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Abstract. We introduce two notions of equivalence for rational quadratic forms.

Two n-ary rational quadratic forms are commensurable if they possess commensurable

groups of automorphisms up to isometry. Two n-ary rational quadratic forms F and

G are projectivelly equivalent if there are nonzero rational numbers r and s such that

rF and sG are rationally equivalent. It is shown that if F and G have Sylvester

signature f�;þ;þ; . . . ;þg then F and G are commensurable if and only if they are

projectivelly equivalent. The main objective of this paper is to obtain a complete

system of (computable) numerical invariants of rational n-ary quadratic forms up to

projective equivalence. These invariants are a variation of Conway’s p-excesses. Here

the cases n odd and n even are surprisingly di¤erent. The paper ends with some

examples.

1. Introduction

In the classical theory of rational quadratic forms, two n-ary, rational

quadratic forms F and G are rationally equivalent if there is an n� n rational

matrix T such that T tFT ¼ G. In particular, if T is integral and det T ¼G1,

F and G are said to be integrally equivalent. This is a purely arithmetic

definition. I want to introduce a ‘‘geometric’’ definition of equivalence.

Say that two n-ary rational quadratic forms F and G are ‘‘equivalent’’ if

‘‘they possess the same groups of automorphisms up to isometry’’. That is,

there is a real n� n matrix T such that T tFT ¼ G and T�1ðAut FÞT ¼ Aut G,

where Aut F denotes the subgroup of GLðn;ZÞ consisting of those matrices U

such that U tFU ¼ F . In geometric terms, that means that, if F is hyperbolic,

the two hyperbolic orbifolds, obtained as quotients of hyperbolic n-space Hn

under the actions of Aut F and Aut G, are isometric.
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Now, this definition is too strict for various reasons, which explain why

the theory of arithmetic groups does not insist in Aut F and Aut G being equal

up to isometry, but relax this condition to asking if Aut F and Aut G are

commensurable up to isometry. That is, we will say that two n-ary, rational

quadratic forms F and G are commensurable (see Definition 1) if there is a real

n� n matrix T such that T tFT ¼GG and T�1HFT ¼ HG, where HF aAut F

and HG aAut G are finite index subgroups. In geometric terms, that means

that, if F is hyperbolic, the two hyperbolic orbifolds, obtained as quotients of

Hn under the actions of Aut F and Aut G, have (up to isometry) a common

finite orbifold-covering.

One reason why I introduce the above definition is that the restriction of

the interesting automorphs of a rational quadratic form F to the ones with

integral entries is somehow technical or artificial. Indeed, there are abundant

examples of supergroups G of Aut F made up of real automorphs that still act

properly and discontinuously on, say, H3. (For instance there is a supergroup

of Autðh�1; 1; 4; 4iÞ, made up of real automorphs of h�1; 1; 4; 4i, which is

isomorphic to the Picard’s group Autðh�1; 1; 1; 1iÞ.) Necessarily then, the

index of Aut F in G is finite, since H3=G has finite volume. A second reason

is that when one changes from one model of H3 to another one (say the upper

half-space model), very often Aut F is sent to a group of homographies and

antihomographies of CP1 whose entries are not algebraic integers. In these

cases, Aut F possesses a finite index subgroup that is transfered to one with

algebraic integer entries.

Note that the definition of commensurable, rational quadratic forms F and

G is relevant only when the groups of automorphisms of the two forms are

infinite (when F and G are hyperbolic, for instance). Two n-ary, definite,

rational quadratic forms are always commensurable.

Clearly F and lF , l A Qnf0g, are commensurable. Moreover, any two,

rationally equivalent, rational quadratic forms F and G are commensurable

([6]). This suggest to call two n-ary, rational quadratic forms F and G

projectivelly equivalent (see Definition 2), denoted F @
P

G, if there are nonzero

rational numbers r and s, such that rF and sG are rationally equivalent.

This definition is the main topic in this paper. The relevance of it lies in

the following theorem:

‘‘If two n-ary, rational quadratic forms F and G are hyperbolic then F and

G are commensurable if and only if they are projectivelly equivalent’’.

The main objective of this paper is to obtain (computable) numerical

invariants of n-ary, rational quadratic forms, such that F @
P

G if and only

if the invariants for F and G coincide. These invariants are variations of

Conway’s p-excesses ([7]). Here the cases n odd and n even are surprisingly

di¤erent.
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In sections 6 and 7, I o¤er a number of computed examples and I ask

some questions.

In section 8, I give a geometric construction of an arithmetic group

consisting of automorphs of an integral quadratic form, and I o¤er a historical

perspective of rational quadratic forms, from a geometrical point of view, for

the benefit of the more algebraically oriented reader.

In conclusion, I think that the definition F @
P

G corresponds perfectly to

the geometric classification of quadratic forms. It would be very interesting

to generalize this theory to quadratic forms over arbitrary number fields.

For the reader’s sake, after some generalities on quadratic forms and the

proof of the above theorem, I will review the invariants of rational equivalence

(Conway’s p-excesses), discovered by Conway ([7]), before using them to obtain

the projective classification of quadratic forms.

I am very grateful to my brother Angel Montesinos-Amilibia. His help

has been invaluable to understand the geometry of integral quadratic forms.

Specially for having written a program that enabled me to perform a number

of computations. I am also very much indebted to the editor of this journal

for the many suggestions that made the paper more readable.

2. Quadratic forms: preliminaires

A general reference is [6] (see also [10] and [7]).

Let x be the column vector with coordinates x1; . . . ; xn and F a symmetric

n� n matrix. Then the expression

f ðxÞ ¼ xtFx

is called the n-ary quadratic form with matrix F . We will make use also of

the associated bilinear form

f ðx; yÞ ¼ xtFy:

The adjoint of F , denoted Adj F , is the quadratic form detðF ÞF �1.

We call F a rational quadratic form if F is rational, that is, the matrix

entries of F are rational numbers and the determinant of F is nonzero. We

call F an integral quadratic form if F is integral, that is, the matrix entries of

F are rational integers (i.e. if it is classical integral (Gauss), or integral as a

symmetric bilinear form) and the determinant of F is nonzero.

We shall say that two n-ary, rational quadratic forms F and G are

Q-equivalent, or that they are in the same Q-class, and write F @
Q

G, if there

is an n� n rational matrix M such that MtFM ¼ G. In particular, if M is

integral and det M ¼G1, we shall say that F and G are Z-equivalent, or that

they are in the same Z-class, and write F @
Z

G.
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An n� n matrix U with real entries is a real automorph of the rational

quadratic form F if U tFU ¼ F . Then det U ¼G1. The real automorph U is

proper if det U ¼ þ1, improper if det U ¼ �1.

The group ORðF Þ of real automorphs of F is called the real orthogonal

group of the form F .

A real automorph U with integer entries is called an automorph (proper

or improper) of F . The set of automorphs of F is the automorphism group

AutðF Þ of F . The subset AutþðFÞ of proper automorphs is the proper

automorphism group of F . The group AutþðF Þ has index 1 or 2 in AutðF Þ.
We shall say that a rational quadratic form is hyperbolic if it is equivalent

to f�;þ;þ; . . . ;þg or fþ;�;�; . . . ;�g over the real field R.

3. Commensurable and projectively equivalent forms

We want to investigate the relationship between the following two

definitions.

Definition 1. Two n-ary, rational quadratic forms F and G are com-

mensurable if there is a real n� n matrix T such that T tFT ¼GG and

T�1HFT ¼ HG, where HF aAut F and HG aAut G are finite index sub-

groups.

Definition 2. Two n-ary, rational quadratic forms F and G are projec-

tivelly equivalent, denoted F @
P

G, if there are nonzero rational numbers r and s

such that rF @
Q

sG.

This is an equivalence relation because

rF @
Q

sG; tG @
Q

uH ) rtF @
Q

stG @
Q

suH

Of course F @
Q

G implies F @
P

G, but not viceversa.

Proposition 1. Let F and G be two n-ary rational quadratic forms. The

following statements are equivalent.

(1) F @
P

G.

(2) There is a nonzero, square-free integer a such that F @
Q

aG.

(3) There is a nonzero integer a and an integral matrix T such that

T tFT ¼ aG.

Proof. If F @
P

G there are nonzero rational numbers r and s, such that

rF @
Q

sG. Then

ðT=mÞ tða=pÞF ðT=mÞ ¼ ðb=qÞG;

where T is an integral matrix and m, a, b, p, q are non-zero integers. Hence

T tðaqFÞT ¼ m2bpG. Hence F @
P

G if and only if there are nonzero in-
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tegers, a and b, and an integral matrix T , such that T tðbF ÞT ¼ aG. Then

T tðbbFÞT ¼ baG. Hence ðbTÞ tF ðbTÞ ¼ baG, which proves that ð1Þ implies

ð3Þ. Next, assume ð3Þ. Then if a ¼ p2b, where b is an square-free integer,

we can write

ðT=pÞ tF ðT=pÞ ¼ bG:

Hence ð3Þ implies ð2Þ. Obviously, ð2Þ implies ð1Þ.

For instance:

Corollary 1. Every integral quadratic form F is projectively equivalent to

its adjoint Adj F.

Proof. Denote, for brevity, Adj F by G. Then

GtFG ¼ GFG ¼ detðF Þ2F �1FF �1 ¼ detðFÞ2F �1 ¼ detðFÞG:

As a non-trivial example of commensurable forms, note the following:

Theorem 1. Every integral quadratic form F is commensurable to its

adjoint G ¼ Adj F. Even more, there is a real n� n matrix M such that

M tFM ¼GG and M�1 Aut FM ¼ Aut G.

Proof. Let d denote the absolute value of det F and e its sign þ1 or

�1. Let M be
ffiffiffi
d

p
F �1. Then MtFM ¼ eG and

M�1 Aut FM ¼ Aut G:

Indeed, let U be an automorph of F . Then FUF �1 ¼ ðU tÞ�1. That is,

M�1UM ¼ ðU�1Þ t, which is integral (and therefore, an automorph of G).

Conversely, Let V be an automorph of G. Then

GVG�1 ¼ F �1VF ¼ ðV tÞ�1:

Hence

MVM�1 ¼ F �1VF ¼ ðV tÞ�1;

which is integral (and therefore, an automorph of F ).

Remark 1. It follows that the group AutðAdj FÞ is the set of the

transposes of the elements of AutðFÞ.

Note that any rational quadratic form is projectivelly equivalent to an

integral form.

In [6] it is proved that Q-equivalent, integral forms are commensurable.

