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Abstract. Fintushel-Stern’s knot surgery has given many exotic 4-manifolds. We

show that if an elliptic fibration has two, parallel, oppositely-oriented vanishing cycles

(for example S2 � S2 or Matsumoto’s S4), then the knot surgery does not change its

di¤erential structure. We also give a classification of link surgery of S2 � S2 and a

generalization of Akbulut’s celebrated result that Scharlemann’s manifold is standard.

1. Introduction

1.1. Knot surgery. We call a pair of manifolds an exotic pair, if they are

homeomorphic but non-di¤eomorphic. It has been an intriguing question

to construct exotic pairs. In particular, 4-dimensional manifolds have given

interesting examples. Fintushel-Stern’s knot surgery in [7] is a powerful method

to construct such 4-dimensional exotic pairs. Given a simply-connected

4-manifold X which contains a torus T HX with the trivial normal bundle

and a knot K in S3, the knot surgery operation X VXK is defined by removing

the neighborhood of T and regluing ðS3 � nðKÞÞ � S1. The symbol n repre-

sents the open neighborhood throughout the present article. Under favorable

conditions (for example, the case that X contains the regular neighborhood

C of the cusp singular fiber and T is a general fiber), the resulting 4-manifold

XK is simply-connected and has the same intersection form as X , hence it is

homeomorphic to X by virtue of Freedman’s celebrated theorem.

In [7], the following formula for the Seiberg-Witten invariant (SW -

invariant) was establised.

SWXK
¼ SWX � DK ð1Þ

Here DK is the Alexander polynomial of K . This formula implies the knot

surgery gives rise to many exotic pairs. If SWX is non-trivial and DK 0 1,

then ðX ;XKÞ is an exotic pair.
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One of the main purposes of this article is to show that there a lot of

examples of Fintushel-Stern’s knot surgery which do ‘‘not’’ produce exotic

pairs. By the above argument, we need to focus on the case where DKðtÞ ¼ 1

or SWX ¼ 0.

It is known that X ¼ S2 � S2 has trivial SW -invariant. The cusp neigh-

borhood C can naturally be embedded inside X . In fact, X is di¤eomorphic

to the double C UC where C is C with the opposite orientation. Figure 1

describes the achiral elliptic fibration of X .

Definition 1. We denote the knot surgery C UCK by AK .

In [3] S. Akbulut showed that A31 is di¤eomorphic to S2 � S2. The proof

essentially uses his other result [2]. Our first main theorem is:

Theorem 1. AK is di¤eomorphic to S2 � S2 for any knot K.

We will prove this theorem in Section 3. The theorem shows the existence

of infinitely many exotic embeddings of C into S2 � S2.

1.2. Link surgery. Fintushel and Stern [7] defined link surgery, which is a

link version of knot surgery. For an n-tuple ðX1;X2; . . . ;XnÞ of 4-manifolds,

each of which contains a (specified) C, and an n-component (labeled) link L in

S3, we can define the link surgery X ðX1; . . . ;Xn;LÞ. This is a variation of the

fiber-sum operation connecting some manifolds rather than a surgery.

In the case of Xi ¼ S2 � S2 for any i, we denote the link surgery by AL.

Theorem 1 can be generalized to the link case as follows.

Theorem 2. Let L be an n-component link. AL is di¤eomorphic to

a2n�1S2 � S2; if L is a proper link;

a2n�1CP2a2n�1CP2; otherwise:

�

Fig. 1. Two parallel, oppositely-oriented cusp fibers in S2 � S2.
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In the proof, we give handle pictures of the link surgery X ðC; . . . ;C;LÞ for
a split link L ¼ K1 UK2 or the Hopf link L ¼ H.

1.3. Scharlemann’s manifolds. Let S3
p ðKÞ be the p-surgery along K in S3,

and gðeÞ an embedded framed curve in S3
p ðKÞ. Here g is a simple closed curve

in S3 � nðKÞHS3
p ðKÞ and e is a framing of g. The embedded curve induces a

framed knot ~gg in S3
p ðKÞ � S1 through S1 !g S3

p ðKÞ ,! S3
p ðKÞ � S1. Here we

obtain a manifold BK ;pðgðeÞÞ (Scharlemann’s manifold ) by surgering out the

neighborhood of ~gg in S3
p ðKÞ � S1 and regluing S2 �D2. Since the di¤eomor-

phism type of BK ;pðgðeÞÞ depends only on ðK ; pÞ and the free isotopy type of

~gg, we are concerned with the free homotopy class of gðeÞ. Thus the framings

have two types in general.

If g gives a normal generator in p1ðS3
p ðKÞÞ, then BK;pðgðeÞÞ is homeomor-

phic to S3 � S1aS2 � S2 or S3 � S1aCP2aCP2 as can be seen from results

presented in [8]. In the case of p ¼ �1 we drop the su‰x p of BK;pðgðeÞÞ as

BKðgðeÞÞ.
Scharlemann [15] studied the case where ðK ; pÞ ¼ ð31;�1Þ and g ¼ g0 (the

meridian of 31) and showed that B31ðg0ð1ÞÞ has a fake self-homotopy structure

on S3 � S1aS2 � S2. At that time the di¤eomorphism type of BKðgðeÞÞ was

not determined. After that, Akbulut [2] proved the following theorem using an

amazingly di‰cult handle calculus.

