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Abstract. We show that a generic C 1 expanding map on a compact Riemannian

manifold has a unique measure of maximum total exponent which is fully supported and

of zero entropy. We also show that for rb 2 a generic Cr expanding map does not

have fully supported measures of maximum total exponent.

1. Introduction

Let M be an N-dimensional, compact, connected, smooth Riemannian

manifold without boundary and let T be a C1 expanding map of M. Recall

that a C1 map T : M ! M is called expanding if there exist c > 0 and l > 1

such that kDT nðxÞvkT nx b clnkvkx holds for any x A M, v A TxM and non-

negative integer n, where DT : TM ! TM; ðx; vÞ 7! DTðxÞv is the tangent map

of T and kvkx is the norm of v induced by the Riemannian metric of M.

Clearly such a map T is surjective since it is an open map and its image is

compact. We denote by MðTÞ the totality of invariant Borel probability

measures of T . Since the absolute value of the determinant of the matrix

representation of DTðxÞ : TxM ! TTxM is independent of the choice of

orthonormal bases of TxM and TTxM, we can define the determinant

jdet DðTÞð�Þj : M ! R of the tangent map DT . Let JðTÞðxÞ ¼ jdet DðTÞðxÞj
and consider the quantity

lðT ; mÞ ¼
ð
M

log JðTÞðxÞdm:

We may call lðT ; mÞ total exponent of T with respect to m A MðTÞ since the

following formula holdsð
M

log JðTÞðxÞdm ¼
ð
M

XsðxÞ
j¼1

kð j; xÞwð j; xÞdm;
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where fwð1; xÞ < � � � < wðsðxÞ; xÞg is the totality of distinct Lyapunov exponents

of T at x and kð j; xÞ is the multiplicity of wð j; xÞ for each j.

Put

lðTÞ ¼ supflðT ; mÞ : m A MðTÞg:

An element m in MðTÞ is called a measure with maximum total exponent if

lðT ; mÞ ¼ lðTÞ. We denote by LðTÞ the set of measures with maximum total

exponent. It is easy to show that LðTÞ is not empty since MðTÞ is compact

in the weak � topology and the map m 7! lðT ; mÞ is continuous.

For any nonnegative integer r, CrðM;MÞ denotes the space of Cr maps

on M endowed with the Cr topology. Note that a sequence Tn converges in

CrðM;MÞ if and only if all the derivatives of Tn of order less than or equal to

r converge uniformly on M. Let E rðM;MÞ be the space of Cr expanding

maps of M. Then it is easy to see that it is an open subspace in CrðM;MÞ.
Recall that a subset of a topological space X is called residual if it contains

a set expressed as a countable intersection of open dense subsets in X . A

topological space X is called a Baire space if any residual subset is dense in

X . For a Baire space, consider a property P with respect to elements in X .

We say that the property P is generic or a generic element satisfies P if there

exists a residual subset each member of which satisfies P. It is well known

that the topological space CrðM;MÞ is a Baire space, consequently, so is

ErðM:MÞ.
The purpose of this paper is to prove the following theorems.

Theorem 1. Each of the following properties for element T in E1ðM;MÞ is
generic.

(1) T has a unique measure with maximum total exponent.

(2) Any measure with maximum total exponent for T has zero entropy.

(3) Any measure with maximum total exponent for T is fully supported.

On the contrary, we have the following when rb 2.

Theorem 2. For rb 2, a generic element in ErðM;MÞ has no fully

supported measures with maximum total exponent.

The same kind of theorems are first proved by Jenkinson and Morris in [8]

for expanding maps on the circle. Afterward, inspired by their results, the

second author of this paper extended those to expanding maps of the n-torus in

his dissertation [14]. We should note that these results are similar in spirit to

some theorems in ergodic optimization. So we explain about some preceding

results briefly (see the survey by Jenkinson in [7] for the further discussion

and references). Consider a continuous map T on a compact metric space
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X and a continuous function f : X ! R. The main interests in ergodic

optimization are invariant probability measures m which maximize the integralÐ
X
f dm. Such measures are referred to maximizing measures for f . Bousch

and Jenkinson showed that for a fixed expanding map of the circle, a generic

continuous function has a unique maximising measure with full support in

Theorem C of [2] (cf. Proposition 9 in [1]). On the other hand Brémont

proved in [4] that for any fixed continuous map on a compact metric space,

any maximizing measure for a generic continuous function has zero entropy.

Therefore we see that for any expanding map on the circle, a generic contin-

uous function has a unique maximizing measure with full support and zero

entropy. One of the main results in Jenkinson and Morris [8] asserts that for a

generic but not fixed C1 expanding map T on the circle, log JðTÞ has a unique

maximizing measure with full support and zero entropy. In other words we

generalize the results in [8] on the unit circle to those on a compact manifold

admitting C 1 expanding maps.

The ideas of our proofs are essentially the same as those in [8]. But the

technique in [8] seems to have some di‰culties to be applied to the general

expanding maps. So we need to make modifications of lemmas in [8] so that

they can work in our general case. In particular, the crucial step of con-

structing an auxiliary perturbation of C1 map along a periodic orbit is given

with full generality.

In Section 2, we summarize some fundamental results on expanding

maps. Section 3 is devoted to the construction of an appropriate perturbation.

Finally proofs of Theorem 1 and Theorem 2 are given in Section 4.

2. Preliminaries

In this section we summarize the results which are needed in the proof

of those theorems in Introduction. Most of them are well know facts for

expanding maps, so we just give references or sketch the proof.

First we need the following lemma. For the proof consult Lemma 20 of

Section 3 in [15] (see also Section 7.26–Section 7.30 in [10] and Section 3 in

Bowen [3]).

Lemma 1. Let T be an element in E1ðM;MÞ. Then for any b > 0 there

exists a Markov partition for T with diameter less than b, i.e. we can construct a

finite cover fR1; . . . ;Rqg of M by closed sets satisfying the following conditions.

(1) int Ri ¼ Ri for each i.

(2) int Ri V int Rj ¼ q for i0 j.

(3) 6q

i¼1
int Ri is dense in M.

(4) Tð6q

i¼1
qRiÞH6q

i¼1
qRi.
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(5) If Tðint RiÞV int Rj 0q, then Rj HTRi.

