bar{C} \cup C$ includes $S y C$ as in Figure 1, the 3-strand twist of $A_{K_{1}}$ along $K_{2}$ does not change the differential structure, namely we have $A_{K_{1}} \cong$ $\bar{C} \cup C_{K_{3}, n}$. The integer $n$ is one of $\mp 1, \mp 9 . \quad K_{3}$ is the knot obtained by the $\pm 1$-Dehn surgery along $K_{2}$ as in Figure 8. By using 1-strand twist in Section 3.1 we have $A_{K_{3}} \cong \bar{C} \cup C_{K_{3}, n} \cong A_{K_{1}}$.
Y. Ohyama in [14] proved that for any knot $K$ there exists a finite sequence of local 3-strand twists: $K=k_{0} \rightarrow k_{1} \rightarrow \cdots \rightarrow k_{n}=$ unknot. The


Fig. 8. $K_{3}$ : The knot obtained by $\pm 1$-Dehn surgery along $K_{2}$. The right box is the $\mp 1$ full twist.
sequence implies a sequence of 4-dimensional diffeomorphisms:

$$
A_{K}=A_{k_{0}} \cong A_{k_{1}} \cong \cdots \cong A_{k_{n}}=S^{2} \times S^{2}
$$

The argument in the proof of Theorem 1.1 can be summarized as follows:
Lemma 5. Any knot surgery of any achiral elliptic fibration containing SyF (or SyC) does not change the differential structure.
Y. Matsumoto's achiral elliptic fibration on $S^{4}$ in [12] includes $S y F$. The handle picture can be seen in Figure 8.38 in [9].

Corollary 1. Any knot surgery along a general fiber in Matsumoto's elliptic fibration on $S^{4}$ (such that the meridian of the knot is isotopic to the vanishing cycle) is diffeomorphic to the standard $S^{4}$.
3.4. Infinitely many exotic embeddings. Using the diffeomorphism, we obtain infinitely many embeddings:

$$
\begin{equation*}
C \hookrightarrow C \cup \overline{C_{K}}=S^{2} \times S^{2} . \tag{3}
\end{equation*}
$$

We can obtain the following:
Corollary 2. There exist infinitely many (mutually non-diffeomorphic) exotic embddings $C \hookrightarrow S^{2} \times S^{2}$. Namely the embeddings give infinitely many exotic complements.

Proof. We show that the complements $\overline{C_{K}}$ of the embeddings (3) give infinitely many mutually homeomorphic but non-diffeomorphic 4-manifolds. The cusp neighborhood $C$ is embedded in K3 surface $E(2)$ as a neighborhood of a singular fiber of the elliptic surface. The group of self-diffeomorphisms up to isotopy on $\partial C \cong \Sigma(2,3,6)$ is $\mathbf{Z} / 2 \mathbf{Z}$ in the same way as the proofs of Lemma 8.3.10 in [9] and Lemma 3.7 in [11]. The nontrivial self-diffeomorphism is a $180^{\circ}$ rotation of $\partial C$ about the horizontal line in the top-right picture in Figure 2. Since the diffeomorphism is caused by a symmetry on 0 -framed trefoil, this diffeomorphism extends to $E(2)$ (see also the proof of Theorem 0.1 in [3]).

Thus, if $E(2)_{K_{1}}$ and $E(2)_{K_{2}}$ are non-diffeomorphic for some knots $K_{1}, K_{2}$, then $C_{K_{1}}$ and $C_{K_{2}}$ are non-diffeomorphic. The formula (1) and $S W_{E(2)}=1$ give infinitely many differential structures in $\left\{C_{K} \mid K:\right.$ knot $\}$. The homeomorphism $C \approx C_{K}$ for any knot $K$ is due to the fact $C \cup \overline{C_{K}} \cong S^{2} \times S^{2}(\operatorname{spin})$ and the result (0.8) Proposition-(iii) in [6]. Therefore $\left\{C_{K} \mid K:\right.$ knot $\}$ includes infinitely many differential structures.

## 4. Link surgery case

In this section we draw a handle picture of the link surgery operation $X(C, \ldots, C ; L)$ in the cases where $L$ is a split link and is the Hopf link. Finally we will prove $A_{L}$ is the standard manifold (Theorem 2).

Let $L=K_{1} \cup \cdots \cup K_{n}$ be an $n$-component link and $X_{i}(i=1, \ldots, n)$ oriented 4-manifolds each of which contains the cusp neighborhood $C_{i}$. Let $T_{i}$ be a general fiber of $C_{i}$. Let $\varphi_{i}$ be the maps

$$
\varphi_{i}: \partial \bar{v}\left(K_{i}\right) \times S^{1} \rightarrow \partial \bar{v}\left(T_{i}\right)=T_{i} \times \partial D^{2}
$$

satisfying

$$
\begin{gathered}
\varphi_{i}\left(l_{i} \times\{\mathrm{pt}\}\right)=\{\mathrm{pt}\} \times \partial D^{2} \\
\varphi_{i}\left(m_{i} \times\{\mathrm{pt}\}\right)=\alpha_{i}, \quad \varphi_{i}\left(\{\mathrm{pt}\} \times S^{1}\right)=\beta_{i},
\end{gathered}
$$

where $l_{i}$ and $m_{i}$ are the longitude and meridian of $K_{i}$ and $\alpha_{i}, \beta_{i}$ are two circles in $\partial \bar{v}\left(T_{i}\right)$ corresponding to a basis in $H_{1}\left(T_{i}\right)$.

