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Abstract. We classify real hypersurfaces in a complex space form whose structural

reflections are isometries. We also determine real hypersurfaces in a complex space

form whose transversal Jacobi operators have constant eigenvalues and at the same time

their eigenspaces are parallel (along transversal geodesics).

1. Introduction

Let ð ~MMnðcÞ; J; ~ggÞ be an n-dimensional complex space form with Kähler

structure ðJ; ~ggÞ of constant holomorphic sectional curvature c and let M be an

orientable real hypersurface in ~MMnðcÞ. Then M has an almost contact metric

structure ðh; f; x; gÞ induced from ðJ; ~ggÞ (see section 1). U-H. Ki [13] proved

that there are no real hypersurfaces with parallel Ricci tensors in a non-flat

complex space form ~MMnðcÞ ðc0 0Þ when dim nb 3. U. K. Kim [15] proved

that this is also true when n ¼ 2. These results say that there do not exist

locally symmetric ð‘R ¼ 0Þ real hypersurfaces in a non-flat complex space

form.

On the one hand, it is well-known ([7]) that a Riemannian manifold is

locally symmetric if and only if every geodesic symmetry is an isometry. In

contact geometry there is the so-called f-symmetry (or the transversal sym-

metry). T. Takahashi ([29]) introduced Sasakian locally f-symmetric spaces,

which may be considered as the analogues of locally Hermitian symmetric

spaces. In fact, a Sasakian manifold is called locally f-symmetric if the

Riemannian curvature tensor R satisfies

ðC1Þ gðð‘URÞðX ;VÞW ;YÞ ¼ 0
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for all vector fields U , V , W , X , Y orthogonal to x: He proves that this

condition is equivalent to having f-geodesic (or transversal geodesic) symme-

tries which are local automorphisms, i.e., local di¤eomorphisms leaving all

structure tensor fields invariant. Later, it was proved in [5] that the isometric

property of f-geodesic symmetry is already su‰cient. From this geometric

reality, E. Boeckx and L. Vanhecke ([6]) gave another definition for a locally

f-symmetric contact manifold: they require the structural reflections (i.e., the

reflections with respect to the integral curves of the structure vector x) to be

local isometries. This notion may be extended to almost contact metric spaces.

Then it leads to an infinite number of curvature conditions, including ðC1Þ.
Indeed, they are given by

ðC2Þ

x is a geodesic vector field;

gðð‘2k
U ...URÞðV ;UÞU ; xÞ ¼ 0;

gðð‘2kþ1
U ...URÞðV ;UÞU ;WÞ ¼ 0;

gðð‘2kþ1
U ...URÞðx;UÞU ; xÞ ¼ 0;

8>>><
>>>:

for all vector fields U , V and W orthogonal to x and k ¼ 0; 1; 2; . . . .

On the other hand, J. Berndt and L. Vanhecke ([3]) found a di¤erent

remarkable property of a locally symmetric space. That is, a Riemannian

manifold M is locally symmetric if and only if the Jacobi operators Rg ¼
Rð�; gÞg are diagonalizable by parallel orthonormal frame fields and their

eigenvalues are constant along any geodesics g, which can be expressed by

the condition: ð‘ _ggRÞð�; _ggÞ _gg ¼ 0 for any geodesic g. This nature of local sym-

metry leads us to define a class of almost contact metric manifolds whose

transversal Jacobi operator Rg is diagonalizable by a parallel orthonormal frame

field and their eigenvalues are constant along each transversal geodesic g. It

can be interpreted by the following condition:

ðC3Þ
a a geodesic g initially belonging to Dp remains Dg along g;

ðwe call it a transversal geodesicÞ
a ð‘ _ggRÞð�; _ggÞ _gg ¼ 0 along any transversal geodesic g;

8<
:

where Dp ¼ fv A TpM j hðvÞ ¼ 0g and D : p ! Dp defines a distribution orthog-

onal to x. We can see that the condition ðC1Þ is common in the 2nd condition

of ðC3Þ and the 3rd condition for k ¼ 0 in ðC2Þ. It is intriguing to determine

real hypersurfaces in a complex space form which satisfy ðC2Þ or ðC3Þ, respec-
tively. Then we prove