(6) max1aiaq diamdðRiÞ < b, where diamdðRÞ is the diameter of RHM

with respect to the distance d induced by the Riemannian metric on M.

For T A E1ðM;MÞ, choose b > 0 so small that T maps any ball of radius

less than b homeomorphically onto its image. Let R ¼ fR1; . . . ;Rqg be a

Markov partition of T with diameter less than b. Now we define a subshift of

finite type in the usual way as follows. Put

S ¼ fx ¼ ðxiÞib0 : Aðxixiþ1Þ ¼ 1 for each ib 0g;

where A ¼ ðAðijÞÞ is a q� q matrix given by

AðijÞ ¼ 1 if Tðint RiÞV int Rj 0q;

0 otherwise:

�

Now we consider the shift transformation s : S ! S satisfying ðsxÞi ¼ xiþ1 for

any ib 0 and x A S. We choose c > 0 and l > 1 such that kDT nðxÞvkT nx b

clnkvkx for any x A M, v A TxM and nonnegative integer n. Putting y ¼ 1=l,

we define dy : S � S ! R by dyðx; hÞ ¼ ynðx;hÞ, where nðx; hÞ ¼ inffib 0 :

xi 0 hig. Here we regard inf q and yy as þy and 0, respectively. For

x A S, we see that 7n�1

i¼0
T�iRxi is nonempty and diamdð7n�1

i¼0
T�iRxiÞa

ð1=cÞyn diamdðMÞ by the choice of b. Therefore 7y
i¼0

T�iRxi consists of a

single point and we can define a map p : S ! M so that pðxÞ is the single point

in 7y
i¼0

T�iRxi . Moreover we have the following.

Lemma 2. (1) p is a Lipschitz continuous map from ðS; dyÞ to ðM; dÞ.
(2) 7y

j¼0
T�jð6q

i¼1
int RiÞ is dense in M.

(3) For any x A 7y
j¼0

T�jð6q

i¼1
int RiÞ, p�1fxg is a single point set.

(4) p is surjective.

(5) p � s ¼ T � p holds.

(6) The subshift ðS; sÞ of finite type is topological mixing. i.e. An0 > 0 for

some positive integer n0.

Proof. The assertion (1) is obvious from the fact that dðpx; phÞa
diamdð7nðx;hÞ�1

i¼0
T�iRxiÞa ð1=cÞynðx;hÞ diamdðMÞ holds. The assertions (2)–(5)

are a sort of exercises of general topology. To prove the assertion (6), we have

only to show that T is topological mixing. But this is a well known fact. For

example, by using the lifting of T to the universal covering space of M, we

can easily see that for any nonempty open set U HM, there exists an integer

n > 0 such that T nU ¼ M.

As a corollary we obtain the following lemma which is a modification of

Lemma 1 in [8] (see also [9] and [12]).
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Lemma 3. If T is an element in E1ðM;MÞ, then we obtain the following.

(1) Let MpðTÞ be the set of invariant probability measures each of which

is supported on a periodic point. Then MpðTÞ is dense in MðTÞ in the

weak � topology.

(2) Let Y be a proper closed subset of M. Then for any m A MðTÞ with

supp mHY, there exists a sequence mn A MðTÞ converging to m in

the weak � topology such that mn is supported on a periodic orbit and

supp mn V ð7y
i¼0

T�iY Þ ¼ q for each n.

Proof. Since the subshift ðS; sÞ of finite type constructed in Lemma 2

is topological mixing, it satisfies the specification property (see [6]). Conse-

quently so does T . Therefore the proofs of Lemma 1 and Lemma 2 for the

closed set A ¼ 7y
i¼0

T�iY in [12] do work. Thus we obtain (1) and (2).

Shub proved the conjugacy theorem of expanding maps in [13] via

Contraction Principle. His proof leads us to the following statement which

corresponds to Lemma 2 in [8].

Lemma 4. Let Tk be a sequence of elements in E1ðM;MÞ satisfying

the conditions: (i) there exist c > 0 and l > 1 independent of k such that

kDT n
k ðxÞvkT n

k
x b clnkvkx for any x A M, v A TxM and nonnegative integer n;

(ii) Tk converges to T A E1ðM;MÞ in the C 0 topology. Then for su‰ciently

large k, there exists a homeomorphism hk : M ! M such that hk � T ¼ Tk � hk,
and both hk and h�1

k converge to the identity idM in the C0 topology.

Proof. By virtue of Theorem ðaÞ in [13] and its proof, we see that any

two homotopic expanding endomorphisms T and S of a compact manifold,

there exists a unique homeomorphism h : M ! M such that h � T ¼ S � h.
On the other hand the condition (ii) of the lemma implies that there exists

an integer k0 such that Tk is homotopic to T for any kb k0. Therefore

we conclude that for any kb k0, there exists a unique homeomorphism

hk : M ! M such that hk � T ¼ Tk � hk. Thus it remains to verify that both

hk and h�1
k converge to the identity idM in the C 0 topology. To this end we

recall the strategy in [13].

We denote by p : ~MM ! M the universal covering space of M endowed

with the Riemannian metric which is the pull-back of the Riemannian metric

on M by the natural projection p. Let V be the set of continuous maps

F : ~MM ! ~MM which are lifting of continuous maps of M into itself such that

g � F ¼ F � g holds for any covering transformation g. We define a function

D : V � V ! R defined by DðF ;GÞ ¼ supx A ~MM dðpFx; pGxÞ, where d is the

distance function on M induced by the Riemannian metric. We easily see

that ðV ;DÞ is a complete metric space. Consider homotopic elements T ;S A
E1ðM;MÞ. We assume that S satisfies the condition (i) in the statement of
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the lemma. Let ~TT and ~SS be the liftings of T and S, respectively. We note

that the lifting of an expanding map on the universal covering space becomes

a di¤eomorphism. Since T and S are homotopic, we see that ~SS�1F ~TT A V

holds for any F A V . Therefore we can consider a mapping F : V ! V by

F 7! ~SS�1F ~TT . Then it is not hard to see that DðFnF ;FnGÞa c�1l�nDðF ;GÞ
for any F ;G A V and nb 0. Therefore Contraction Principle yields that there