Definition 8. We define the link surgery (operation) as

$$
\coprod_{i=1}^{n} X_{i} \mapsto\left[X_{i}-v\left(T_{i}\right)\right] \cup_{\varphi_{i}}\left[S^{3}-v(L)\right] \times S^{1}
$$

Here the gluing maps are $\varphi_{i}$. We denote the link surgery operation of $\left(X_{1}, \ldots, X_{n}\right)$ along a link $L$ by $X\left(X_{1}, \ldots, X_{n} ; L\right)$.

Due to Fintushel and Stern's result [7], the $S W$-invariant of $X\left(X_{1}, \ldots, X_{n}\right.$; $L$ ) is computed as follows:

$$
S W_{X\left(X_{1}, \ldots, X_{n} ; L\right)}=\Delta_{L}\left(t_{1}, \ldots, t_{n}\right) \cdot \prod_{i}^{n} S W_{E(1) \not \#_{T=T_{i}} X_{i}},
$$

where $\Delta_{L}\left(t_{1}, \ldots, t_{n}\right)$ is the multivariable Alexander polynomial of $L$ and $E(1) \#_{T=T_{i}} X_{i}$ is the fiber-sum of the elliptic fibration $E(1)$ and $X_{i}$ along general fibers $T$ and $T_{i}$ respectively. The definition of the fiber-sum can be seen in [7].


Fig. 9. $E(1) \#_{T=T_{i}} S^{2} \times S^{2}=E(1) \not \#^{2} S^{2} \times S^{2}$

Here we consider the link surgery operation of $\coprod_{i=1}^{n} S^{2} \times S^{2}$ along any $n$-component link $L$. We denote the operation by $A_{L}$. The following diffeomorphism

$$
\begin{equation*}
E(1) \#_{T=T_{i}} S^{2} \times S^{2} \cong E(1) \#^{2} S^{2} \times S^{2}=\#^{3} \mathbf{C} P^{2} \#^{11} \overline{\mathbf{C} P^{2}} \tag{4}
\end{equation*}
$$

holds. The diagram of the fiber-sum $E(1) \#_{T=T_{i}} S^{2} \times S^{2}$ is the leftmost figure in Figure 9 (where the diagram of $E(1)$ is Figure 8.10 in [9]). Several handle slides get two connected-sum components of $S^{2} \times S^{2}$ (see Figure 9). The second equality in (4) is well-known. Thus the vanishing theorem of $S W$ invariant implies $S W_{A_{L}}=0$.

We prepare several lemmas to prove Theorem 2.
Lemma 6. Let $L=U_{1} \cup U_{2}$ be a 2-component unlink. Then the handle picture of $X(C, C ; L)$ is Figure 11.

Suppose that $L=L_{1} \cup L_{2}$ is any split link. Then the handle picture of $X(C, C ; L)$ is obtained by replacing the two dotted 1 -handles in Figure 11 with the slice 1-handles corresponding to $L_{1}$ and $L_{2}$.

In particular, in the case where $L=L^{\prime} \cup U$ is an n-component link and $U$ is a split unknot,

$$
A_{L^{\prime} \cup U} \cong A_{L^{\prime}} \#^{2} S^{2} \times S^{2}
$$

Proof. Let $L=K_{1} \cup K_{2}$ be a split link. First we consider the case where $K_{1}, K_{2}$ are both unknots $U_{1}, U_{2}$. Let $D_{1}$ and $D_{2}$ be the splitting 3-disks of $U_{1}$ and $U_{2}$ satisfying $D_{1} \cup D_{2}=S^{3}, D_{1} \cap D_{2}=S^{2}$, and $U_{i} \subset \operatorname{int}\left(D_{i}\right)$. Then we get a decomposition $\left[S^{3}-v(L)\right] \times S^{1}=\left[\left(D_{1}-v\left(U_{1}\right)\right) \cup\left(D_{2}-v\left(U_{2}\right)\right)\right] \times S^{1}$. Each component $\left[D_{i}-v\left(U_{i}\right)\right] \times S^{1}$ is diffeomorphic to $D^{2} \times S^{1} \times S^{1}-v\left(\beta_{i}\right)$ (see Figure 10), where $\beta_{i}$ is $\left\{p_{i}\right\} \times S^{1}$ and $p_{i}$ is a point in $D^{2} \times S^{1}$.

