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ABSTRACT. This paper establishes some existence and nonexistence results of self-
similar radial symmetric solutions to some class of strongly coupled reaction-diffusion
systems with cross-diffusion. The considered class of systems allows to reduce the prob-
lem to a single equation with exponential source terms. Using the famous Mountain
Pass Theorem and some smallness conditions on the system parameters it is possible
to generalize wellknown results on self-similar radial solutions for a related problem
that have been established by Y. Mizutani, N. Muramoto and K. Yoshida in 1999.
As an application of the results derived in the present paper it is possible to con-
clude the existence and nonexistence of self-similar radial solutions for multi-species
chemotaxis-model in the conflict-free setting and in the presence of a conflict of
interests.

1. Introduction

The purpose of the present paper is to establish some existence and
nonexistence results of positive self-similar radial solutions to a class of strongly
coupled reaction-diffusion systems with cross-diffusion of the following type:

(ui), = V(Vu; — Ou;Vv), in R? x {t> 0}
(W), =V(Vw; + ZwVv), in R? x {t >0} (1)

N n m .
ev; = Av+ Y oge [T ()" TT(w;)%*, in R®x {r> 0}
k=1 i=1 j=1

where ie{l,...n}, je{l,...,m}, neN, meNy and N>1. (By m=0 we
mean that there is no equation of the type given in the second line of the
previous system.) Furthermore, we assume that the constants ©;, =; >0,
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o > 0 and &, B 4,05« € R, We see that the mass for all u; and w; is conserved
and therefore,

J ui(x, t)dx = J u;(x,0)dx < o0

R’ R?

and
J w;(x, t)dx = J w;(x,0)dx < oo for all +>0
R? R?

hold. As a restriction we are seeking for solutions satisfying that

)

v(x,2) >0 and J v(x,t) < o0 for all > 0.
RZ

Problems of this kind have several applications in the sciences. For example,
multi-species chemotaxis models as they have been studied and analyzed in
[6, 10, 11, 20] also belong to this class.

Assuming that

wi(x, 1) = ;%‘ <|j|2>, w;(x, 1) = %a)_, ('\2) and  u(x,0) =y <|jf>

and introducing the new variable r = |x|/\/Z, we see that our system is trans-
formed into

(¢ — @ip") + (9] — Oio") + 50/ + 9, =0
(0] + Zjoy) + (0] + Zjop") + 5o] + 0; =0
N B n m s
VY Y+ kzl ogeV Hl((oi)ﬁ’*" [T(e2)”* =0

Jj=1
9i(0) = @;(0) =y’'(0) =0

However, for each i and j one can solve the equations for ¢; and w; in
dependence of iy and, therefore, we see that

(pi(r) = cie—r2/4€9ill/(r) and (Uj(l’) _ dje_rl/4e—5jx//(r)
with
¢ = ¢i(0)e_@i‘//(0) >0 and d; = wj(o)eEjW(O) < 0.

This allows us to reduce the problem to a single equation for the function .
The new problem for the unknown function i/ is now given by:
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Z1

an (1 n %)W £ peirtent 4 “Zz,lhewaZ/%fw,w —0 (13

r =1 =1

V() =0 (1.4)
Jw ry(r)dr < oo, (L.5)

0

under the assumption that
G+ Bix@— > 0ikE #0  forall ke{l,...,N}
i=1 =1

and where we used for z; +z; = N the notations,

m

Ck = Zﬁi;k —+ 6,‘1]( and
i=1 j=1

m

W = O H(c,»)ﬂf~k H(dj)é“‘, for those z; indices k, for that
i=1 j

Jj=1
Zi= S+ Y Bir®i— Y 0ikEi >0
=1 =

and

m

Ag = iﬁi,k +) 6ix  and
i=1 ]

=

D 1= akH(ci)ﬁ"ka(dj)‘sf"‘ for those z, indices k, for that
i=1 j=1

m

n
—V =&+ Zﬂi.k@i - D _0ikEi <0.
i1 =

HyvrotHEsis 1.1.  Throughout the present paper we will make the following
two assumptions:

(1) There is at least one k such that p, # 0.

(2) For simplicity, let us assume that {;, =1 = Ay for all indices k.

REMARK 1. It seems that Assumption (2) of Hyphesis 1.1 can easily be
relaxed to some more general conditions on (. and Ay. There will be some
additional remarks on this point in the closing section of the present paper.
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To establish our existence results we use some previous results by Y. Mizutani,
N. Muramoto and K. Yoshida [13]. In their paper [13] they proved similar
results on the existence and nonexistence of self-similar radial symmetric
solutions for the problem

u, =V (Vu—uVv), in R*x {t> 0} (1.6)
ev, = Av + o, in R x {r>0} [ .

Looking for a self-similar radially symmetric solution u(x,) = ¢(|x|//1)/t =
o(r)/t and v(x, 1) = y(]x|/v1) = ¥(r) this leads them to the following system

(0 —xo¥') +L(0' —yoy') +50' +9=0
VAL 5 +ap =0 (1.7)
9'(0) =y'(0) =0,

resp. to the single equation

o (1 +62r)w’ T eV =0 (1.8)
¥'(0) =0 (1.9)
Jw ny(r)dr < co. (1.10)

0

Therefore, the results and proofs in the present paper will naturally and closely
follow the lines of argumentation in [13] and we generalize the results given
there to a more general class of systems. Furthermore, we will use the nota-
tions introduced and used in [13] to make the comparison as simple and
transparent as possible. Additionally, throughout the text we will always
allude to the corresponding results in [13].