Theorem 3 ([2]). B31ðg0ð1ÞÞ is di¤eomorphic to S3 � S1aS2 � S2.

It has been unknown whether Theorem 3 can be generalized to an

arbitrary knot. We will prove the following as the third main theorem.

Theorem 4. Let K be any knot in S3 and g0 HS3
�1ðKÞ the meridian of K

in the diagram. BKðg0ð1ÞÞ is di¤eomorphic to S3 � S1aS2 � S2.

In the second half of Section 5.2, we will consider the di¤eomorphism type

of B31ðgðeÞÞ for homotopy classes except g0ðeÞ.
Theorem 1 and 4 are proven by S. Akbulut in [5] independently. Our

proofs are based on Lemma 5 regarding knot surgery in some achiral elliptic

fibration.
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2. Preliminaries

2.1. The neighborhoods of singular fibers and the knot surgery. First we recall

the fishtail neighborhood F and cusp neighborhood C. The definition of such

singular fibers can also be seen in [9]. We define two more neighborhoods of

some singular fibers.

Definition 2 (Fishtail (or cusp) neighborhood). A fishtail (or cusp)

neighborhood F (or C) is an elliptic fibration over D2 with one fishtail (or

cusp) singular fiber. The handle picture is the top-left (or top-right) in Figure

2. The neighborhood C (or F ) includes self-intersection 0 torus as the general

fiber.

Definition 3 (Symmetric fishtail (or cusp) neighborhood). We denote a

fiber-sum of two parallel oppositely-oriented fishtail (or cusp) fibers over D2

by SyF (or SyC ). The handle picture is the bottom-left (or bottom-right)

in Figure 2. The neighborhood SyF (or SyC) includes self-intersection 0

Fig. 2. F , C, SyF , and SyC.

38 Motoo Tange



torus as the general fiber. We call SyC (or SyF ) symmetric cusp (or fishtail )

neighborhood.

The diagrams in Figure 2 give the obvious embeddings F ,! SyF and

C ,! SyC.

Let X be a 4-manifold that contains C or F , and K a knot in S3. The

symbol n represents the closed neighborhood.

Definition 4. We define Fintushel-Stern’s knot surgery XK;n as

XK;n :¼ ½X � nðTÞ�Ujn ½ðS
3 � nðKÞÞ � S1�:

Here the gluing map is the following:

jn : qnðKÞ � S1 ! qnðTÞ ¼ T 2 � qD2

such that the map jn induces the following on the 1st homology:

½fthe meridian of Kg � fptg�; ½fptg � S1� 7! a; b

½fthe longitude of Kg � fptg� þ n½fthe meridian of Kg � fptg�

7! ½fptg � qD2� ð2Þ

where a, b are generators of H1ðT 2Þ. When X contains F , we assume that a

is the class of the vanishing cycle. In the case of n ¼ 0, we denote the result

of the knot surgery simply by XK .

2.2. The logarithmic transformation. The purpose of the present section is to

define the logarithmic transformation. Let X be an oriented 4-manifold and

T HX an embedded torus with self-intersection 0.

Definition 5. Let g be an essential simple closed curve in T and j a

homeomorphism qD2 � T 2 ! qnðTÞ satisfying jðqD2 � fptgÞ ¼ qðfptg � gÞ þ
pðqD2 � fptgÞ. Removing nðTÞ from X and regluing D2 � T 2 via j, we

obtain the following manifold:

XðT ; p; q; gÞ :¼ ½X � nðTÞ�Uj D
2 � T 2:

We call this manifold the logarithmic transformation with the data ðT ; p; q; gÞ.

It is well-known that the di¤eomorphism type of the logarithmic trans-

formation depends only on the data ðT ; p; q; gÞ. The integer p is the multi-

plicity of the logarithmic transformation, g the direction and q the auxiliary

multiplicity.

If p ¼ 1, then we call XðT ; 1; q; gÞ a q-fold Dehn twist of qnðTÞ along T

parallel to g.
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Lemma 1 (Lemma 2.2 in [10]). Suppose N ¼ D2 � S1 � S1 is embedded

in a 4-manifold X. Suppose there is a disk DHX intersecting N precisely in

qD ¼ fqg � S1 for some q A qD2 � S1, and that the normal framing of D in X

di¤ers from the product framing on qDH qN by G1 twist. Then the di¤eomor-

phism type of X does not change if we remove N and reglue it by a k-fold Dehn

twist of qN along S1 � S1 parallel to g ¼ fqg � S1.

The submanifold N U nðDÞ in Lemma 1 is di¤eomorphic to the fishtail

neighborhood F . Lemma 1 implies the following.

Lemma 2. Let X be a 4-manifold containing F. Then a k-fold Dehn

twist of a neighborhood of the general fiber parallel to the vanishing cycle of the

fishtail fiber does not change the di¤erential structure.

3. Knot surgery case

3.1. 1-strand twist. Let X be a 4-manifold containing C, K1 any knot in S3,

and K2 the meridian of K1. The torus T2 :¼ K2 � S1 H ½S3 � nðK1Þ� � S1 H
XK1

has self-intersection 0. We denote the trivial normal bundle by N2 :¼
nðK2Þ � S1.