Next, we show that, more generally, two rational forms are commensurable

if they are projectively equivalent.
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Proposition 2. Let F and G be two n-ary, projectively equivalent, rational

quadratic forms. Then F and G are commensurable. In fact, if T is an integral

matrix and a is a nonzero integer such that T tFT ¼ aG, then M tFM ¼ eG and

there is a finite index subgroup H of AutðF Þ such that M�1HM ¼ K, where

M ¼ T=
ffiffiffiffiffiffi
jaj

p
, e ¼ a

jaj and K aAutðGÞ is a finite index subgroup.

Proof. Let m be the determinant of T . Then m is a rational integer. If

m ¼G1, then F and aG are Z-equivalent and, therefore,

T�1 AutðFÞT ¼ AutðaGÞ ¼ AutðGÞ:

Assume m0G1. Define the homomorphism o, from AutðF Þ into

GLðn;Z=mZÞ, by oðUÞ ¼ U mod m. Let

H :¼ fQ A AutðF Þ : T�1QT A AutðGÞg:

Then ker o is a subgroup of H. In fact, if U A ker o, then U ¼ I mod m.

That is, U ¼ I þmA, where A is integral. Then

T�1UT ¼ T�1ðI þmAÞT ¼ I þmT�1AT

is integral, because mT�1 ¼ AdjðTÞ is integral. Hence T�1UT is an auto-

morph of G, because

ðT�1UTÞ taGðT�1UTÞ ¼ T tU tFUT ¼ T tFT ¼ aG:

Therefore U A H. The group H is a finite index subgroup of AutðF Þ, because
it contains ker o and GLðn;Z=mZÞ is a finite group. Now, K :¼ T�1HT is a

finite index subgroup of AutðGÞ, because it contains ker h, where the homo-

morphism h, from AutðGÞ into GLðn;Z=mZÞ, is defined by hðVÞ ¼ V mod m.

In fact, K ¼ fP A AutðGÞ : TPT�1 A AutðF Þg, and similar arguments as above

apply. Defining M ¼ T=
ffiffiffiffiffiffi
jaj

p
, e ¼ a

jaj we have

MtFM ¼ T tðF=jajÞT ¼ eG

and

M�1HM ¼ ð
ffiffiffiffiffiffi
jaj

p
T�1ÞHðT=

ffiffiffiffiffiffi
jaj

p
Þ ¼ T�1HT ¼ K :

This concludes the proof.

Next, we will show that the converse is true for hyperbolic forms. It is

probably true for all indefinite forms, nb 3.

Lemma 1. Let h be an element of GLðn;RÞ with an eigenvalue l such

that the kernel of h� lI is a 1-dimensional (h-invariant) vector subspace V of

Rn. If z belongs to the centralizer of h in GLðn;RÞ, then zðVÞ ¼ V.
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Proof. Assume that z belongs to the centralizer of h in GLðn;RÞ and let

v A V . Then hzðvÞ ¼ zhðvÞ ¼ lzðvÞ. Hence zðvÞ A V . Hence zðVÞ ¼ V .

Recall that a projective reference in Rn is a set of 1-dimensional vector

subspaces fV1; . . . ;Vn;Vnþ1g such that V1; . . . ;Vn are linearly independent, and

Vnþ1 is in general position with respect to V1; . . . ;Vn. It is well known that an

element of GLðn;RÞ fixes a projective reference if and only if it is of the form

lI , where l is a real number and I is the identity matrix.

Let F be an n-ary, hyperbolic quadratic form, nb 3. It represents a

quadric QF in the real projective space RPn�1 that bounds a topological ball.

The interior of this ball is a model (Klein model ) of hyperbolic ðn� 1Þ-space
Hn�1

F , and its group of isometries is the orthogonal group (isomorphic to

Oðn; 1Þ) of the given quadratic form. A hyperbolic (or loxodromic) isometry is

an orientation-preserving isometry with two fixed points ‘‘at infinity’’ (that is,

on QF ). Other orientation-preserving isometries are either elliptic (fixing a

point inside QF ) or parabolic (with just one fixed point ‘‘at infinity’’).

Proposition 3. Let F be an n-ary, hyperbolic, quadratic form, nb 3, and

let h be a hyperbolic isometry of F. If z A GLðn;RÞ commutes with h then

zðxÞ ¼ x and zðyÞ ¼ y, where x and y are the fixed points of h at infinity

(in QF).

Proof. The isometry h is a hyperbolic isometry, that is, a hyperbolic

translation along a geodesic gh of ðn� 1Þ-hyperbolic space Hn�1
F whose

endpoints x and y are at infinity. That is, there is a 2-dimensional h invari-

ant subspace Wh which is the direct sum of two 1-dimensional h-invariant

subspaces Vh and V 0
h with real eigenvalues lh < 1 and l 0

h > 1 such that

lhl
0
h ¼ 1; and there is a ðn� 2Þ-dimensional h-invariant subspace W 0

h (the

‘‘polar’’ of xy) such that F , restricted to it, is definite, and, therefore, h,

restricted to W 0
h, has no real eigenvalues di¤erent from G1. Hence the kernel

of h� lhI is equal to the 1-dimensional (h-invariant) vector subspace Vh of Rn,

and similarly, the kernel of h� l 0
hI is equal to the 1-dimensional (h-invariant)

vector subspace V 0
h. Since z commutes with h, zðxÞ ¼ x and zðyÞ ¼ y, by

Lemma 1. This completes the proof.

Corollary 2. Let F be an n-ary, hyperbolic, rational quadratic form,

nb 3, and let H be a finite index subgroup of AutðFÞ. Then the centralizer of

H in GLðn;RÞ is the set of diagonal matrices lI , where l is a real number and I

is the identity matrix.

Proof. The orbifold Hn�1
F =AutðFÞ is complete and of finite volume

([5]). It has a finite orbifold covering Hn�1
F =H that shares these two properties.

Hence the limit set of H is QF ([15, Theorem 12.2.13]). This limit set is
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the adherence of the set of fixed points of the hyperbolic isometries in H

([15, Theorem 12.2.4]). Hence this set contains a projective reference. By

Proposition 3, z fixes the points of this reference. Hence z ¼ lI , where l is a

real number and I is the identity matrix. This concludes the proof (compare

[15, Corollary 2 to Theorem 12.2.6]).

Proposition 4. If F and G are two binary, hyperbolic, commensurable

rational quadratic forms, then they are projectively equivalent.

Proof. Here F and G are P-equivalent to diagonal matrices h1;�DFi
and h1;�DGi, respectively, where DF and DG are square-free positive integers.

(In fact, F is Q-equivalent to a diagonal matrix, say ha; bi, which is P-

equivalent to aha; bi ¼ ha2; abi, which is Q-equivalent to h1;�DFi.) It is

known (see [10]) that Autþðh1;�DFiÞ is isomorphic to C2 � Cy, where the

cyclic group C2 is generated by the automorph h�1;�1i, and the infinite cyclic

group Cy is generated by the automorph

p0 q0DF

q0 p0

" #
;

where p0 and q0 are integers such that (i) p20 � q20DF ¼ 1; (ii) q0 > 0, p0 > 1;

and (iii) p0 is minimal among the pairs ðp; qÞ satisfying the conditions analogous

to (i) and (ii). Since F and G are commensurable, h1;�DFi and h1;�DGi are

commensurable, by Proposition 2. Thus, there is a real matrix such that

Mth1;�DFiM ¼Gh1;�DGi

and

M�1 p1 q1DF

q1 p1

" #
M ¼ p2 q2DG

q2 p2

" #

where q1 and q2 are non-zero integers. Since the eigenvalues ðp1 � q1
ffiffiffiffiffiffi
DF

p
;

p1 þ q1
ffiffiffiffiffiffi
DF

p
Þ and ðp2 � q2

ffiffiffiffiffiffi
DG

p
; p2 þ q2

ffiffiffiffiffiffi
DG

p
Þ coincide, and DF and DG are

square-free, it follows that DF ¼ DG. This concludes the proof.

Theorem 2. If F and G are n-ary, hyperbolic, rational quadratic forms,

nb 3, such that there is a real n� n matrix M such that M tFM ¼GG, and

there is a finite index subgroup H of AutðFÞ such that M�1HM is a finite index

subgroup K of AutðGÞ, then M ¼
ffiffi
r

p
T, where T is an integral matrix and r is a

positive rational number. Hence F and G are projectively equivalent.

Proof. Denote by h1; . . . ; hm a system of generators of H ([5]). Then

ki ¼ M�1hiM, i ¼ 1; . . . ;m generate K . The hi and kj are integral matrices.

Denote by X ¼ ðxijÞ an n� n matrix with entries the n2 variables xij. Then
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hiX ¼ Xki, i ¼ 1; . . . ;m is a homogeneous system of mn2 linear equations, with

integer coe‰cients, in the variables xij. Denote by S the integral matrix of

the system. This is an mn2 � n2 integral matrix. Its rank is less than n2

since X ¼ M is a solution. Let X ¼ T be another solution. Then T�1hiT ¼
ki ¼ M�1hiM. Hence ðMT�1ÞhiðTM�1Þ ¼ hi. Since hi generate the sub-

group of finite index H of AutðFÞ, MT�1 belongs to the centralizer of H

in GLðn;RÞ. Then, according to Corollary 2, M ¼ lT , where l is a real

number. Therefore, the rank of S is exactly n2 � 1. Then, since S is integral,

the solutions are of the form lN where N is an n� n integral matrix. In

particular, M ¼ rN for some real number r that we can assume positive

(otherwise change the sign of N). Then MtFM ¼ r2NtFN ¼GG. Therefore

r2 is a positive rational number r and therefore M ¼ rN ¼
ffiffi
r

p
N, as we

wanted to prove. Hence F and G are projectively equivalent. This concludes

the proof.

We group together these results:

Theorem 3. Let F and G be two n-ary, hyperbolic, rational quadratic

forms. Then they are commensurable if and only if they are projectively

equivalent.