The handle picture of $D^{2} \times T^{2}-v\left(\beta_{1}\right)$ is the left in Figure 13. The $S^{2} \times S^{1}$ component $\partial v\left(\beta_{1}\right)$ of the boundary corresponds to the cylinder in the picture. The gluing of $D^{2} \times T^{2}-v\left(\beta_{1}\right)$ and $D^{2} \times T^{2}-v\left(\beta_{2}\right)$ along the $S^{2} \times S^{1}$ component using the identity map has the handle picture of the right in Figure 13. With the dotted 1-handles description, the handle picture of $X(C, C ; L)$ is Figure 11. Two boundary components of $X(C, C ; L)$ are described as two spaces segmented by the attaching sphere of the 3 -handle in Figure 11.


Fig. 10. $\left[D^{3}-v(\right.$ unknot $\left.)\right] \times S^{1} \cong D^{2} \times T^{2}-v(\beta)$


Fig. 11. The handle picture of $X\left(C, C ; U_{0} \cup U_{1}\right)$.


Fig. 12. $X\left(C, C ; 3_{1} \amalg 4_{1}\right)$


Fig. 13. $\quad T^{2} \times D^{2}-v(\beta) \rightarrow\left(T^{2} \times D^{2}-v\left(\beta_{1}\right)\right) \cup\left(T^{2} \times D^{2}-v\left(\beta_{2}\right)\right)$.
In the case where $L=K_{1} \cup K_{2}$ is any split 2-component link, the handle picture of $X(C, C ; L)$ can be drawn replacing the solid torus in Figure 10 with the knot complement $D^{3}-v\left(K_{i}\right)$. The replacement of handle pictures can be viewed as in [3]. For example in the case of $K_{1}=3_{1}$ and $K_{2}=4_{1}$, the handle picture is Figure 12.

In particular if $K_{2}$ is the unknot, then $A_{L}$ gives rise to two connected-sum components of $S^{2} \times S^{2}$, as can be seen in Figures 14 and 15, therefore $A_{L^{\prime} \cup U} \cong$ $A_{L^{\prime}} \#^{2} S^{2} \times S^{2}$ holds. The unlabeled links in the figures stand for 0 -framed 2-handles.

Next we draw a handle picture of $X(C, C ; H)$ for the Hopf link and we compute $A_{H}$.


Fig. 14. The handle picture of $A_{L^{\prime} \cup U}=A_{L^{\prime}} \#^{2} S^{2} \times S^{2}$.


Fig. 15. To make an $S^{2} \times S^{2}$-component from two parallel - 1 -framed 2-handles.

Lemma 7. Let $H$ be the Hopf link. Then $A_{H}$ is diffeomorphic to $\#^{3}\left(\mathbf{C} P^{2} \# \overline{\mathbf{C} P^{2}}\right)$.

Proof. The complement $\left[S^{3}-v(H)\right] \times S^{1}$ is diffeomorphic to $T^{3} \times I$ (the left in Figure 16), where $I$ is the interval $[0,1]$ and the unlabeled links are 0 -framed 2-handles.

Since the meridians and longitudes of the Hopf link exchange the roles each other, the locations of vanishing cycles are $\alpha=\left(S^{1}, \mathrm{pt}, \mathrm{pt}, 0\right), \beta=\left(\mathrm{pt}, S^{1}\right.$, $\mathrm{pt}, 0), \beta^{\prime}=\left(\mathrm{pt}, S^{1}, \mathrm{pt}, 1\right)$, and $\eta=\left(\mathrm{pt}, \mathrm{pt}, S^{1}, 1\right)$. Attaching four -1 -framed 2-handles to $T^{3} \times I$, we get the picture of $X(C, C ; H)$ (the right in Figure 16). Next, attaching four vanishing cycles with opposite orientation (four meridional 0 -framed 2 -handles), and two sections (two 0 -framed 2 -handles) to two boundaries of $X(C, C ; H)$, we get $A_{H}$ (the top-left handle decomposition in Figure 17). The decomposition can be modified into the top-right picture in Figure 17 by two handle slides as indicated in the top-left picture. The


Fig. 16. $T^{2} \times S^{1} \times I \rightarrow X(C, C ; H)$.


Fig. 17. The handle picture of $A_{H}=\#^{3}\left(\mathbf{C} P^{2} \# \overline{\mathbf{C} P^{2}}\right)$.


Fig. 18. The representatives $L_{n, \ell}(\ell=0, \ldots, n-1)$ of $\mathscr{L}_{n}$
resulting picture can be modified into the bottom-left picture by two handle slides indicated by the two arrows in the top-right picture. Two (unlinked) 0 -framed 2-handles obtained by this modification are canceled with two 3-handles. By applying Figure 15 and easy handle calculus, the bottom-left picture can be modified into the bottom-middle picture in Figure 17. This picture is the diagram of $\#^{3}\left(\mathbf{C} P^{2} \# \overline{\mathbf{C} P^{2}}\right)$ using handle calculus.