However, at several points the arguments by Y. Mizutani, N. Muramoto
and K. Yoshida cannot be adopted and, therefore, some modifications are
needed at some places. This is true especially in the case when m > 1 and
when there exist at least one Ay # 0. This case may correspond to cross-
diffusion models describing chemotactic motion in the presence of a conflict
of interests. For those kind of problems the author of the present paper is
not aware of any existence or nonexistence results like those presented here.
Therefore, the presented existence results seem to be completely new.

2. Existence of a mountain pass solution for a related Dirichlet problem

Before we formulate our results for the whole space we will look for
positive radial solutions of a related Dirichlet problem on a disk at first.
These solutions will then be used to construct solutions of (1.3)—(1.5) on the
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whole space R%.  To simplify notation we will set Bz := {x € R*||x| < R} and
look at the following Dirichlet problem:

Z] 2 2
V(e ) + (Z et + 3 /lhe"M‘)e“”'x 4=0 in Bg
=1 h=1 (2.1)

v=0 on 0Bg.

To establish the existence of a positive radially symmetric solution of this
problem, we will (as it has also been done in [13]) make use of the famous
Mountain Pass Theorem by A. Ambrosetti and P. Rabinowitz [2]. For the
reader’s convenience we recall the definition of a Palais-Smale sequence, the
Palais-Smale condition and the formulation of the Mountain Pass Theorem at
first.

DerNiTION 1 (Palais-Smale sequence (compare for example [19])). Let 2
be a Banach space and # € C!(Z,R). We say that (x,),.y = Z is a Palais-
Smale sequence for ¢ if

|7 (xn)] < ¢ for some c, (2.2)
uniformly in n, while
J'(xy) —0  in 2’ as n— 0. (2.3)

DEerNITION 2 (Palais-Smale condition (compare for example [19])). Let 2
be a Banach space and # € C!(2,R). Then we say that ¢ satisfies the Palais-
Smale condition, if any Palais-Smale sequence (x,),.n = % has a (strongly)
convergent subsequence.

THEOREM 1 (Mountain Pass Theorem (compare for example [19])). Let
4 be a Banach space, U, = {x € X |||x|, < p} and ¢ € C'(Z,R) satisfying the
Palais-Smale condition. Suppose that

(1) #(0)=0.

(2) There exist a p>0 and an a >0 such that

inf 7(x) > o. (2.4)

lIxll=p
(3) There exists yo€ X\ U, such that
J(y0) <0. (2.5)
We now define p = {pe C([0,1],Z)|p(0) =0,0(1) = yo}. Then

¢=1inf sup Z(x)
9E¥ xep(0,1])

is a critical value of ¢.
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Seeking for radially symmetric solutions we will also use the following Theorem
which is due to R. S. Palais [18].

THEOREM 2 (Principle of symmetric criticality [18]). Let G be a topological
group which continuously acts on a Hilbert space Z, that is,

GXZX—%:[g,x] —gx
is a continuous map such that

1-x=x,

(gh)x = g(hx),

X +— gx is linear.

Furthermore assume that ||gx|| = ||x||. Let ¢ € CY(Z,R) satisfy §#og= ¢ for
every g€ G. If x is a critical point of ¢ restricted to {x € X |gx = x for all
g€ G}, x is a critical point of J.

With the help of these theorems we will establish the following existence result
(its pendant in [13] is given by Proposition 1) for (2.1).

THEOREM 3. For sufficiently small R there exists a radially symmetric
positive solution v(x) of the Dirichlet problem (2.1).

We define the Hilbert space H := {ve Wol’z(BR) |v(v) = v(]x|)} with the inner
product

(w,v)y = J e Ay Uy dx
Br

and its corresponding norm

o]l = <JB e N Ay dx).

We see that
Vol 2 < 0]l 4

Now, let us set

by
5
>

1 X H v Ah —Vv e—1)|x)?
f<v>=2||v||z—JB< fert =)=y e ,_1)>e< DR/ gy, (2.6)
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REMARK 2. We observe that ¢ satisfies the assumptions from Theorem 2
since H can be written as H={ve WOI’Z(BR) |v(gx) = v(x) for all ge O(2)},
where O(2) denotes the orthogonal transformation group and obviously

1,2
H c W, "(Bg).

PrOOF (Proof of Theorem 3). We will show the proof for ¢ > 1. The
case 0 <& < 1 is done in the analogous way. Therefore, we will phrase the
corresponding statements in some explicit remarks within the proof. To
establish our result we have to proceed several steps for showing that ¢
satisfies the conditions of Theorem 1.

To show this claim we choose p > 0 arbitrarily but fixed and set
= {ve H||lolly < p).

A useful tool will be the so-called Moser-Trudinger inequality and one of its
consequences:

THEOREM 4 (Moser-Trudinger inequality [14]). Let Q be a domain in R?
such that

|2 = J dx < 0.
Q
Let ue Wol’z(Q) and
J \Vul*dx < 1.
Q
Then, if o < 8n, there exists a positive constant ¢ such that
J e gy < clQ|.
Q
COROLLARY 1 (See for example [16]). Let Q be a domain in R? such that
2| = J dx < 0.
Q
Let ue WO1 2(Q) Then there exists a positive constant c¢ such that
el dx < ¢|Q| ex € V|2
Q - p 1671' LZ(_Q) ’

REMARK 3. New exponential Sobolev inequalities like the statement
of the previous Corollary for different classes of function are established in
[12, Theorem 2.3 and equations (2.10) and (2.11)].