Example 1. The diagonal, ternary, integral quadratic forms F ¼ h1; 1;�8i
and G ¼ h�1; 1; 1i, with determinants �8 and �1 respectively, are commensur-

able. Even more, Aut F and Aut G both act in the hyperbolic plane H2 and

the quotient hyperbolic orbifolds coincide, which implies that there is an isometry

of H2 sending F to G and Aut F to Aut G. This common hyperbolic orbifold

is the hyperbolic asymptotic triangle t with angles 0; p2 ;
p
4 . We can be more

specific. The reflections

g1 ¼
1 0 0

0 0 �1

0 �1 0

2
64

3
75; g2 ¼ h1; 1;�1i; g3 ¼

3 2 �2

�2 �1 2

2 2 �1

2
64

3
75

in the edges of t generate AutðGÞ. Let M be 1ffiffi
2

p N, where

N ¼
�4 0 12

3 1 �8

�3 1 8

2
64

3
75:

Then M tGM ¼ F and, moreover, M�1giM, i ¼ 1; 2; 3, are the matrices

h1;�1; 1i;

�8 3 24

3 0 �8

�3 1 9

2
64

3
75; �3 0 8

0 1 0

�1 0 3

2
64

3
75;
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which generate AutðF Þ. Since the forms F and G are commensurable, they must

be projectively equivalent. In fact N tGN ¼ 2F.

4. The Conway’s invariants of Q-equivalence

Since F @
P

G if and only if there is a nonzero square-free integer a such

that F @
Q

aG, one expects that a system of invariants for projective equivalence

will be obtain from known systems of invariants for rational equivalence.

We will prove this expectation through the invariants introduced by J. Conway

in [7]. For the sake of the reader, we start explaining carefully these

invariants.

4.1. The Jacobi Symbol after Conway. Following Conway [7], it will be

convenient to consider �1 as a prime number.

If S is a finite set, denote by SS the group of bijections (or permutations)

of S, and recall that a given permutation s A SS is called even (resp. odd ) if,

when written as a product of (non necessarily disjoint) cycles, the number of

even cycles, in the product, is even (resp. odd). This defines a homomorphism

A : SS ! C2, where Ck is the cyclic group of order k, by setting AðsÞ ¼ 0 if

and only if s is even.

Let a, n be two coprime integers, n odd (in particular, since �1 is prime, a

and n are not both negative). Multiplication of Z by a defines a permutation

sa
n of the set of classes of Z mod n. Define the Conway symbol a

n

� �
as

4Aðsa
n Þ mod 8. That is:

a

n

� �
¼ 0

4

�
mod 8; if sa

n is
even

odd

�
ð4:1Þ

Then, by definition:

a

n

� �
¼ a

�n

� �
ð4:2Þ

(of course, formula (4.2) implies a > 0), and

aþ kn

n

� �
¼ a

n

� �
; k A Z ð4:3Þ

Moreover

ab

n

� �
¼ a

n

� �
þ b

n

� �
; ð4:4Þ

since Aðsa
n :s

b
n Þ ¼ Aðsa

n Þ þAðsb
n Þ.

380 José Marı́a Montesinos-Amilibia



For example, n ¼ 11, a ¼ �3. Distribute the classes of Z mod 11 into 5

negative classes, 1 zero class and 5 possitive classes as follows (5 is the integer

part of 11=2):

f�5;�4;�3;�2;�1; 0; 1; 2; 3; 4; 5g

Then

s�3
11 ¼ �5 �4 �3 �2 �1 0 1 2 3 4 5

4 1 �2 �5 3 0 �3 5 2 �1 �4

� �
; ð*Þ

which is the product of the even permutation:

�5 �4 �3 �2 �1 0 1 2 3 4 5

�4 �1 �2 �5 �3 0 3 5 2 1 4

� �

with the transpositions ð3;�3Þ, ð1;�1Þ and ð4;�4Þ. Therefore s�3
11 is odd.

Hence �3
11

� �
¼ 4 mod 8.

In general a
n

� �
is 4san mod 8, where san is the number of negative classes in the

lower half right part of (*).

For instance

�1

n

� �
¼ 0

4

�
mod 8 if

n ¼ 1 mod 4

n ¼ �1 mod 4

�
; ð4:5Þ

because s�1
n is the integer part of n=2, which is even if and only if n ¼ 1 mod 4.

It follows from (4.3) and (4.4) that

a

n

� �
¼ 0 if a ¼ x2 mod n ð4:6Þ

The converse is not true ( �1
9

� �
¼ 0, but �1 is not a square mod 9). However,

the converse is true if n is prime. In this case, it is well known that there is

a primitive root mod n. This is an integer p, 0 < p < n, such that sp
n is an

ðn� 1Þ cycle. Since this cycle is an even cycle, the permutation sp
n is odd.

Hence
p

n

� �
¼ 4 mod 8. Then

pk

n

� �
¼ k

p

n

� �

is zero if and only if k is even (4.4). (Note that the powers of p run over all

nonzero classes of Z mod n.) Hence, if a
n

� �
¼ 0, then a ¼ p2k mod n. Hence

a is a square mod n.

Thus, if n is prime then a
n

� �
¼ 0 if and only if a is a square mod n.
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Remark 2. Jacobi defined a
n

� �
for coprime a and n, n prime, to be 0 if

and only if a is a square mod n, and extended this definition to n ¼ p1 . . . pk,

where p1; . . . ; pk are prime numbers, by setting

a

p1 . . . pk

� �
¼ a

p1

� �
þ � � � þ a

pk

� �
ð4:7Þ

Zolotarev gave meaning to a
n

� �
, for a general n, by defining a

n

� �
as in the

present section. Therefore, to show that Jacobi and Zolotarev definitions

agree, (4.7) has to be proved. This follows from (4.4) and the so called

Quadratic Reciprocity Law, to be proved later.

Next, we prove that

a

n

� �
¼ a

nþ 4ka

� �
; k A Z: ð4:8Þ

Consider the case n ¼ 11, a ¼ 3. Recall that 3
11

� �
¼ 4s311 mod 8, where s311 is

the number of negative classes in the second row of

0 1 2 3 4 5

�3 #
0 3 6 9 12 15

0
B@

1
CA

The classes 6 ¼ �5 mod 11 and 9 ¼ �2 mod 11 are negative. Hence s311 ¼ 2.

Hence 3
11

� �
¼ 0 mod 8.

Analyzing this process closely, we see that we divide the interval

3 0;
11

2

� �
¼ 0; 3

11

2

� �
¼ ½0; 16:5�

into a ¼ 3 parts

0;
11

2

� �
;

11

2
; 2

11

2

� �
; 2

11

2
; 3

11

2

� �

to which we assign alternate signs þ;�;þ. A given class mod 11, falling in

one particular interval, has the sign assigned to this interval. For instance, the

classes 0, 3 fall in the first interval (þ sign); 6, 9 fall in the second (� sign); and

12, 15 fall in the third (þ sign).

Now, if we pass from n ¼ 11, a ¼ 3 to n ¼ 11þ 2� 3 ¼ 17, a ¼ 3, the

three intervals are now

0;
17

2

� �
;

17

2
; 2

17

2

� �
; 2

17

2
; 3

17

2

� �
:
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That is,

0;
11

2
þ 3

� �
;

11

2
þ 3; 2

11

2
þ 6

� �
; 2

11

2
þ 6; 3

11

2
þ 9

� �
;

and, now, in each interval fits one more class:

f0; 3; 6g A 0;
11

2
þ 3

� �

f9; 12; 15g A
11

2
þ 3; 2

11

2
þ 6

� �

f18; 21; 24g A
11

2
þ 3; 2

11

2
þ 6

� �
:

Iterating this process once more (passing from n ¼ 11, a ¼ 3 to n ¼
11þ 4� 3 ¼ 23, a ¼ 3), each one of the three intervals will contain two more

classes than in case n ¼ 11, a ¼ 3. Thus, the number of negative classes mod 2

does not change: s311 ¼ s311þ4�3 ¼ s323 mod 2. Therefore, in general

a

n

� �
¼ a

nþ 4ka

� �
; k A Z;

as we wanted to prove.

For instance,

2

n

� �
¼ 2

nþ 8k

� �
;

and there are only two possibilities: n ¼G1 mod 8 or n ¼G3 mod 8. In the

first case

2

n

� �
¼ 2

G1

� �
¼ 2

1

� �
¼ 0 mod 8;

while in the second case

2

n

� �
¼ 2

G3

� �
¼ 2

3

� �
¼ 4 mod 8;

because 2 is not a square mod 3. Therefore,

2

n

� �
¼ 0

4

�
mod 8 if

n ¼G1 mod 8

n ¼G3 mod 8

�
ð4:9Þ

383On integral quadratic forms



Theorem 4 (Quadratic Reciprocity Law). Let m and n be two coprime odd

integers. Then

m

n

� �
þ n

m

� �
¼ ðm� 1Þðn� 1Þ mod 8

Proof. Case 1. m ¼ 1 mod 4, n ¼ �1 mod 4

Then mþ n ¼ 0 mod 4. Write mþ n ¼ 4a. Assume n > m. Then n > 0

because m and n are coprime (in particular they cannot be both negative).

Then a > 0. Then

m

n

� �
¼ 4a� n

n

� �
¼ð4:3Þ 4a

n

� �
¼ð4:4Þ a

n

� �
¼ð4:2Þ a

�n

� �

¼ð4:8Þ a

�nþ 4a

� �
¼ a

m

� �
¼ð4:4Þ 4a

m

� �
¼ð4:3Þ 4a�m

m

� �
¼ n

m

� �
ð**Þ

Case 2. m ¼ 1 mod 4, n ¼ 1 mod 4

One of m, n is > 0. Assume m > 0. Then

m

n

� �
¼ð4:2Þ m

�n

� �
¼ð**Þ �n

m

� �
¼ð4:4Þ �1

m

� �
þ n

m

� �
¼ð4:5Þ n

m

� �

Case 3. m ¼ �1 mod 4, n ¼ �1 mod 4

One of m, n is > 0. Assume m > 0. Then

m

n

� �
¼ð4:2Þ m

�n

� �
¼ð**Þ �n

m

� �
¼ð4:4Þ �1

m

� �
þ n

m

� �
¼ð4:5Þ 4þ n

m

� �
;

which is congruent with n
m

� �
þ ðm� 1Þðn� 1Þ mod 8. This completes the

proof.

From this theorem, (4.7) follows. For instance, let a, p, q be odd integers.

Then, from (4.4) and the Quadratic Reciprocity Law, we obtain:

a

pq

� �
¼ a

p

� �
þ a

q

� �
þ ðpqþ pþ q� 3Þða� 1Þ ¼ a

p

� �
þ a

q

� �
mod 8;

because a� 1 ¼ 0 mod 2 and ðpqþ pþ q� 3Þ ¼ 0 mod 4.

4.2. The Conway’s p-excesses. Following Conway [7], we will define a set

of invariants (Conway’s p-excesses) that classify rational quadratic forms up to

Q-equivalence.
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Since a rational quadratic form is Q-equivalent to a diagonal integral one,

the p-excesses will be defined for these forms.

