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Abstract. This paper establishes some existence and nonexistence results of self-

similar radial symmetric solutions to some class of strongly coupled reaction-di¤usion

systems with cross-di¤usion. The considered class of systems allows to reduce the prob-

lem to a single equation with exponential source terms. Using the famous Mountain

Pass Theorem and some smallness conditions on the system parameters it is possible

to generalize wellknown results on self-similar radial solutions for a related problem

that have been established by Y. Mizutani, N. Muramoto and K. Yoshida in 1999.

As an application of the results derived in the present paper it is possible to con-

clude the existence and nonexistence of self-similar radial solutions for multi-species

chemotaxis-model in the conflict-free setting and in the presence of a conflict of

interests.

1. Introduction

The purpose of the present paper is to establish some existence and

nonexistence results of positive self-similar radial solutions to a class of strongly

coupled reaction-di¤usion systems with cross-di¤usion of the following type:

ðuiÞt ¼ ‘ð‘ui �Yiui‘vÞ; in R2 � ft > 0g
ðwjÞt ¼ ‘ð‘wj þ X jwj‘vÞ; in R2 � ft > 0g

evt ¼ Dvþ
PN
k¼1

ake
xkv
Qn
i¼1

ðuiÞbi; k
Qm
j¼1

ðwjÞdj; k ; in R2 � ft > 0g

9>>>>=
>>>>;

ð1:1Þ

where i A f1; . . . ng, j A f1; . . . ;mg, n A N, m A N0 and Nb 1. (By m ¼ 0 we

mean that there is no equation of the type given in the second line of the

previous system.) Furthermore, we assume that the constants Yi, X j > 0,
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ak > 0 and xk; bi;k; dj;k A R. We see that the mass for all ui and wj is conserved

and therefore, ð
R2

uiðx; tÞdx ¼
ð
R2

uiðx; 0Þdx < y

and ð
R2

wjðx; tÞdx ¼
ð
R2

wjðx; 0Þdx < y for all t > 0

hold. As a restriction we are seeking for solutions satisfying that

vðx; tÞ > 0 and

ð
R2

vðx; tÞ < y for all t > 0:

Problems of this kind have several applications in the sciences. For example,

multi-species chemotaxis models as they have been studied and analyzed in

[6, 10, 11, 20] also belong to this class.

Assuming that

uiðx; tÞ ¼
1

t
ji

jxjffiffi
t

p
� �

; wjðx; tÞ ¼
1

t
oj

jxjffiffi
t

p
� �

and vðx; tÞ ¼ c
jxjffiffi
t

p
� �

and introducing the new variable r ¼ jxj=
ffiffi
t

p
, we see that our system is trans-

formed into

ðj 0
i �Yijic

0Þ 0 þ 1
r
ðj 0

i �Yijic
0Þ þ r

2 j
0
i þ ji ¼ 0

ðo 0
j þ X jojc

0Þ 0 þ 1
r
ðo 0

j þ X jojc
0Þ þ r

2o
0
j þ oj ¼ 0

c 00 þ 1
r
c 0 þ er

2 c
0 þ

PN
k¼1

ake
xkc
Qn
i¼1

ðjiÞ
bi; k
Qm
j¼1

ðojÞdj; k ¼ 0

j 0
i ð0Þ ¼ o 0

j ð0Þ ¼ c 0ð0Þ ¼ 0

9>>>>>>=
>>>>>>;
: ð1:2Þ

However, for each i and j one can solve the equations for ji and oj in

dependence of c and, therefore, we see that

jiðrÞ ¼ cie
�r2=4eYicðrÞ and ojðrÞ ¼ dje

�r2=4e�X jcðrÞ

with

ci ¼ jið0Þe�Yicð0Þ > 0 and dj ¼ ojð0ÞeXjcð0Þ > 0:

This allows us to reduce the problem to a single equation for the function c.

The new problem for the unknown function c is now given by:
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c 00 þ 1

r
þ er

2

� �
c 0 þ

Xz1
l¼1

mle
�zl r

2=4ewlc þ
Xz2
h¼1

lhe
�Lhr

2=4e�nhc ¼ 0 ð1:3Þ

c 0ð0Þ ¼ 0 ð1:4Þðy
0

rcðrÞdr < y; ð1:5Þ

under the assumption that

xk þ
Xn
i¼1

bi;kYi �
Xm
j¼1

di;kX i 0 0 for all k A f1; . . . ;Ng

and where we used for z1 þ z2 ¼ N the notations,

zk :¼
Xn
i¼1

bi;k þ
Xm
j¼1

di;k and

mk :¼ ak
Yn
i¼1

ðciÞbi; k
Ym
j¼1

ðdjÞdj; k ; for those z1 indices k; for that

wk :¼ xk þ
Xn
i¼1

bi;kYi �
Xm
j¼1

di;kX i > 0

and

Lk :¼
Xn
i¼1

bi;k þ
Xm
j¼1

di;k and

lk :¼ ak
Yn
i¼1

ðciÞbi; k
Ym
j¼1

ðdjÞdj; k for those z2 indices k; for that

�nk :¼ xk þ
Xn
i¼1

bi;kYi �
Xm
j¼1

di;kX i < 0:

Hypothesis 1.1. Throughout the present paper we will make the following

two assumptions:

(1) There is at least one k such that mk 0 0.

(2) For simplicity, let us assume that zk ¼ 1 ¼ Lk for all indices k.

Remark 1. It seems that Assumption (2) of Hyphesis 1.1 can easily be

relaxed to some more general conditions on zk and Lk. There will be some

additional remarks on this point in the closing section of the present paper.
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To establish our existence results we use some previous results by Y. Mizutani,

N. Muramoto and K. Yoshida [13]. In their paper [13] they proved similar

results on the existence and nonexistence of self-similar radial symmetric

solutions for the problem

ut ¼ ‘ð‘u� u‘vÞ; in R2 � ft > 0g
evt ¼ Dvþ au; in R2 � ft > 0g

)
: ð1:6Þ

Looking for a self-similar radially symmetric solution uðx; tÞ ¼ jðjxj=
ffiffi
t

p
Þ=t ¼

jðrÞ=t and vðx; tÞ ¼ cðjxj=
ffiffi
t

p
Þ ¼ cðrÞ this leads them to the following system

ðj 0 � wjc 0Þ 0 þ 1
r
ðj 0 � cjc 0Þ þ r

2 j
0 þ j ¼ 0

c 00 þ 1
r
c 0 þ er

2 c
0 þ aj ¼ 0

j 0ð0Þ ¼ c 0ð0Þ ¼ 0;

9>=
>; ð1:7Þ

resp. to the single equation

c 00 þ 1

r
þ er

2

� �
c 0 þ me�r2=4ec ¼ 0 ð1:8Þ

c 0ð0Þ ¼ 0 ð1:9Þðy
0

rcðrÞdr < y: ð1:10Þ

Therefore, the results and proofs in the present paper will naturally and closely

follow the lines of argumentation in [13] and we generalize the results given

there to a more general class of systems. Furthermore, we will use the nota-

tions introduced and used in [13] to make the comparison as simple and

transparent as possible. Additionally, throughout the text we will always

allude to the corresponding results in [13].