312

Since

Dirk HORSTMANN

IVoll 2z, < llvller

we see by an application of the Moser-Trudinger inequality that for ve 0%
(ie. [lolly = p):

1||v||,2{ _ J i&(ex/lv\ — 1)+ zz:ﬂ eleDIx/4 gy
2 Br \'1=1 X1 h=1 "h

S (v) =

1\

Vi

2 z 2
p_ 1&e<e—1>R2/4J (e%f‘v\—1)dx—zﬂe<€-l)Rz/4nR2
Br

2 1—1 Xl

2 Z1

L z&e(S*I)RZ/‘*nRZ(] — e etirtiieny

2

h=1

h=1 Vh

A ple=1R2 /4 p2

=t Vh

= /)724_ i:/ﬂ(l —cp 6}512/)2/1671) _ i@ 6(871>R2/47ZR2
-2 =1 X !

REMARK 4. For 0 <e< 1 we get:

| A N\ et
S0 > S 7J i onlel — 1y 4§20 e DI/ g
©) = 5 llvll N ;:l Xl( ) /?:1 o

P 2,21 =
= (R ene ) -3
=1 #~1

= 'h

>77.’R2.

Choosing R sufficiently small we can always guarantee that

j(v)>pz2.

To apply the Mountain Pass Theorem we have also to check its second
As in [13] we, therefore, look at the (on Bg) positive function:

assumption.

where b > 0 is fixed and will be determined later.

belongs to H and we easily see that:

and

ol =2
H™ R

n(e(1R2/4 _ 1)/6

Obviously this function
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ﬂm=1|mj’zmaw_ VNS g
Rll

J ;“/7 7\7/,17* o 1)€<871)‘x‘2/4 dx
Br =1

4b’n ooR/A 4b277:> J S D2
_ B oot _ 1yple=DIN/4 gy
( eR? Br ,ZI:XJ( )

1
2

J E5) /lh o0t _ 1)8(;;71)\);‘2/4 dx
Br

=

1 rR2/4b 24 H 2 b —7blx|/R
<= 2 2 7R Z/Cz 7R e”J e X dx

Br

23
n Zﬁ o b gle=1)R2/4 J PSR gy
n=1 'h Br

8R2/4b2

Z1 R
S Z& nR* — 2met? J re 1PIR gy
2 =1 Xl 0

zy R
+ E 2nj'7hef\;,‘be(sfl)R2/4J Vevhbr/R dr.
= h 0

Thus, we see that:

ek’ /4b2 2y 2nR?e%®  27nR?>  2nR?
v* R? —
R Z (n x7b? T x?bz)
+ zzz: ﬁ 27[R28_v/’b 27[R2 _ 277.'R2 e<671)R2/4_
£y, b2 b vib?

REMARK 5. For 0 <e <1 one gets

e RIApn Gy 2nR%e%?  27R?>  2nR?
f(v*) < —+ —<7ZR2— + + )
3 2, X[zbz xb X]sz

2 ), (2nR%e™"b  2zR?  27R2
£y )

- + —
212 272
=) v, b b v,b

Now, choosing b sufficiently large we can guarantee that the inequalities

) <0 and oy > p

313



314 Dirk HORSTMANN

are fulfilled. (Remember that there is at least one u; # 0 according to
Hypothesis 1.1(1).)

Finally we have to check whether ¢ satisfies the Palais-Smale condition
or not. To show this property of # let (v,),.n = H satisfy

*  #(vy) is bounded.

e #'(vy) —0in H' as n— oo.
It is left to show that (v,),.N has a strongly convergent subsequence. To do
so, we first prove that the sequence (v,),.n is bounded in WOI’Z(BR). Straight-
forward calculation give us that

7= |

Br

eIy vy dx—J (Z,u e“qﬁ—l—Z)he ””‘qﬁ) DI/ g

for all ¢ € H and, therefore,

bv 2bv bv bv
ve elxi2/a €0 + e + bve 2
J'(v) bb.:J et/ —— Vol dx
I+e Bx (1+ ebv)
z v
. ) Vv (e=1)|x|*/4
LR (;1 ,u,e" o+ E Jpe” 1+ebl>e dx
and
P07 s Sl - | }ju/w“””e@lwﬂdx
v H l v
1+eb = 1+eb

bv
e DI/ g
JB Z h€ 1_|_ bL

for lf - € H with some b > 0, since

€2bu +ebu +bU€bv
3 <
(1 4 ebv)

< % for all veR.

REMARK 6. If all 2, =0, then we can proceed exactly as in [13] and one
changes the proof by looking at ¢'(v)-v instead of ¢'(v)

l+ebl

Additionally we see that for 0 < a < b and for all v e R the following lower
estimates hold true:

a ve(bfa)v

41+t
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and

(a+b)v 1 av
a ve a a a ave
41+err € LR & g

63
> (S —1) =K,

where K, is a positive constant depending on a and b.