Start with an 1-ary such form F ¼ hai. For each prime number p (�1

included), write F ¼ hpxAi, where p and A are coprime (if p ¼ �1, A > 0),

and define the p-excess epðF Þ as follows:

Case 1: p ¼ �1. Define

e�1ðFÞ ¼ px � 1 ¼ 0

�2

�
if

a > 0

a < 0

�

Case 2: p ¼ 2. Define

e2ðFÞ ¼ ð1� AÞ þ 2x

A

� �
mod 8 ¼

1� A

ð1� AÞ þ 2
A

� ��
mod 8; if

x even

x odd

�

Case 3: p an odd prime. Define

epðF Þ ¼ ðpx � 1Þ þ A

px

� �
mod 8 ¼

0

ðp� 1Þ þ A
p

h i(
mod 8; if

x even

x odd

�

Next, let F ¼ ha1; . . . ; ami be an m-ary, diagonal, integral quadratic form.

Define the Conway’s p-excess as

epðF Þ ¼
Xm
i¼1

epðhaiiÞ mod 8

Among all the p-excesses, �1 included, the following Global Relation

holds: X
p

epðFÞ ¼ 0 mod 8

The reduced determinant of an m-ary, diagonal, integral quadratic form

F , written detn F , is obtained from det F ¼ px1
1 . . . pxk

k by reducing mod 2 the

exponents x1; . . . ; xk of the di¤erent primes p1; . . . ; pk (�1 included) entering in

the decomposition of det F in product of powers of prime numbers. It is well

defined up to Q-equivalence.

The Conway’s p-excesses and the reduced determinant of an m-ary,

rational quadratic form F are, by definition, the Conway’s p-excesses and

the reduced determinant of any m-ary, diagonal, integral quadratic form F1,

Q-equivalent to F .

Theorem 5 (Conway’s formulation of the Hasse-Minkowsky Theorem).

Two m-ary, rational quadratic forms are rationally equivalent if and only if they

have the same reduced determinants and the same Conway’s p-excesses.
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We will call these invariants the Conway invariants cðFÞ of F , and we will

codify them as follows:

cðF Þ ¼ ½D; ð�1; e�1ðFÞÞ; ð2; e2ðF ÞÞ; ðp1; ep1ðF ÞÞ; . . . ; ðpk; epk ðFÞÞ�;

where D ¼ detn F , and p1; . . . ; pk are the odd primes, in increasing order, such

that ep1ðFÞ0 0 mod 8. Note that the sequence p1; . . . ; pk is finite, because,

if an odd prime p fails to divide det F , then there exists a diagonal integral

quadratic form F1, Q-equivalent to F , such that pF det F1 [10] . This implies

that epðFÞ ¼ epðF1Þ ¼ 0 mod 8.

Example 2. F ¼ h�1; 7; 7; 7i, G ¼ h�7; 1; 1; 1i. Here F @
Q

G, because

cðFÞ ¼ ½�7; ð�1;�2Þ; ð2; 0Þ; ð7; 2Þ� ¼ cðGÞ:

5. Invariants of projective equivalence

5.1. Binary forms. The reduced determinant is the only invariant of projective

equivalence of a binary, integral quadratic form.

In fact, assume that two binary, diagonal, integral quadratic forms F ¼
ha1; a2i, G ¼ hb1; b2i have the same reduced determinant D. Then F @

P
G,

because

ha1; a2i @
P

a1ha1; a2i @
Q

h1;Di

hb1; b2i @
P

b1hb1; b2i @
Q

h1;Di

On the other hand, if F and G are two binary, diagonal, integral quadratic

forms such that F @
P

G, then detn F ¼ detn G, by Proposition 1.

5.2. Odd dimensional forms. Let F be an odd dimensional, integral quadratic

form. Then, the dimension of F , together with the p-excesses of the integral

quadratic form ðdetn FÞF , constitute a complete system of invariants of pro-

jective equivalence:

Proposition 5. Two n-ary integral quadratic forms F and G, n odd, are

projectively equivalent if and only if ðdetn FÞF and ðdetn GÞG are rationally

equivalent.

Remark 3. Note that the reduced determinant of the form ðdetn F ÞF is 1.

From the relation (5.1) below, it follows also that two n-ary integral quadratic

forms F and G, n odd, are projectively equivalent if and only if ðdetn GÞF and

ðdetn FÞG are rationally equivalent.
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Proof. Assume F @
P

G. Then F @
Q

aG, for some nonzero square-free

integer a. Then det F ¼ r2 detðaGÞ, where r is a nonzero rational number.

Since n is odd, this implies that det F ¼ as2 detðGÞ, where s is a nonzero

rational number. Then

F @
Q

aG @
Q ðas2 det G det GÞG ¼ ðdet F det GÞG ð5:1Þ

But ðdet F det GÞG @
Q ðdetn F detn GÞG, because det F ¼ b2 detn F , for some

integer b. From which it follows that ðdetn FÞF and ðdetn GÞG are rationally

equivalent. Conversely, if ðdetn FÞF and ðdetn GÞG are rationally equivalent,

then F and G are projectively equivalent, by definition.

We deduce the following important result:

Corollary 3. Two n-ary integral quadratic forms F and G, n odd,

are projectively equivalent if and only if their adjoints Adj F and Adj G are

rationally equivalent.

Proof. Since every integral quadratic form F is projectively equivalent to

its adjoint Adj F (Corollary 1), then F @
P

G if and only if Adj F @
P

Adj G.

And by the above Proposition, Adj F @
P

Adj G if and only if detnðAdj F Þ Adj F

@
Q

detnðAdj GÞ Adj G: Since the reduced determinants of Adj F and Adj G

are 1, the corollary follows.

Therefore, a complete set of projective invariants of an n-ary, n odd,

integral quadratic form F is the set of Conway’s excesses for every odd prime p

(�1 included) of the adjoint form Adj F . Now, if the odd prime p0�1 fails

to divide det F , then epðAdj FÞ ¼ 0 mod 8. But if p divides det F , then the

maximal power of p dividing det Adj F ¼ ðdet F Þn�1 is even, and, therefore,

epðAdj FÞ ¼ 0 mod 4 (compare with Proposition 7). Moreover

�2ðn� 1Þa e�1ðAdj F Þa 0

and e�1ðAdj F Þ ¼ 0 mod 4. Thus,

Theorem 6. A complete system of projective invariants of an n-ary, n odd,

integral quadratic form F is e�1ðAdj F Þ, together with the set of odd primes

p > �1, for which epðAdj F Þ0 0 mod 8.

A convenient way of o¤ering these invariants is to write invP F ¼ n; d;S½ �,
where

d ¼ �e�1ðAdj F Þ
4

;

and where S is the product of the odd primes p > �1 for which

epðAdj FÞ0 0 mod 8.
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Some of the implications of these invariants are studied in the forthcoming

paper [14].

For instance, to see if the diagonal ternary forms F ¼ h�1; 1; 7i and

G ¼ h1;�1;�3i are projectively equivalent, we have to check if their adjoints

F1 ¼ h7;�7;�1i and G1 ¼ h3;�3;�1i are rationally equivalent. And, in-

deed, they are, because their Conway invariants coincide:

cðF1Þ ¼ 1; ð�1;�4Þ; ð2; 4Þ½ � ¼ cðG1Þ

On the other hand, the forms F and G are not Q-equivalent, because

cðFÞ ¼ �7; ð�1;�2Þ; ð2; 4Þ; ð7; 6Þ½ �

and

cðGÞ ¼ 3; ð�1;�4Þ; ð2; 6Þ; ð3; 6Þ½ �

are di¤erent.

5.3. Even dimensional forms. The even dimensional case is more di‰cult than

the odd one. Before finding a complete set of invariants, we need a number of

definitions and of auxiliary results.

Since every diagonal, integral quadratic form is Q-equivalent to a square-

free one (i.e. one with all its entries square-free), we start this section by re-

peating the definitions of the Conway’s p-excesses when F ¼ hai is square-free:

Case 1: p ¼ �1. Define

e�1ðF Þ ¼
0

�2

�
if

a > 0

a < 0

�
ð5:2Þ

Case 2: p ¼ 2. Define

e2ðFÞ ¼
1� a

ð1� a=2Þ þ 2
a=2

h i(
mod 8; if a is

odd

even

�
ð5:3Þ

Case 3: p an odd prime. Define

epðF Þ ¼
0

ðp� 1Þ þ a=p

p

h i(
mod 8; if

pF a

p j a

�
ð5:4Þ

5.3.1. Some definitions. Let F be a diagonal, integral quadratic form of

even dimension 2dðFÞ. Denote by nðF Þ the set of odd primes (�1 included)

dividing the reduced determinant detn F of F (the letter n suggests ‘‘no-

square’’).

The number sðFÞ (resp. tðF Þ) is defined to be 0 if the number of elements

p A nðFÞ such that p ¼ �1 mod 4 (resp. p ¼G3 mod 8) is even. Otherwise

sðFÞ (resp. tðF Þ) is defined to be 1.
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We define another number oðFÞ with values f0; 1g: oðFÞ is 0 if and only

if detn F is odd (the letter o suggests ‘‘odd’’).

If eþðFÞ (resp. e�ðF Þ) is the number of positive (resp. negative) diagonal

entries of F , then the Sylvester signature of F is defined to be eþðFÞ � e�ðF Þ.
Note that 2dðFÞ ¼ eþðFÞ þ e�ðFÞ. Therefore, 2dðFÞ, together with the Syl-

vester signature of F , determine eþðF Þ and e�ðFÞ. In these terms, the

Conway’s �1-excess of F is e�1ðF Þ ¼ �2e�ðF Þ. Let eðFÞ denote the smallest

of the two numbers eþðFÞ and e�ðFÞ. Then 0a eðF Þa dðFÞ will be called

the Sylvester partition of F .

5.3.2. Projective invariants. Let F be a diagonal, integral quadratic form of

even dimension 2dðFÞ. In the remaining of the section we will prove that the

following collection of numbers is a complete set of invariants of projective

equivalence among forms of the same even dimension:

(1) The reduced determinant detn F of F .

(2) The Sylvester partition eðFÞ of F .

(3) The 2-excess e2ðFÞ of F , if detn F ¼ ð�1ÞdðFÞ mod 8. Otherwise, this

number e2ðF Þ is not included among the invariants.

(4) The q-excess eqðFÞ of F , if q B nðF Þ and q0�1 is an odd prime such

that

2ðq� 1ÞdðF Þ þ detn F

q

� �
¼ 0 mod 8

Otherwise, this number eqðFÞ is not included among the invariants.