Theorem 1. Let M be a real hypersurface in a non-flat complex space

form ~MMnðcÞ ðc0 0Þ. Then the structural reflections on M are isometries if and

only if M is locally congruent to a homogeneous hypersurface of type ðAÞ or ðBÞ
in PnC or HnC.
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Theorem 2. Let M be a real hypersurface in a non-flat complex space

form ~MMnðcÞ ðc0 0Þ. Then the eigenvalues of the transversal Jacobi operators

are constant and their eigenspaces are parallel along each transversal geodesic

if and only if M is locally congruent to a ruled real hypersurface in PnC or

HnC.

2. Almost contact geometry

In this paper, all manifolds are assumed to be connected and of class Cy

and the real hypersurfaces are supposed to be oriented.

First, we give a brief review of several fundamental notions and formulas

which we will need later on. An odd-dimensional di¤erentiable manifold M

has an almost contact structure if it admits a ð1; 1Þ-tensor field f, a vector field

x and a 1-form h satisfying

f2 ¼ �I þ hn x; hðxÞ ¼ 1: ð1Þ

We call x the Reeb vector field (or structural vector field ) and its integral curve

the Reeb flow (or structural flow). Then we can always find a compatible

Riemannian metric, namely which satisfies

gðfX ; fY Þ ¼ gðX ;Y Þ � hðX ÞhðY Þ ð2Þ

for all vector fields on M. We call ðh; f; x; gÞ an almost contact metric

structure of M and M ¼ ðM; h; f; x; gÞ an almost contact metric manifold.

From (1) and (2) we easily get

fx ¼ 0; h � f ¼ 0; hðXÞ ¼ gðX ; xÞ: ð3Þ

The tangent space TpM of M at each point p A M is decomposed as TpM ¼
Dp l Spanfxgp (direct sum), where we denote Dp ¼ fv A TpM j hðvÞ ¼ 0g.
Then D : p ! Dp defines a distribution orthogonal to x. For an almost con-

tact metric manifold M, we define its fundamental 2-form F by FðX ;YÞ ¼
gðfX ;Y Þ. If M satisfies in addition

F ¼ dh; ð4Þ

M is called a contact metric manifold. For more details about the general

theory of almost contact metric manifolds, we refer to [4].

Let g : ½a; b� ! M be an embedded curve in a Riemannian manifold ðM; gÞ
and let v be a unit vector field orthogonal to g 0ðtÞ at gðtÞ ¼ p for any fixed

t A ½a; b�. The reflection expp rv 7! exppð�rvÞ with respect to g is defined for

su‰ciently small r > 0. In [9], B. Y. Chen and L. Vanhecke obtained a

criterion for a reflection with respect to a curve to be locally isometric.
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Applying this notion to the structural curve in an almost contact metric

manifold and we may consider the criterion for the reflection with respect to

the structural curve, which is called the structural reflection, to be isometric.

Actually, E. Boeckx and L. Vanhecke ([6]) have shown the following.

Proposition 1. Let M ¼ ðM; h; f; x; gÞ be an almost contact metric mani-

fold. If the structural reflections on M are isometries, then

ð i Þ x is a geodesic vector field;

ð ii Þ gðð‘2k
U ...URÞðV ;UÞU ; xÞ ¼ 0;

ðiiiÞ gðð‘2kþ1
U ...URÞðV ;UÞU ;WÞ ¼ 0;

ðivÞ gðð‘2kþ1
U ...URÞðx;UÞU ; xÞ ¼ 0;

ð5Þ

for all vector fields U, V and W orthogonal to x and k ¼ 0; 1; 2; . . . . Moreover,

if M is real analytic, these conditions are also su‰cient for the structural

reflections on M to be isometries.

In [24], S. Nagai proved the classification theorem for real hypersurfaces in

PnC whose structural reflections are isometries. In Section 5, we extend his

result to a non-flat complex space form ~MMnðcÞ ðc0 0Þ in a di¤erent way.