Definition 6 (1-strand twist). We call the n-fold Dehn twist XK1
ðT2; 1;

n;K2Þ (n-fold) 1-strand twist of XK1
along K2.

Lemma 3. The n-fold 1-strand twist of XK1
along K2 does not change the

di¤erential structure.

Proof. Any parallel copy K 0
2 H qN2 of K2 moved through the use of

obvious trivialization of N2 is isotopic to one of vanishing cycles of CK1
. Thus

there exists a disk DHCK1
with qD ¼ K 0

2 whose framing of qD coming from

the trivialization of nðDÞ di¤ers from the normal framing of the trivialization of

N2 by �1. Hence N2 U nðDÞ is di¤eomorphic to the fishtail neighborhood.

Therefore Lemma 2 gives the following:

XK1;n GXK1;0 ¼ XK1
: r

This di¤eomorphism can also be seen using handle calculus as in Figure 3,

which was pointed out by S. Akbulut in [2]. The left in Figure 3 is the 41
surgery of the cusp neighborhood. The dashed circle in Figure 3 is the inverse

image of fptg � qD2 via j0 (see (2)). Sliding the top �1-framed 2-handle over

one of two 0-framed 2-handles below, we get the right-top one in Figure 3.

Sliding the upper 0-framed 2-handle over the �1-framed 2-handle, we have the

right-bottom picture. This di¤eomorphism changes the gluing map j0 to j1.

Iterating the process or the inverse one, we obtain Lemma 3.
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3.2. 3-strand twist. Finding a hidden fishtail neighborhood in SyFK or SyCK ,

we give a di¤eomorphism using 3-strand twist.

Let L be a 2-component link as in Figure 4. The left box is some tangle

which presents K1. Let X be a 4-manifold containing SyC or SyF . Along

the general torus fiber in the fibration, we perform the knot surgery XK1
. The

torus T2 ¼ K2 � S1 H ½S3 � nðK1Þ� � S1 has the trivial neighborhood in XK1
.

We denote the neighborhood of the torus by N2.

Definition 7 (3-strand twist). Let X be a 4-manifold containing C or F .

We call the n-fold Dehn twist XK1
ðT2; 1; n;K2Þ (n-fold) 3-strand twist along K2.

Lemma 4. For a manifold X containing SyC or SyF, the 3-strand twist of

XK1
along K2 does not change the di¤erential structure.

Proof. Our main strategy here is to construct a fishtail neighborhood in

which K2 � S1 is a general fiber. Here we can find an obvious three-punctured

Fig. 3. A diagram C41 as an example with the attaching circle (the dashed circle) and the framing

change.

Fig. 4. L ¼ K1 UK2 and l1, l2, l3.
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disk P whose boundaries are K2, l1, l2, and l3 as indicated in Figure 4. Here

each meridian li lies in the boundary of N1 which is the neighborhood of K1.

Figure 5 describes the submanifold of SyF and SyC in Figure 2 which is

modified as follows. We take the middle 1-handle and two 2-handles running

the 1-handle in Figure 2, and add a 1-framed 2-handle, which is cancelled with

a 3-handle by one slide to another 1-framed 2-handle. Each image j0ðliÞ is

parallel to two vanishing cycles of SyC or SyF in XK1
as in Figure 5.

We construct mutually disjoint three annuli A1, A2 and A3 such that one

component of each qAi is j0ðliÞ. In addition, these annuli and P are also

disjoint because P is embedded in the ½S3 � nðK1Þ� � S1 part. A1 is indicated

in Figure 6 and the right side of qA1 is j0ðl1Þ. A2 and A3 are indicated in the

left and right in Figure 7 respectively. A3 runs through the carved 2-handle

(the dotted 1-handle) once. The right sides of qA2 and qA3 are j0ðl2Þ and

j0ðl3Þ. From the pictures obviously A1, A2 and A3 are disjoint annuli in XK1
.

The other sides of qAi coincide with the boundaries of 2-disks parallel to

the cores of the 2-handles in Figure 5. The three 2-disks are disjoint from

PUA1 UA2 UA3 since these 2-handles are disjoint from P and Ai. Capping

Fig. 5. An isotopy of j0ðliÞ.

Fig. 6. A1.
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the 2-disks C1, C2 and C3 to three components of qðPUA1 UA2 UA3Þ � K2, we

obtain an embedded disk

D :¼ PUA1 UA2 UA3 UC1 UC2 UC3

in XK1
whose boundary is K2.

The restriction on qnðDÞ of the normal framing of nðDÞ di¤ers from the

framing of K2 induced by the normal bundle of N2 by �1þ 1þ 1 ¼ 1.

Therefore N2 U nðDÞ is di¤eomorphic to F .

Alternatively, sliding the canceling 0-framed 2-handle to the �1-framed

2-handle, we can construct an embedding F ,! XK1
, in which the general fiber

of F is T2.

Applying Lemma 2 to this situation, we obtain the assertion of Lemma 4.

r

For a 4-manifold X satisfying the assumption of Lemma 4, we

can also prove that any odd-strand twist does not change the di¤erential

structure.