exists a unique H A V with FH ¼ H. In fact, we can see that H is the lifting

of the desired homeomorphism h satisfying h � T ¼ S � h in the same way as in

the proof of Theorem 3 in [13]. Now we have

DðH; id ~MMÞaDðH;Fnðid ~MMÞÞ þDðFnðid ~MMÞ; id ~MMÞ

a c�1l�nDðH; id ~MMÞ þDð ~SS�n ~TT n; id ~MMÞ

a c�1l�nDðH; id ~MMÞ þ
Xn
k¼1

Dð ~SS�k ~TT k; ~SS�ðk�1Þ ~TT k�1Þ

¼ c�1l�nDðH; Id ~MMÞ þ
Xn�1

k¼0

DðFkð ~SS�1 ~TTÞ;Fk id ~MMÞ

a c�1l�nDðH; Id ~MMÞ þ l

cðl� 1ÞDð ~SS�1 ~TT ; id ~MMÞ:

Thus if we choose n satisfying c�1l�n < 1, we have DðH; id ~MMÞa
ðl=ðl� 1ÞÞðln=ðcln � 1ÞÞDð ~SS�1 ~TT ; id ~MMÞ. Consequently, we have d0ðh; idMÞa
ðl=ðl� 1ÞÞðln=ðcln � 1ÞÞd0ðS;TÞ, where d0 is the C0 metric defined by

d0ð f ; gÞ ¼ supx AM dð f ðxÞ; gðxÞÞ for f ; g A C0ðM;MÞ.
By virtue of the above argument, we see that d0ðhk; idMÞ ! 0 if

d0ðTk;TÞ ! 0. By the definition the metric d0, we also have d0ðh�1
k ; idMÞ ! 0.

Next we summarize the results corresponding to Lemma 3 and Lemma 4

in [8].

Lemma 5. Let Tk be a sequence of elements in E1ðM;MÞ satisfying the

conditions (i) and (ii) in Lemma 4. Then we have the following.

(1) Every m A MðTÞ is the weak � limit of a sequence of Borel probability

measures fmkg with mk A MðTkÞ for each k.

(2) Let fmkg be a sequence of Borel probability measures with mk A MðTkÞ
for each k. Then any weak � accumulation point of the sequence

belongs to MðTÞ.
(3) Let fmkg be a sequence of Borel probability measures with mk A MðTkÞ

for each k. If mk converges to m in the weak � topology, we have

lim sup
k!y

hðTk; mkÞa hðT ; mÞ:
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Proof. By virtue of Lemma 4, we can prove the assertions (1) and (2)

in the same way as the assertions (a) and (b) in Lemma 3 in [8].

If we verify that the entropy map MðTÞ C m 7! hðT ; mÞ A R is upper semi-

continuous for T A E1ðM;MÞ, we obtain the assertion (3) in the same way

as Lemma 4 in [8] by using Lemma 4. It remains to show the upper semi-

continuity of entropy map for T . Note that T is forward expansive, i.e. there

exists b > 0 such that if dðT nx;T nyÞ < b for any nb 0, then x ¼ y. Thus it

is easy to establish the upper semi-continuity of the entropy map in the same

way as the proof of Theorem 8.2 in [16].

Finally we need the following.

Lemma 6. If Tk is a sequence of elements in E1ðM;MÞ and converges to

T A E1ðM;MÞ in the C1 topology, then for su‰ciently large k, Tk satisfies the

conditions (i) and (ii) in Lemma 4. Moreover, any weak � accumulation point of

a sequence mk with mk A LðTkÞ belongs to LðTÞ.

Proof. We can easily see that the first assertion is true. Since JðTkÞ
converges JðTÞ uniformly on M, the second assertion follows from the

assertions (1) and (2) in Lemma 5 in the same way as Lemma 5 in [8].

3. Construction of an auxiliary perturbation along a periodic orbit

In this section we construct an appropriate perturbation of an given C1

map along its periodic point. Before giving them we need some definitions

and notation.

Let U and V be neighborhoods of the origin in N-dimensional Euclidean

space RN . Consider a C1 map F : U ! V which is locally di¤eomorphic

around each point of U and Fð0Þ ¼ 0. We denote by ðeiÞ the standard

orthonormal basis of RN with respect to the Euclidean metric. For our

convenience we write qFðxÞ for the matrix representation of the tangent

map DF ðxÞ with respect to the standard orthonormal basis ðeiÞ, i.e. the

usual Jacobian matrix of F . We assume that U and V are endowed with

Riemannian metrics gU and gV , respectively. Applying the Gram-Schmidt

orthonormalization to the standard basis ðeiÞ, we obtain matrix valued smooth

functions Pð�Þ : U ! GLðN;RÞ and Qð�Þ : V ! GLðN;RÞ such that aiðxÞ ¼PN
j¼1 Pð jiÞðxÞej and biðyÞ ¼

PN
j¼1 Qð jiÞðyÞej form orthonormal frames aðxÞ ¼

ðaiðxÞÞ and bðyÞ ¼ ðbiðyÞÞ of RN ¼ TxU and RN ¼ TyV with respect to the

metrics gU and gV , respectively. The matrix representation of DF ðxÞ : TxU !
TFðxÞV is given by QðFðxÞÞ�1qFðxÞPðxÞ. Now we define JðFÞ ¼ jdet DF j :
U ! R by JðF ÞðxÞ ¼ jdet QðF ðxÞÞ�1qFðxÞPðxÞj for each x A U . Then it is
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easy to see that JðF Þ is independent of the choice of orthonormal frames a

and b. We can prove the following.

Lemma 7. There exists a positive number C depending only on F such that

for any e (0 < e < 1) and g > 0, there exists d0 > 0 such that for any d with

0 < d < d0, we can find a C1 map Fd : U ! V satisfying the following properties

with GdðxÞ ¼ logðJðFdÞðxÞ=JðF ÞðxÞÞ.
(1) Fdð0Þ ¼ 0.

(2) supx AUkFdðxÞ � F ðxÞk < Cd, where k � k denotes the Euclidean norm

on RN.