On the other hand, J. Berndt and L. Vanhecke ([3]) proved that a

Riemannian manifold M is locally symmetric if and only if the Jacobi operator

is diagonalizable by a parallel orthonormal frame field and their eigenvalues are

constant along each geodesic g. In that process the following lemma has an

important role.

Lemma 1 ([12], [30]). For a Riemannian manifold M, the following two

conditions are equivalent.

( i ) ‘R ¼ 0,

(ii) ð‘XRÞð�;X ÞX ¼ 0 for any vector field X on M.

To prove the above lemma, we mainly use the fundamental symmetries

of R and their polarization technique. For almost contact metric manifolds,

we consider the analogous condition: the transversal Jacobi operator Rg has

constant eigenvalues and at the same time their eigenspaces are parallel along

each transversal geodesic g. Equivalently, this property is interpreted as the

following two conditions:

ð i Þ a geodesic g initially belonging to Dp remains Dg along g;

ðwe call it a transversal geodesicÞ
ðiiÞ ð‘ _ggRÞð�; _ggÞ _gg ¼ 0 along any transversal geodesic ðor f-geodesicÞ g:

8><
>: ð6Þ
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3. Real hypersurfaces in a complex space form

Let ~MM ¼ ~MMnðcÞ be a complex space form of constant holomorphic

sectional curvature c, M be a real hypersurface of ~MM and N be a unit

normal vector field of M in ~MM. We denote by ~gg and J a Kähler metric tensor

and its complex structure tensor on ~MM, respectively. For any vector field X

tangent to M, we put

JX ¼ fX þ hðXÞN; JN ¼ �x; ð7Þ

where fX is the tangential part of JX , f a ð1; 1Þ-type tensor field, h is a 1-form,

and x is a unit vector field on M. The induced Riemannian metric on M is

denoted by g. Then by properties of ð~gg; JÞ we see that the structure ðf; x; h; gÞ
is an almost contact metric structure on M, that is, from (7) we can deduce (1)

and (2).

The Gauss and Weingarten formula for M are given as

~‘‘XY ¼ ‘XY þ gðAX ;Y ÞN;

~‘‘XN ¼ �AX

for any tangent vector fields X , Y , where ~‘‘ and ‘ denote the Levi-Civita

connections of ðMnðcÞ; ~ggÞ and ðM; gÞ, respectively, and A is the shape operator

field. An eigenvalue and an eigenvector of the shape operator A is called

a principal curvature and a principal curvature vector, respectively. From (7)

and ~‘‘J ¼ 0, we then obtain

ð‘XfÞY ¼ hðY ÞAX � gðAX ;Y Þx; ð8Þ

‘Xx ¼ fAX : ð9Þ

From (9) it follows easily that

Lemma 2. The structural vector field x is principal if and only if its integral

curves are geodesics.

We have the following Gauss and Codazzi equations:

RðX ;Y ÞZ ¼ c

4
fgðY ;ZÞX � gðX ;ZÞY

þ gðfY ;ZÞfX � gðfX ;ZÞfY � 2gðfX ;YÞfZg

þ gðAY ;ZÞAX � gðAX ;ZÞAY ; ð10Þ

ð‘XAÞY � ð‘YAÞX ¼ c

4
fhðX ÞfY � hðYÞfX � 2gðfX ;Y Þxg ð11Þ
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for any tangent vector fields X , Y , Z on M. From (10) we get for the Ricci

tensor S of type ð1; 1Þ:

SX ¼ c

4
fð2nþ 1ÞX � 3hðX Þxg þ hAX � A2X ; ð12Þ

where h ¼ tr A denotes the mean curvature.

The following facts are needed later to prove our results.

Lemma 3 ([14], [19], [21]). If x is a principal curvature vector, then the

associated principal curvature a1 ¼ gðAx; xÞ is constant.

R. Takagi [27], [28] classified the homogeneous real hypersurfaces of

PnC into six types. T. E. Cecil and P. J. Ryan [8] extensively studied a Hopf

hypersurface (whose Reeb vector x is a principal curvature vector), which is

realized as tubes over certain submanifolds in PnC, by using its focal map. By

making use of those results, M. Kimura [16] proved the local classification

theorem for Hopf hypersurfaces of PnC whose all principal curvatures are

constant.