Note that if qF det F then eqðFÞ ¼ 0. Therefore the set of nonzero

eqðF Þ’s is finite.

We call this set of numbers the projective invariants pðFÞ of F , and we

codify them as follows:

pðF Þ ¼ ½D; eðFÞ; ð2; e2ðF ÞÞ or �; ðq1; eq1ðFÞÞ; . . . ; ðqk; eqk ðFÞÞ�;

where D ¼ detn F , and the q1; . . . ; qk are placed in increasing order, and the list

contains only those with eqðFÞ0 0 mod 8.

To prove that these numbers constitute, in fact, a complete set of pro-

jective invariants, we need some auxiliary results.

5.3.3. Auxiliary propositions.

Proposition 6. Let F be an integral quadratic form of even dimension

2dðF Þ. Then detn F ¼ ð�1ÞdðF Þ mod 8 if and only if

ðoðF Þ; dðFÞ þ sðFÞ; tðFÞÞ ¼ ð0; 0; 0Þ mod 2
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Proof. By definition, the number sðF Þ is 0 if the number of elements

p A nðFÞ such that p ¼ �1 mod 4 is even. Hence oðFÞ ¼ 0 and sðFÞ ¼ 0 if

and only if detn F ¼ 1 mod 4. Hence oðFÞ ¼ 0 and sðFÞ ¼ dðF Þ mod 2 if

and only if detn F ¼ ð�1ÞdðFÞ mod 4. On the other hand, the number tðF Þ is

0 if the number of elements p A nðFÞ such that p ¼G3 mod 8 is even. Hence

oðFÞ ¼ 0 and tðF Þ ¼ 0 if and only if detn F ¼G1 mod 8. Finally,

ðoðF Þ; dðFÞ þ sðFÞ; tðFÞÞ ¼ ð0; 0; 0Þ mod 2

if and only if detn F ¼ ð�1ÞdðFÞ mod 8. This concludes the proof.

Proposition 7. Let F and G be two diagonal, integral quadratic forms of

the same even dimension such that nðFÞ ¼ nðGÞ. Then

epðF Þ � epðGÞ ¼ 0 mod 4;

for all primes p (�1 included). Moreover, if p is an odd prime such that

p B nðFÞ ¼ nðGÞ then

epðFÞ ¼ epðGÞ ¼ 0 mod 4:

Proof. We can assume that F and G are square-free, because any F can

be reduced to a Q-equivalent, square-free, diagonal, integral quadratic form.

Let p be an odd prime (�1 included). Let px (resp. py) the maximal power

of p dividing det F (resp. det G). Then epðFÞ ¼ xðp� 1Þ mod 4 and epðGÞ ¼
yðp� 1Þ mod 4. Since nðFÞ ¼ nðGÞ then x ¼ y mod 2. Hence

epðFÞ � epðGÞ ¼ ðx� yÞðp� 1Þ ¼ 0 mod 4:

By the global relation,

e2ðF Þ ¼ �
X
p odd

epðFÞ mod 8:

Hence

e2ðF Þ � e2ðGÞ ¼ �
X
p odd

ðepðFÞ � epðGÞÞ ¼ 0 mod 4:

If the odd prime p B nðFÞ ¼ nðGÞ, then x ¼ y ¼ 0 mod 2. Hence

epðFÞ ¼ xðp� 1Þ ¼ 0 mod 4

and

epðGÞ ¼ yðp� 1Þ ¼ 0 mod 4

This completes the proof.
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Proposition 8. Let G be a diagonal, integral quadratic form of even

dimension 2d. Let b be a square-free, nonzero integer. Then

(1) The value of e�1ðbGÞ � e�1ðGÞ is 0 if b > 0, and it is 4ðe�ðGÞ � dÞ if

b < 0.

(2) For every odd prime p (�1 included), the value of epðbGÞ � epðGÞ is

(a) b
p

h i
mod 8, if pF b and p A nðGÞ.

(b) 0 mod 8, if pF b and p B nðGÞ.
(c) 2ðp� 1Þð1þ dÞ þ b=p

p

h i
þ detn G=p

p

h i
mod 8, if pjb and p A nðGÞ.

(d) 2ðp� 1Þd þ detn G
p

h i
mod 8, if pjb and p B nðGÞ.

(3) If b is odd, the value of e2ðbGÞ � e2ðGÞ is

2ðb� 1Þðd þ sðGÞÞ þ oðGÞ 2

b

� �
mod 8:

(4) If b ¼ 2b1, b1 odd, the value of e2ð2b1GÞ � e2ðGÞ is

2ðb1 � 1Þðd þ sðGÞÞ þ oðGÞ 2

b1

� �
þ 4tðGÞ mod 8:

In particular

e2ð2GÞ � e2ðGÞ ¼ 4tðGÞ mod 8

Proof. We may assume that G is a diagonal, square-free, integral quad-

ratic form. If b > 0, clearly e�1ðbGÞ ¼ e�1ðGÞ. If b < 0, then

e�1ðbGÞ � e�1ðGÞ ¼ �2ð2d � e�ðGÞÞ � ð�2e�ðGÞÞ ¼ 4ðe�ðGÞ � dÞ;

and this completes the proof of part ð1Þ.
If p ¼ �1, it follows from ð1Þ that the value of e�1ðbGÞ � e�1ðGÞ is

0

4ð1þ dÞ
4d

8<
: mod 8 if

b > 0

b < 0 and �1 A nðGÞ
b < 0 and �1 B nðGÞ

8<
: ;

because e�ðGÞ is odd if and only if �1 A nðGÞ, that is, if and only if

detn G < 0. This proves part ð2Þ for p ¼ �1, because

b=ð�1Þ
�1

� �
þ detn G=ð�1Þ

�1

� �
¼ 0 mod 8

if b < 0 and detn G < 0; and

detn G

�1

� �
¼ 0 mod 8

if detn G > 0.
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If p0�1 is an odd prime, let px be the maximal power of p dividing

det G. If pF b:

epðbGÞ � epðGÞ ¼ x
b

p

� �
mod 8:

Hence, if p A nðGÞ, x is odd and this proves ð2aÞ, while if p B nðGÞ, x is

even and this proves ð2bÞ. Assume pjb, that is b ¼ pb1, where p and b1 are

coprime. Then, epðbGÞ � epðGÞ mod 8 is:

epðpb1GÞ � epðGÞ ¼ ð2d � 2xÞðp� 1Þ þ ð2d � xÞ b1

p

� �
þ detn G=p

a

p

� �
;

where a ¼ 0 if p B nðGÞ, and a ¼ 1 if p A nðGÞ. Hence, if p A nðGÞ, x is odd

and a ¼ 1, and this proves ð2cÞ, while if p B nðGÞ, x is even and a ¼ 0, and

this proves ð2dÞ.
By ð2aÞ, ð2bÞ and the global relation, e2ð2GÞ � e2ðGÞ mod 8 can be

written:

�
X

p odd prime

ðepð2GÞ � epðGÞÞ ¼
X

p A nðGÞ

2

p

� �
¼ 4tðGÞ mod 8;

because 2
p

h i
¼ 4 mod 8 if and only if p ¼G3 mod 8. This proves the par-

ticular case of part ð4Þ.
Next, we prove part ð3Þ by induction in the number of (odd) prime

numbers (�1 included), dividing b. Thus, assume, first, that b B nðGÞ is an

odd prime. By the global relation, �e2ðbGÞ þ e2ðGÞ mod 8 can be written as

follows: X
p0b;odd

ðepðbGÞ � epðGÞÞ þ ðebðbGÞ � ebðGÞÞ mod 8

Using ð2aÞ and ð2bÞ:
X

p0b;odd

ðepðbGÞ � epðGÞÞ ¼
X

p A nðGÞ

b

p

� �
mod 8:

And using ð2dÞ:

ebðbGÞ � ebðGÞ ¼ 2ðb� 1Þd þ detn G

b

� �
mod 8:

Hence �e2ðbGÞ þ e2ðGÞ mod 8 is:

2ðb� 1Þd þ oðGÞ 2

b

� �
þ

X
p A nðGÞ

b

p

� �
þ p

b

� �� �
mod 8:
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By quadratic reciprocity:

b

p

� �
þ p

b

� �
¼ ðp� 1Þðb� 1Þ mod 8:

Hence �e2ðbGÞ þ e2ðGÞ mod 8 is:

ðb� 1Þ 2d þ
X

p A nðGÞ
ðp� 1Þ

0
@

1
Aþ oðGÞ 2

b

� �
mod 8:

And, since b� 1 ¼ 0 mod 2, and

X
p A nðGÞ

ðp� 1Þ ¼
X

p A nðGÞ
p¼1 mod 4

ðp� 1Þ þ
X

p A nðGÞ
p¼�1 mod 4

ðp� 1Þ ¼ 2sðGÞ mod 4;

we have

�e2ðbGÞ þ e2ðGÞ ¼ 2ðb� 1Þðd þ sðGÞÞ þ oðGÞ 2

b

� �
mod 8:

Since the terms in the rigth-hand part of this formula are all zero mod 4, we

can change their signs mod 8. This proves ð3Þ if b B nðGÞ is an odd prime.

Next, assume that b A nðGÞ is an odd prime. As before, using the global

relation, ð2aÞ, ð2bÞ and ð2cÞ, we can write �e2ðbGÞ þ e2ðGÞ as follows:

X
p A nðGÞnfbg

b

p

� �
þ 2ðb� 1Þð1þ dÞ þ 1

b

� �
þ detn G=b

b

� �
mod 8:

Hence �e2ðbGÞ þ e2ðGÞ is:

2ðb� 1Þð1þ dÞ þ oðGÞ 2

b

� �
þ

X
p A nðGÞnfbg

b

p

� �
þ p

b

� �� �
mod 8:

Note that 2ðb� 1Þ ¼ ðb� 1Þ2 mod 8, because b is odd. Note also, that all the

terms in the last expresion are zero mod 4. Then, quadratic reciprocity implies

that e2ðbGÞ � e2ðGÞ can be written as follows:

ðb� 1Þ 2d þ
X

p A nðGÞ
ðp� 1Þ

0
@

1
Aþ oðGÞ 2

b

� �
mod 8:

As before:

e2ðbGÞ � e2ðGÞ ¼ 2ðb� 1Þðd þ sðGÞÞ þ oðGÞ 2

b

� �
mod 8:

This proves ð3Þ if b A nðGÞ is an odd prime.
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Next, assume part ð3Þ is true if b is a product of k odd primes (necessarily

di¤erent from each other, because b is square-free). Take a new prime q and

let us prove ð3Þ for the number qb. We have

e2ðqbGÞ � e2ðGÞ ¼ e2ðqbGÞ � e2ðbGÞ þ e2ðbGÞ � e2ðGÞ:

By the induction hypothesis, e2ðqbGÞ � e2ðGÞ mod 8 is:

2ðq� 1Þðd þ sðbGÞÞ þ oðbGÞ 2

q

� �
þ 2ðb� 1Þðd þ sðGÞÞ þ oðGÞ 2

b

� �
:

Since detnðbGÞ ¼ detn G, we have sðbGÞ ¼ sðGÞ and oðbGÞ ¼ oðGÞ. Therefore,

e2ðqbGÞ � e2ðGÞ ¼ 2ðqþ b� 2Þðd þ sðGÞÞ þ oðGÞ 2

qb

� �
mod 8:

Note that qþ b� 2 ¼ qb� 1 mod 4, because q ¼ b ¼ 1 mod 2. Hence part

ð3Þ is true, for an arbitrary odd number b.