However, at several points the arguments by Y. Mizutani, N. Muramoto

and K. Yoshida cannot be adopted and, therefore, some modifications are

needed at some places. This is true especially in the case when mb 1 and

when there exist at least one lk 0 0. This case may correspond to cross-

di¤usion models describing chemotactic motion in the presence of a conflict

of interests. For those kind of problems the author of the present paper is

not aware of any existence or nonexistence results like those presented here.

Therefore, the presented existence results seem to be completely new.

2. Existence of a mountain pass solution for a related Dirichlet problem

Before we formulate our results for the whole space we will look for

positive radial solutions of a related Dirichlet problem on a disk at first.

These solutions will then be used to construct solutions of (1.3)–(1.5) on the
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whole space R2. To simplify notation we will set BR :¼ fx A R2 j jxj < Rg and

look at the following Dirichlet problem:

‘ðeejxj
2=4‘vÞ þ

Pz1
l¼1

mle
wl v þ

Pz2
h¼1

lhe
�nhv

� �
eðe�1Þjxj2=4 ¼ 0 in BR

v ¼ 0 on qBR:

9>=
>; ð2:1Þ

To establish the existence of a positive radially symmetric solution of this

problem, we will (as it has also been done in [13]) make use of the famous

Mountain Pass Theorem by A. Ambrosetti and P. Rabinowitz [2]. For the

reader’s convenience we recall the definition of a Palais-Smale sequence, the

Palais-Smale condition and the formulation of the Mountain Pass Theorem at

first.

Definition 1 (Palais-Smale sequence (compare for example [19])). Let X

be a Banach space and J A C1ðX;RÞ. We say that ðxnÞn AN HX is a Palais-

Smale sequence for J if

jJðxnÞja c for some c; ð2:2Þ

uniformly in n, while

J 0ðxnÞ ! 0 in X 0 as n ! y: ð2:3Þ

Definition 2 (Palais-Smale condition (compare for example [19])). Let X

be a Banach space and J A C1ðX;RÞ. Then we say that J satisfies the Palais-

Smale condition, if any Palais-Smale sequence ðxnÞn AN HX has a (strongly)

convergent subsequence.

Theorem 1 (Mountain Pass Theorem (compare for example [19])). Let

X be a Banach space, Ur ¼ fx A X j kxkX < rg and J A C1ðX;RÞ satisfying the

Palais-Smale condition. Suppose that

(1) Jð0Þ ¼ 0:

(2) There exist a r > 0 and an a > 0 such that

inf
kxk¼r

JðxÞb a: ð2:4Þ

(3) There exists y0 A XnUr such that

Jðy0Þ < 0: ð2:5Þ

We now define P ¼ f} A Cð½0; 1�;XÞ j}ð0Þ ¼ 0; }ð1Þ ¼ y0g. Then

v ¼ inf
} AP

sup
x A}ð½0;1�Þ

JðxÞ

is a critical value of J.
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Seeking for radially symmetric solutions we will also use the following Theorem

which is due to R. S. Palais [18].

Theorem 2 (Principle of symmetric criticality [18]). Let G be a topological

group which continuously acts on a Hilbert space X, that is,

G �X ! X : ½g; x� ! gx

is a continuous map such that

1 � x ¼ x;

ðghÞx ¼ gðhxÞ;

x 7! gx is linear:

Furthermore assume that kgxk ¼ kxk: Let J A C1ðX;RÞ satisfy J � g ¼ J for

every g A G. If x is a critical point of J restricted to fx A X j gx ¼ x for all

g A Gg, x is a critical point of J.

With the help of these theorems we will establish the following existence result

(its pendant in [13] is given by Proposition 1) for (2.1).

Theorem 3. For su‰ciently small R there exists a radially symmetric

positive solution vðxÞ of the Dirichlet problem (2.1).

We define the Hilbert space H :¼ fv A W
1;2
0 ðBRÞ j vðvÞ ¼ vðjxjÞg with the inner

product

ðu; vÞH ¼
ð
BR

eejxj
2=4‘u‘v dx

and its corresponding norm

kvk2H ¼
ð
BR

eejxj
2=4‘v‘v dx

� �
:

We see that

k‘vkL2ðBRÞ a kvkH :

Now, let us set

JðvÞ ¼ 1

2
kvk2H �

ð
BR

Xz1
l¼1

ml
wl
ðewl v � 1Þ �

Xz2
h¼1

lh

nh
ðe�nhv � 1Þ

 !
eðe�1Þjxj2=4 dx: ð2:6Þ
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Remark 2. We observe that J satisfies the assumptions from Theorem 2

since H can be written as H ¼ fv A W
1;2
0 ðBRÞ j vðgxÞ ¼ vðxÞ for all g A Oð2Þg,

where Oð2Þ denotes the orthogonal transformation group and obviously

HHW
1;2
0 ðBRÞ.

Proof (Proof of Theorem 3). We will show the proof for eb 1. The

case 0 < e < 1 is done in the analogous way. Therefore, we will phrase the

corresponding statements in some explicit remarks within the proof. To

establish our result we have to proceed several steps for showing that J

satisfies the conditions of Theorem 1.

To show this claim we choose r > 0 arbitrarily but fixed and set

U :¼ fv A H j kvkH < rg:

A useful tool will be the so-called Moser-Trudinger inequality and one of its

consequences:

Theorem 4 (Moser-Trudinger inequality [14]). Let W be a domain in R2

such that

jWj ¼
ð
W

dx < y:

Let u A W
1;2
0 ðWÞ and ð

W

j‘uj2dxa 1:

Then, if aa 8p, there exists a positive constant c such thatð
W

eajuj
2

dxa cjWj:

Corollary 1 (See for example [16]). Let W be a domain in R2 such that

jWj ¼
ð
W

dx < y:

Let u A W
1;2
0 ðWÞ. Then there exists a positive constant c such thatð

W

ejuj dxa cjWj exp 1

16p
k‘uk2L2ðWÞ

� �
:

Remark 3. New exponential Sobolev inequalities like the statement

of the previous Corollary for di¤erent classes of function are established in

[12, Theorem 2.3 and equations (2.10) and (2.11)].
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Since

k‘vkL2ðBRÞ a kvkH

we see by an application of the Moser-Trudinger inequality that for v A qU

(i.e. kvkH ¼ r):

JðvÞb 1

2
kvk2H �

ð
BR

Xz1
l¼1

ml
wl
ðewl jvj � 1Þ þ

Xz2
h¼1

lh

nh

 !
eðe�1Þjxj2=4 dx

b
r2

2
�
Xz1
l¼1

ml
wl
eðe�1ÞR2=4

ð
BR

ðewl jvj � 1Þdx�
Xz2
h¼1

lh

nh
eðe�1ÞR2=4pR2

b
r2

2
þ
Xz1
l¼1

ml
wl
eðe�1ÞR2=4pR2ð1� cBR

ew
2
l
r2=16pÞ �

Xz2
h¼1

lh

nh
eðe�1ÞR2=4pR2

b
r2

2
þ

Xz1
l¼1

ml
wl
ð1� cBR

ew
2
l
r2=16pÞ �

Xz2
h¼1

lh

nh

 !
eðe�1ÞR2=4pR2:

Remark 4. For 0 < e < 1 we get:

JðvÞb 1

2
kvk2H �

ð
BR

Xz1
l¼1

ml
wl
ðewl jvj � 1Þ þ

Xz2
h¼1

lh

nh

 !
eðe�1Þjxj2=4 dx

b
r2

2
þ

Xz1
l¼1

ml
wl
ð1� cBR

ew
2
l
r2=16pÞ �

Xz2
h¼1

lh

nh

 !
pR2:

Choosing R su‰ciently small we can always guarantee that

JðvÞ > r2

4
:

To apply the Mountain Pass Theorem we have also to check its second

assumption. As in [13] we, therefore, look at the (on BR) positive function:

v� ¼ b� b

R
jxj;

where b > 0 is fixed and will be determined later. Obviously this function

belongs to H and we easily see that:

kv�kH ¼ 2b

R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðeeR2=4 � 1Þ=e

q

and
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Jðv�Þ ¼ 1

2
kv�k2H �

ð
BR

Xz1
l¼1

ml
wl
ðewl v � � 1Þeðe�1Þjxj2=4 dx

þ
ð
BR

Xz2
h¼1

lh

nh
ðe�nhv

� � 1Þeðe�1Þjxj2=4 dx

¼ 1

2

4b2p

eR2
eeR

2=4 � 4b2p

eR2

� �
�
ð
BR

Xz1
l¼1

ml
wl
ðewl v � � 1Þeðe�1Þjxj2=4 dx

þ
ð
BR

Xz2
h¼1

lh

nh
ðe�nhv

� � 1Þeðe�1Þjxj2=4 dx

a
1

2
eeR

2=4 b
2

R2
pR2 þ

Xz1
l¼1

ml
wl

pR2 � ewl b
ð
BR

e�wl bjxj=R dx

� �

þ
Xz2
h¼1

lh

nh
e�nhbeðe�1ÞR2=4

ð
BR

enhbjxj=R dx

¼ eeR
2=4b2p

2
þ
Xz1
l¼1

ml
wl

pR2 � 2pewl b
ðR
0

re�wl br=R dr

� �

þ
Xz2
h¼1

2p
lh

nh
e�nhbeðe�1ÞR2=4

ðR
0

renhbr=R dr:

Thus, we see that:

Jðv�Þa eeR
2=4b2p

2
þ
Xz1
l¼1

ml
wl

pR2 � 2pR2ewl b

w2l b
2

þ 2pR2

wlb
þ 2pR2

w2l b
2

� �

þ
Xz2
h¼1

lh

nh

2pR2e�nhb

n2hb
2

þ 2pR2

nhb
� 2pR2

n2hb
2

� �
eðe�1ÞR2=4:

Remark 5. For 0 < e < 1 one gets

Jðv�Þa eeR
2=4b2p

2
þ
Xz1
l¼1

ml
wl

pR2 � 2pR2ewl b

w2l b
2

þ 2pR2

wlb
þ 2pR2

w2l b
2

� �

þ
Xz2
h¼1

lh

nh

2pR2e�nhb

n2hb
2

þ 2pR2

nhb
� 2pR2

n2hb
2

� �
:

Now, choosing b su‰ciently large we can guarantee that the inequalities

Jðv�Þ < 0 and kv�kH > r
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are fulfilled. (Remember that there is at least one ml 0 0 according to

Hypothesis 1.1(1).)

Finally we have to check whether J satisfies the Palais-Smale condition

or not. To show this property of J let ðvnÞn AN HH satisfy
� JðvnÞ is bounded.
� J 0ðvnÞ ! 0 in H 0 as n ! y.

It is left to show that ðvnÞn AN has a strongly convergent subsequence. To do

so, we first prove that the sequence ðvnÞn AN is bounded in W 1;2
0 ðBRÞ. Straight-

forward calculation give us that

J 0ðvÞf ¼
ð
BR

eejxj
2=4‘v � ‘f dx�

ð
BR

Xz1
l¼1

mle
wl vfþ

Xz2
h¼1

lhe
�nhvf

 !
eðe�1Þjxj2=4 dx

for all f A H and, therefore,

J 0ðvÞ vebv

1þ ebv
¼
ð
BR

eejxj
2=4 e

2bv þ ebv þ bvebv

ð1þ ebvÞ2
j‘vj2dx

�
ð
BR

Xz1
l¼1

mle
wl v

vebv

1þ ebv
þ
Xz2
h¼1

lhe
�nhv

vebv

1þ ebv

 !
eðe�1Þjxj2=4 dx

and

J 0ðvÞ vebv

1þ ebv
a

3

2
kvk2H �

ð
BR

Xz1
l¼1

mle
wl v

vebv

1þ ebv
eðe�1Þjxj2=4 dx

�
ð
BR

Xz2
h¼1

lhe
�nhv

vebv

1þ ebv
eðe�1Þjxj2=4 dx

for vebv

1þebv
A H with some b > 0, since

e2bv þ ebv þ bvebv

ð1þ ebvÞ2

�����
�����a 3

2
for all v A R:

Remark 6. If all lh ¼ 0, then we can proceed exactly as in [13] and one

changes the proof by looking at J 0ðvÞ � v instead of J 0ðvÞ vebv

1þebv
.

Additionally we see that for 0 < a < b and for all v A R the following lower

estimates hold true:

a

4

veðb�aÞv

1þ ebv
þ e�av � 1b�1;
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and

a

4

veðaþbÞv

1þ ebv
� eav þ 1 ¼ a

4
veav � eav þ 1� 1

4

aveav

1þ ebv

b� e3

4
� 1

� �
� Ka;b;

where Ka;b is a positive constant depending on a and b.

Thus, one can conclude that for M :¼ max
h

nh; max
l

wl

� �

JðvÞ � 1

4
J 0ðvÞ veðMþ1Þv

1þ eðMþ1Þv

b
1

8
kvk2H þ

ð
BR

Xz1
l¼1

ml
wl

1

4

wlve
ðMþ1Þv

1þ eðMþ1Þv e
wl v � ewl v þ 1

� �
eðe�1Þjxj2=4 dx

þ
ð
BR

Xz2
h¼1

lh

nh

1

4

nhve
ðMþ1Þv

1þ eðMþ1Þv e
�nhv þ e�nhv � 1

� �
eðe�1Þjxj2=4 dx

b
1

8
kvk2H �

Xz1
l¼1

ml
wl

e3

4
� 1þ Kwl ;M

� �ð
BR

eðe�1Þjxj2=4 dx

�
ð
BR

Xz2
h¼1

lh

nh
eðe�1Þjxj2=4 dx:

JðvÞ � 1

4
J 0ðvÞ veðMþ1Þv

1þ eðMþ1Þv b
1

8
kvk2H �

Xz1
l¼1

ml
wl

e3

4
� 1þ Kwl ;M

� �ð
BR

eðe�1Þjxj2=4 dx

�
Xz2
h¼1

lh

nh

ð
BR

eðe�1Þjxj2=4 dx

b
1

8
kvk2H �

Xz1
l¼1

ml
wl

e3

4
� 1þ Kwl ;M

� �
pR2eðe�1ÞR2=4

�
Xz2
h¼1

lh

nh
pR2eðe�1ÞR2=4:

Remark 7. For 0 < e < 1 one gets

JðvÞ � 1

4
J 0ðvÞ veðMþ1Þv

1þ eðMþ1Þv b
1

8
kvk2H �

Xz1
l¼1

ml
wl

e3

4
� 1þ Kwl ;M

� �
pR2

�
Xz2
h¼1

lh

nh
pR2:
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As a consequence we have:

kvnk2H a 8jJðvnÞj þ 2kJ 0ðvnÞkH 0 �
vne

ðMþ1Þvn

1þ eðMþ1Þvn

����
����
H

þ 8
Xz1
l¼1

ml
wl

e3

4
� 1þ Kwl ;M

� �
pR2eðe�1ÞR2=4

þ 8
Xz2
h¼1

lh

nh
pR2eðe�1ÞR2=4

a 8jJðvnÞj þ
9

2
kJ 0ðvnÞk2H 0 þ

2

9

vne
ðMþ1Þvn

1þ eðMþ1Þvn

����
����
2

H

þ 8
Xz1
l¼1

ml
wl

e3

4
� 1þ Kwl ;M

� �
pR2eðe�1ÞR2=4

þ 8
Xz2
h¼1

lh

nh
pR2eðe�1ÞR2=4:

Therefore,

kvnk2H a 8jJðvnÞj þ
9

2
kJ 0ðvnÞk2H 0 þ

1

2
kvnk2H

þ 8
Xz1
l¼1

ml
wl

e3

4
� 1þ Kwl ;M

� �
pR2eðe�1ÞR2=4

þ 8
Xz2
h¼1

lh

nh
pR2eðe�1ÞR2=4;

resp.

1

2
kvnk2H a 8jJðvnÞj þ

9

2
kJ 0ðvnÞk2H 0

þ 8
Xz1
l¼1

ml
wl

e3

4
� 1þ Kwl ;M

� �
pR2eðe�1ÞR2=4

þ 8
Xz2
h¼1

lh

nh
pR2eðe�1ÞR2=4:

Remark 8. Consequently, for 0 < e < 1 we have:
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1

2
kvnk2H a 8jJðvnÞj þ

9

2
kJ 0ðvnÞk2H 0

þ 8pR2
Xz1
l¼1

ml
wl

e3

4
� 1þ Kwl ;M

� �
þ
Xz2
h¼1

lh

nh

 !
:

Now, since we assumed that JðvnÞ is bounded and J 0ðvnÞ ! 0 in H 0 as n ! y
we can conclude that the sequence ðvnÞn AN is bounded in W 1;2

0 ðBRÞ. Accord-

ing to the wellknown Sobolev’s embedding theorems (see for example [1,

Theorem 4.12, page 85]) we know that ðvnÞn AN has a subsequence ðvnk Þnk AN that

converges weakly in W
1;2
0 ðBRÞ and strongly in L2ðBRÞ. For this subsequence

we now take a closer look at kvnk � vnikH .
We see that:

kvnk � vnik
2
H ¼

ð
BR

e ejxj
2=4j‘vnk � ‘vni j

2
dx

¼
ð
BR

e ejxj
2=4‘vnk ð‘vnk � ‘vniÞdx

�
ð
BR

eejxj
2=4‘vnið‘vnk � ‘vniÞdx:

kvnk � vnik
2
H ¼

ð
BR

e ejxj
2=4‘vnk ð‘vnk � ‘vniÞdx

�
ð
BR

eejxj
2=4‘vnið‘vnk � ‘vniÞdx

�
ð
BR

Xz1
l¼1

mle
wl vnk ðvnk � vniÞeðe�1Þjxj2=4 dx

�
ð
BR

Xz2
h¼1

lhe
�nhvnk ðvnk � vniÞeðe�1Þjxj2=4 dx

þ
ð
BR

Xz1
l¼1

mle
wl vni ðvnk � vniÞ

 !
eðe�1Þjxj2=4 dx

þ
ð
BR

Xz2
h¼1

lhe
�nhvni ðvnk � vniÞ

 !
eðe�1Þjxj2=4 dx

þ
ð
BR

Xz1
l¼1

mlðewl vnk � ewl vni Þðvnk � vniÞ
 !

eðe�1Þjxj2=4 dx
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þ
ð
BR

Xz2
h¼1

lhðe�nhvnk � e�nhvni Þðvnk � vniÞ
 !

eðe�1Þjxj2=4 dx

a jJ 0ðvnk Þðvnk � vniÞj þ jJ 0ðvniÞðvnk � vniÞj

þ
ð
BR

Xz1
l¼1

mlðewl jvnk j þ ewl jvni jÞjvnk � vni j
 !

eðe�1Þjxj2=4 dx

þ
ð
BR

Xz2
h¼1

lhðenhjvnk j þ enhjvni jÞjvnk � vni j
 !

eðe�1Þjxj2=4 dx:

Let us now recall that (from the assumptions made) we know that for any �

there exists nð�Þ such that

jJ 0ðvnÞfja �kfkH a
1

4
kfk2H þ �2 for all f A H;

if nb nð�Þ. Thus one can show by some easy calculations and an application

of Hölder’s inequality and Moser-Trudinger’s inequality that there exists a

positive constant c such that

kvnk � vnik
2
H a 4�2 þ ckvnk � vnikL2ðBRÞ:

Since ðvnk Þnk AN is strongly convergent in L2ðBRÞ we conclude that

lim
k; i!y

kvnk � vnik
2
H ¼ 0;

i.e. ðvnk Þnk AN is a strongly convergent sequence in H.

Summing up our results shown so far, we have proven that J satisfies the

needed Palais-Smale condition.

Since J satisfies all assumptions needed, we now conclude from Theorem

1 that there exists a solution of our Dirichlet problem. As a critical point of

our functional J this solution solves our problem (2.1) in the weak sense.