Theorem 3 ([16]). Let M be a Hopf hypersurface of PnC. Then M has

constant principal curvatures if and only if M is locally congruent to one of the

following:

ðA1Þ a geodesic hypersphere of radius r, where 0 < r < p
2 ,

ðA2Þ a tube of radius r over a totally geodesic PlC ð1a la n� 2Þ, where
0 < r < p

2 ,

ðBÞ a tube of radius r over a complex quadric Qn�1 and PnR, where

0 < r < p
4 ,

ðCÞ a tube of radius r over P1C� Pðn�1Þ=2C, where 0 < r < p
4 and nðb 5Þ is

odd,

ðDÞ a tube of radius r over a complex Grassmann G2;5C, where 0 < r < p
4

and n ¼ 9,

ðEÞ a tube of radius r over a Hermitian symmetric space SOð10Þ=Uð5Þ,
where 0 < r < p

4 and n ¼ 15.

For the case HnC, J. Berndt [2] proved the classification theorem for Hopf

hypersurfaces whose all principal curvatures are constant.

Theorem 4 ([2]). Let M be a Hopf hypersurface of HnC. Then M has

constant principal curvatures if and only if M is locally congruent to one of the

following:

ðA0Þ a horosphere,

ðA1Þ a geodesic hypersphere or a tube over a complex hyperbolic hyper-

plane Hn�1C,
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ðA2Þ a tube over a totally geodesic HlC ð1a la n� 2Þ,
ðBÞ a tube over a totally real hyperbolic space HnR.

We call simply type ðAÞ for real hypersurfaces of type ðA1Þ, ðA2Þ in PnC

and ones of type ðA0Þ, ðA1Þ or ðA2Þ in HnC.

M. Kimura [17] constructed ruled real hypersurfaces, which are foliated

real hypersurfaces with totally geodesic submanifolds of PnC as leaves of

codimension 1. Let M be a hypersurface in S2nþ1 defined by

fðreit cos y; reit sin y; ð1� r2Þ1=2z2; . . . ; ð1� r2Þ1=2znÞ A Cnþ1 j

Xn

j¼2

jzj j2 ¼ 1; 0 < r < 1; 0a t; y < 2p; g:

Then the Hopf image M of M is a minimal ruled hypersurface in PnðCÞ.
Actually, the shape operator is given as follows: Ax ¼ r�1ð1� r2Þ1=2U , AU ¼
r�1ð1� r2Þ1=2x and AZ ¼ 0 for Z ? x;U . We note that the above example of

a ruled real hypersurface is not complete. In a similar way, S.-S. Ahn, S.-B.

Lee and Y. J. Suh ([1]) gave a minimal complete ruled real hypersurface in

HnðCÞ. Furthermore, they are characterized by the following.

Theorem 5 ([1]). Let M be a real hypersurface in a non-flat complex space

form ~MM. Then M is a ruled real hypersurface if and only if gðAX ;YÞ ¼ 0 for

any tangent vectors X, Y of M with X ;Y ? x.

The shape operator of ruled real hypersurfaces in PnC or HnC is written as

follows:

Ax ¼ a1xþ mU ðm0 0Þ;

AU ¼ mx;

AZ ¼ 0

ð13Þ

for any Z ? fx;Ug, where U ? x is a unit vector field, a1 and m are functions

on M.

4. Real hypersurfaces of type ðAÞ or ðBÞ

Real hypersurfaces of type ðAÞ or ðBÞ in PnC or HnC have a following

characterization.