3.3. Proof of Theorem 1.

Proof. Since C UC includes SyC as in Figure 1, the 3-strand twist of AK1

along K2 does not change the di¤erential structure, namely we have AK1
G

C UCK3;n. The integer n is one of H1, H9. K3 is the knot obtained by the

G1-Dehn surgery along K2 as in Figure 8. By using 1-strand twist in Section

3.1 we have AK3
GC UCK3;n GAK1

.

Y. Ohyama in [14] proved that for any knot K there exists a finite

sequence of local 3-strand twists: K ¼ k0 ! k1 ! � � � ! kn ¼ unknot. The

Fig. 7. Two embedded annuli A2, A3.
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sequence implies a sequence of 4-dimensional di¤eomorphisms:

AK ¼ Ak0 GAk1 G � � �GAkn ¼ S2 � S2: r

The argument in the proof of Theorem 1.1 can be summarized as follows:

Lemma 5. Any knot surgery of any achiral elliptic fibration containing SyF

(or SyC) does not change the di¤erential structure.

Y. Matsumoto’s achiral elliptic fibration on S4 in [12] includes SyF . The

handle picture can be seen in Figure 8.38 in [9].

Corollary 1. Any knot surgery along a general fiber in Matsumoto’s

elliptic fibration on S4 (such that the meridian of the knot is isotopic to the

vanishing cycle) is di¤eomorphic to the standard S4.

3.4. Infinitely many exotic embeddings. Using the di¤eomorphism, we obtain

infinitely many embeddings:

C ,! C UCK ¼ S2 � S2: ð3Þ

We can obtain the following:

Corollary 2. There exist infinitely many (mutually non-di¤eomorphic)

exotic embddings C ,! S2 � S2. Namely the embeddings give infinitely many

exotic complements.

Proof. We show that the complements CK of the embeddings (3) give

infinitely many mutually homeomorphic but non-di¤eomorphic 4-manifolds.

The cusp neighborhood C is embedded in K3 surface Eð2Þ as a neighborhood

of a singular fiber of the elliptic surface. The group of self-di¤eomorphisms up

to isotopy on qCGSð2; 3; 6Þ is Z=2Z in the same way as the proofs of Lemma

8.3.10 in [9] and Lemma 3.7 in [11]. The nontrivial self-di¤eomorphism is a

180� rotation of qC about the horizontal line in the top-right picture in Figure

2. Since the di¤eomorphism is caused by a symmetry on 0-framed trefoil, this

di¤eomorphism extends to Eð2Þ (see also the proof of Theorem 0.1 in [3]).

Fig. 8. K3: The knot obtained byG1-Dehn surgery along K2. The right box is theH1 full twist.
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Thus, if Eð2ÞK1
and Eð2ÞK2

are non-di¤eomorphic for some knots K1, K2, then

CK1
and CK2

are non-di¤eomorphic. The formula (1) and SWEð2Þ ¼ 1 give

infinitely many di¤erential structures in fCK jK : knotg. The homeomorphism

CACK for any knot K is due to the fact C UCK GS2 � S2 (spin) and the

result (0.8) Proposition-(iii) in [6]. Therefore fCK jK : knotg includes infinitely

many di¤erential structures. r

4. Link surgery case

In this section we draw a handle picture of the link surgery operation

XðC; . . . ;C;LÞ in the cases where L is a split link and is the Hopf link.

Finally we will prove AL is the standard manifold (Theorem 2).

Let L ¼ K1 U � � �UKn be an n-component link and Xi ði ¼ 1; . . . ; nÞ ori-

ented 4-manifolds each of which contains the cusp neighborhood Ci. Let Ti

be a general fiber of Ci. Let ji be the maps

ji : qnðKiÞ � S1 ! qnðTiÞ ¼ Ti � qD2

satisfying

jiðli � fptgÞ ¼ fptg � qD2

jiðmi � fptgÞ ¼ ai; jiðfptg � S1Þ ¼ bi;

where li and mi are the longitude and meridian of Ki and ai, bi are two circles

in qnðTiÞ corresponding to a basis in H1ðTiÞ.

Definition 8. We define the link surgery (operation) as

an
i¼1

Xi 7! ½Xi � nðTiÞ�Uji ½S
3 � nðLÞ� � S1:

Here the gluing maps are ji. We denote the link surgery operation of

ðX1; . . . ;XnÞ along a link L by XðX1; . . . ;Xn;LÞ.

Due to Fintushel and Stern’s result [7], the SW -invariant of XðX1; . . . ;Xn;

LÞ is computed as follows:

SWXðX1;...;Xn;LÞ ¼ DLðt1; . . . ; tnÞ �
Yn
i

SWEð1ÞaT¼Ti
Xi
;

where DLðt1; . . . ; tnÞ is the multivariable Alexander polynomial of L and

Eð1ÞaT¼Ti
Xi is the fiber-sum of the elliptic fibration Eð1Þ and Xi along general

fibers T and Ti respectively. The definition of the fiber-sum can be seen in [7].
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Here we consider the link surgery operation of
‘n

i¼1 S
2 � S2 along any

n-component link L. We denote the operation by AL. The following di¤eo-

morphism

Eð1ÞaT¼Ti
S2 � S2 GEð1Þa2S2 � S2 ¼a3CP2a11CP2 ð4Þ

holds. The diagram of the fiber-sum Eð1ÞaT¼Ti
S2 � S2 is the leftmost figure

in Figure 9 (where the diagram of Eð1Þ is Figure 8.10 in [9]). Several handle

slides get two connected-sum components of S2 � S2 (see Figure 9). The

second equality in (4) is well-known. Thus the vanishing theorem of SW -

invariant implies SWAL
¼ 0.