However, it is not only a weak solution of (2.1) but in fact a classical

one. Using standard arguments from elliptic regularity theory one can easily

derive higher regularity results for the mountain pass solution of (2.1). Its

positivity follows from the strong maximum principle for elliptic equation (see

for instance [7, Theorem 4, page 333]. Since the critical point belongs (by

construction) to the Hilbert space H we see immediately that it is a radially

symmetric function. r
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3. Some a priori estimates on the solutions

Before we prove the existence of a solution to

c 00 þ 1

r
þ er

2

� �
c 0 þ

Xz1
l¼1

mle
�r2=4ewlc þ

Xz2
h¼1

lhe
�r2=4e�nhc ¼ 0 ð3:1Þ

c 0ð0Þ ¼ 0 ð3:2Þðy
0

rcðrÞdr < y; ð3:3Þ

we will show some of its properties. Exactly as in [13] we set

IðeÞ ¼
ðy
0

1

s
e�es2=4

ð s
0

teðe�1Þt2=4 dtds:

From [13] we know the following Lemma:

Lemma 1 (compare Lemma 1 in [13]). For e > 0 the expression IðeÞ is

represented as

IðeÞ ¼
logðeÞ
ðe�1Þ if e0 1

1 if e ¼ 1:

(

For a proof of this lemma see [13, Proof of Lemma 1, page 147]. In the

following we will denote a solution c of (3.1)–(3.3) with cð0Þ ¼ a by cðr; aÞ.
The next lemma (that corresponds to Lemma 2 in [13]) shows that the solution

of (3.1)–(3.3) is monotone decreasing and bounded from below.

Lemma 2 (Monotonicity and boundedness). Let mlðeÞ ¼ ml IðeÞ, lhðeÞ ¼
lhIðeÞ, MmlðeÞ :¼ max

l
mlðeÞ, MlhðeÞ :¼ max

h
lhðeÞ, MmlðeÞ;lhðeÞ :¼ maxfMmlðeÞ;

MlhðeÞg, w :¼ max
l

wl and n :¼ max
h

nh. Then, for r > 0, the following estimates

hold:

1. c 0ðr; aÞ < 0.

2. c 0ðr; aÞ > �
Pz1
l¼1

ml re
wl a

2 �
Pz2
h¼1

lhre
�nhcðr; aÞ

2 .

3. If there is at least one lh 0 0 then,

cðr; aÞ > 1

n
lnðe�nNMml ðeÞ; lhðeÞe

wa þ ena�nNMml ðeÞ; lhðeÞe
wa � 1Þ;

and if all lh ¼ 0; then cðr; aÞ > a�NMmlðeÞe
wa:

Proof. 1. Since c solves (3.1) we see that,

pðrÞc 0ð Þ0þ
Xz1
l¼1

ml pðrÞe�r2=4ewlc þ
Xz2
h¼1

lh pðrÞe�r2=4e�nhc ¼ 0 ð3:4Þ
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where pðrÞ ¼ reer
2=4 > 0. Integrating this equation leads to:

pðrÞc 0 ¼ �
Xz1
l¼1

ml

ð r
0

seðe�1Þs2=4ewlc ds�
Xz2
h¼1

lh

ð r
0

seðe�1Þs2=4e�nhc ds < 0: ð3:5Þ

2. From the first statement of the lemma we conclude that cð0; aÞ >
cðr; aÞ. From (3.5) and the monotonicity statement we see that:

pðrÞc 0 ¼ �
Xz1
l¼1

ml

ð r
0

seðe�1Þs2=4ewlc ds�
Xz2
h¼1

lh

ð r
0

seðe�1Þs2=4e�nhc ds

> �
Xz1
l¼1

mle
wl a

ð r
0

seðe�1Þs2=4 ds�
Xz2
h¼1

lhe
�nhcðr;aÞ

ð r
0

seðe�1Þs2=4 ds

> �
Xz1
l¼1

ml r
2ewl ae er

2=4

2
�
Xz2
h¼1

lhr
2eer

2=4e�nhcðr;aÞ

2
:

3. If there is at least one lh 0 0, then we see that:

ð r
0

c 0ðs; aÞencðs;aÞ
1þ encðs;aÞ

ds ¼ 1

n
lnð1þ encðr;aÞÞ � 1

n
lnð1þ encð0;aÞÞ

¼ 1

n
lnð1þ encðr;aÞÞ � 1

n
lnð1þ enaÞ

and therefore

ð r
0

c 0ðs; aÞencðs;aÞ
1þ encðs;aÞ

ds ¼ �
Xz1
l¼1

ml

ð r
0

1

s

e�es2=4encðs;aÞ

1þ encðs;aÞ

ð s
0

teðe�1Þt2=4ewlcðt;aÞ dtds

�
Xz2
h¼1

lh

ð r
0

1

s

e�es2=4encðs;aÞ

1þ encðs;aÞ

ð s
0

teðe�1Þt2=4e�nhcðt;aÞ dtds

> �
Xz1
l¼1

mle
wl a

ð r
0

1

s
e�es2=4

ð s
0

teðe�1Þt2=4 dtds

�
Xz2
h¼1

lh

ð r
0

1

s
e�es2=4 e

ðn�nhÞcðs;aÞ

1þ encðs;aÞ

ð s
0

teðe�1Þt2=4 dtds

> �
Xz1
l¼1

mlðeÞewl a �
Xz2
h¼1

lhðeÞ

> �N �MmlðeÞ;lhðeÞe
wa:
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Thus, we conclude that:

1þ encðr;aÞ > ð1þ enaÞe�nNMml ðeÞ; lhðeÞe
wa

and, therefore,

cðr; aÞ > 1

n
lnðe�nNMml ðeÞ; lhðeÞe

wa þ ena�nNMml ðeÞ; lhðeÞe
wa � 1Þ:

If all lh ¼ 0, then we can easily derive that

cðr; aÞ > a�NMmlðeÞe
wa

from equation (3.5). r

The previous lemma implies that c is monotone decreasing and strictly

bounded away from zero, i.e.

lim
r!y

cðr; aÞ > 0;

if

a�N �MmlðeÞ;lhðeÞe
wa > 0:

Lemma 3 (Positivity). We set cðy; aÞ ¼ lim
r!y

cðr; aÞ and assume that

0 < N �MmlðeÞ;lhðeÞ <
1

w

1

e
:

Furthermore, we denote the intersection points of the line y ¼ N �MmlðeÞ;lhðeÞ and

the curve y ¼ ae�wa; by gMml ðeÞ; lhðeÞ
and GMml ðeÞ; lhðeÞ

, where

gMml ðeÞ; lhðeÞ
< GMml ðeÞ; lhðeÞ

:

If

gMml ðeÞ; lhðeÞ
< a < GMml ðeÞ; lhðeÞ

;

then cðy; aÞ > 0 holds.

This lemma follows immediately from the third statement of Lemma 2.

Lemma 4 (Upper bounds for positive solutions). Let gMml ðeÞ; lhðeÞ
< a <

GMml ðeÞ; lhðeÞ
, ce ¼ maxf1; 1=eg and ke ¼ minf1; eg, then

cðr; aÞ < cðy; aÞ þ
Xz1
l¼1

mle
wl a þ

Xz2
h¼1

lh

 !
cee

�ker
2=4:

321Self-similar radial solutions for strongly coupled cross-di¤usion systems



(A condition for the positivity of the solution of problem (1.8)–(1.10) is given

by Lemma 3 in [13] and an upper bound is presented by Lemma 4 in [13].)