Theorem 6 ([18], [26]). Let M be a Hopf hypersurface in a non-flat

complex space form ~MM ¼ ~MMnðcÞ. Then the shape operator A is h-parallel, that

is gðð‘XAÞY ;ZÞ ¼ 0 for X ;Y ;Z ? x if and only if M is locally congruent to a

real hypersurface of type ðAÞ or ðBÞ in PnC or HnC.
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By using the above result, we can find the full expression of ‘A for real

hypersurfaces of type ðAÞ or ðBÞ in PnC or HnC, which is very useful to prove

Theorem 1. Namely, we have

Theorem 7. Let M be a real hypersurface in a non-flat complex space

form ~MM ¼ ~MMnðcÞ. Then M is locally congruent to a real hypersurface of type

ðAÞ or ðBÞ in PnC or HnC if and only if M satisfies

ð‘XAÞY ¼ hðX Þ c

4
fY þ FY

� �
þ hðY ÞFX þ gðFX ;Y Þx; ð14Þ

for any vector fields X, Y tangent to M, where F ¼ hðAxÞfA� AfA.

Proof. If we denote by X T the component of X orthogonal to x, then

we have for arbitrary vector fields X , Y , Z on M:

gðð‘X TAÞY T ;ZTÞ

¼ gðð‘X�hðX ÞxAÞðY � hðYÞx;Z � hðZÞxÞ

¼ gðð‘XAÞY ;ZÞ � hðXÞgðð‘xAÞY ;ZÞ � hðYÞgðð‘XAÞx;ZÞ

� hðZÞgðð‘XAÞY ; xÞ þ hðXÞhðYÞgðð‘xAÞx;ZÞ þ hðY ÞhðZÞgðð‘XAÞx; xÞ

þ hðZÞhðXÞgðð‘xAÞY ; xÞ � hðXÞhðYÞhðZÞgðð‘xAÞx; xÞ: ð15Þ

Let M be a real hypersurface of type ðAÞ or ðBÞ in PnC or HnC. Then since x

is a principal curvature vector, that is Ax ¼ a1x on M, then di¤erentiating this

covariantly, and then using Lemma 6 and (9) we have

ð‘XAÞx ¼ a1fAX � AfAX ; ð16Þ

and further using (11) we obtain

ð‘xAÞX ¼ c

4
fX þ a1fAX � AfAX ð17Þ

for any vector field X on M. Hence, we see that ð‘xAÞx ¼ 0. Furthermore,

use the h-parallelity of A, the symmetry of ‘XA, (16) and (17) in (15) to obtain

(14).

Conversely, we suppose that real hypersurface M satisfies (14). Then we

obtain

ð‘XAÞY � ð‘YAÞX

¼ c

4
fhðXÞfY � hðY ÞfXg þ hðAxÞgððfAþ AfÞX ;Y Þx� 2gðAfAX ;Y Þx
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for any vector fields X and Y on M. Together with (11) we get

a1gððfAþ AfÞX ;Y Þ � 2gðAfAX ;YÞ ¼ � c

2
gðfX ;YÞ ð18Þ

for any vector fields X and Y on M, where a1 ¼ hðAxÞ. If we put X ¼ x in

(18), then we have

2AfAx ¼ a1fAx: ð19Þ

Put Y ¼ fAx in (18) and use (2) and (19) to obtain

ða21 þ cÞgðfX ; fAxÞ ¼ ða21 þ cÞðhðAX Þ � a1hðX ÞÞ ¼ 0;

which says that x is a principal curvature vector field on M in PnC. So, we

consider the case a21 þ c ¼ 0, which occur only in HnC. If we put X ¼ x in

(14) and use (19), then we get

ð‘xAÞY ¼ c

4
fY þ a1fAY � AfAY þ a1

2
hðY ÞfAxþ a1

2
gðfAx;YÞx ð20Þ

for any vector field Y on M. From (19) and (20), it follows that

ð‘xAÞx ¼ a1fAx; ð21Þ

and

ð‘xAÞfAx ¼ a1

2
A2x� 3

4
a21Axþ � a31

4
þ a1a2

2

� �
x; ð22Þ

where we have used the 1st equation of (1) and (2). Here, we denote a2 ¼
gðA2x; xÞ.