(3) supx AUkqFdðxÞ � qF ðxÞkGL < Ce, where k � kGL denotes the operator

norm on GLðN;RÞ induced by the Euclidean norm on RN.

(4) FdðxÞ ¼ FðxÞ and GdðxÞ ¼ 0 if kxkb d.

(5) Gdð0Þ ¼ e

(6) supx AU GdðxÞ < gþ e.

Proof. Consider the functions

uðtÞ ¼ expð�1=tÞ if t > 0;

0 if ta 0

�
and vðtÞ ¼ tanh t:

For a; d > 0 small, we define a Cy map D : RN ! RN vanishing for x with

kxk > d by

DðxÞ ¼
D1ðxÞ

..

.

DNðxÞ

0
BB@

1
CCA¼ uðd2 � kxk2Þ

vðax1=uðd2ÞÞ
..
.

vðaxN=uðd2ÞÞ

0
BB@

1
CCA; ð3:1Þ

where the choice of a will be specified later. Observe that the ði; jÞ-th element

of the Jacobian matrix qDðxÞ is given as

qDi

qxj
ðxÞ ¼ �2xju

0ðd2 � kxk2Þvðaxi=uðd2ÞÞ

þ a
uðd2 � kxk2Þ

uðd2Þ
v 0ðaxj=uðd2ÞÞdðijÞ; ð3:2Þ

where dðijÞ is the Kronecker delta. Therefore, we easily see that

jDiðxÞja expð�1=d2Þ; and
qDi

qxj
ðxÞ

����
����a 2

d3
expð�1=d2Þ þ adðijÞ ð3:3Þ

if d2 a 1=2. Define Fd by

FdðxÞ ¼ FðxÞ þ qF ð0ÞDðxÞ: ð3:4Þ
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Then the Jacobian matrix qFd is given by

qFdðxÞ ¼ qFðxÞ þ qF ð0ÞqDðxÞ: ð3:5Þ

From the first inequality in (3.3), there exists d1 such that FdðUÞHV holds if

d < d1. Since Dð0Þ ¼ 0 by the definition (3.1), this yields the assertion (1).

Using the first inequality in (3.3) again, we can find C1 > 0 and d2 > 0

with d2 < d1 depending only on F , supx AUkFdðxÞ � FðxÞk < C1d holds for

d < d2. This yields the assertion (2). The assertion (4) is obvious since

DðxÞ ¼ 0 for x with kxkb d.

In order to verify the other assertions, we consider the matrix represen-

tation of DFdðxÞ with respect to the orthonormal frames a and b. We have

JðFdÞðxÞ ¼ jdetðQðFdðxÞÞ�1qF ðxÞPðxÞ þQðFdðxÞÞ�1qFð0ÞqDðxÞPðxÞÞj: ð3:6Þ

Therefore we obtain

JðFdÞð0Þ ¼ jdetðQð0Þ�1
qF ð0ÞPð0Þ þQð0Þ�1

qFð0ÞqDð0ÞPð0ÞÞj

¼ jdetðQð0Þ�1qF ð0ÞPð0ÞÞj jdetðIN þ qDð0ÞÞÞj

¼ JðF Þð0Þð1þ aÞN : ð3:7Þ

Note that we have used the fact qDð0Þ ¼ aIN , where IN is the identity matrix.

Now we are in a position to specify the choice of a. If we put a ¼
expðe=NÞ � 1, we have Gdð0Þ ¼ e. Then we can choose a number C2 bC1

depending only on F and a positive number d3 depending only on F and e

such that supx AUkqFdðxÞ � qFðxÞkGL < C2e holds for any d < d3. Thus the

assertion (3) is valid.

It remains to show the last assertion (6). By virtue of the assertion (4), we

have only to evaluate GdðxÞ for x with kxka d. We will use an elementary

inequality

det L2

det L1

����
����a expðNkL�1

1 kGLkL2 � L1kGLÞ ð3:8Þ

for L1;L2 A GLðN;RÞ. This is verified as follows. From L�1
1 L2 ¼

IN þ L�1
1 ðL2 � L1Þ, we have kL�1

1 L2kGL a 1þ kL�1
1 ðL2 � L1ÞkGL. Since it is

easy to see that jaja kAkGL holds for any matrix A A GLðN;RÞ and for any

eigenvalue a of A, we obtain

jdet L2=det L1j ¼ jdet L�1
1 L2ja kL�1

1 L2kN
GL a ð1þ kL�1

1 ðL2 � L1ÞkGLÞ
N :

Now the inequality (3.8) is an easy consequence of the inequality 1þ la el

for lb 0.
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First using the equation (3.6) we have

JðFdÞðxÞ ¼ JðFÞðxÞ det QðFðxÞÞ
det QðFdðxÞÞ

����
����

� detðIN þ qFðxÞ�1qF ð0ÞqDðxÞÞ
detðIN þ qDðxÞÞ

�����
����� jdetðIN þ qDðxÞÞj: ð3:9Þ

Since Q : V ! GLðN;RÞ is Cy and kxka d, we see that

kQðFdðxÞÞ�1kGLkQðFdðxÞÞ �QðFðxÞÞkGL < C3d ð3:10Þ

for a positive constant C3 depending only on F . In addition, it is not hard to

see that

kðIN þ qDðxÞÞ�1kGLkðqFðxÞ
�1
qFð0Þ � INÞqDðxÞkGL

< C4 sup
x:kxkad

kqFðxÞ � qFð0ÞkGL ð3:11Þ

for a positive constant C4 depending only on F . Next we evaluate

jdetðIN þ qDðxÞÞj as follows. By virtue of the second inequality in (3.3), its

ði; jÞ-th element satisfies jðIN þ qDðxÞÞðijÞj < dðijÞ expðe=NÞ þ C5d, where C5 is

a large constant depending only on F . Thus by using the definition of the

determinant, we have

jdetðIN þ qDðxÞÞj

< ðe e=N þ C5dÞN þ
XN�1

j¼0

N!

ðN � jÞ! j! ðe
e=N þ C5dÞ jðC5dÞN�jðN � jÞ!