At this point we can prove Theorem 2.
Proof. Let $L=K_{1} \cup K_{2} \cup \cdots \cup K_{n}$ be any $n$-component link. The set $\tilde{\mathscr{L}}_{n}$ of all $n$-component links up to local 3 -strand twist consists of $2^{n-1}$ classes due to Nakanishi and Ohyama's results [14, 13]. Forgetting the ordering of the components of any link in $\tilde{\mathscr{L}}_{n}$, we get a set $\mathscr{L}_{n}$. The set $\mathscr{L}_{n}$ has $n$ classes. A standard representative in each class is a link $L_{n, \ell}(\ell=0,1, \ldots$, $n-1$ ) as presented in Figure 18. Applying 3-strand twist to link surgery operation $A_{L}$, we have only to consider the diffeomorphism type of $A_{L_{n, \ell}}$ for some $\ell$.

Notice that $L_{n, 0}$ is the representative of all proper links $\left(\stackrel{\text { def }}{\Leftrightarrow} \sum_{i \neq j} l k\left(K_{i}, K_{j}\right)\right.$ $\left.\equiv 0(\bmod 2){ }^{\forall} i\right)$ and $L_{n, \ell}(\ell>0)$ are the representatives of improper link $(\stackrel{\text { def }}{\Leftrightarrow}$ not proper link).

Now suppose that $1 \leq \ell \leq n-2$. Applying Lemma 6 to the $(n-\ell-1)$ component unlink, we have

$$
A_{L_{n, \ell}}=A_{L_{t+1, \ell}} \#^{2(n-\ell-1)} S^{2} \times S^{2}
$$

Since $\ell$ parallel meridians in the remaining components construct a fiber-sum of $\ell$ copies of $S y C$, by using Figure 15 we have

$$
A_{L_{\ell+1, \ell}}=A_{H} \#^{2(\ell-1)} S^{2} \times S^{2}
$$

Using Lemma 7, we have

$$
\begin{aligned}
A_{L_{n, \ell}} & =\#^{3}\left(\mathbf{C} P^{2} \# \overline{\mathbf{C} P^{2}}\right) \#^{2(\ell-1)} S^{2} \times S^{2} \#^{2(n-\ell-1)} S^{2} \times S^{2} \\
& =\#^{2 n-1}\left(\mathbf{C} P^{2} \# \overline{\mathbf{C} P^{2}}\right)
\end{aligned}
$$

Suppose that $\ell=0$. The link $L_{n, 0}$ is the $n$-component unlink. Thus, using Lemma 6 we have

$$
A_{L_{n, 0}}=S^{2} \times S^{2} \#^{2(n-1)} S^{2} \times S^{2} \cong \#^{2 n-1} S^{2} \times S^{2} .
$$

Suppose that $\ell=n-1$. Since the link $L_{n, n-1}$ does not have unlink component,

$$
A_{L_{n, n-1}}=\#^{3}\left(\mathbf{C} P^{2} \# \overline{\mathbf{C} P^{2}}\right) \#^{2(n-2)} S^{2} \times S^{2} \cong \#^{2 n-1}\left(\mathbf{C} P^{2} \# \overline{\mathbf{C} P^{2}}\right)
$$

Therefore

$$
A_{L} \cong \begin{cases}A_{L_{n, 0}} \cong \#^{2 n-1} S^{2} \times S^{2} & L \text { is proper } \\ A_{L_{n, \ell}} \cong \#^{2 n-1}\left(\mathbf{C} P^{2} \# \overline{\mathbf{C} P^{2}}\right) & \text { otherwise }\end{cases}
$$

## 5. Scharlemann's manifolds

Let $K$ be a knot in $S^{3}$ and $\gamma(\varepsilon)$ an embedded framed curve in $S_{p}^{3}(K)$, i.e., $\gamma$ is a simple curve in $S_{p}^{3}(K)$ and $\varepsilon$ is a framing of $\gamma$. The framed curve $\gamma(\varepsilon)$ gives a framed curve $\tilde{\gamma}$ in $S_{p}^{3}(K) \times S^{1}$, as mentioned in Section 1.3. To consider the isotopy type of $\tilde{\gamma}$, it is enough to consider $\varepsilon$ as the $(\bmod 2)$-framing. Figure 19 is an example of framed curve presentations. We identify $\varepsilon$ with an element of $\mathbf{Z} / 2 \mathbf{Z}$.

Definition 9. The 0 -framing is defined as the Seifert framing of a curve embedded in the surgery presentation ( $p$-surgery along $K$ ).

Definition 10. We fix a diagram of $\gamma$ in the surgery presentation of $S_{p}^{3}(K)$. Let $\gamma(\varepsilon)$ be an embedded framed curve in $S_{p}^{3}(K)$. Namely the induced framing on $\tilde{\gamma}$ gives a trivialization $t_{\varepsilon}: \bar{v}(\tilde{\gamma}) \cong D^{3} \times S^{1}$.