We prepare several lemmas to prove Theorem 2.

Lemma 6. Let L ¼ U1 UU2 be a 2-component unlink. Then the handle

picture of XðC;C;LÞ is Figure 11.

Suppose that L ¼ L1 UL2 is any split link. Then the handle picture of

XðC;C;LÞ is obtained by replacing the two dotted 1-handles in Figure 11 with

the slice 1-handles corresponding to L1 and L2.

Fig. 9. Eð1ÞaT¼Ti
S2 � S2 ¼ Eð1Þa2S2 � S2
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In particular, in the case where L ¼ L 0 UU is an n-component link and U is

a split unknot,

AL 0UU GAL 0a2S2 � S2:

Proof. Let L ¼ K1 UK2 be a split link. First we consider the case where

K1, K2 are both unknots U1, U2. Let D1 and D2 be the splitting 3-disks

of U1 and U2 satisfying D1 UD2 ¼ S3, D1 VD2 ¼ S2, and Ui H intðDiÞ. Then

we get a decomposition ½S3 � nðLÞ� � S1 ¼ ½ðD1 � nðU1ÞÞU ðD2 � nðU2ÞÞ� � S1.

Each component ½Di � nðUiÞ� � S1 is di¤eomorphic to D2 � S1 � S1 � nðbiÞ
(see Figure 10), where bi is fpig � S1 and pi is a point in D2 � S1.

The handle picture of D2 � T 2 � nðb1Þ is the left in Figure 13. The

S2 � S1 component qnðb1Þ of the boundary corresponds to the cylinder in

the picture. The gluing of D2 � T 2 � nðb1Þ and D2 � T 2 � nðb2Þ along the

S2 � S1 component using the identity map has the handle picture of the

right in Figure 13. With the dotted 1-handles description, the handle picture

of XðC;C;LÞ is Figure 11. Two boundary components of XðC;C;LÞ are

described as two spaces segmented by the attaching sphere of the 3-handle in

Figure 11.

Fig. 10. ½D3 � nðunknotÞ� � S1 GD2 � T 2 � nðbÞ

Fig. 11. The handle picture of XðC;C;U0 UU1Þ.
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In the case where L ¼ K1 UK2 is any split 2-component link, the handle

picture of XðC;C;LÞ can be drawn replacing the solid torus in Figure 10 with

the knot complement D3 � nðKiÞ. The replacement of handle pictures can be

viewed as in [3]. For example in the case of K1 ¼ 31 and K2 ¼ 41, the handle

picture is Figure 12.

In particular if K2 is the unknot, then AL gives rise to two connected-sum

components of S2 � S2, as can be seen in Figures 14 and 15, therefore AL 0UU G
AL 0a2S2 � S2 holds. The unlabeled links in the figures stand for 0-framed

2-handles. r

Next we draw a handle picture of XðC;C;HÞ for the Hopf link and we

compute AH .

Fig. 12. XðC;C; 31
‘

41Þ

Fig. 13. T 2 �D2 � nðbÞ ! ðT 2 �D2 � nðb1ÞÞU ðT 2 �D2 � nðb2ÞÞ.
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Lemma 7. Let H be the Hopf link. Then AH is di¤eomorphic to

a3ðCP2aCP2Þ.

Proof. The complement ½S3 � nðHÞ� � S1 is di¤eomorphic to T 3 � I (the

left in Figure 16), where I is the interval ½0; 1� and the unlabeled links are

0-framed 2-handles.

Since the meridians and longitudes of the Hopf link exchange the roles

each other, the locations of vanishing cycles are a ¼ ðS1; pt; pt; 0Þ, b ¼ ðpt;S1;

pt; 0Þ, b 0 ¼ ðpt;S1; pt; 1Þ, and h ¼ ðpt; pt;S1; 1Þ. Attaching four �1-framed

2-handles to T 3 � I , we get the picture of XðC;C;HÞ (the right in Figure

16). Next, attaching four vanishing cycles with opposite orientation (four

meridional 0-framed 2-handles), and two sections (two 0-framed 2-handles) to

two boundaries of X ðC;C;HÞ, we get AH (the top-left handle decomposition

in Figure 17). The decomposition can be modified into the top-right picture

in Figure 17 by two handle slides as indicated in the top-left picture. The

Fig. 14. The handle picture of AL 0UU ¼ AL 0a2S2 � S2.

Fig. 15. To make an S2 � S2-component from two parallel �1-framed 2-handles.
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Fig. 16. T 2 � S1 � I ! XðC;C;HÞ.