Proof. Since cðr; aÞb 0 we see that:

cðr; aÞ ¼ cðy; aÞ þ
Xz1
l¼1

ml

ðy
r

1

s
e�es2=4

ð s
0

teðe�1Þt2=4ewlc dtds

þ
Xz2
h¼1

lh

ðy
r

1

s
e�es2=4

ð s
0

teðe�1Þt2=4e�nhc dtds

< cðy; aÞ þ
Xz1
l¼1

mle
wl a

ðy
r

1

s
e�es2=4

ð s
0

teðe�1Þt2=4 dtds

þ
Xz2
h¼1

lh

ðy
r

1

s
e�es2=4

ð s
0

teðe�1Þt2=4 dtds:

If eb 1, then we derive:

cðr; aÞ < cðy; aÞ þ
Xz1
l¼1

mle
wl a

ðy
r

1

s
e�es2=4

ð s
0

teðe�1Þt2=4 dtds

þ
Xz2
h¼1

lh

ðy
r

1

s
e�es2=4

ð s
0

teðe�1Þt2=4 dtds

< cðy; aÞ þ
Xz1
l¼1

mle
wl a

ðy
r

1

s
e�es2=4eðe�1Þs2=4

ð s
0

t dtds

þ
Xz2
h¼1

lh

ðy
r

1

s
e�es2=4eðe�1Þs2=4

ð s
0

t dtds:

And thus:

cðr; aÞ < cðy; aÞ þ
Xz1
l¼1

mle
wl a

2

ðy
r

se�es2=4eðe�1Þs2=4 ds

þ
Xz2
h¼1

lh

2

ðy
r

se�es2=4eðe�1Þs2=4 ds

¼ cðy; aÞ þ
Xz1
l¼1

mle
wl a þ

Xz2
h¼1

lh

 !
e�r2=4:

On the other hand, if 0 < e < 1, then we can show that:
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cðr; aÞ < cðy; aÞ þ
Xz1
l¼1

mle
wl a

ðy
r

1

s
e�es2=4

ð s
0

t dtds

þ
Xz2
h¼1

lh

ðy
r

1

s
e�es2=4

ð s
0

t dtds

¼ cðy; aÞ þ
Xz1
l¼1

mle
wl a

2

ðy
r

se�es2=4 ds

þ
Xz2
h¼1

lh

2

ðy
r

se�es2=4 ds

¼ cðy; aÞ þ
Xz1
l¼1

mle
wl a

e
þ
Xz2
h¼1

lh

e

 !
e�er2=4: r

The following lemma is similar to Lemma 5 in [13].

Lemma 5. We set

hðtÞ ¼ teðe�1Þt2=4
ðy
t

1

s
e�es2=4 ds; c1 :¼ maxfa; bg and c2 :¼ minfa; bg:

Then

1.
Ðy
0 hðrÞdr ¼ IðeÞ, (compare [13, Lemma 5 (i), page 150])

2. jcðr; aÞ � cðr; bÞja ja� bj � exp
Pz1
l¼1

mle
wl c1 þ

Pz2
h¼1

lhe
�nhc2

� � Ð r
0 hðtÞdt

� �
,

3. jcðy; aÞ � cðy; bÞja ja� bj � exp
Pz1
l¼1

mlðeÞewl c1 þ
Pz2
h¼1

lhðeÞe�nhc2

� �
.

Proof. 1. The proof is exactly the same as in [13, Proof of Lemma 5 (i),

page 150 f.].

2. We see that:

cðr; aÞ ¼ a�
Xz1
l¼1

ml

ð r
0

1

s
e�es2=4

ð s
0

teðe�1Þt2=4ewlcðt;aÞ dtds

�
Xz2
h¼1

lh

ð r
0

1

s
e�es2=4

ð s
0

teðe�1Þt2=4e�nhcðt;aÞ dtds

¼ a�
Xz1
l¼1

ml

ð r
0

teðe�1Þt2=4ewlcðt;aÞ
ð r
t

1

s
e�es2=4 dsdt

�
Xz2
h¼1

lh

ð r
0

teðe�1Þt2=4e�nhcðt;aÞ
ð r
t

1

s
e�es2=4 dsdt:
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As a consequence we have:

jcðr; aÞ � cðr; bÞj

a ja� bj þ
Xz1
l¼1

ml

ð r
0

teðe�1Þt2=4jewlcðt;aÞ � ewlcðt;bÞj
ð r
t

1

s
e�es2=4 dsdt

þ
Xz2
h¼1

lh

ð r
0

teðe�1Þt2=4je�nhcðt;aÞ � e�nhcðt;bÞj
ð r
t

1

s
e�es2=4 dsdt:

Since

jewlcðt;aÞ � ewlcðt;bÞja ewl c1 jcðt; aÞ � cðt; bÞj

where c1 :¼ maxfa; bg and

je�nhcðt;aÞ � e�nhcðt;bÞja e�nhc2 jcðt; aÞ � cðt; bÞj

where c2 :¼ minfa; bg, we conclude that:

jcðr; aÞ � cðr; bÞj

a ja� bj þ
Xz1
l¼1

mle
wl c1

ð r
0

teðe�1Þt2=4jcðt; aÞ � cðt; bÞj
ð r
t

1

s
e�es2=4 dsdt

þ
Xz2
h¼1

lhe
�nhc2

ð r
0

teðe�1Þt2=4jcðt; aÞ � cðt; bÞj
ð r
t

1

s
e�es2=4 dsdt

a ja� bj þ
Xz1
l¼1

mle
wl c1

ð r
0

jcðt; aÞ � cðt; bÞjhðtÞdt

þ
Xz2
h¼1

lhe
�nhc2

ð r
0

jcðt; aÞ � cðt; bÞjhðtÞdt

¼ ja� bj þ
Xz1
l¼1

mle
wl c1 þ

Xz2
h¼1

lhe
�nhc2

 !ð r
0

jcðt; aÞ � cðt; bÞjhðtÞdt:

Thus, we get from Gronwall’s inequality the claim of statement 2. that:

jcðr; aÞ � cðr; bÞja ja� bj � exp
Xz1
l¼1

mle
wl c1 þ

Xz2
h¼1

lhe
�nhc2

 !ð r
0

hðtÞdt
 !

: ð3:6Þ

3. Sending r ! y on both sides of inequality (3.6), we get the third claim

of the lemma. r
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4. Existence and nonexistence results for positive solutions

Now we have all tools at hand to establish our existence and nonexistence

results for problem (1.3)–(1.5), resp. (3.1)–(3.3). Let us denote by vc the classi-

cal solution of the Dirichlet problem (2.1). Since vc is radial we see that it

satisfies the following conditions:

ðreer2=4v 0cÞ
0 þ

Pz1
l¼1

mlre
wl vc þ

Pz2
h¼1

lhre
�nhvc

� �
eðe�1Þr2=4 ¼ 0 in BR

v 0ð0Þ ¼ 0 and vcðRÞ ¼ 0:

9>=
>; ð4:1Þ

Lemma 6. Let vc be the classical (positive) solution of (2.1). For su‰cien-

tly small R this solution satisfies vcð0Þ > GMml ðeÞ; lhðeÞ
, where GMml ðeÞ; lhðeÞ

is the largest

intersection point of the line

y ¼ N �MmlðeÞ;lhðeÞ and the curve y ¼ ae�wa:

(This result corresponds to Lemma 6 in [13].)