Thus, one can conclude that for M := m}:;lx Vi, m;ax )(,}

1 Ue(M+1)v

f(l)) - Zj/(v) 1+ e(M+1)v

L, 2 w (1 goeM+he D)2
> Z ATZ ouv et 4] | e DIXIT/4 4
B 8||U”H JBR 121:)(1 47 4 et ® “rTi)e ~

S /Ih 1 vhve(MJrl)v -V -V (e=1)|x|?/4
+J3R;V_/¢(171+€(M+1)Ee e —1])e dx
h=

> 1||v||2 - Z& (é— 1+K M> J e DI/4 iy
= 8 H — X[ 4 A1 B

_ J iﬁe(e—l)\xlz/‘l Qv
Br =1 Vh

1 (M+1)

PR FE R VI (e-Dl?/4
PO~ 3 0 e = gl = 3 (G U K ) [ et
_ZA_/J =D /4 gy

h=1 Vh Bg

Lo oy (e 2 (e~ )R>
Sl =S K,y | aR2e DR
glieli = (G 1+ Ky )2

2 1

= ﬂnRze(C—l)R2/4.

=1 Vh

\Y

REMARK 7. For 0 <e <1 one gets

1 Ue(M+1)L

f(”)—zf/()m—gﬂ ollf — Z’ul<2_1+Km )R2

_ Zih
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As a consequence we have:

loall7 < 817 (W)l + 217" (0a) 1

el
1 + e(M+1)o, u

M+1)u,

Z 3
H(e 2 (e=1)R2/4
+812;X_<Z_1+KXI’M)T[R 6(8 >R/

!

Z2 1
+38 Z:EERZE(E’URZ/4
= Vh

9
< 8[.7(un)| +§|\f’(vn)|\fw +

2

9

vne(M+1)vn

Z 3
(e 2 (e~1)R2/4
+8;X_I<Z_1+KXI’M>7TR e( R/

13 “ZzﬁnRze(g—l)Rz/{

Vi
Therefore,
lonlly < 8L+ 2 18”(n) + 5 ol
s i% (%3 — 1+ Kx,,M) 2R2eE= DR /4
=1 X
2 -
+8;v—hnRze(s R4
resp.

1 9
3 loall7 < 817 (va)| + 3 17! (o) |72

z N
Hofe N
+81§;)?1(Z_1+Kx,,M>nR ole=DR/

22 ;\z
+8 hz:l v—: R DR /4

ReMARK 8. Consequently, for 0 < ¢ <1 we have:

2

1 + e(M+l)Dn H
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1 9
5ol < 8.7 (o) +§||f'<vn>||i,/
+ 87R> Z“’ — 14K +ZZ:;—” .
4 & h=1 Vh

Now, since we assumed that #(v,) is bounded and #'(v,) — 0 in H' as n — o
we can conclude that the sequence (v,),. is bounded in W, '?(Bg). Accord-
ing to the wellknown Sobolev’s embedding theorems (see for example |[I,
Theorem 4.12, page 85]) we know that (v,),.n has a subsequence (vy),, .n that
converges weakly in WO ?(Bg) and strongly in L2(Bg). For this subsequence
we now take a closer look at |lv,, — vylly-

We see that:

Up, — Un |77 = etxl*/4 Vo, — Vo, 2dx
ke i H i

et /4ank (Vou, — Vv, )dx

%

- J e‘sl"‘z/“ani (Vou, — Vuy,)dx.
Br

2
||Unk - UniHH =

e’sl‘”‘z/“ank(ank — Vo, )dx
Br

—

- e‘""x‘z/“an,(ank —Vuy,)dx

Br
z

. _ 2
_ E ﬂle’{lb”k (Uﬂk _ U}’l,‘)e(s D]x|"/4 dx
JBr =1

2
— E :/1/3 W (. — ) eG4 g
JBRr =

Z)he W (3, — Uni)>€(£_l)x2/4 dx

+ (Zﬂ el eXlLrll)(l; — Un,.)> e(gfl)‘x‘2/4 dx
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22
) — Vi D — 2
] (Do mem = ey =) )V g
Br \ h=1

< |j/(vnk)(vnk - vn[)' + |j/(vnf)(vi1k - Un,»)

Z1
] (Dot e, — o] eI
Br \I=1

)
* J Z}vh(e""‘”"k‘ + elrh‘vnimvnk - Un,-‘ e(e_l)lx‘z/“ dx.
Br \ h=1

Let us now recall that (from the assumptions made) we know that for any e
there exists n(e) such that

1
7 ()bl < elldlly < 1||¢||f1 +e forall geH,

if n > n(e). Thus one can show by some easy calculations and an application
of Holder’s inequality and Moser-Trudinger’s inequality that there exists a
positive constant ¢ such that

2 2
ank - Unf”H <4e” + c”vnk - vni”Lz(BR)'

Since (vy,), .n 1S strongly convergent in L?*(Bg) we conclude that

ni e

lim |lv,, — Un,»”;{ =0,
k,IﬂDO

ie. (Uy), N 1 @ strongly convergent sequence in H.

Summing up our results shown so far, we have proven that # satisfies the
needed Palais-Smale condition.