Fig. 17. The handle picture of AH ¼a3ðCP2aCP2Þ.
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resulting picture can be modified into the bottom-left picture by two handle

slides indicated by the two arrows in the top-right picture. Two (unlinked)

0-framed 2-handles obtained by this modification are canceled with two

3-handles. By applying Figure 15 and easy handle calculus, the bottom-left

picture can be modified into the bottom-middle picture in Figure 17. This

picture is the diagram of a3ðCP2aCP2Þ using handle calculus. r

At this point we can prove Theorem 2.

Proof. Let L ¼ K1 UK2 U � � �UKn be any n-component link. The set
~LLn of all n-component links up to local 3-strand twist consists of 2n�1 classes

due to Nakanishi and Ohyama’s results [14, 13]. Forgetting the ordering

of the components of any link in ~LLn, we get a set Ln. The set Ln has n

classes. A standard representative in each class is a link Ln;l ðl ¼ 0; 1; . . . ;

n� 1Þ as presented in Figure 18. Applying 3-strand twist to link surgery

operation AL, we have only to consider the di¤eomorphism type of ALn; l
for

some l.

Notice that Ln;0 is the representative of all proper links (,
def P

i0j lkðKi;KjÞ
1 0 ðmod 2Þ Ei) and Ln;l ðl > 0Þ are the representatives of improper link

(,def not proper link).

Now suppose that 1a la n� 2. Applying Lemma 6 to the (n� l� 1)-

component unlink, we have

ALn; l
¼ ALlþ1; l

a2ðn�l�1ÞS2 � S2:

Since l parallel meridians in the remaining components construct a fiber-sum

of l copies of SyC, by using Figure 15 we have

ALlþ1; l
¼ AHa

2ðl�1ÞS2 � S2:

Using Lemma 7, we have

ALn; l
¼a3ðCP2aCP2Þa2ðl�1ÞS2 � S2a2ðn�l�1ÞS2 � S2

¼a2n�1ðCP2aCP2Þ:

Fig. 18. The representatives Ln; l (l ¼ 0; . . . ; n� 1) of Ln

51The link surgery of S2 � S2 and Scharlemann’s manifolds



Suppose that l ¼ 0. The link Ln;0 is the n-component unlink. Thus,

using Lemma 6 we have

ALn; 0
¼ S2 � S2a2ðn�1ÞS2 � S2 Ga2n�1S2 � S2:

Suppose that l ¼ n� 1. Since the link Ln;n�1 does not have unlink

component,

ALn; n�1
¼a3ðCP2aCP2Þa2ðn�2ÞS2 � S2 Ga2n�1ðCP2aCP2Þ:

Therefore

AL G
ALn; 0

Ga2n�1S2 � S2 L is proper

ALn; l
Ga2n�1ðCP2aCP2Þ otherwise.

(
r

5. Scharlemann’s manifolds

Let K be a knot in S3 and gðeÞ an embedded framed curve in S3
p ðKÞ, i.e.,

g is a simple curve in S3
p ðKÞ and e is a framing of g. The framed curve gðeÞ

gives a framed curve ~gg in S3
p ðKÞ � S1, as mentioned in Section 1.3. To con-

sider the isotopy type of ~gg, it is enough to consider e as the (mod 2)-framing.

Figure 19 is an example of framed curve presentations. We identify e with an

element of Z=2Z.

Definition 9. The 0-framing is defined as the Seifert framing of a curve

embedded in the surgery presentation (p-surgery along K).

Definition 10. We fix a diagram of g in the surgery presentation of

S3
p ðKÞ. Let gðeÞ be an embedded framed curve in S3

p ðKÞ. Namely the

induced framing on ~gg gives a trivialization te : nð~ggÞGD3 � S1.

We define the ðeÞ-surgery along g as

BK ;pðgðeÞÞ :¼ ½S3
p ðKÞ � S1 � nð~ggÞ�Uce

S2 �D2:

Fig. 19. A curve g0 with (mod 2)-framing.
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The gluing map ce is the composition of the identity map S2 � qD2 !
qD3 � S1 and the restriction of t�1

e to the boundary. We call BK;pðgðeÞÞ
Scharlemann’s manifold. In the case of p ¼ �1, we drop the su‰x p.

The di¤eomorphism type of BK ;pðgðeÞÞ depends only on the homotopy type

of gðeÞ in S3
p ðKÞ. This operation coincides with taking the boundary after

attaching a 5-dimensional 2-handle along ~gg with the framing e.

5.1. Scharlemann’s manifolds along the meridian curves. In this section, we

consider Scharlemann’s manifolds with respect to the meridian g0 of K as in

Figure 19. We remark the following.

Remark 1. Let g0 be the meridian circle in S3
�1ðKÞ. All Scharlemann’s

manifolds BKðg0ð0ÞÞ are di¤eomorphic to S3 � S1aCP2aCP2.

In the case of e ¼ 1, we note the relationship between BKðg0ð1ÞÞ and the

knot surgery of the fishtail neighborhood.

Lemma 8. BKðg0ð1ÞÞ is di¤eomorphic to F UFK.

Proof. Performing the knot surgery for F UF , we have

F UFK ¼ F U ½F � nðTÞ�Uj0 ½ðS
3 � nðKÞÞ � S1�:

The handle picture is Figure 20 (the case of K ¼ 41).

The surgery along ~gg0 in S3
�1ðKÞ � S1 is the right in Figure 21. Hence we

get the following di¤eomorphisms.