< e eð1þ C6dÞ ð3:12Þ

for large C6 depending only on F . Combining (3.8), (3.9), (3.10), (3.11) and

(3.12), we obtain

JðFdÞðxÞ
JðF ÞðxÞ < ð1þ C6dÞ exp C3dþ C4 sup

x:kxkad

kqF ðxÞ � qFð0ÞkGL þ e

 !
:

This yields

GdðxÞ < ðC3 þ C6Þdþ C4 sup
x:kxkad

kqFðxÞ � qF ð0ÞkGL þ e:

Hence, putting C ¼ C2, we can find a positive number d0 < d3 such that all the

assertions in the lemma are valid.

The following theorem is the main result in this section.
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Theorem 3. Let T be an element in C1ðM;MÞ such that JðTÞðxÞ0 0

holds for every point x A M. Assume that T has a periodic point x0 with least

period p. Then for any e with 0 < e < 1 and g > 0, there exists a positive

number d0 > 0 such that for each d with 0 < d < d0, we can find an open

neighborhood U i
d of T ix0 for each i ¼ 0; 1; . . . ; p� 1. and an element Td of

C1ðM;MÞ satisfying the following.

(1) T ix0 ¼ T i
dx0 for each i ¼ 0; 1; . . . ; p� 1.

(2) U i
d VU

j
d ¼ q if i0 j.

(3) Tx ¼ Tdx for any x A Mn6p�1

i¼0
U i

d .

(4) If 0 < d 0 < d, then we have U i
d 0
HU i

d .

(5) For any charts ðU ; jÞ, ðV ;cÞ with TU HV and any compact set

KHU, TdU HV we have supx AKkc � TdðxÞ � c � TðxÞk < Cj;c;Kd

and supx AKkqðc �Td � j�1ÞðjðxÞÞ�qðc �T � j�1ÞðjðxÞÞkGL <Cj;c;Ke,

where Cj;c;K is a positive constant depending only on T, K, j, and c.

(6) Define Gd : M ! R by GdðxÞ ¼ logðJðTdÞðxÞ=JðTÞðxÞÞ. Then we have

GdðT i
dx0Þ ¼ e for each i ¼ 0; 1; . . . ; p� 1.

(7) supx AM GdðxÞ < gþ e holds.

In particular, we can choose fU i
dg0<d<d0

so that diamd U i
d < d and

7
d:0<d<d0

U i
d ¼ fT ix0g for each i ¼ 0; 1; . . . ; p� 1, where diamdðAÞ is the di-

ameter of AHM with respect to the distance d of M as before.

Proof. For each i ¼ 0; 1; . . . ; p� 1, choose a chart ðVi; jiÞ around

T ix0 and an open set Ui such that T ix0 A Ui HUi HVi, TUi HViþ1, and

jiðT ix0Þ ¼ 0, where we regard Up and ðVp; jpÞ as U0 and ðV0; j0Þ respectively.

Moreover we assume that Vi’s are mutually disjoint. Consider Ti; iþ1 ¼
jiþ1 � T � j�1

i : jiðUiÞ ! jiþ1ðViþ1Þ. Each jiðViÞ is endowed with the Rie-

mannian metric gi which is the push-forward of the Riemannian metric of

the manifold M by ji. Obviously we can apply Lemma 7 to the case when

U ¼ jiðUiÞ, V ¼ jiþ1ðViþ1Þ, F ¼ Ti:iþ1, gU ¼ gi and gV ¼ giþ1. Note that

there exist a positive constant cM depending only on M and d0 > 0 such

that 0 < d < d0 yields that BcMdð0ÞH jiUi and diamdðj�1
i ðBcMdð0ÞÞ < d for each

i ¼ 0; 1; . . . ; p� 1, where Brð0Þ ¼ fx A RN : kxk < rg. We denote by Ti; iþ1; d

the map corresponding to Fd. Define a map Ti; d : Ui ! Viþ1 by Ti; d ¼
j�1
iþ1 � Ti; iþ1; d � ji.

Now put U i
d ¼ j�1

i ðBcMdð0ÞÞ and define a map Td by

Tdx ¼
Ti; dx if x A Ui for 0a ia p� 1;

Tx if x A Mn6p�1

i¼0
Ui:

(

We just verify that U i
d ’s and Td satisfy the assertions in the theorem. The

assertions (1)–(4) are obvious from the definition of U i
d ’s and Td. Td is of class
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C1 on Ui and coincides T on UinU i
d by definition. Therefore Td is of C1 on

M. The assertion (5) of the theorem immediately follows from the assertions

(2), (3), and (4) in Lemma 7. By virtue of the assertions (5) and (6) in Lemma 7,

we easily see the validity of the other assertions concerned with Gd if we notice

that JðTÞðxÞ ¼ JðTi; iþ1ÞðjiðxÞÞ and JðTdÞðxÞ ¼ JðTi; iþ1; dÞðjiðxÞÞ by definition.

From the definition of U i
d above, the last assertion of the theorem is

clearly valid.

As a corollary we obtain a modification of Lemma 7 in [8] which plays a

crucial role in our argument.

Corollary 1. Let T be an element in E1ðM;MÞ and let x0 be a periodic

point of T with least period p. Then there exists e0 > 0 such that for any e with

0 < e < e0 and g > 0, there exists a positive number d0 > 0 such that for each

d with 0 < d < d0, we can find an open neighborhood U i
d of T ix0 for each

i ¼ 0; 1; . . . ; p� 1 and an element Td of E1ðM;MÞ satisfying (1)–(7) in the

statement of Theorem 3. In particular, we can choose fU i
dg0<d<d0

so that

diamd U i
d < d and 7

d:0<d<d0
U i

d ¼ fT ix0g for each i ¼ 0; 1; . . . ; p� 1.

Proof. Let us consider the case when the map T in Theorem 3 is an

element in E1ðM;MÞ. Note that if the map Td obtained in Theorem 3 could

be an element in E1ðM;MÞ for any e < 1, there would be nothing to be

proved. On the other hand the second inequality in the assertion (5) of

Theorem 3 guarantees that there exists e0 > 0 depending only on T such that

if e < e0, then Td is expanding.

4. Proof of theorems

As we have constructed the perturbation in the previous section, the

arguments in this section are almost the same as those in Section 3 and

Section 4 in [8].