Since ¢ satisfies all assumptions needed, we now conclude from Theorem
1 that there exists a solution of our Dirichlet problem. As a critical point of
our functional # this solution solves our problem (2.1) in the weak sense.
However, it is not only a weak solution of (2.1) but in fact a classical
one. Using standard arguments from elliptic regularity theory one can easily
derive higher regularity results for the mountain pass solution of (2.1). Its
positivity follows from the strong maximum principle for elliptic equation (see
for instance [7, Theorem 4, page 333]. Since the critical point belongs (by
construction) to the Hilbert space H we see immediately that it is a radially
symmetric function. O
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3. Some a priori estimates on the solutions

Before we prove the existence of a solution to
v (L E NS o N —r2/4 —vi
(g J D e e Y e e =0 (3.1)
=1 h=1
¥'(0)=0 (3.2)
J ny(r)dr < oo, (3.3)

0

we will show some of its properties. Exactly as in [13] we set

“1 2 s 2
J —e ¥ /4J e VT4 drds.
0o S 0

1(¢)

From [13] we know the following Lemma:

LEMMA 1 (compare Lemma 1 in [13]). For ¢ >0 the expression I(g) is
represented as

1(e) :{lzg(g ifesl
1 if e=1.
For a proof of this lemma see [13, Proof of Lemma 1, page 147]. In the
following we will denote a solution  of (3.1)—(3.3) with ¥(0) = a by ¥(r;a).
The next lemma (that corresponds to Lemma 2 in [13]) shows that the solution
of (3.1)—(3.3) is monotone decreasing and bounded from below.

LEMMA 2 (Monotonicity and boundedness). Ler w(e) = wI(e), An(e) =
)41[(8), Mﬂz(e) = m}ax ,ul(s), M/lh(s) = m}?x lh({;‘), M,u,(s),/lh(e) = max{Mﬂl@),
M}, 1= max x; and v := Max V. Then, for r > 0, the following estimates
hold:

1. y'(r;a) <0. i

/ =L et =2 ) re Ve

2. l//(r;a)>—2”’2 - 2 .

=1 =1
3. If there is at least one J, # 0 then,

Y(r,a) > — In(e”"MMuw. e 4 va " NMy@.s0¢" _ 1),
v

and if all 1, =0, then Y(r,a) > a— NM,,,e*".

Proor. 1. Since y solves (3.1) we see that,

Z] )
(p(r)lﬁ,),Jr Zlulp(r)efr“/“elll// + Z /"th(},.)e*rz/“e*\/hl// = O (34)
=1 h=1
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where p(r) = re/4 > 0. Integrating this equation leads to:

2 r
Z,u J sele= 1 enb s — Z/l;lj sele e s < 0 (3.5)
0

h=1

2. From the first statement of the lemma we conclude that ¥(0;a)
Y(r;a). From (3.5) and the monotonicity statement we see that:

Z] r i3 r
_Z/‘IJ o= /4 dS—Zth o=/ b g
=1 0 h=1 0
i I 22: vra) [ o154
> — ,u,el"‘J se\ TSt dy — Ape”mvnsd J se\ IR dg
=1 0 h=1 0
r
> _ Zﬂl

e}',a er? /4 ert /4 —vp(r;a)

B Zlhrze

3. If there is at least one A, # 0, then we see that:

ro! -

V' (s;a)e? s 1 o 1 o

T ds=—In(1 wi(ra)y _ 2 In(1 (05 )

L T reea P75 n(l +e™"%) —— In(1 +e )

1 . 1
= In(1 + ey — Z In(1 + ')
vV

and therefore

r I/II(S; a)ew//(s;a) 1 "1 et Apn(sia)
|5 e ”ff
0 7 Jo

1+ eWisa) ds = - s 1+ eWsa

J re(E=0T4ph(©a) g g
= 0

78.3‘2/4 wWi(s;a) s s
— Z e &V /4 —m(tia) g
24| S Ty el |,

> — Zule/’“J P e /4Lre =/ drds

n o (—v(sia) s
—Z/th _e—es2/467“J e V/4 grds
0 1 + eisa)

> =N - My, ), (€
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Thus, we conclude that:
1+ e"0@ > (1 4 )N Mu@ e

and, therefore,

1 _ R za —v N xa
lﬁ(}"; a) > ; ln(e vNM‘,N)_,,/l(S)e +€W \NMM(S),/_/,(S)E _ 1)

If all 4, =0, then we can easily derive that

Y(r,a) > a— NMy, e
from equation (3.5). O

The previous lemma implies that i is monotone decreasing and strictly
bounded away from zero, i.e.

lim y(r;a) > 0,

r— 00
if
a— N - Mﬂ,(e),lh(e)em > 0.

LemMa 3 (Positivity). We set y(oo;a) = lim y(r;a) and assume that
F— o0

11
O<N- M#I<S>7;'/1(£> < }—( .
Furthermore, we denote the intersection points of the line y = N - M, ;,(:) and

. — o4
the curve y = ae *, by P My 100 and I’ My 200 where

VM;‘,(&)A;.,T(E) < FMM(c)./'./,(e)'
If
PMyy i) < ¢ r Mooy, 2000

then (co;a) > 0 holds.
This lemma follows immediately from the third statement of Lemma 2.

Lemma 4 (Upper bounds for positive solutions). Let y,, <a<

. wy(e), A (e)
My 0> ¢ =max{l,1/e} and x; = min{1,¢e}, then

21

)
Y(ria) <(o:a) + <Z e + Zm) oo,

=1 h=1
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(A condition for the positivity of the solution of problem (1.8)—(1.10) is given
by Lemma 3 in [13] and an upper bound is presented by Lemma 4 in [13].)