Next, we prove part ð4Þ. Let b ¼ 2b1, where b1 is odd. We have

e2ð2b1GÞ � e2ðGÞ ¼ e2ð2b1GÞ � e2ðb1GÞ þ e2ðb1GÞ � e2ðGÞ:

Using the particular case of part ð4Þ, already proved, we can write e2ð2b1GÞ�
e2ðGÞ as follows:

4tðb1GÞ þ 2ðb1 � 1Þðd þ sðGÞÞ þ oðGÞ 2

b1

� �
mod 8:

Hence formula ð4Þ follows, because tðb1GÞ ¼ tðGÞ. This completes the proof.

Remark 4. From parts ð3Þ and ð4Þ, we have

d þ sðGÞ ¼ e2ð�GÞ � e2ðGÞ
4

mod 2;

tðGÞ ¼ e2ð2GÞ � e2ðGÞ
4

mod 2:

Using Proposition 6, these two formulas provide a di¤erent expression of the

third projective invariant.

Proposition 9. Let p1; . . . ; pk be di¤erent, positive, odd prime numbers.

Let m0;m1; . . . ;mk A f0; 4g. Then, there are infinitely many prime numbers b

such that

2

b

� �
¼ m0
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and

b

pi

� �
¼ mi; i ¼ 1; . . . ; k

Proof. For each index i ¼ 1; . . . ; k, select an integer ni such that

ni

pi

� �
¼ mi; 0 < ni < pi;

and an integer n0 such that

2

n0

� �
¼ m0:

By the Chinese theorem of rests, there is an integer b1 such that

b1 ¼ ni mod pi; i ¼ 1; . . . ; k

and

b1 ¼ n0 mod 8:

Then b1 and 8p1 . . . pk are coprime. All the numbers b in the arithmetic

progression

b1 þ hð8p1 . . . pkÞ; h ¼ 1; 2; 3; . . .

satisfy

2

b

� �
¼ m0

and

b

pi

� �
¼ mi; i ¼ 1; . . . ; k

By Dirichlet Theorem, this progression contains infinitely many prime numbers.

This completes the proof.

5.3.4. Projective classification theorem.

Theorem 7. Two rational quadratic forms of the same even dimension are

projectively equivalent if and only if they have identical projective invariants.

Proof. Before starting the proof, note that F @
Q

G implies pðFÞ ¼ pðGÞ,
where pðF Þ denotes the projective invariants of F . Since a rational quadratic

form is Q-equivalent to a diagonal, square-free, integral quadratic form, we can

395On integral quadratic forms



assume that the forms F and G, in the statement of the theorem, are diagonal,

square-free integral quadratic forms.

We first prove that the condition in the theorem is necessary. That is,

if F @
P

G then pðFÞ ¼ pðGÞ.
Since F @

Q
bG, for some nonzero, square-free integer b, then the Sylvester

signatures of F and bG coincide. But the Sylvester signature of G equals G
the Sylvester signature of bG according as if b is positive or negative. Hence

ðeþðFÞ; e�ðFÞÞ ¼ ðeþðGÞ; e�ðGÞÞ

or

ðeþðF Þ; e�ðFÞÞ ¼ ðe�ðGÞ; eþðGÞÞ:

In either case eðFÞ ¼ eðGÞ. Let e denote eðF Þ ¼ eðGÞ.
On the other hand, F @

Q
bG implies r2 det F ¼ b2d det G, where 2d is

the common dimension of F and G, and r is a rational number. Hence

detn F ¼ detn G. Let Dn denote this common reduced determinant. We also

define:

n :¼ nðFÞ ¼ nðGÞ

s :¼ sðFÞ ¼ sðGÞ

t :¼ tðFÞ ¼ tðGÞ

o :¼ oðFÞ ¼ oðGÞ

Claim 1. If F @
Q

bG, where b is a nonzero, square-free integer, and for

some odd prime q0�1, q B n,

2ðq� 1Þd þ Dn

q

� �
¼ 0 mod 8;

then

eqðF Þ ¼ eqðGÞ mod 8:

Proof. If qF b, Proposition 8 implies

eqðFÞ � eqðGÞ ¼ eqðbGÞ � eqðGÞ ¼ 0 mod 8:

If qjb, Proposition 8 implies

eqðF Þ � eqðGÞ ¼ eqðbGÞ � eqðGÞ ¼ 2ðq� 1Þd þ Dn

q

� �
mod 8;

and this is zero by hypothesis. This completes the proof of this claim.
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Claim 2. If F @
Q

bG, where b is a nonzero, square-free integer, and

detn F ¼ ð�1Þd mod 8, then e2ðF Þ ¼ e2ðGÞ.

Proof. By Proposition 6, detn F ¼ ð�1Þd mod 8 if and only if

ðo; d þ s; tÞ ¼ ð0; 0; 0Þ mod 2:

If b is odd, Proposition 8 implies that e2ðF Þ � e2ðGÞ is

e2ðbGÞ � e2ðGÞ ¼ 2ðb� 1Þðd þ sÞ þ o
2

b

� �
mod 8;

and this is zero, because b� 1 ¼ d þ s ¼ o ¼ 0 mod 2. If b ¼ 2b1, b1 odd,

Proposition 8 implies that e2ðFÞ � e2ðGÞ is

e2ð2b1GÞ � e2ðGÞ ¼ 2ðb1 � 1Þðd þ sÞ þ o
2

b1

� �
þ 4t mod 8;

and this is zero because b1 � 1 ¼ d þ s ¼ o ¼ t ¼ 0 mod 2. This completes

the proof of this claim.

Therefore, we have proved that if F @
P

G then pðF Þ ¼ pðGÞ. Next, we

prove the converse.

Assume that the forms F and G are diagonal, square-free, integral quad-

ratic forms of the same even dimension 2d, and with the same projective

invariants pðF Þ ¼ pðGÞ. We want to prove that F @
P

G.

Define Dn ¼ detn F ¼ detn G and

n :¼ nðFÞ ¼ nðGÞ

s :¼ sðFÞ ¼ sðGÞ

t :¼ tðFÞ ¼ tðGÞ

o :¼ oðFÞ ¼ oðGÞ

Step 1. Replacing, if necessary, G by �G, we can assume that pðFÞ ¼
pðGÞ, and, moreover, that

e�1ðFÞ ¼ e�1ðGÞ:

Indeed, since G @
P �G

pðF Þ ¼ pðGÞ ¼ pð�GÞ:

Step 2. Let a be the product of all the odd primes

r0�1; r B n
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such that

erðGÞ � erðFÞ0 0 mod 8

This is well defined, because it is a finite product. Indeed, if an odd prime r

fails to divide both det F and det G, then

erðGÞ ¼ erðFÞ ¼ 0 mod 8:

Consider aG. Then G @
P

aG implies

pðF Þ ¼ pðGÞ ¼ pðaGÞ:

Moreover, since a > 0,

e�1ðFÞ ¼ e�1ðGÞ ¼ e�1ðaGÞ:

Next, we prove that

eqðaGÞ � eqðF Þ ¼ 0 mod 8;

for every odd prime q0�1, q B n.

In fact, if qF a, then

eqðaGÞ � eqðGÞ ¼ 0 mod 8;

by Proposition 8, and

eqðGÞ � eqðF Þ ¼ 0 mod 8;

by definition of a. And, adding up these two relations, we obtain

eqðaGÞ � eqðF Þ ¼ 0 mod 8:

But if qja, then by Proposition 8:

eqðaGÞ � eqðGÞ ¼ 2ðq� 1Þd þ Dn

q

� �
mod 8

Now, this has the only possible values 0 or 4 mod 8 (Proposition 7). It cannot

possibly be zero, otherwise both eqðGÞ and eqðF Þ would be part of the list

of projective invariants of F and G, respectively, and as such they should

coincide, which is not the case, since by definition of a,

eqðGÞ � eqðFÞ0 0 mod 8:

Now, the value of this last formula is 4 by Proposition 7. Hence, adding up

the last two relations, we finally obtain

eqðaGÞ � eqðF Þ ¼ 0 mod 8:
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Therefore, by replacing, if necessary, aG by G, we can assume that our original

forms F and G, besides having the same projective invariants pðFÞ ¼ pðGÞ,
they enjoy the following properties:

e�1ðFÞ ¼ e�1ðGÞ:

and

eqðF Þ ¼ eqðGÞ mod 8

for every odd prime q0�1, q B n.

Step 3. By Proposition 7, for every odd prime p0�1, p A n,

epðGÞ � epðF Þ ¼ 0 mod 4:

Hence, by Proposition 9, there are infinitely many primes b such that b > 2,

bF det F , bF det G and

b

p

� �
¼ epðGÞ � epðF Þ mod 8;

for every odd prime p0�1, p A n.

For such numbers b, since G @
P

bG,

pðF Þ ¼ pðbGÞ and e�1ðFÞ ¼ e�1ðbGÞ:

Next, we prove that

erðbGÞ � erðFÞ ¼ 0 mod 8;

for every odd prime r0�1, r0 b. In fact,

erðbGÞ � erðFÞ ¼ erðbGÞ � erðGÞ þ erðGÞ � erðF Þ mod 8:

And this is zero mod 8, because if r A n, then, by definition of b and by

Proposition 8:

erðGÞ � erðFÞ ¼
b

r

� �
¼ erðbGÞ � erðGÞ:

And, if r B n, r0 b, then

erðbGÞ � erðGÞ ¼ 0 mod 8;

by Proposition 8, and

erðGÞ � erðFÞ ¼ 0 mod 8;

by hypothesis.
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Remember that we have an infinitude of b’s satisfying the previous con-

ditions, and, since all such b’s are odd, Proposition 8 implies

e2ðbGÞ � e2ðGÞ ¼ 2ðb� 1Þðd þ sÞ þ o
2

b

� �
mod 8;

and, if we can, we want to select b in such a way that

e2ðbGÞ � e2ðGÞ ¼ e2ðGÞ � e2ðF Þ mod 8:

There are three cases in which this selection can be made. There will be a

remaining case, for which b must be defined ex novo.