If we di¤erentiate (19) covariantly for x, then we get

2ðð‘xAÞfAxþ Að‘xfÞAxþ Afð‘xAÞxþ AfA‘xxÞ

¼ a1ðð‘xfÞAxþ fð‘xAÞxþ fA‘xxÞ: ð23Þ

By using (19), (21) and (22), we compute (23) again. Then we finally have

ða21 � a2ÞAx ¼ a1ða21 � a2Þx;

where we have used ð‘xfÞAx ¼ a1Ax� a2x. Since kfAxk2 ¼ a2 � a21 , we easily

show that a21 � a2 ¼ 0 implies Ax ¼ a1x. Hence, we conclude that x is a

principal curvature vector field on M in PnC or HnC. From (14) we get

further that A is h-parallel. Due to Theorem 6, we show that M is locally

congruent to a real hypersurface of type ðAÞ or ðBÞ in PnC or HnC. r
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The above Theorem 7 gives a new characterization of real hypersurfaces of

type ðAÞ or ðBÞ in PnC or HnC.

5. Real hypersurfaces whose structural reflections are isometric

In this section, we prove Theorem 1. The following lemma can be verified

by the induction argument using (3), (8), (9) and (14) (Theorem 7). (For PnC,

this was proved [24] in a di¤erent way.)

Lemma 4. In a real hypersurface of type ðAÞ or ðBÞ in PnC or HnC, the

following relations are satisfied:

ð‘2nþ1
u...u fÞv A GðD?Þ; ð‘2n

u...ufÞv A GðDÞ
ð‘2nþ1

u...u fÞx A GðDÞ; ð‘2n
u...ufÞx A GðD?Þ

ð‘2nþ1
u...u AÞv A GðD?Þ; ð‘2n

u...uAÞv A GðDÞ
ð‘2nþ1

u...u AÞx A GðDÞ; ð‘2n
u...uAÞx A GðD?Þ

‘2nþ1
u...u x A GðDÞ; ‘2n

u...ux A GðD?Þ;

8>>>>><
>>>>>:

ð24Þ

for u; v A GðDÞ and n A N, where TM ¼ DlD?, D? is the orthogonal comple-

ment of D in TM, GðDÞ and GðD?Þ denotes the space of all sections of D and

D?, respectively.

By using Lemma 4, we can show that

ð‘2k
U ...URÞðV ;UÞU A GðDÞ; ð‘2kþ1

U ...URÞðV ;UÞU A GðD?Þ;

ð‘2kþ1
U ...URÞðx;UÞU A GðDÞ

for all vector fields U , V orthogonal to x and k ¼ 0; 1; 2; . . . . It is notable that

a homogeneous manifold has an real analytic structure. Thus, we have

Proposition 2. The structural reflections on real hypersurfaces of type ðAÞ
or ðBÞ in PnC or HnC are isometric.

In order to complete the proof of Theorem 1, by using (8) and (10) we

have for U A GðDÞ:

ð‘URÞðx;UÞU ¼ � 3

4
cgðAU ;UÞfU þ a1gðð‘UAÞU ;UÞx

þ gðAU ;UÞða1fAU � AfAUÞ

� a1gðfAU ;UÞAV þ gðAfAU ;UÞAU :

From (iv) of (5), the above equation yields that

a1gðð‘UAÞU ;UÞ ¼ 0 ð25Þ
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for any U A GðDÞ. Here, we divide our arguments into the two cases: (I)

a1 0 0, (II) a1 ¼ 0.

(I) Using polarization and symmetry of ð‘UAÞ in (25), then we obtain

gðð‘UAÞV ;WÞ ¼ 0 ð26Þ

for any U ;V ;W A GðDÞ. So, due to Theorem 6, it follows that M is locally

congruent to a real hypersurface of type ðAÞ or ðBÞ in PnC or HnC.

(II) When a1 ¼ 0, we can prove that all principal curvatures are con-

stant. We refer [24] for the details of proof. But, for HnC we already know

that a1 0 0 in the list of Theorem 4 (cf. [2], [22]). For the case PnC, among

the list of Theorem 3 only a real hypersurface of type ðAÞ with r ¼ p
4 holds

a1 ¼ 0.

We finally have proved Theorem 1.

6. Transversal Jacobi operators

In the present section, we prove Theorem 2. Before proving it, we pre-

pare a useful result.