Proor. Since y(r;a) >0 we see that:
N

! “1 2
Y(r;a) = y(oosa) + Zﬂzj Ee_‘“ /4J eV drds
=1 r 0

22 o0 1 s ,
+ Z An L Ee_”z/“ . e VP AoV g

Z1 © 1 N R
< Y(oosa) + Zulel’” —e’”z/“J 1D/ deds
— r s 0

=1

= 1 “1 —es?/4 * (671)1’2/4d d
+Zh ) Ee Ore Tds.

If e> 1, then we derive:

Z1 0 1 N 5
Y(ria) < y(oosa) + Z,ulem —e‘”z/“J et/ drds

=1 r S 0

o0 1 N
+ Zlh Jr ;e_”z/wo 1 DT/ drds

o0 1 S
< Y(oosa) + Z,u,el"’ —e’esz/4e(8’1>sz/4j 7 dtds
r S 0

] 0 1 K
+ Z An J 567832/46’(871”2/4 L 7 dzds.

And thus:

o0 N R
J Sefm"/4e(£71)x /4 ds

r

Y(r;a) < y(oosa) + iy,;ﬂ“
=1

_i_zzz:& Oose—esz/4e(s—l)s2/4 ds
h=1 2 r

z zy
— Y(onia) + (Zﬂ,em + Zm)wz/“.
=1 h=1

On the other hand, if 0 <& < 1, then we can show that:
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Z1 o0 1 N s
Y(r;a) < y(oosa) + Z,u,e)"” —e_“'/“J T dtds
=1 Jr s 0
22 e¢] 1 2/4 s
+ A J —e T dtds
21 Ja [ ,
=y(o0;a) + Z'ulez se™ 4 ds
=1 r
22 /lh « 52 /4
+ Z?J se~ 4 ds
h=1 r
2 et SN,
=l//(00;a)+<2”’ +Z—”>e‘”2/4. O
= ¢ = ¢
The following lemma is similar to Lemma 5 in [13].
LEmMMmA 5. We set
neeja (71 2/4 :
h(t) = 1D/ J —e ™/ s, ¢ := max{a, b} and ¢ := min{a, b}.
t

Then

L.

N

[y h(r)dr = I(e), (compare [13, Lemma 5 (i), page 150])

2. |(r;a) = (r;b)| < a— b - exp((z pyete + Z dpe=e ) [Ch(t )

3. W(o0sa) — (003 b)) < Ja—b] p(lzl uEe + 5% e )

PROOF.

page 150 f.].
2. We see that:

Y(r;a) =a— i:ﬂz J)‘leﬂ”z/“ Js el VP A1V (5a) e
0 0

o
e Z 4 J )72 /4 y(5ia) J Lo dsde

T

_ 2 An Jr rele /4o (a) Jrle*“z/“ dsdr.
= Jo oS

1. The proof is exactly the same as in [13, Proof of Lemma 5 (i),
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As a consequence we have:
W (rya) — y(r; )]

Z] r r
<la=b+3 MIJ 2=V 4 esa) _ (b J 1o goge
=1 0

T
g e [Tl e
+ ZM J el N/ (5a) _ o= (nh)] JT S€ &4 dsdr.
Since
jen ) — D) < 1y (z3a) = (33 )
where ¢| := max{a,b} and
e ) — D) < ey () — (i)
where ¢; := min{a, b}, we conclude that:

W (r;a) — i (r;b)|

"1

<l|a—b|+ Z,ule“' J e D74 (ra) — (T b)| J Ze /4 dsdr
=1 0

T

22 r
+ ;Zhe”m Jo re(‘"'*l)fz/4|x//(r; a) — Yz b)|J S¢ e '/ dsdr

<la=bl+ Y mer | i(esa) (e h(e)ds

=1

+ ime V””J [W(z;a) — y(z; b)|h(r)d

Z1 22 r
= la—b|+ (Zulem + Zzhewz> j W(z:a) — Y(z;b)|h(t)dx
=1 h=1 0

Thus, we get from Gronwall’s inequality the claim of statement 2. that:

W(r;ia) — (r;b)| < |a— b 'exlf)((i:,uzeml + iihevh”) J;h(f)dT) (3.6)
=1 h=1

3. Sending r — oo on both sides of inequality (3.6), we get the third claim
of the lemma. O
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4. Existence and nonexistence results for positive solutions

Now we have all tools at hand to establish our existence and nonexistence
results for problem (1.3)—(1.5), resp. (3.1)—(3.3). Let us denote by v, the classi-
cal solution of the Dirichlet problem (2.1). Since v, is radial we see that it
satisfies the following conditions:

(re”’z/“vé) (E pyrekive + /Z Apre ”’“)e(“'l)’z/“ =0 1in By

v'(0) =0 and v.(R) = 0.

(4.1)

LEMMA 6. Let v, be the classical ( positive) solution of (2.1).  For sufficien-
tly small R this solution satisfies v:(0) > Iy, , .. where 'y, . . is the largest
intersection point of the line

y=N-My e and the curve y = ae .
(This result corresponds to Lemma 6 in [13].)

PrOOF.  Suppose that 0 < v.(0) < I'y,

wy(e), A e) * Since Uc(r) > 0 for r< R we
have

20
=Y e —1)>0
= Vh

and, therefore, we see from equation (2.6) that

1 e
J(v) < EJ ey, 2dx

Br
R .
< nJ re 14 (v)) dr.
0
From the second statement of Lemma 2 we conclude that
e}'l (( )

R 5] 2
er* /4 § ::ulr E /lhr
f(U¢)<ﬂJO re 2 < T‘f’ 7) dr

h=1

< eR2/4<Z“IW‘ i Z“)J P dr.