Case 1. e2ðGÞ � e2ðF Þ ¼ 0 mod 8.

Select, as we can (Proposition 9), b ¼ 1 mod 8. Then

2

b

� �
¼ 0 mod 8:

Therefore

e2ðbGÞ � e2ðGÞ ¼ 0 mod 8:

Case 2. e2ðGÞ � e2ðF Þ ¼ 4 mod 8, and sþ d ¼ 1 mod 2.

Select (Proposition 9) b ¼ �1 mod 8. Then

2

b

� �
¼ 0 mod 8:

Therefore,

e2ðbGÞ � e2ðGÞ ¼ 2ðb� 1Þðd þ sÞ ¼ 4 mod 8;

because sþ d ¼ 1 mod 2.

Case 3. e2ðGÞ � e2ðF Þ ¼ 4 mod 8, and sþ d ¼ 0 mod 2, o ¼ 1.

Select (Proposition 9) b ¼ 3 mod 8. Then

2

b

� �
¼ 4 mod 8

Therefore,

e2ðbGÞ � e2ðGÞ ¼ 4 mod 8:

In cases 1, 2 and 3 we obtain

e2ðbGÞ � e2ðFÞ ¼ e2ðbGÞ � e2ðGÞ þ e2ðGÞ � e2ðFÞ ¼ 0 mod 8:
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This, together with e�1ðbGÞ ¼ e�1ðFÞ and erðbGÞ ¼ erðFÞ mod 8, for every

odd prime r0 b, implies

ebðbGÞ ¼ ebðFÞ mod 8;

by the global relation. Hence F @
Q

bG, because detn bG ¼ detn G ¼ detn F .

Hence F @
P

G, as we wanted to prove.

Only remains

Case 4. e2ðGÞ � e2ðF Þ ¼ 4 mod 8, and sþ d ¼ 0 mod 2, o ¼ 0.

Here, t must be 1. Otherwise

ðo; sþ d; tÞ ¼ ð0; 0; 0Þ mod 2;

and this implies (Proposition 6) that e2ðFÞ and e2ðGÞ are projective invariants

of F and G, respectively. By hypothesis, they should coincide, and this is not

the case. Hence t ¼ 1.

Define b, ex novo, as a positive, odd prime number such that bF det F ,

bF det G and

b

p

� �
¼ 2

p

� �
þ epðGÞ � epðFÞ mod 8;

for every odd prime p0�1, p A n (Proposition 9 and Proposition 7). Then:

1: For every p0�1, p A n, we can write epð2bGÞ � epðFÞ as follows:

epð2bGÞ � epðbGÞ þ epðbGÞ � epðGÞ þ epðGÞ � epðFÞ mod 8:

And this is zero, because (Proposition 8)

epð2bGÞ � epðbGÞ ¼ 2

p

� �
;

and

epðbGÞ � epðGÞ ¼ b

p

� �
;

and

epðGÞ � epðFÞ ¼
b

p

� �
þ 2

p

� �
;

by definition of b.

2: For every odd prime p0�1, p B n, p0 b we have

epð2bGÞ � epðF Þ ¼ epð2bGÞ � epðGÞ þ epðGÞ � epðF Þ ¼ 0 mod 8;

because (Proposition 8)

epð2bGÞ � epðGÞ ¼ 0 mod 8;
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and

epðGÞ � epðFÞ ¼ 0 mod 8;

by hypothesis.

3: e2ð2bGÞ � e2ðFÞ can be written as follows:

e2ð2bGÞ � e2ðbGÞ þ e2ðbGÞ � e2ðGÞ þ e2ðGÞ � e2ðFÞ mod 8:

And this is zero, because by Proposition 8

e2ð2bGÞ � e2ðbGÞ ¼ 4t ¼ 4 mod 8;

and

e2ðbGÞ � e2ðGÞ ¼ 2ðb� 1Þðsþ dÞ þ o
2

b

� �
¼ 0 mod 8;

because

b� 1 ¼ sþ d ¼ o ¼ 0 mod 2;

and

e2ðGÞ � e2ðFÞ ¼ 4 mod 8;

by the hypothesis of the present Case 4.

4: detn 2bG ¼ detn G ¼ detn F and e�1ðFÞ ¼ e�1ðGÞ ¼ e�1ð2bGÞ.
Therefore, since F and 2bG have the same reduced determinant and

the same p-excesses for all prime p0 b, it follows (global relation) that also

ebðFÞ ¼ ebð2bGÞ. This implies that

F @
Q

2bG:

Hence F @
P

G, as we wanted to prove.

This completes the proof of the theorem.

6. The projective classification of some particular even forms

Theorem 8. There are at most two P-equivalence classes of 2d-ary integral

quadratic forms having the same square-free determinant D and Sylvester partition

a. If D0 ð�1Þd mod 8, there is only one such P-class, namely hD;G1; . . . ;G1i,
where the appropriate signs are determined by a. If D ¼ ð�1Þd mod 8 and

d0 a mod 2, there are exactly two such P-classes, but if d ¼ a mod 2, the

number of P-classes migth be one or two. For instance, if Dj j is prime, there is

only one P-class.

402 José Marı́a Montesinos-Amilibia



Proof. Let F and G be two 2d-ary integral quadratic forms with identic

square-free determinant D and Sylvester partition a. Since det F ¼ detn F , the

only P-invariants of F are 2d, a, D, and the 2-excess e2ðF Þ if

D ¼ ð�1Þd mod 8:

In this case, F and G can only di¤er on the values of e2ðF Þ and e2ðGÞ. But

e2ðFÞ ¼ e2ðGÞ mod 4, since detn F ¼ D ¼ detn G (Proposition 7). Hence e2ðGÞ
¼ e2ðF Þ mod 8, or e2ðGÞ ¼ e2ðFÞ þ 4 mod 8. Therefore, there are at most

two P-equivalence classes of 2d-ary integral quadratic forms having the same

square-free determinant D and Sylvester partition a. Note that, if

D0 ð�1Þd mod 8;

there is only one such class.

Let D be a product of di¤erent positive odd primes. Let a, d be integers

such that 0a aa d. Let s1 be the number of primes dividing D, and con-

gruent with �1 mod 4. Let t be the number of primes dividing D, and

congruent withG3 mod 8. Let D ¼ ð�1ÞaD, and let s be the number of primes

(�1 included) dividing D, and congruent with �1 mod 4. Note that s ¼
s1 þ a mod 2. Assume sþ d ¼ 0 mod 2 and t ¼ 0 mod 2. We want to com-

pare the following two 2d-ary, square-free forms

F ¼ h�1; . . .a ;�1; 1; . . . ; 1;Di

and

G ¼ h�D;�1; . . .a�1 ;�1; 1; . . . ; 1i:

Here e�1ðFÞ ¼ e�1ðGÞ and det F ¼ det G ¼ ð�1ÞaD ¼ D. Moreover,

ðo; sþ d; tÞ ¼ ð0; 0; 0Þ mod 2. These two forms F and G are, therefore,

P-equivalent if and only if e2ðGÞ ¼ e2ðFÞ mod 8. Now

e2ðFÞ ¼ 2d � ð�aþ ð2d � a� 1Þ þDÞ ¼ 2aþ 1�D

and

e2ðGÞ ¼ 2d � ð�aþ 1þ ð2d � aÞ �DÞ ¼ 2a� 1þD:

Thus

F @
P

G , D ¼ 1 mod 4 , s1 ¼ 0 mod 2 , d ¼ a mod 2;

because s1 ¼ sþ a mod 2 and d þ s ¼ 0 mod 2, by hypothesis. Therefore, if

d0 a mod 2, the 2d-ary forms F and G with the same square-free determinant
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D and the same partition a are P-inequivalent. But if d ¼ a mod 2 and D is

a positive odd prime number, the only possible 2d-ary forms with the same

square-free determinant D ¼ ð�1ÞaD and the same partition a are just the

two forms F and G above, and these two are P-equivalent. However, if D is

not prime, anything can happen as the following examples show.

Example 3. F ¼ h1; 1; 1; 19� 11i, G ¼ h1; 1; 19; 11i. Here a ¼ d ¼
0 mod 2 and D ¼ 19� 11 ¼ 1 mod 8. However

e2ðF Þ ¼ 4� ð3þ 19� 11Þ ¼ 0 mod 8

but

e2ðGÞ ¼ 4� ð2þ 19þ 11Þ ¼ 4 mod 8:

Thus F and G are P-inequivalent.

Example 4. h1; 1; 1; 13� 5i, h1; 1; 13; 5i. Here a ¼ d ¼ 0 mod 2 and

D ¼ 13� 5 ¼ 1 mod 8. However,

e2ðF Þ ¼ 4� ð3þ 13� 5Þ ¼ 0 mod 8

and

e2ðGÞ ¼ 4� ð2þ 13þ 5Þ ¼ 0 mod 8;

and there is only one P-class of quaternary, integral quadratic forms with deter-

minant 13� 5 and Sylvester partition a ¼ 0.

As an application of Theorem 8 we have:

Corollary 4. There are exactly two P-equivalent classes of quaternary,

hyperbolic, integral quadratic forms with square-free determinant D ¼ �D, D > 0,

if and only if D ¼ 1 mod 8. They are represented by F ¼ h�1; 1; 1;Di and

G ¼ h�D; 1; 1; 1i.

Proof. Since d ¼ 2, a ¼ 1, there are exactly two P-classes if and only if

D ¼ ð�1Þd ¼ 1 mod 8.

It is very illustrative to compare the proof of P-inequivalence of F and G,

implicit in this Corollary, with the following geometric one.

First, use congruences mod 8 to show that F represents 0 but G does

not. This implies that the orbifold G :¼ H3=AutðGÞ is compact, while F :¼
H3=AutðFÞ is not compact. Then, it is imposible that both orbifolds F and G

have a common finite orbifold-covering. It follows that AutðFÞ and AutðGÞ
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are not commensurable, and, as a consequence, F and G are P-inequivalent,

by Theorem 3.