Proof. Suppose that 0 < vcð0Þ < GMml ðeÞ; lhðeÞ
. Since vcðrÞ > 0 for raR we

have

�
Xz2
h¼1

lh

nh
e�nhvc � 1ð Þ> 0

and, therefore, we see from equation (2.6) that

JðvcÞ <
1

2

ð
BR

eejxj
2=4j‘vcj2dx

a p

ðR
0

reer
2=4ðv 0cÞ

2
dr:

From the second statement of Lemma 2 we conclude that

JðvcÞ < p

ðR
0

reer
2=4

Xz1
l¼1

mlre
wl vcð0Þ

2
þ
Xz2
h¼1

lhr

2

 !2
dr

a peeR
2=4

Xz1
l¼1

mle
wl vcð0Þ

2
þ
Xz2
h¼1

lh

2

 !2ðR
0

r3 dr:

Since vcð0Þ may depend on R we conclude that

JðvcÞa
1

16
pR4e eR

2=4
Xz1
l¼1

mle
wlGMml ðeÞ; lhðeÞ

2
þ
Xz2
h¼1

lh

2

 !2
:
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Choosing R su‰ciently small one can always ensure that JðvcÞ < r2

4 . How-

ever this is a contradiction to what we have shown in our existence proof.

Therefore, we see that vcð0Þ > GMml ðeÞ; lhðeÞ
. r

As in [13, Lemma 7] for problem (1.8)–(1.10) we have the following statement

about the properties of the set of possible initial data for c in our problem

(1.3)–(4).

Lemma 7. We set

Oþ :¼ fa A ð1=w;yÞ jcðy; aÞ > 0g and O� :¼ fa A ð1=w;yÞ jcðy; aÞ < 0g:

then Oþ and O� are open sets.

This lemma follows directly from Lemma 5.3.

Now, in the following we can formulate our main theorem.

Theorem 5. Let

0 < N �MmlðeÞ;lhðeÞ <
1

w
� 1
e
:

1. There exists an a� > 1=w such that problem (3.1) with cð0Þ ¼ a� admits

a positive solution satisfying (3.3). Furthermore cð0Þ tends to infinity

as

MmlðeÞ;lhðeÞ ! 0:

2. There exists a positive a� < 1=w such that problem (3.1) with cð0Þ ¼ a�
admits a positive solution satisfying (3.3). Furthermore there exists a

m� such that if

Xz1
l¼1

mlðeÞ > m�

there are no positive solutions to our problem (3.1).

Proof (Proof of Theorem 5). 1. At first we show the first statement of

Theorem 5.

As we have seen vcðrÞ is a monotone decreasing function and vcðRÞ ¼ 0.

Thus we conclude that vcðrÞ < 0 for r > R. This implies that vcð0Þ belongs to

O�. However, if

gMml ðeÞ; lhðeÞ
< a < GMml ðeÞ; lhðeÞ

;
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we know from Lemma 3, that a A Oþ. As a consequence we see that Oþ 0q
and O� 0q. Choosing a� ¼ inf O� it follows that

a� A ½GMml ðeÞ; lhðeÞ
;yÞ:

Lemma 7 implies that a� is neither in Oþ nor in O� and therefore,

cðy; a�Þ ¼ 0. Furthermore, we know from Lemma 4 that

ðy
0

rcðr; a�Þdr <
Xz1
l¼1

mle
wl a

�

2
þ
Xz2
h¼1

lh

2

 !ðy
0

rcee
�ker

2=4 dr

¼
Xz1
l¼1

mle
wl a

�

2
þ
Xz2
h¼1

lh

2

 !
2ce=ke

a
Xz1
l¼1

ml
2
þ
Xz2
h¼1

lh

2

 !
2ewa

�
ce=ke

aNMmlðeÞ;lhðeÞe
wa �

ce=ke:

Since

a�
bGMml ðeÞ; lhðeÞ

and

GMml ðeÞ; lhðeÞ
! y

as

MmlðeÞ;lhðeÞ ! 0;

we have that

cð0Þ ! y as MmlðeÞ;lhðeÞ ! 0:

So the first statement of our Theorem has been shown.

2. Now we prove the second statement of our Theorem.

Equation (3.5) gives us

c 0ðrÞ ¼ �
Xz1
l¼1

ml
r
eer

2=4

ð r
0

seðe�1Þs2=4ewlc ds

�
Xz2
h¼1

lh

r
eer

2=4

ð r
0

seðe�1Þs2=4e�nhc ds:

From the fact that cðr; aÞ is monotone decreasing we know that

327Self-similar radial solutions for strongly coupled cross-di¤usion systems



c 0ðrÞ < �
Xz1
l¼1

ml
r
eer

2=4ewlcðrÞ
ð r
0

seðe�1Þs2=4 ds

�
Xz2
h¼1

lh

r
eer

2=4e�nhcð0Þ
ð r
0

seðe�1Þs2=4 ds

< �
Xz1
l¼1

ml
r
eer

2=4

ð r
0

seðe�1Þs2=4 ds

 !
ewcðrÞ:

This inequality implies:

ð�e�wcðrÞÞ0 < �w
Xz1
l¼1

ml
r
eer

2=4

ð r
0

seðe�1Þs2=4 ds:

Integrating this inequality from 0 to y gives us:

�e�wcðyÞ þ e�wcð0Þ < �w
Xz1
l¼1

mlðeÞ

and as a consequence

cðyÞ < � 1

w
ln w

Xz1
l¼1

mlðeÞ þ e�wcð0Þ

 !
:

As a consequence we see that

cðyÞ < 0; if w
Xz1
l¼1

mlðeÞb 1:

Furthermore we know that:

cðy; aÞ ¼ a�
Xz1
l¼1

ml

ðy
0

1

s
e�es2=4

ð s
0

teðe�1Þt2=4ewlc dtds

�
Xz2
h¼1

lh

ðy
0

1

s
e�es2=4

ð s
0

teðe�1Þt2=4e�nhc dtds

< a�
Xz1
l¼1

mle
wlcðy;aÞ

ðy
0

1

s
e�es2=4

ð s
0

teðe�1Þt2=4 dtds

¼ a�
Xz1
l¼1

mlðeÞewlcðy;aÞ:
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Similar as in Lemma 7 we now set

Uþ ¼ fa A ð0; 1=wÞ jcðy; aÞ > 0g

and

U� ¼ fa A ð0; 1=wÞ jcðy; aÞ < 0g:

These set are open what can be shown exactly in the same way as the claim of

Lemma 7.