Fig. 20. F U ½F � nðTÞ�Uj0 ½ðS3 � nðKÞÞ � S1�.
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BKðg0ð1ÞÞ ¼ ½S3
�1ðKÞ � S1 � nð~gg0Þ�Uc1 S

2 �D2

GF U ðF � nðTÞÞUj�1
½S3 � nðKÞ� � S1 ðSee Figure 3 and 21:Þ

GF U ðF � nðTÞÞUj0 ½S
3 � nðKÞ� � S1 ðLemma 3Þ

¼ F UFK r

Here we prove Theorem 4.

Proof. Since F UF contains SyF , the application of Lemma 5 to this

situation gives the following:

F UFK GF UF GS3 � S1aS2 � S2:

Here the last di¤eomorphism is due to Figure 22. r

Fig. 21. The surgery along ~gg0 with the framing 1.

Fig. 22. F UF ¼ S3 � S1aS2 � S2.
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Corollary 3. Let g0 be a meridian of K in the surgery presentation of

S3
p ðKÞ. BK ;pðg0ðeÞÞ is classified as follows:

BK ;pðg0ðeÞÞ ¼
S3 � S1aS2 � S2 ðe� 1Þp1 0 ð2Þ
S3 � S1aCP2aCP2 ðe� 1Þp1 1 ð2Þ:

(

Proof. In the case of e ¼ 1, using the 1-strand twist, we have

BK ;pðg0ð1ÞÞGBKðg0ð1ÞÞGS3 � S1aS2 � S2:

In the case of e ¼ 0, in the same way as Remark 1, we obtain

BK;pðg0ð0ÞÞG
S3 � S1aS2 � S2 p1 0 ð2Þ
S3 � S1aCP2aCP2 p1 1 ð2Þ

(

(see Figure 23). r

Remark 2. BKðg0ð1ÞÞ is obtained from AK as a surgery along an

embedded S2. The neighborhood of the sphere S is the union of the bottom

0-framed 2-handle and the 4-handle (the left of Figure 24). Attaching the

3-handle and 4-handle to the complement gets BKðg0ð1ÞÞ (the right of Figure

24). The circle d in Figure 24 is the core circle of S1 �D3 attached.

Remark 3. In [4] Akbulut got a plug twisting ðW1;2; f Þ satisfying Eð1Þ ¼
N Uid W1;2 and Eð1Þ2;3 ¼ N Uf W1;2. The definitions of plug, N and W1;2 are

written down in [4]. In the same way as [4] we can also show that there exist

infinitely many plug twistings ðW1;2; fKÞ of Eð1Þ with the same plug W1;2. As

a result each of such plug twistings satisfies Eð1Þ ¼ M Uid W1;2 and Eð1ÞK ¼
M UfK W1;2. Infinite variations of Alexander polynomial imply the existence of

infinite embeddings W1;2 ,! M Uid W1;2 ¼ Eð1Þ.

5.2. Scharlemann’s manifold along non-meridian curves. In this section we

consider B31ðgðeÞÞ in the case where g is not homotopic to the meridian curve.

Fig. 23. BK; pðg0ð0ÞÞ.

55The link surgery of S2 � S2 and Scharlemann’s manifolds



The fundamental group of S3
�1ð31Þ is isomorphic to

p ¼ p1ðS3
�1ð31ÞÞ ¼ hx; y j x5 ¼ ðxyÞ3 ¼ ðxyxÞ2iG ~AA5:

These elements x, y are two generators as in Figure 25.

The set

½S1;S3
�1ð31Þ� ¼ p=conj: ð5Þ

of free homotopy classes of maps S1 ! S3
�1ð31Þ possesses 9 classes as follows:

Classes ½e� ½x5� ½xyx� ½x� ½x2� ½x3� ½x4� ½xy� ½ðxyÞ2�

Orders 1 2 4 10 5 10 5 6 3

Each of the classes is a normal generator of the fundamental group except

for ½e�, ½x5�. Since ½x� corresponds to the meridian curve, this case is already

classified. We take a concrete presentation of gðeÞ in S3
�1ð31Þ, and regard the

Fig. 24. The left: AK . The right: surgery BK ðg0ð�1ÞÞG ½AK � nðSÞ�US1 �D3.

Fig. 25. The generators x, y of p1ðS3
�1ð31ÞÞ.
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presentation as the di¤eomorphism type of B31ðgðeÞÞ. We prove the case of

½xy�.

Proposition 1. Let gxy be a presentation in Figure 26, where ½gxy� ¼ ½xy�.
B31ðgxyð1ÞÞ is di¤eomorphic to S3 � S1aCP2aCP2.

Here we define some notations in the diagrams for the proofs. The curves

with ð1Þ or ð0Þ mean the ð1Þ or ð0Þ-surgery along the curves. The notations@
and @1 throughout this section stand for some 4-dimensional di¤eomorphism

induced from a 3-manifold homeomorphism and a 1-strand twist, respectively.