It is well known that one can define a distance function r on the set

MðMÞ of Borel probability measures on M such that it induces the weak �
topology on MðMÞ and satisfies the condition

rðð1� lÞmþ ln; mÞa l ð4:1Þ

for every m; n A MðMÞ and l A ð0; 1Þ. For each k > 0 we consider the fol-

lowing sets.

Rk ¼ fT A E1ðM;MÞ : diamrðLðTÞÞ < kg

Sk ¼ T A E1ðM;MÞ : sup
m ALðTÞ

hðT ; mÞ < khtopðTÞ
( )

;
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where htopðTÞ denotes the topological entropy of T . We need the following to

show that the properties (1) and (2) in Theorem 1 is generic.

Proposition 1. For each k > 0, both Rk and Sk are open and dense

subsets of E1ðM;MÞ in the C1 topology.

Proof. First we show that E1ðM;MÞnRk and E1ðM;MÞnSk are closed

in E1ðM;MÞ in the C 1 topology. Assume that Tk A E1ðM;MÞnRk converges

to T A E1ðM;MÞ in the C1 topology. Since LðTkÞ is compact, we can find

mk; nk A LðTkÞ satisfying rðmk; nkÞb k. By Lemma 6, their weak � accumu-

lation points are in LðTÞ. Choosing subsequences if necessary, we may

assume that there exist m; n A MðMÞ such that rðmk; mÞ, rðnk; nÞ converge to

0. Thus we have diamrðLðTÞÞb k. Hence we have T A E1ðM;MÞnRk.

Next assume that Tk A E1ðM;MÞnSk converges to T A E1ðM;MÞ in the

C1 topology. By Shub’s theorem in [13], we may assume each Tk is topo-

logically conjugate to T . Consequently htopðTkÞ ¼ htopðTÞ. Since LðTkÞ is

compact and the entropy map for an expanding map is upper semi-continuous

(see Proof of Lemma 5 (3)), we can find nk such that hðTk; nkÞ ¼
supm ALðTkÞ hðTk; mÞ. Again choosing a subsequence if necessary, we may

assume that rðnk; nÞ converges to 0. Lemma 6 yields n A LðTÞ. Moreover,

by Lemma 5 (3), we have

hðT ; nÞb lim sup
k!y

hðTk; nkÞb khtopðTÞ:

Hence we have T A E1ðM;MÞnSk.

Now we have only to prove Rk VSk is dense in E1ðM;MÞ. Choose

any T A E1ðM;MÞ and e > 0 with 0 < e < e0, where, e0 > 0 is the positive

number appearing in Corollary 1 depending only on T . By virtue of Lemma

3, there exists a periodic point x0 with least period p such that the measure

m0 ¼ ð1=pÞ
Pp�1

i¼0 dT ix0 satisfies

ð
M

log JðTÞdm0 > lðTÞ � ke

8
: ð4:2Þ

Let Td be the perturbation obtained by applying Corollary 1 to T and x0 with

g ¼ ke=8. Note that since e < e0, Td A E1ðM;MÞ. Then (6) in Theorem 3 and

the inequality (4.2) yields that

lðTdÞb
ð
M

log JðTdÞdm0 ¼
ð
M

log JðTÞdm0 þ
ð
M

Gd dm0

> lðTÞ þ 1� k

8

� �
e: ð4:3Þ
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Take any strictly decreasing sequence dk a d0 of positive numbers converging to

0, where d0 is as in the statement in Theorem 3. For the sake of simplicity, we

write Tdk and Gdk as Tk and Gk, respectively. Choose nk A LðTkÞ. The first

inequality in Theorem 3 (5), Tk converges to T in the C0 topology. Therefore,

by taking a subsequence if necessary, we may assume that nk converges to

n A MðTÞ. Thus we haveð
M

Gk dnk ¼
ð
M

log JðTkÞdnk �
ð
M

log JðTÞdnk

¼ lðTkÞ �
ð
M

log JðTÞdnk > lðTkÞ � lðTÞ � ke

8
ð4:4Þ

for any k su‰ciently large. Combining (4.3) with (4.4) we haveð
M

Gk dnk > 1� k

4

� �
e: ð4:5Þ

Recalling the open sets U i
d in Theorem 3, we see that Uk ¼ 6p�1

i¼0
U i

dk
satisfies

that Ukþ1 HUk and 7y
k¼1

Uk ¼ OTðx0Þ, where OTðx0Þ ¼ fx0;Tx0; . . . ;T p�1x0g.
Now we evaluate nkðUkÞ as follows.

nkðUkÞb 1þ k

8

� ��1

e�1

ð
Uk

Gk dnk ¼ 1þ k

8

� ��1

e�1

ð
M

Gk dnk

> 1þ k

8

� ��1

1� k

4

� �
> 1� 3k

8
: ð4:6Þ

In the above, the first inequality follows from (7) in Theorem 3 with g ¼ ke=8,

the equality in the first line follows from (3) in Theorem 3, and the first

inequality in the second line follows from (4.5). Using the well known fact that

nk converges to n in the weak � topology if and only if lim supk!y nkðF Þa
nðFÞ holds for any closed set F , we can easily see from (4.6) that nðUkÞb
1� ð3=8Þk for each k. Thus we obtain nðOT ðx0ÞÞb 1� ð3=8Þk. Hence we

can write n as n ¼ ð1� 3k=8Þm0 þ ð3k=8Þn̂n for some n̂n A MðTÞ. From the

condition (4.1), this yields

lim
k!y

rðnk; m0Þ ¼ rðn; m0Þa
3k

8
: ð4:7Þ

In addition, by Lemma 5 (3), we have

lim sup
k!y

hðTk; nkÞa hðT ; nÞ ¼ 1� 3k

8

� �
hðT ; m0Þ þ

3k

8
hðT ; n̂nÞ

a
3k

8
htopðTÞ: ð4:8Þ
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Hence we have shown that the inequalities (4.7) and (4.8) hold for any

accumulation point as d ! 0 of the sets LðTdÞ. This implies that for any

e with ð0 < e < e0Þ, there exists d1 such that Td A Rk VSk whenever d < d1.

Since the second inequality in (5) in Theorem 3 holds, we can choose e so

that Td belongs to a given neighborhood of T in the C1 topology.