Thus, if we have

gMml ðeÞ; lhðeÞ
< a < 1=w;

then we see that a A Uþ. However, our calculations from above show that:

cðy; 0Þ < �
Xz1
l¼1

mlðeÞewlcðy;0Þ < 0:

Therefore, we see that an a A ð0; gMml ðeÞ; lhðeÞ
Þ exists such that cðy; aÞ < 0 and as

a consequence Uþ 0q and U� 0q: Now we set

a� ¼ sup U� < 1=w:

Exactly as in the arguments to establish the first claim of our theorem we see

that a� B Uþ and a� B U�. So cðy; a�Þ ¼ 0. The boundedness of the solution

is once again guaranteed by Lemma 4 since we see that:

ðy
0

rcðr; a�Þdr <
Xz1
l¼1

mle
wl a�

2
þ
Xz2
h¼1

lh

2

 !ðy
0

rcee
�ker

2=4 dr

¼
Xz1
l¼1

mle
wl a�

2
þ
Xz2
h¼1

lh

2

 !
2ce=ke

a
Xz1
l¼1

ml
2
þ
Xz2
h¼1

lh

2

 !
2ewa�ce=ke

aNMmlðeÞ;lhðeÞe
wa�ce=ke:

This gives us the second statement of the Theorem and completes its proof.

r

5. Comments and some application of the existence and nonexistence results

It has already been mentioned in the introduction of the present paper that

some multi-species chemotaxis models belong to such kind of systems studied
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here. As a concrete example one can look at the following chemotaxis model

in the presence of a conflict of interest (see [20, Definition 1, page 646] and

[10, Remark 1.1, page 233, and Definition 5.2, page 249] for a definition of

a system describing chemotactic motion in the presence of a conflict of

interests):

ut ¼ ‘ð‘u� wu‘vÞ; in R2 � ft > 0g
wt ¼ ‘ð‘wþ nw‘vÞ; in R2 � ft > 0g
evt ¼ Dvþ a1uþ a2w; in R2 � ft > 0g:

9>=
>; ð5:1Þ

Looking for self-similar radial symmetric solution of (5.1) leads to

c 00 þ 1

r
þ er

2

� �
c 0 þ me�r2=4ewc þ le�r2=4e�nc ¼ 0 ð5:2Þ

c 0ð0Þ ¼ 0 ð5:3Þðy
0

rcðrÞdr < y; ð5:4Þ

where

m ¼ a1jð0Þe�wcð0Þ > 0 and l ¼ a2oð0Þencð0Þ > 0:

Therefore, the results of the present paper lead to the following statements for

this concrete example that can be viewed as an application of Theorem 5:

Theorem 6. Let

0 < max mðeÞ; lðeÞf g< 1

w
� 1
e
;

where

mðeÞ :¼ m

ðy
0

1

s
e�es2=4

ð s
0

teðe�1Þt2=4 dtds

and

lðeÞ :¼ l

ðy
0

1

s
e�es2=4

ð s
0

teðe�1Þt2=4 dtds:

1. There exists an a� > 1=w such that problem (5.2) with cð0Þ ¼ a� admits

a positive solution satisfying (5.4). Furthermore cð0Þ tends to infinity

as

max mðeÞ; lðeÞf g! 0:
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2. There exists a positive a� < 1=w such that problem (5.2) with cð0Þ ¼ a�
admits a positive solution satisfying (5.4). Furthermore there exists a

m� such that if

mðeÞ > m�

there are no positive solutions to our problem (5.2).

Besides [13] and the present paper there are also other results on self-similar

solutions for problem (1.6) resp. (1.8)–(1.10). To list some of these results let

us refer for example to [3, 4, 5, 8, 9, 15] and [17].

Di¤erent from the ansatz followed in the present paper and in [13] Y.

Naito, T. Suzuki and K. Yoshida looked for self-similar solutions of system

(1.6) and showed the existence of such solutions in [17] by assuming that

uðx; tÞ ¼ jðx=
ffiffi
t

p
Þ=t and vðx; tÞ ¼ cðx=

ffiffi
t

p
Þ. This leads them to the system:

0 ¼ ‘ð‘j� j‘cÞ þ x
2‘jþ j; x A R2

0 ¼ Dcþ ex
2 ‘cþ j; x A R2

0a j;c in R2 and jðxÞ;cðxÞ ! 0 as jxj ! y:

9>=
>; ð5:5Þ

The existence of a solution for this system has been shown first in [15, Theorem

1.1 and Theorem 1.2, page 429] while it is shown in [17] that any classical

solution of (5.5) has to be radially symmetric about the origin and satisfies

j;c A L1ðR2Þ. In addition it was shown that the solution set of (5.5) can

be expressed as a one-parameter family S ¼ fðjðsÞ;cðsÞÞ : s A Rg: If lðsÞ :¼
kjðsÞkL1ðR2Þ, then the solution ðjðsÞ;cðsÞÞ and lðsÞ satisfy the following pro-

perties:

1. s 7! ðjðsÞ;cðsÞÞ A C2ðR2Þ � C2ðR2Þ and s 7! lðsÞ A R are continuous.

2. ðjðsÞ;cðsÞÞ ! ð0; 0Þ in C2ðR2Þ � C2ðR2Þ and lðsÞ ! 0 as s ! �y.

3. kcðsÞkLyðR2Þ ! y, lðsÞ ! 8p, and jðsÞdx * 8pd0ðdxÞ in the sense of

measure as s ! y, where d0ðdxÞ denotes Dirac’s d-function with

support in the origin.

4. 0 < lðsÞ < 8p for s A R, if 0 < ea 1=2; and

0 < lðsÞamaxf4p3=3; 4p3e2=3g

for s A R, if e > 1=2.

These properties result in the existence of a critical value

8pa l�
amaxf4p3=3; 4p3e2=3g

such that for l A ð0; l�Þ there exists a solution in S such that kjkL1ðR2Þ ¼ l and

for l > l�, there exists no solution in S satisfying kjkL1ðR2Þ ¼ l.
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The more recent paper [3] follows a di¤erent approach resp. another goal.

It is concerned with self-similar blow-up solutions (as it has also been done in

[4, 5, 8, 9]) in two spatial dimensions.

Biler et al. show in [3] that for the parabolic-parabolic case of (1.6) the

threshold value deciding whether blow-up can take place or not is not as

clear as in the parabolic-elliptic case, in which solutions with mass above

the threshold value Mc always blow up. In [3] the author study forward

self-similar solutions of the parabolic-parabolic system (1.6) and prove that

(in some cases) such solutions globally exist even if their total mass is above

the threshold value Mc of the parabolic-elliptic case.

Let us finally mention that it seems to be possible to establish results

similar to those presented in the present paper without the simplifying as-

sumption on zk and Lk in Hypothesis 1.1. The results of the present paper

seem to remain true if one assumes that zk ¼ Cconst ¼ Lk for all indices k with

an arbitrary positive constant Cconst (that is not necessarily equal to 1) and if

one, therefore, replaces expressions like ðe� 1Þ by ðe� CconstÞ. Of course this

will also lead to a necessary change in IðeÞ that will then be represented by

IðeÞ ¼
logðeÞ�logðCconstÞ

ðe�CconstÞ
if e0Cconst

1
Cconst

if e ¼ Cconst

8<
:

instead of the given representation in Lemma 1. At some other parts of the

present paper some additional technicalities will also be needed but these

changes seem to be (only) marginal and not so complicated.
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