We define the $(\varepsilon)$-surgery along $\gamma$ as

$$
B_{K, p}(\gamma(\varepsilon)):=\left[S_{p}^{3}(K) \times S^{1}-v(\tilde{\gamma})\right] \cup_{\psi_{\varepsilon}} S^{2} \times D^{2} .
$$



Fig. 19. A curve $\gamma_{0}$ with $(\bmod 2)$-framing.

The gluing map $\psi_{\varepsilon}$ is the composition of the identity map $S^{2} \times \partial D^{2} \rightarrow$ $\partial D^{3} \times S^{1}$ and the restriction of $t_{\varepsilon}^{-1}$ to the boundary. We call $B_{K, p}(\gamma(\varepsilon))$ Scharlemann's manifold. In the case of $p=-1$, we drop the suffix $p$.

The diffeomorphism type of $B_{K, p}(\gamma(\varepsilon))$ depends only on the homotopy type of $\gamma(\varepsilon)$ in $S_{p}^{3}(K)$. This operation coincides with taking the boundary after attaching a 5 -dimensional 2 -handle along $\tilde{\gamma}$ with the framing $\varepsilon$.
5.1. Scharlemann's manifolds along the meridian curves. In this section, we consider Scharlemann's manifolds with respect to the meridian $\gamma_{0}$ of $K$ as in Figure 19. We remark the following.

Remark 1. Let $\gamma_{0}$ be the meridian circle in $S_{-1}^{3}(K)$. All Scharlemann's manifolds $B_{K}\left(\gamma_{0}(0)\right)$ are diffeomorphic to $S^{3} \times S^{1} \# \mathbf{C} P^{2} \# \overline{\mathbf{C} P^{2}}$.

In the case of $\varepsilon=1$, we note the relationship between $B_{K}\left(\gamma_{0}(1)\right)$ and the knot surgery of the fishtail neighborhood.

Lemma 8. $\quad B_{K}\left(\gamma_{0}(1)\right)$ is diffeomorphic to $\bar{F} \cup F_{K}$.
Proof. Performing the knot surgery for $\bar{F} \cup F$, we have

$$
\bar{F} \cup F_{K}=\bar{F} \cup[F-v(T)] \cup_{\varphi_{0}}\left[\left(S^{3}-v(K)\right) \times S^{1}\right] .
$$

The handle picture is Figure 20 (the case of $K=4_{1}$ ).
The surgery along $\tilde{\gamma}_{0}$ in $S_{-1}^{3}(K) \times S^{1}$ is the right in Figure 21. Hence we get the following diffeomorphisms.


Fig. 20. $\bar{F} \cup[F-v(T)] \cup_{q_{0}}\left[\left(S^{3}-v(K)\right) \times S^{1}\right]$.


Fig. 21. The surgery along $\tilde{\gamma}_{0}$ with the framing 1.

$$
\begin{aligned}
B_{K}\left(\gamma_{0}(1)\right) & =\left[S_{-1}^{3}(K) \times S^{1}-v\left(\tilde{\gamma}_{0}\right)\right] \cup_{\psi_{1}} S^{2} \times D^{2} \\
& \cong \bar{F} \cup(F-v(T)) \cup_{\varphi_{-1}}\left[S^{3}-v(K)\right] \times S^{1} \quad(\text { See Figure 3 and 21.) } \\
& \cong \bar{F} \cup(F-v(T)) \cup_{\varphi_{0}}\left[S^{3}-v(K)\right] \times S^{1} \quad(\text { Lemma 3) } \\
& =\bar{F} \cup F_{K}
\end{aligned}
$$

Here we prove Theorem 4.
Proof. Since $\bar{F} \cup F$ contains $S y F$, the application of Lemma 5 to this situation gives the following:

$$
\bar{F} \cup F_{K} \cong \bar{F} \cup F \cong S^{3} \times S^{1} \# S^{2} \times S^{2}
$$

Here the last diffeomorphism is due to Figure 22.


Fig. 22. $F \cup \bar{F}=S^{3} \times S^{1} \# S^{2} \times S^{2}$.


Fig. 23. $B_{K, p}\left(\gamma_{0}(0)\right)$.
Corollary 3. Let $\gamma_{0}$ be a meridian of $K$ in the surgery presentation of $S_{p}^{3}(K) . \quad B_{K, p}\left(\gamma_{0}(\varepsilon)\right)$ is classified as follows:

$$
B_{K, p}\left(\gamma_{0}(\varepsilon)\right)= \begin{cases}S^{3} \times S^{1} \# S^{2} \times S^{2} & (\varepsilon-1) p \equiv 0 \\ S^{3} \times S^{1} \# \mathbf{C} P^{2} \# \overline{\mathbf{C} P^{2}} & (\varepsilon-1) p \equiv 1\end{cases}
$$

Proof. In the case of $\varepsilon=1$, using the 1 -strand twist, we have

$$
B_{K, p}\left(\gamma_{0}(1)\right) \cong B_{K}\left(\gamma_{0}(1)\right) \cong S^{3} \times S^{1} \# S^{2} \times S^{2} .
$$