To prove that the property (3) in Theorem 1 is generic, we show the

following.

Proposition 2. For a nonempty closed proper subset Y of M, consider the

set

M 1ðY Þ ¼ fT A E1ðM;MÞ : supp mHY holds for some m A LðTÞg:

Then M 1ðY Þ is a closed and nowhere dense subset of E1ðM;MÞ in the C1

topology.

Proof. First we show that M 1ðY Þ is closed in E1ðM;MÞ. Assume that

Tk A M 1ðYÞ converges to T A E1ðM;MÞ in the C1 topology. Note that the

sequence Tk satisfies the conditions (i) and (ii) in Lemma 4. Let mk A LðTkÞ
satisfy supp mk HY and let m be an accumulation point of them. We may

assume that mk converges to m in the weak � topology. From Lemma 6 m

turns out to be an element in LðTÞ. Moreover, since Y is closed, we have

mðYÞb lim supk!y mkðYÞ ¼ 1. Consequently we see mðY Þ ¼ 1 and M 1ðY Þ is

closed.

Next we show that M 1ðY Þ is nowhere dense in E1ðM;MÞ. If M 1ðYÞ is

not empty, take any T A M 1ðY Þ and Yy ¼ 7y
j¼0

T�jY . Choose any e with

0 < e < e0, where e0 is the same as in Corollary 1 as before. Note that if

m A MðTÞ satisfies mðY Þ ¼ 1, we also have mðYyÞ ¼ 1. By Lemma 3, we can

find a periodic point x0 of T with least period p satisfying Yy VOTðx0Þ ¼ q
and ð

M

log JðTÞdm0 > lðTÞ � e; ð4:9Þ

where m0 denotes the T-invariant probability measure supported on OTðx0Þ as

before.

We can find a positive integer N0 such that YN0
¼ 7N0

j¼0
T�jY satisfies

YN0
VOT ðx0Þ ¼ q. For each k > 0 consider the set

YN0;k ¼ 6
S AE1ðM;MÞ:d0ðS;TÞak

7
N0

j¼0

S�jY ;

where d0ðS;TÞ is the usual C 0-metric defined by d0ðS;TÞ ¼ supx AM dðSx;TxÞ.
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It is not hard to see that 7
k>0

YN0;k ¼ YN0
. Now applying Theorem 3 to T

and x0 with g ¼ 1, we construct C1 map Td. As stated in Corollary 1, there

exists e0 > 0 depending only on T such that Td is expanding for any d

su‰ciently small. Note that by virtue of the first inequality in (5) in Theorem

3, there exists CT > 0 depending only on T such that d0ðTd;TÞ < CTd.

Choose d > 0 so that

inf
y AYN0 ;CT d

inf
0aiap�1

dðT ix0; yÞ > d:

Since the diameter of each U i
d in Theorem 3 is less than d, the assertion (3) in

Theorem 3 yields that T ¼ Td on the set YN0;CT d. Consequently T ¼ Td on the

set YN0;CT d and OTðx0Þ is also a periodic orbit of Td by Theorem 3 (1). Note

that if m A MðTdÞ satisfies mðYÞ ¼ 1, we have mðYN0;CT dÞ ¼ 1. In particular,

for a Borel probability measure with mðYN0;CT dÞ ¼ 1, m is T-invariant if and

only if it is Td-invariant.

We show that m A MðTdÞ with mðY Þ ¼ 1 cannot be an element of LðTdÞ.
Assume that m A MðTdÞ satisfies mðYÞ ¼ 1. Then we haveð

M

log JðTdÞdm ¼
ð
M

log JðTÞdma lðTÞ ð4:10Þ

since T ¼ Td on YN0;CT d. On the other hand, the inequality (4.9) and Theorem

3 (6) yields

lðTÞ <
ð
M

log JðTÞdm0 þ e ¼
ð
M

log JðTdÞdm0:

Combining this with (4.10), we arrive atð
M

log JðTdÞdm ¼
ð
M

log JðTÞdma lðTÞ <
ð
M

log JðTdÞdm0 a lðTdÞ:

Choose any T in M 1ðY Þ and consider any neighborhood of T in the C1

topology. If e > 0 and d > 0 are small enough, the map Td constructed in

Corollary 1 can be found in the neighborhood since the assertion (5) in

Theorem 3 holds. The argument above implies that if d > 0 is su‰ciently

small, we see that Td B M 1ðY Þ. Hence M 1ðY Þ has no interior points.

Proof of Theorem 1. We can easily verify that the set of T A E1ðM;MÞ
satisfying the property (1) and the set of T A E1ðM;MÞ satisfying the property

(2) are given by 7y
n¼1

R1=n and 7y
n¼1

S1=n, respectively. Thus, properties (1)

and (2) are generic by Proposition 1.

Since M is a compact metric space, we can find a countable family fYng
of closed proper subsets of M such that any closed proper subset Y of M turns
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out to be a subset of Yn for some n. Indeed, let fBng be a countable open

base of M consisting of open balls. We may assume that the radius of each

Bn is so small that Bn is a proper subset of M. Putting Yn ¼ MnBn, we obtain

the desired family of closed proper subsets of M. We easily see that the set

T A E1ðM;MÞ satisfying the property (3) is given by 7y
n¼1

ðE1ðM;MÞnM 1ðYnÞÞ.
Since each M 1ðYnÞ is a closed and nowhere dense subset of E1ðM;MÞ by

Proposition 2, we arrive at the desired result. r

Finally we prove Theorem 2. To this end we consider the symbolic

dynamics ðS; sÞ in Lemma 2 and a function V : S ! R which is dy-Lipschitz

continuous. Denote by MðsÞ the set of s-invariant Borel probability measures

on S. Put

lðs;V ; nÞ ¼
ð
S

V dn;

lðs;VÞ ¼ sup

ð
S

V dn : n A MðsÞ
� �

and denote by Lðs;VÞ the set of measures in MðsÞ satisfying lðs;VÞ ¼
lðs;V ; nÞ. Since MðsÞ is compact with respect to the weak � topology, the

continuity of V yields that Lðs;VÞ is nonempty. We need the following fact

that can be find in Savchenko [11]. We state it with proof for the reader’s

convenience.