By using 3-dimensional di¤eomorphisms and 1-strand twists we get the

di¤eomorphism as in Figure 27. We can extend Figure 27 to any twist along

gð1Þ as follows:

Lemma 9 (A full-twist along gð1Þ). A full-twist of any number of strands

along gð1Þ does not change the di¤eomorphism type of the 4-manifold: If a

framed link ðK 0; p 0Þ is obtained from ðK ; pÞ by a full-twist along gð1Þ, then

BK 0;p 0 ðgð1ÞÞ is di¤eomorphic to BK ;pðgð1ÞÞ. We call such a deformation a full-

twist along gð1Þ.

Proof. A Dehn twist (that is, 1-strand twist as in Lemma 3) along a

curve parallel to g does not change the di¤erential structure because gð1Þ plays

a role in the vanishing cycles in a fishtail neighborhood. r

Remark 4. To avoid reader’s confusion, we must note on the di¤erence

between two kinds of twists (see Figure 28):

Fig. 26. gxy

Fig. 27. A full-twist along gð1Þ.
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a full-twist along gð1Þ (Lemma 9);

an odd-strand twist (Definition 7).

The former (the left picture in Figure 28) is a full-twist along a curve isotopic

to g in Lemma 9. Even if any number of strands pierce a disk bounded by

g, we can get the di¤eomorphism by the twist along g. The latter (the right

picture in Figure 28) is a full-twist along a curve h that satisfies the following:

The odd strands of the former’s type and the curve h are boundaries of an

embedded punctured disk. Such a twist is explained in the last paragraph of

Section 3.2. Even if there exists no 1-framed curve isotopic to the curve h, we

can get the di¤eomorphism by the twist along h. Hence a single 1-strand twist

is in the intersection of two kinds of twists, and in other words, two kinds of

twists above are interpreted as two types of generalizations of 1-strand twist.

Thus, Lemma 4 cannot be generalized to any even-strand twist case,

because it is the latter’s type twist. Any odd-strand twist is interpreted as

‘a kind of 1-strand twist’ given by a summation of odd 1-strand twists as in

Figure 28 ((odd number)� 11 1ð2Þ). This summation is due to the proof of

Theorem 1. At any rate for a twist to give a 4-dimensional di¤eomorphism we

require an odd situation.

We use the same notation @1 for any full-twist along gð1Þ in Lemma 9.

Here we prove Proposition 1.

Proof. By using Figure 29 and Corollary 3 we have

B31ðgxyð1ÞÞGBunknot;3ðg0ð0ÞÞGS3 � S1aCP2aCP2: r

Here we will argue several other cases.

Proposition 2. We fix presentations of gx2 , gx3 and gx4 as in the leftmost

pictures in Figure 30, 31, and 32 respectively. B31ðgx2ð1ÞÞ, B31ðgx3ð0ÞÞ and

B31ðgx4ð1ÞÞ are di¤eomorphic to S3 � S1aCP2aCP2.

Proof. In the case of B31ðgx2ð1ÞÞ, by using Figure 30 and Corollary 3 we

have B31ðgx2ð1ÞÞGS3 � S1aCP2aCP2.

Fig. 28. A full-twist along gð1Þ and odd-strand twist (n1 1ð2Þ).
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Fig. 29. B31 ðgxyð1ÞÞGBunknot; 3ðg0ð0ÞÞ.

Fig. 30. B31 ðgx2 ð1ÞÞGBunknot; 5ðg0ð0ÞÞ.

Fig. 31. The di¤eomorphism for B31 ðgx3 ð0ÞÞ.

Fig. 32. The di¤eomorphism for B31 ðgx4 ð1ÞÞ.
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In the case of B31ðgx3ð0ÞÞ, g in the last picture in Figure 31 presents

the positive (2,7)-torus knot with the odd framing. It is obviously homo-

topic to the unknot. Namely the manifold B31ðgx3ð1ÞÞ is di¤eomorphic to

S3 � S1aCP2aCP2.

In the case of B31ðgx4ð1ÞÞ, the last picture in Figure 32 gives

S3 � S1aCP2aCP2 in the similar way. Here Prð�2; 3; 7Þ is the ð�2; 3; 7Þ-
pretzel knot. r

Proposition 3. We fix presentations gxyx and gðxyÞ2 as in the leftmost

pictures in Figure 33 and 34 respectively. B31ðgxyxð0ÞÞ and B31ðgðxyÞ2ð1ÞÞ are

di¤eomorphic to S3 � S1aCP2aCP2.

Proof. In the case of B31ðgxyxð0ÞÞ, the framed curve gxyxð0Þ is homotopic

to the curve in the first picture in Figure 33 due to xyy�1xy@ x2y@ xyx.

Figure 33 implies B31ðgxyxð0ÞÞGS3 � S1aCP2aCP2.

In the case of B31ðgðxyÞ2ð1ÞÞ the deformation as in Figure 34 gets

S3 � S1aCP2aCP2. Here T2;�7 is the negative ð2; 7Þ-torus knot. r

In the end of the paper we raise a question.

Question 1. In the following manifolds

B31ðgxyð0ÞÞ; B31ðgx2ð0ÞÞ; B31ðgx3ð1ÞÞ; B31ðgx4ð0ÞÞ; B31ðgxyxð1ÞÞ; B31ðgðxyÞ2ð0ÞÞ;

does there exist any non-standard manifold?

Fig. 33. The di¤eomorphism for B31 ðgxyxð0ÞÞ.
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