In the case of $\varepsilon=0$, in the same way as Remark 1, we obtain

$$
B_{K, p}\left(\gamma_{0}(0)\right) \cong \begin{cases}S^{3} \times S^{1} \# S^{2} \times S^{2} & p \equiv 0(2) \\ S^{3} \times S^{1} \# \mathbf{C} P^{2} \# \overline{\mathbf{C} P^{2}} & p \equiv 1(2)\end{cases}
$$

(see Figure 23).
Remark 2. $B_{K}\left(\gamma_{0}(1)\right)$ is obtained from $A_{K}$ as a surgery along an embedded $S^{2}$. The neighborhood of the sphere $\Sigma$ is the union of the bottom 0 -framed 2 -handle and the 4 -handle (the left of Figure 24). Attaching the 3 -handle and 4 -handle to the complement gets $B_{K}\left(\gamma_{0}(1)\right)$ (the right of Figure 24). The circle $\delta$ in Figure 24 is the core circle of $S^{1} \times D^{3}$ attached.

Remark 3. In [4] Akbulut got a plug twisting $\left(W_{1,2}, f\right)$ satisfying $E(1)=$ $N \cup_{\text {id }} W_{1,2}$ and $E(1)_{2,3}=N \cup_{f} W_{1,2}$. The definitions of plug, $N$ and $W_{1,2}$ are written down in [4]. In the same way as [4] we can also show that there exist infinitely many plug twistings ( $W_{1,2}, f_{K}$ ) of $E(1)$ with the same plug $W_{1,2}$. As a result each of such plug twistings satisfies $E(1)=M \cup_{\text {id }} W_{1,2}$ and $E(1)_{K}=$ $M \cup_{f_{K}} W_{1,2}$. Infinite variations of Alexander polynomial imply the existence of infinite embeddings $W_{1,2} \hookrightarrow M \cup_{i d} W_{1,2}=E(1)$.
5.2. Scharlemann's manifold along non-meridian curves. In this section we consider $B_{3_{1}}(\gamma(\varepsilon))$ in the case where $\gamma$ is not homotopic to the meridian curve.


$\downarrow$


Fig. 24. The left: $A_{K}$. The right: surgery $B_{K}\left(\gamma_{0}(-1)\right) \cong\left[A_{K}-v(\Sigma)\right] \cup S^{1} \times D^{3}$.


Fig. 25. The generators $x, y$ of $\pi_{1}\left(S_{-1}^{3}\left(3_{1}\right)\right)$.

The fundamental group of $S_{-1}^{3}\left(3_{1}\right)$ is isomorphic to

$$
\pi=\pi_{1}\left(S_{-1}^{3}\left(3_{1}\right)\right)=\left\langle x, y \mid x^{5}=(x y)^{3}=(x y x)^{2}\right\rangle \cong \tilde{A}_{5} .
$$

These elements $x, y$ are two generators as in Figure 25.
The set

$$
\begin{equation*}
\left[S^{1}, S_{-1}^{3}\left(3_{1}\right)\right]=\pi / \text { conj } . \tag{5}
\end{equation*}
$$

of free homotopy classes of maps $S^{1} \rightarrow S_{-1}^{3}\left(3_{1}\right)$ possesses 9 classes as follows:

| Classes | $[e]$ | $\left[x^{5}\right]$ | $[x y x]$ | $[x]$ | $\left[x^{2}\right]$ | $\left[x^{3}\right]$ | $\left[x^{4}\right]$ | $[x y]$ | $\left[(x y)^{2}\right]$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Orders | 1 | 2 | 4 | 10 | 5 | 10 | 5 | 6 | 3 |

Each of the classes is a normal generator of the fundamental group except for $[e],\left[x^{5}\right]$. Since $[x]$ corresponds to the meridian curve, this case is already classified. We take a concrete presentation of $\gamma(\varepsilon)$ in $S_{-1}^{3}\left(3_{1}\right)$, and regard the


Fig. 26. $\gamma_{x y}$


Fig. 27. A full-twist along $\gamma(1)$.
presentation as the diffeomorphism type of $B_{3_{1}}(\gamma(\varepsilon))$. We prove the case of [xy].

Proposition 1. Let $\gamma_{x y}$ be a presentation in Figure 26, where $\left[\gamma_{x y}\right]=[x y]$. $B_{3_{1}}\left(\gamma_{x y}(1)\right)$ is diffeomorphic to $S^{3} \times S^{1} \# \mathbf{C} P^{2} \# \overline{\mathbf{C} P^{2}}$.

Here we define some notations in the diagrams for the proofs. The curves with (1) or $(0)$ mean the $(1)$ or $(0)$-surgery along the curves. The notations $\sim$ and $\sim^{1}$ throughout this section stand for some 4-dimensional diffeomorphism induced from a 3-manifold homeomorphism and a 1 -strand twist, respectively.