Since v.(0) may depend on R we conclude that

: 1l : z 2
1 4 &R ZL et Mo =

) < eR*/4 ! N
F(ve) 1677,'R e ;:1 5 + E >
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2
Choosing R sufficiently small one can always ensure that #(v.) < %. How-
ever this is a contradiction to what we have shown in our existence proof.
Therefore, we see that v.(0) > Iy, O

(e), i (e) *

As in [13, Lemma 7] for problem (1.8)—(1.10) we have the following statement
about the properties of the set of possible initial data for ¥ in our problem

(1.3)-(4).

Lemma 7. We set
O :={ae(l/y,0)|¥(w0;a) >0} and DO_ :={ae(1/y,o)|Py(c0;a) < 0}.
then O, and O_ are open sets.

This lemma follows directly from Lemma 5.3.
Now, in the following we can formulate our main theorem.

THEOREM 5. Let

0<N- My e <

R | =
Q| =

1. There exists an a* > 1/y such that problem (3.1) with (0) = a* admits
a positive solution satisfying (3.3).  Furthermore Y(0) tends to infinity
as

M, 6), () — 0

2. There exists a positive a, < 1/y such that problem (3.1) with y(0) = a,
admits a positive solution satisfying (3.3). Furthermore there exists a
W such that if

4
Zﬂl(g) >
=1

there are no positive solutions to our problem (3.1).

ProoF (Proof of Theorem 5). 1. At first we show the first statement of
Theorem 5.

As we have seen v.(r) is a monotone decreasing function and v.(R) = 0.
Thus we conclude that v.(r) < 0 for r > R. This implies that v.(0) belongs to
O_. However, if

Ym <a<lTly

1y(e). 2y (2) w(e). 2 (e) ?
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we know from Lemma 3, that a € O.. As a consequence we see that O, # J
and O_ # . Choosing ¢* = inf O_ it follows that

*
a” € [I'Myy 500 %)

Lemma 7 implies that ¢* is neither in O, nor in O_ and therefore,
Y(o0;a*) = 0. Furthermore, we know from Lemma 4 that

* . R Y Jm —rert /4
ny(r;a™)dr < _— 4 — rece” T dr
Jo d ) (1_21 2 Z 2)

h=1 0

21 xa” 22 1
. 2 ::u[e 2 : Ah
- (11 2 " ?> 2C£/K€

h=1

22

1 A .
< <lzl:%+ Z%)Zex" Ce/ K

h=1

= NM#/(E)J-A(S)EN*CE/KS'

Since
a*>T
=L My 00
and
Iy 50— ©
as
My 0),i0) = 0,

we have that

Y(0) =00 as My e — 0.

So the first statement of our Theorem has been shown.
2. Now we prove the second statement of our Theorem.
Equation (3.5) gives us

Z1 r
W(r) = — Zﬂeeﬂmj se &V A g
=" 0

S aa [ 1)s2/4
- Z—e” / J se e A=V (g,
i 0

From the fact that y/(r,a) is monotone decreasing we know that
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¥'(r) < — i%e”z/“em’(’) Jr sele= /4 g
I=1

0

J r
. Z h 612/4 = (0) J S€(£71>32/4 ds
0
< - i&e”z/“ ' sele=Ds/4 g | e1¥ ()
= r 0

This inequality implies:

(—e Y < —){i:ﬂe”z/“ Jro"e“"*l)“'z/4 ds.
r
I=1 0

Integrating this inequality from 0 to oo gives us:

z)
—e (@) 4 o= (0) —XZ#J(S)
=1

and as a consequence

lp(OO) < —)l/ ln<xiﬂl(5) + e—ZW(0)>'

As a consequence we see that

Y(0) <0, if }(i:y,(a) >1
I=1

Furthermore we know that:

5

< 1
Y(oosa) =a— Zy,_[ —e"“’“z/“J e D7tV drds
0 0

2 1 s 2 )
- Zth 5€ _‘"‘YZ/“J 1eE=VT AoV ey
0

<a-— Z sy J Ly J‘v e/ g
—1 0 s 0

21
=d — Zﬂl(g)exlw(w;a).
=1
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Similar as in Lemma 7 we now set

Uy ={ae(0,1/x)[¥(x;a) > 0}
and
U ={ae(0,1/x)|¥(w0;a) <0}

These set are open what can be shown exactly in the same way as the claim of
Lemma 7.
Thus, if we have

"Moo o <a<l/y,

then we see that a e U[,. However, our calculations from above show that:

Z1
Y(o0;0) < = > y(e)er? 0 <.
I=1

Therefore, we see that an a € (0,y My, .,) exists such that Y(o0;a) < 0 and as

a consequence M, # ¥ and U_ # ¢J. Now we set
a,=sup U_ < 1/y.