Theorem 8 ([20]). Let M be a real hypersurface in a non-flat complex

space form ~MMnðcÞ ðc0 0Þ, nb 3. Then M satisfies

gððfA� AfÞX ;YÞ ¼ 0 ð27Þ

and

gðð‘ZRÞðX ;VÞW ;YÞ ¼ 0 ð28Þ

for Z;V ;W ;X ;Y ? x if and only if M is locally congruent to a hypersurface of

type ðAÞ or a ruled real hypersurface in PnC or HnC.

In proving Theorem 8, J. G. Lee, J. D. Pérez and Y. J. Suh made use of

a following fact which holds in general (without the dimension restriction): if

a real hypersurface M in a complex space form ~MMnðcÞ satisfies (27), then M

satisfies

gðð‘XAÞY ;ZÞ ¼ SX ;Y ;ZgðAX ;YÞgðZ;TÞ; ð29Þ

where SX ;Y ;Z denotes the cyclic sum with respect to X ;Y ;Z A GðDÞ and

T ¼ ‘xx.

Now we extend the above Theorem 8 to the case that n ¼ 2.

Extension of Theorem 8 to the case n ¼ 2

Let M be a 3-dimensional real hypersurface in CP2 or CH 2. Then for a

local orthonormal frame field fx;U ; fUg of M, we may put
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Ax ¼ axþ mU þ nfU ;

AU ¼ mxþ bU þ dfU ;

AfU ¼ nxþ dU þ gfU ;

8<
: ð30Þ

where a, b, g, m, n, d are smooth functions.

From (30) we get

ðfA� AfÞU ¼ �nx� 2dU þ ðb � gÞfU :

Together with this and the condition (27), we obtain d ¼ 0 and b ¼ g. Hence,

(30) is reduced to

Ax ¼ axþ mU þ nfU ;

AU ¼ mxþ bU ;

AfU ¼ nxþ bfU :

8<
: ð31Þ

From (28) using (8) and (10), then it follows that

0 ¼ gðð‘ZAÞV ;WÞgðAX ;YÞ þ gðAV ;WÞgðð‘ZAÞX ;Y Þ

� gðð‘ZAÞX ;WÞgðAV ;Y Þ � gðAX ;WÞgðð‘ZAÞV ;Y Þ

for any U ;V ;W ;X ;Y A GðDÞ. Here, we use the relation (29). Then we get

again

ðgðAZ;VÞgðW ;TÞ þ gðAV ;WÞgðZ;TÞ þ gðAW ;ZÞgðV ;TÞÞgðAX ;YÞ

þ gðAV ;WÞðgðAZ;XÞgðY ;TÞ þ gðAX ;Y ÞgðZ;TÞ þ gðAY ;ZÞgðX ;TÞÞ

� ðgðAZ;XÞgðW ;TÞ þ gðAX ;WÞgðZ;TÞ þ gðAW ;ZÞgðX ;TÞÞgðAV ;YÞ

� gðAX ;WÞðgðAZ;VÞgðY ;TÞ þ gðAV ;YÞgðZ;TÞ

þ gðAY ;ZÞgðV ;TÞÞ ¼ 0: ð32Þ

We put Z ¼ X ¼ W ¼ U , V ¼ Y ¼ fU , and in turn we put Z ¼ V ¼ Y ¼ fU ,

X ¼ W ¼ U , respectively in (32). Then together with (31) we have

b2n ¼ 0 and b2m ¼ 0;

respectively, where we have used Tð¼ ‘xx ¼ fAxÞ ¼ mfU � nU . So, we con-

sider the two cases: (i) b ¼ 0, (ii) m ¼ n ¼ 0.

(i)

Ax ¼ axþ mU þ nfU ;

AU ¼ mx;

AfU ¼ nx:

8<
:
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Taking account of Theorem 5, we see that M is locally congruent to a ruled

real hypersurface.

(ii) Then, x is a principal curvature vector field, furthermore, we see

that M satisfies fA ¼ Af. This yields that M is locally congruent to a real

hypersurface of type ðAÞ in CP2 or CH 2 (cf. [25], [23]).