By using 3-dimensional diffeomorphisms and 1-strand twists we get the diffeomorphism as in Figure 27. We can extend Figure 27 to any twist along $\gamma(1)$ as follows:

Lemma 9 (A full-twist along $\gamma(1)$ ). A full-twist of any number of strands along $\gamma(1)$ does not change the diffeomorphism type of the 4-manifold: If a framed link $\left(K^{\prime} ; p^{\prime}\right)$ is obtained from $(K ; p)$ by a full-twist along $\gamma(1)$, then $B_{K^{\prime}, p^{\prime}}(\gamma(1))$ is diffeomorphic to $B_{K, p}(\gamma(1))$. We call such a deformation a fulltwist along $\gamma(1)$.

Proof. A Dehn twist (that is, 1 -strand twist as in Lemma 3) along a curve parallel to $\gamma$ does not change the differential structure because $\gamma(1)$ plays a role in the vanishing cycles in a fishtail neighborhood.

Remark 4. To avoid reader's confusion, we must note on the difference between two kinds of twists (see Figure 28):


Fig. 28. A full-twist along $\gamma(1)$ and odd-strand twist $(n \equiv 1(2))$.
a full-twist along $\gamma(1)$ (Lemma 9);
an odd-strand twist (Definition 7).
The former (the left picture in Figure 28) is a full-twist along a curve isotopic to $\gamma$ in Lemma 9. Even if any number of strands pierce a disk bounded by $\gamma$, we can get the diffeomorphism by the twist along $\gamma$. The latter (the right picture in Figure 28) is a full-twist along a curve $\eta$ that satisfies the following: The odd strands of the former's type and the curve $\eta$ are boundaries of an embedded punctured disk. Such a twist is explained in the last paragraph of Section 3.2. Even if there exists no 1 -framed curve isotopic to the curve $\eta$, we can get the diffeomorphism by the twist along $\eta$. Hence a single 1 -strand twist is in the intersection of two kinds of twists, and in other words, two kinds of twists above are interpreted as two types of generalizations of 1-strand twist.

Thus, Lemma 4 cannot be generalized to any even-strand twist case, because it is the latter's type twist. Any odd-strand twist is interpreted as 'a kind of 1 -strand twist' given by a summation of odd 1 -strand twists as in Figure 28 ((odd number) $\times 1 \equiv 1(2)$ ). This summation is due to the proof of Theorem 1. At any rate for a twist to give a 4-dimensional diffeomorphism we require an odd situation.

We use the same notation $\sim^{1}$ for any full-twist along $\gamma(1)$ in Lemma 9. Here we prove Proposition 1.

Proof. By using Figure 29 and Corollary 3 we have

$$
B_{3_{1}}\left(\gamma_{x y}(1)\right) \cong B_{\text {unknot }, 3}\left(\gamma_{0}(0)\right) \cong S^{3} \times S^{1} \# \mathbf{C} P^{2} \# \overline{\mathbf{C} P^{2}} .
$$

Here we will argue several other cases.
Proposition 2. We fix presentations of $\gamma_{x^{2}}, \gamma_{x^{3}}$ and $\gamma_{x^{4}}$ as in the leftmost pictures in Figure 30, 31, and 32 respectively. $B_{3_{1}}\left(\gamma_{x^{2}}(1)\right), B_{3_{1}}\left(\gamma_{x^{3}}(0)\right)$ and $B_{3_{1}}\left(\gamma_{x^{4}}(1)\right)$ are diffeomorphic to $S^{3} \times S^{1} \# \mathbf{C} P^{2} \# \overline{\mathbf{C} P^{2}}$.

Proof. In the case of $B_{3_{1}}\left(\gamma_{x^{2}}(1)\right)$, by using Figure 30 and Corollary 3 we have $B_{3_{1}}\left(\gamma_{x^{2}}(1)\right) \cong S^{3} \times S^{1} \# \mathbf{C} P^{2} \# \overline{\mathbf{C} P^{2}}$.


Fig. 29. $\quad B_{3_{1}}\left(\gamma_{x y}(1)\right) \cong B_{\text {unknot }, 3}\left(\gamma_{0}(0)\right)$.


Fig. 30. $\quad B_{3_{1}}\left(\gamma_{x^{2}}(1)\right) \cong B_{\text {unknot }, 5}\left(\gamma_{0}(0)\right)$.


Fig. 31. The diffeomorphism for $B_{3_{1}}\left(\gamma_{x^{3}}(0)\right)$.


Fig. 32. The diffeomorphism for $B_{3_{1}}\left(\gamma_{x^{4}}(1)\right)$.



Fig. 33. The diffeomorphism for $B_{3_{1}}\left(\gamma_{x y x}(0)\right)$.
In the case of $B_{3_{1}}\left(\gamma_{x^{3}}(0)\right), \gamma$ in the last picture in Figure 31 presents the positive (2,7)-torus knot with the odd framing. It is obviously homotopic to the unknot. Namely the manifold $B_{3_{1}}\left(\gamma_{x^{3}}(1)\right)$ is diffeomorphic to $S^{3} \times S^{1} \# \mathbf{C} P^{2} \# \overline{\mathbf{C} P^{2}}$.