7. Quaternary, hyperbolic, integral quadratic forms with reduced determinant

�1: the Picard form

Consider the projective classification of quaternary, integral quadratic

forms with the same reduced determinant and Sylvester partition. If the

determinant is square-free, this has been done in the previous section. Let

us consider forms with reduced determinant �1, to understand the possibilities.

For such forms, d þ s ¼ 1 mod 2. Hence, besides the invariants d ¼ 2, a ¼ 1

and detn F ¼ �1, the only projective invariants are the p-excesses epðF Þ, where
p runs over all positive odd primes such that

detn F

p

� �
¼ �1

p

� �
¼ 0 mod 8;

that is, such that p ¼ 1 mod 4. Now, epðFÞ ¼ 0 mod 8 if p fails to divide

det F . Hence we only need to consider the positive odd primes p dividing

det F and such that p ¼ 1 mod 4.

For instance, all the forms Fb ¼ h�1; 1; b; bi and Gb ¼ h�b; b; 1; 1i, b

integer > 0, are P-equivalent to the Picard form h�1; 1; 1; 1i, because, if pjb
and p ¼ 1 mod 4, then

epðh�1; 1; b; biÞ ¼ 2ðp� 1Þ þ 2
b=p

p

� �
¼ 0 mod 8;

and

epðh�b; b; 1; 1iÞ ¼ 2ðp� 1Þ þ 2
b=p

p

� �
þ �1

p

� �
¼ 0 mod 8:

In fact

Tð2Þ tF2Tð2Þ ¼ 2F1;

where

Tð2Þ ¼

2 1 1 0

0 1 �1 0

1 1 1 0

0 0 0 1

2
6664

3
7775;

and

TðbÞ tFbTðbÞ ¼ bF1; b > 0 odd;
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where

TðbÞ ¼

bþ1
2

b�1
2 0 0

b�1
2

bþ1
2 0 0

0 0 1 0

0 0 0 1

2
66664

3
77775:

Since the forms Fb ¼ h�1; 1; b; bi are all mutually commensurable, it is

interesting to find the rational number

vðbÞ ¼ volðFbÞ
volðF1Þ

;

where volðFbÞ denotes the volume of the hyperbolic orbifold Fb :¼ H3=AutðFbÞ.
I have calculated vðbÞ, for a number of values of b, obtaining the following

results (to be published elsewhere):

(1) If p ¼ �1 mod 4 is a prime number, then vðpÞ ¼ p2þ1
2 , 3a p < 100.

(2) If p ¼ 1 mod 4 is a prime number, then vðpÞ ¼ ðpþ1Þ2
2 , 3a pa 101.

(3) vð2Þ ¼ 3, vð22Þ ¼ 2vð2Þ, and vð2nÞ ¼ 22ðn�2Þvð2Þ, for 3a na 7.

(4) vð3nÞ ¼ 32ðn�1Þvð3Þ, for 1a na 4.

(5) vð5nÞ ¼ 52ðn�1Þvð5Þ, for 1a na 2.

(6) vðabÞ ¼ vðaÞvðbÞ, where a and b are coprime, and ab < 22.

The obvious conjectures remain open.

We end this section with another example.

Example 5. Consider Hp ¼ h�1; 3; p; 3pi, p prime, p ¼ 5 mod 12. Here,

detn Hp ¼ �1 and, as before, we only need to consider the positive odd primes q

dividing det Hp and such that q ¼ 1 mod 4. Hence, there is only one projective

invariant of Hp to consider, namely

epðHpÞ ¼ 2ðp� 1Þ þ 3

p

� �
¼ 3

p

� �
mod 8;

because p ¼ 1 mod 4. Since

3

p

� �
¼ p

3

� �
þ 2ðp� 1Þ ¼ 2

3

� �
mod 8 ¼ 4 mod 8;

because p ¼ 2 mod 3, we deduce that all the forms Hp are pairwise P-

inequivalent. There is an infinitude of them, due to the Dirichlet Theorem

on primes in arithmetic progression. The first three such forms are H5, H17

and H29.
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8. Some historical comments

The theory of integral quadratic forms has geometric ramifications. In

1868 Beltrami ([1] and [2]) published the first models of the hyperbolic plane

H2 (the pseudosphere, consisting on the interior of the plane circle of radius 1

together with a Riemannian metric of negative curvature) and of the hyperbolic

3-space H3. He also introduced the upper half-space model of H3, as the set of

points ðu; zÞ A C� R such that z > 0. The group of direct isometries being the

group PSLð2;CÞ of Moebius transformations.

Klein, following work by Cayley, developed a projective-geometric theory

that generalized Beltrami’s pseudosphere model. Namely, an ðnþ 1Þ-ary real

quadratic form F with Sylvester signature n� 1 (a hyperbolic form, in this

article) represents a hyperquadric in the real projective n-space RPn that

bounds a topological ball. The interior of this ball is a model (Klein model ) of

hyperbolic n-space Hn, and its group of isometries is the orthogonal group

(isomorphic to Oðn; 1Þ) of the given quadratic form. The three dimensional

half-space model of H3 is related to the Klein model of the diagonal form

h�1; 1; 1; 1i via stereographic projection ([11]; see the proof and comments by

Bianchi in [3]).

Motivated, perhaps, by Cli¤ord’s discovery of a flat 2-torus inside spher-

ical 3-space, Klein stated the problem of enumerating all the (so called) forms

of Cli¤ord-Klein. In actual language they can be identified with the geometric

orbifolds of constant curvature, complete and with finite volume (see [15]). A

number of illustrious geometers (Hermite, Picard, Klein, Fricke, Dick, Bianchi,

Poincaré, and later Hopf, Seifert and Threlfall among them) started the

investigation and the construction of these forms. The first noneuclidean

examples are the quotients of properly discontinuous groups acting upon

spherical and hyperbolic planes. The book by Fricke-Klein is one of the

best references. The heritage of Picard, Klein, Bianchi, etc. is the theory of

arithmetic groups, developed by Borel and Harish-Chandra and many others

(see [12] and [8]).

These groups are called arithmetic, because they are constructed using

arithmetic methods. For instance, in dimension three, the idea is to define a

subgroup G of PSLð2;CÞ (half-space model), or of Oð3; 1Þ (Klein model), such

that the entries of the matrices in G belong to a discrete subset of C (resp.

RÞ. For instance, in dimension three, Bianchi, following work by Picard,

considered the set of homographies and antihomographies whose coe‰cients

are Gauss integers and with determinant 1 or i. This group (that we call

Picard’s group) is sent, via stereographic projection, to a subgroup of Oð3; 1Þ
conjugate to the discrete subgroup formed by all the 4� 4 integral matrices

T such that T tFT ¼ F , where F is the diagonal integral quadratic form
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h�1; 1; 1; 1i (the group Aut F of automorphisms of F ). It is readily found that

the quotient of the action of Picard group on the ball of radius 1 is the

hyperbolic 3-orbifold Q depicted in solid lines in Fig. 1. The underlying

space of Q is a hyperbolic asymptotic tetrahedron with only one cusp-point

ð1; 0; 0; 1Þ; the faces of the tetrahedron are mirrors; and the dihedral angles are

all right angles, excepted the indicated three angles.

W. Thurston discovered in 1976 that the topology and geometry of 3-

manifolds and 3-orbifolds (concept that he reintroduced and popularized) are

intimately related. Let us illustrate this by constructing, in an elementary way,

a finite index subgroup G of Picard’s group such that the quotient orbifold

H3=G is a complete, finite volume, hyperbolic manifold, homeomorphic to the

exterior of the Borromean rings. This will show that the group pðS3nBÞAG

of the Borromean rings (Fig. 2) is arithmetic (compare [9]).

The octant of Fig. 1 is the union of six copies of Picard’s orbifold Q. The

eigth octants form an asymptotic regular octahedron O, which is the union

of 48 copies of Q. Reflect, through each face of O, the cone with apex the

center of O and base the face of reflection. We obtain an asymptotic regular

rombododecahedron R, having its tetravalent vertices at infinity. Its dihedral

angles are all right angles. Thus R is the union of 96 copies of Q. Identifying

the faces of R as depicted, one obtains the exterior E of the Borromean rings

[18]. The natural map from E to Q is a 96-fold orbifold covering (Fig. 3).

Fig. 1. The 3-orbifold Q
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Therefore (see [18] and [13]), the group pðS3nBÞAG of the Borromean rings

acts properly and discontinuously on H3 in such a way that H3=G is a

complete, finite volume hyperbolic manifold homeomorphic to the exterior E of

the Borromean rings. Moreover, G is a subgroup of index 96 of the Picard

group. The volume of Q can be calculated to be

volðQÞ ¼ 0:07633046618143491 . . .

Fig. 2. Borromean rings

Fig. 3. The map from E to Q
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Therefore, the volume of E is 96 times the volume of Q:

volðEÞ ¼ 7:3277247534177521204 . . .

Due to a celebrated theorem of Mostow, the metric invariants of hyper-

bolic 3-orbifolds are in fact topological invariants, because the hyperbolic

structures of such orbifolds are unique, up to isometry. Thus the volume of E

is a topological invariant of the Borromean rings. This is one of the various

reasons which makes the theory of Thurston enormously important.

Just for the record, the set of tetravalent vertices of R is

ð1; 1; 0; 0Þ; ð1; 0; 1; 0Þ; ð1; 0; 0; 1Þ; ð1; 0; 0;�1Þ; ð1; 0;�1; 0Þ; ð1;�1; 0; 0Þ

and the set of trivalent vertices is

ð2; 1;�1; 1Þ; ð2;�1; 1; 1Þ; ð2; 1; 1;�1Þ; ð2; 1;�1;�1Þ;

ð2; 1; 1; 1Þ; ð2;�1; 1;�1Þ; ð2;�1;�1; 1Þ; ð2;�1;�1;�1Þ

and the parabolic automorphisms of h�1; 1; 1; 1i, identifying faces, are

x ¼

3 �2 0 �2

2 �1 0 �2

0 0 1 0

�2 2 0 1

2
6664

3
7775; y ¼

3 �2 2 0

�2 1 �2 0

�2 2 �1 0

0 0 0 1

2
6664

3
7775; z ¼

3 0 2 �2

0 1 0 0

2 0 1 �2

2 0 2 �1

2
6664

3
7775

They satisfy the relations of the Wirtinger presentation of the link group G.

Namely:

½x; ½y�1; z�� ¼ ½y; ½z�1; x�� ¼ ½z; ½x�1; y�� ¼ 1
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