Proof of Theorem 2

Now, we prove Theorem 2. We first look at the 1st condition of (6). In

order to define a transversal geodesic g : I ! M, parametrized with the arc-

length s, we need the property that hð _ggð0ÞÞ ¼ 0 and hð _ggðsÞÞ is constant along

g, or using (9) we have gðfA _gg; _ggÞ ¼ 0 along g with _ggð0Þ ? xp, gð0Þ ¼ p. Thus,

we see that the 1st condition of (6) is equivalent to (27) for any vector field

X ;Y ? x. Next, we deal with the 2nd condition of (6). Then we find that

ð‘URÞð�;UÞU ¼ 0 ð33Þ

for any U ? x. Then using (8) and (10), the condition (33) gives

� 3

4
cfhðXÞgðAU ;UÞgðfU ;Y Þ � hðY ÞgðfX ;UÞgðAU ;UÞg

þ gðð‘UAÞU ;UÞgðAX ;YÞ þ gðAU ;UÞgðð‘UAÞX ;YÞ

� gðð‘UAÞX ;UÞgðAU ;YÞ � gðAX ;UÞgðð‘UAÞU ;YÞ ¼ 0 ð34Þ

for any vector field X , Y on M and any vector field U ? x.

By the same way as to prove Lemma 1, we see that the condition (33) is

equivalent to

gðð‘URÞðX ;VÞW ;YÞ ¼ 0

for any vector field X , Y and any vector fields U ;V ;W ? x.

So, due to Theorem 8 and the extension of it to n ¼ 2, it needs for us to

consider only the two cases: (I) M is of type ðAÞ in PnC or HnC. (II) M is

a ruled real hypersurface.

(I) We put X ¼ x in (34). Then since x is a principal curvature vector

and its corresponding principal curvature a1 is constant (Lemma 6), we get

� 3

4
cgðAU ;UÞgðfU ;Y Þ þ a1gðð‘UAÞU ;UÞhðYÞ

þ gðAU ;UÞgða1fAU � AfAU ;Y Þ

� gða1fAU � AfAU ;UÞgðAU ;Y Þ ¼ 0 ð35Þ

for any vector field Y and U ? x. Then we find that a1gðð‘UAÞU ;UÞ ¼ 0,

and successively (35) reduces to
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� 3

4
cgðAU ;UÞfU þ gðAU ;UÞða1fAU � AfAUÞ

� gða1fAU � AfAU ;UÞAU ¼ 0: ð36Þ

Assume AU ¼ lU and gðU ;UÞ ¼ 1. Then from (36) it follows that

� 3

4
clþ a1l

2 � l3 ¼ 0: ð37Þ

But, we know that M is of type ðAÞ in PnC or HnC is determined by the

equation:

l2 � a1l�
c

4
¼ 0 ðAf ¼ fAÞ

(cf. [25], [23]). Comparing this with (37) we can see that M of type ðAÞ does

not satisfy (33).

(II) With the result of Theorem 5, we see that the shape operator of a

ruled real hypersurface in PnC or HnC is also h-parallel. Then we can find

that in (34) it remains only the following term to be considered:

gðð‘UAÞx;UÞgðAU ; xÞ ¼ 0 ð38Þ

for a vector field Uð? xÞ, which appeared in (13). Together with Theorem 8,

we see that the condition Um ¼ 0 is necessary and su‰cient for a ruled real

hypersurface in PnC or HnC to satisfy the two conditions (27) and (33). But,

we know that gradðmÞ ¼ ðm2 þ c=4ÞfU on a ruled real hypersurface in PnC or

HnC (cf. [10]). After all, we have proved Theorem 2.

Remark 1. J. T. Cho and L. Vanhecke ([11]) classified all Hopf hyper-

surfaces in a non-flat complex space form which are D’Atri spaces (that is,

Riemannian manifolds all of whose geodesic symmetries are volume-preserving

up to sign) or C-spaces (that is, their Jacobi operators have constant eigen-

values along the corresponding geodesics). In fact, such properties are

occurred only in real hypersurfaces of type ðAÞ in PnC or HnC. This also

yields a classification of Hopf hypersurfaces which are naturally reductive,

g.o., weakly symmetric or commutative spaces. We refer to [11] for the

detail.
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