Lemma 8. There exists a unique nonnegative dy-Lipschitz continuous func-

tion j : S ! R satisfying the following properties.

(1) V a j � s� jþ lðs;VÞ on S.

(2) For any nonnegative function c : S ! R satisfying V ac � s� cþ
lðs;VÞ on S, we have jac on S.

(3) For n A Lðs;VÞ, we have V ¼ j � T � jþ lðs;VÞ on supp n.

Proof. We just follow the same lines as the proof of Proposition 11 in

[5]. We may assume that lðs;VÞ ¼ 0. Define j by

jðxÞ ¼ supfSnVðhÞ : nb 0 and snh ¼ xg;

where SnVðhÞ ¼
Pn�1

j¼0 Vðs jhÞ for nb 1 and S0 ¼ 0. First we show that

0a jðxÞ < þy for each x A S. Since S0V ¼ 0, we have only to show that

the set fSnVðhÞ : nb 0 and snh ¼ xg is bounded from above. From Lemma

2 (6), There exists an integer n0 > 0 such that for any h A S and nb 0 we

have snþn0ðZðh½0; n� 1�ÞÞ ¼ S, where h½0; n� 1� is the word h0h1 . . . hn�1 and

Zðh½0; n� 1�Þ is the cylinder set fz : zj ¼ hj for 0a ja n� 1g. Thus for each
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h with snþn0h ¼ x, we can find a fixed point h0 of snþn0 in Zðh½0; n� 1�Þ. Note

that lðs;VÞ ¼ 0 yields Snþn0Vðh0Þa 0. On the other hand we have

jSnþn0VðhÞ � Snþn0Vðh0Þja ½V �y
Xnþn0�1

j¼0

dyðs jh; s jh0Þ

a
1

1� y
þ n0

� �
½V �y;

where ½V �y is the Lipschitz constant of V . Thus we easily see that jðxÞa
ð1=ð1� yÞ þ n0Þ½V �y.

Next we show that j is dy-Lipschitz continuous. Note that if x and h

in S satisfy x0 ¼ h0, then z0z1 . . . zn�1 � x A S yields z0z1 . . . zn�1 � h A S for

a word z0z1 . . . zk�1, where w � w 0 denotes the concatenation of words w

and w 0. Therefore, we have jSnVðz0z1 . . . zn�1 � xÞ � SnVðz0z1 . . . zn�1 � hÞja
ð1=ð1� yÞÞ½V �ydyðx; hÞ. Thus j is continuous. Moreover, we see easily that

jjðxÞ � jðhÞjamax max
z AS

jjðzÞj; ½V �y
1� y

� �
dyðx; hÞ

holds for any x; h A S. By definition the inequality V a j � s� j is valid on

S. Now proof of (1) is complete.

Next, let c be a nonnegative function satisfying V ac � s� c on S.

Then for any pair ðx; hÞ A S � S with snh ¼ x, we have cðxÞbSnVðhÞ þ cðhÞ.
This clearly implies that the assertion (2) is valid.

Finally, let n A Lðs;VÞ. Combining the fact that
Ð
S
ðj � s� j� VÞdn ¼ 0

with the assertion (1), we obtain j � s� j� V ¼ 0 n-a.e. The continuity of V

and j implies that this equality holds everywhere on supp n.

Proof of Theorem 2. Put V ¼ log JðTÞ � p. Note that since T is of

class C 2, it is easy to see that V is a dy-Lipschitz continuous function on S.

First we verify that p�ðLðs;VÞÞ ¼ LðTÞ as follows, where p� is the push-

forward of p defined by ð
M

f dp�n ¼
ð
S

f � p dn

for f A CðMÞ. Note that p� is surjective since so is p. Moreover, we have

p�ðMðsÞÞ ¼ MðTÞ by Lemma 2 (5) (see, for example, Proposition 3.2 and

Proposition 3.11 in [6]). Thus for any m A LðTÞ, there exists n A MðsÞ such

that p�n ¼ m and lðTÞ ¼ lðs;V ; nÞ. Clearly we have

lðTÞ ¼
ð
M

log JðTÞdm ¼
ð
S

V dna lðs;VÞ: ð4:11Þ
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On the other hand, for any n 0 A MðsÞ, we haveð
S

V dn 0 ¼
ð
M

log JðTÞdp�n 0 a lðTÞ:

Thus we obtain lðs;VÞa lðTÞ. Combining this with (4.11), we conclude thatð
S

V dn ¼ lðs;VÞ ¼ lðTÞ:

Next we show that if there exists an element in LðTÞ with support M,

then MðTÞ coincides LðTÞ, namely, lðTÞ ¼
Ð
M

log JðTÞdm holds for any

m A MðTÞ. Let m be an element in LðTÞ with support M. Then from the

argument above, we find n A Lðs;VÞ such that p�n ¼ m. We can show that

supp n ¼ S. Indeed, choose any x A S, then we see that 7n�1

k¼0
T�j int Rxj 0q

for any positive integer n since the Markov partition satisfies (3), (4), and (5)

in Lemma 1. Therefore Zðx½0; n� 1�ÞI p�1ð7n�1

j¼0
T�j int Rxj Þ holds. Thus

we have nðZðx½0; n� 1�ÞÞb nðp�1ð7n�1

j¼0
T�j int Rxj ÞÞ > 0 for all nb 0. This

yields supp n ¼ S. Now by virtue of Lemma 8, there exists a dy-Lipschitz

continuous function j : S ! R satisfying V ¼ j � s� jþ lðs;VÞ on S. This

implies that lðs;VÞ ¼
Ð
S
V dn holds for any n A MðsÞ. Consequently, we have

lðTÞ ¼
Ð
M

log JðTÞdm for any m A MðTÞ.
For any neighborhood of T in the Cr topology, it is not hard to construct

an element S A ErðM;MÞ such that there exists a fixed point x0 and a periodic

point y0 with least period pb 2 such that log JðSÞðx0Þ0 ð1=pÞ log JðSpÞðy0Þ.
Thus the set FrðM;MÞ of the maps T such that LðTÞ ¼ MðTÞ is nowhere

dense. In addition clearly it is closed. Therefore we arrive at the desired

result. r
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