Exactly as in the arguments to establish the first claim of our theorem we see
that a, ¢ W, and a. ¢ U_. So Y(o0;a,) =0. The boundedness of the solution
is once again guaranteed by Lemma 4 since we see that:

0 Z1 Y 22 9 0
He A 1,12 /4
. )d — e T
J 1 (r; a.)dr < (;1 Tt E 2) Jo reqe r

0 h=1

)

1 X4 )

He Ah
— 2V 2e, /i,
(?1 5+ ) 2) Ce/Ke

h=1
1 y A.
< (Z% + Z%’)Ze”’*cg/ice

=1 h=1

< NMyy o), 2y (e0€"" Co/ 16

This gives us the second statement of the Theorem and completes its proof.
]

5. Comments and some application of the existence and nonexistence results

It has already been mentioned in the introduction of the present paper that
some multi-species chemotaxis models belong to such kind of systems studied
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here. As a concrete example one can look at the following chemotaxis model
in the presence of a conflict of interest (see [20, Definition 1, page 646] and
[10, Remark 1.1, page 233, and Definition 5.2, page 249] for a definition of
a system describing chemotactic motion in the presence of a conflict of
interests):

u, =V(Vu— yuVv), in R*x {t> 0}
w, =V(Vw+wVv), in R*x {¢> 0} (5.1)
ev, = Av+ oqu 4 opw, in R? x {r>0}.

Looking for self-similar radial symmetric solution of (5.1) leads to

v+ (; + %) W' pe T etV 4 je T e = 0 (52)
¥'(0)=0 (5.3)
Jw ry(r)dr < oo, (5.4)

0

where

1= op(0)e 0 >0 and 4= oz0(0)e™ 0 > 0.

Therefore, the results of the present paper lead to the following statements for
this concrete example that can be viewed as an application of Theorem 5:

THEOREM 6. Let

1
0 < max{u(e), Ale)} < —- =
where
1 s 2
ule) == ,uJ —e’ssz/4J eV deds
0o S 0
and

AMe) == /IJ 187652/4J e D7/4 deds.
0o S 0

1. There exists an a* > 1/y such that problem (5.2) with y(0) = a* admits
a positive solution satisfying (5.4). Furthermore y(0) tends to infinity
as

max{u(e), A(e)} — 0.
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2. There exists a positive a, < 1/y such that problem (5.2) with y(0) = a,
admits a positive solution satisfying (5.4). Furthermore there exists a
w* such that if

(&) > u
there are no positive solutions to our problem (5.2).

Besides [13] and the present paper there are also other results on self-similar
solutions for problem (1.6) resp. (1.8)—(1.10). To list some of these results let
us refer for example to [3, 4, 5, 8, 9, 15] and [17].

Different from the ansatz followed in the present paper and in [13] Y.
Naito, T. Suzuki and K. Yoshida looked for self-similar solutions of system
(1.6) and showed the existence of such solutions in [17] by assuming that
u(x, 1) = p(x/\/1)/t and v(x,t) = ¥(x/+/t). This leads them to the system:

0=V(Vo—oV{)+3Vp+op, xeR?
0=Ay +5VYy+o, xeR? (5.5)
0 < g,y in R* and ¢(x),y(x) — 0 as |x] — .

The existence of a solution for this system has been shown first in [15, Theorem
1.1 and Theorem 1.2, page 429] while it is shown in [17] that any classical
solution of (5.5) has to be radially symmetric about the origin and satisfies
¢, € L'(R?). 1In addition it was shown that the solution set of (5.5) can
be expressed as a one-parameter family & = {(¢(s),¥(s)) : se R}. If A(s) :=
l0(s)]|11(r2)> then the solution (¢(s),y(s)) and A(s) satisfy the following pro-
perties:
1. s (p(s),¥(s)) € C*(R?) x C*(R?) and s+ A(s) e R are continuous.
2. (p(s),¥(s)) — (0,0) in C%(R?) x C%(R?) and A(s) — 0 as s — —o0.
3. W) e gz — 90, Als) — 8m, and ¢(s)dx — 8ndg(dx) in the sense of
measure as s — oo, where Jo(dx) denotes Dirac’s J-function with
support in the origin.
4. 0< A(s) <8z for seR, if 0 <e<1/2, and

0 < A(s) < max{4n’/3,4n’c*/3}

for seR, if ¢>1/2.
These properties result in the existence of a critical value

87 < 2" < max{dn’/3,4n’c*/3}

such that for 4 € (0,4") there exists a solution in & such that |[¢|| i g2 = 4 and
for 4> 27, there exists no solution in & satisfying ||¢[|, g2 = 4.
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The more recent paper [3] follows a different approach resp. another goal.
It is concerned with self-similar blow-up solutions (as it has also been done in
[4, 5, 8, 9]) in two spatial dimensions.

Biler et al. show in [3] that for the parabolic-parabolic case of (1.6) the
threshold value deciding whether blow-up can take place or not is not as
clear as in the parabolic-elliptic case, in which solutions with mass above
the threshold value M, always blow up. In [3] the author study forward
self-similar solutions of the parabolic-parabolic system (1.6) and prove that
(in some cases) such solutions globally exist even if their total mass is above
the threshold value M, of the parabolic-elliptic case.

Let us finally mention that it seems to be possible to establish results
similar to those presented in the present paper without the simplifying as-
sumption on {; and A; in Hypothesis 1.1. The results of the present paper
seem to remain true if one assumes that { = Ceonst = Ay for all indices k& with
an arbitrary positive constant Ceony (that is not necessarily equal to 1) and if
one, therefore, replaces expressions like (¢ — 1) by (e — Ceonst). Of course this
will also lead to a necessary change in I(¢) that will then be represented by

o [ RS 2 Con

Cconst

if &= Ceonst

instead of the given representation in Lemma 1. At some other parts of the
present paper some additional technicalities will also be needed but these
changes seem to be (only) marginal and not so complicated.
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