In the case of $B_{3_{1}}\left(\gamma_{x^{4}}(1)\right)$, the last picture in Figure 32 gives $S^{3} \times S^{1} \# \mathbf{C} P^{2} \# \overline{\mathbf{C} P^{2}}$ in the similar way. Here $\operatorname{Pr}(-2,3,7)$ is the $(-2,3,7)-$ pretzel knot.

Proposition 3. We fix presentations $\gamma_{x y x}$ and $\gamma_{(x y)^{2}}$ as in the leftmost pictures in Figure 33 and 34 respectively. $B_{3_{1}}\left(\gamma_{x y x}(0)\right)$ and $B_{3_{1}}\left(\gamma_{(x y)^{2}}(1)\right)$ are diffeomorphic to $S^{3} \times S^{1} \# \mathbf{C} P^{2} \# \overline{\mathbf{C} P^{2}}$.

Proof. In the case of $B_{3_{1}}\left(\gamma_{x y x}(0)\right)$, the framed curve $\gamma_{x y x}(0)$ is homotopic to the curve in the first picture in Figure 33 due to $x y y^{-1} x y \sim x^{2} y \sim x y x$. Figure 33 implies $B_{3_{1}}\left(\gamma_{x y x}(0)\right) \cong S^{3} \times S^{1} \# \mathbf{C} P^{2} \# \overline{\mathbf{C} P^{2}}$.

In the case of $B_{3_{1}}\left(\gamma_{(x y)^{2}}(1)\right)$ the deformation as in Figure 34 gets $S^{3} \times S^{1} \# \mathbf{C} P^{2} \# \overline{\mathbf{C} P^{2}}$. Here $T_{2,-7}$ is the negative (2,7)-torus knot.

In the end of the paper we raise a question.
Question 1. In the following manifolds

$$
B_{3_{1}}\left(\gamma_{x y}(0)\right), B_{3_{1}}\left(\gamma_{x^{2}}(0)\right), B_{3_{1}}\left(\gamma_{x^{3}}(1)\right), B_{3_{1}}\left(\gamma_{x^{4}}(0)\right), B_{3_{1}}\left(\gamma_{x y x}(1)\right), B_{3_{1}}\left(\gamma_{(x y)^{2}}(0)\right),
$$

does there exist any non-standard manifold?




Fig. 34. The diffeomorphism for $B_{3_{1}}\left(\gamma_{(x y)^{2}}(1)\right)$.

## References

[1] M. Akaho, private communication, (2002).
[2] S. Akbulut, Scharlemann's manifold is standard, Annals of Mathematics, (2)., 149, no. 2 (1999), 497-510.
[3] S. Akbulut, A fake cusp and a fishtail, Turkish Journal of Math., 23 (1999), no. 1, 19-31.
[4] S. Akbulut, Twisting 4-manifolds along RP ${ }^{2}$, Proceedings of GGT/2009, Int. Press, (2010), 137-141.
[5] S. Akbulut, Knot surgery and Scharlemann manifolds, to appear in Forum Mathematicum.
[6] S. Boyer, Simply-connected 4-manifolds with a given boundary, Transactions of the American Mathematical Society, 298, no. 1 (1986), 331-357.
[7] R. Fintushel and R. Stern, Knot, links and 4-manifolds, Invent. Math., 134, no. 2 (1998), 363-400.
[8] M. H. Freedman and F. Quinn, Topology of 4-manifolds, Princeton Mathematical Series, 39, (1990).
[9] R. Gompf and A. Stipsicz, 4-manifolds and Kirby calculus, Graduate Studies in Mathematics, 20. American Mathematical Society, Providence, RI, (1999).
[10] R. Gompf, More Cappell-Shaneson spheres are standard, Algebraic \& Geometry Topology, 10 (2010), 1665-1681.
[11] R. Gompf, Nuclei of elliptic surfaces, Topology, 30 (1991), 97-115.
[12] Y. Matsumoto, On 4-manifolds fibered by tori, Proc. Japan Acad., 58 (1982), 298-301.
[13] Y. Nakanishi, Replacements in the Conway third identity, Tokyo J. Math., 14, no. 1 (1991), 197-203.
[14] Y. Ohyama, Twisting and unknotting operations, Rev. Mat. Univ. Complut. Madrid, 7 no. 2 (1994), 289-305.
[15] M. Scharlemann, Constructing strange manifolds with the dodecahedral space, Duke Math. J., 43 (1976), 33-40.

Motoo Tange<br>Institute of Mathematics<br>University of Tsukuba, Ibaraki 305-8571, Japan<br>E-mail: tange@math.tsukuba.ac.jp URL: http://www.math.tsukuba.ac.jp/tange/


[^0]:    The author was partially supported by JSPS Research Fellowships for Young Scientists No. 21-1458.

    2010 Mathematics Subject Classification. Primary 57R65, 98B76; Secondary 57R50, 57M25.
    Key words and phrases. Kirby calculus, Fintushel-Stern's knot surgery, Scharlemann manifolds.

