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Abstract. The goal of this paper is to clarify connections between Killing fields of

constant length on a Rimannian geodesic orbit manifold ðM; gÞ and the structure of its

full isometry group. The Lie algebra of the full isometry group of ðM; gÞ is identified

with the Lie algebra of Killing fields g on ðM; gÞ. We prove the following result: If

a is an abelian ideal of g, then every Killing field X A a has constant length. On the

ground of this assertion we give a new proof of one result of C. Gordon: Every

Riemannian geodesic orbit manifold of nonpositive Ricci curvature is a symmetric

space.

1. Introduction

All manifolds in this paper are supposed to be connected. At first, we

recall and discuss important definitions.

Definition 1. A Riemannian manifold ðM; gÞ is called a manifold with

homogeneous geodesics or a geodesic orbit manifold (shortly, a GO-manifold ) if

any geodesic g of M is an orbit of a 1-parameter subgroup of the full isometry

group of ðM; gÞ.

Definition 2. A Riemannian manifold ðM ¼ G=H; gÞ, where H is a

compact subgroup of a Lie group G and g is a G-invariant Riemannian metric,

is called a space with homogeneous geodesics or a geodesic orbit space (shortly,

a GO-space) if any geodesic g of M is an orbit of a 1-parameter subgroup of

the group G.

This terminology was introduced in [14] by O. Kowalski and L. Vanhecke,

who initiated a systematic study of such spaces. In the same paper, O.

Kowalski and L. Vanhecke classified all GO-spaces of dimensiona 6. Many
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interesting results about GO-manifolds and its subclasses one can find in

[1, 2, 3, 4, 5, 7, 9, 15, 16, 18], and in the references therein. In [10], C. Gordon

obtained some structure results on GO-spaces, in particular, the following

one: Every Riemannian GO-manifold of nonpositive Ricci curvature is a

symmetric space.

The goal of this paper is to clarify connections between Killing fields of

constant length on a Rimannian GO-manifold ðM; gÞ and the structure of its

full isometry group. The Lie algebra of the full (connected) isometry group

of ðM; gÞ is identified naturally with the Lie algebra of Killing fields g on

ðM; gÞ. We prove the following result: If a is an abelian ideal of g, then

every Killing field X A a has constant length (Theorem 1). On the ground of

this theorem we give a new proof of the above mentioned result of C. Gordon

on GO-manifolds with nonpositive Ricci curvature (Theorem 2).

2. Notation and useful facts

Let ðM; gÞ be a GO-manifold and G be its connected full isometry group.

Obviously, ðM; gÞ is homogeneous and M ¼ G=H, where H is the isotropy

subgroup at a point o A M. Since H is compact, there is an AdðHÞ-invariant
decomposition

g ¼ hlm; ð1Þ

where g ¼ LieðGÞ and h ¼ LieðHÞ. The Riemannian metric g is G-invariant

and is determined by an AdðHÞ-invariant Euclidean metric g ¼ ð� ; �Þ on the

space m which is identified with the tangent space at the initial point o ¼ eH.

In what follows we identify elements of g with corresponded Killing vector

fields on ðM; gÞ.
Now, we recall some well known formulas for a homogeneous Riemannian

manifold ðM; g ¼ ð� ; �ÞÞ [8]. Let us choose some g-orthonormal basis ðXiÞ in

m. Consider also a vector Z A m defined by the condition ðZ;X Þ ¼ traceðadX Þ
for every X A m. Therefore, Z ¼ 0 i¤ the Lie algebra g (and the Lie group G)

is unimodular. The following formula (that is more simple for the unimodular

case) is useful for the Ricci curvature calculation:

RicðX ;XÞ ¼ � 1

2
BgðX ;XÞ � 1

2

X

i

j½X ;Xi�mj
2

þ 1

4

X

i; j

ð½Xi;Xj�m;X Þ2 � ð½Z;X �m;XÞ; ð2Þ

where Bg is the Killing form of the Lie algebra g, X A m, and Vm means the

m-part of a vector V A g.
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Lemma 1 ([14]). A homogeneous Riemannian manifold ðM ¼ G=H; gÞ with

the reductive decomposition (1) is a GO-space if and only if for any X A m there

is HX A h such that

ð½HX þ X ;Y �m;XÞ ¼ 0 for all Y A m:

This lemma shows that the property to be a GO-space depends only on the

reductive decomposition (1) and the Euclidean metric g on m. In other words,

if ðM ¼ G=H; gÞ is a GO-space, then any locally isomorphic homogeneous

Riemannian space ðM 0 ¼ G 0=H 0; g 0Þ, where G 0 is locally isomorphic to G, is

a GO-space. Also a direct product of Riemannian manifolds is a manifold

with homogeneous geodesics if and only if each factor is a manifold with

homogeneous geodesics.

For any subspace lH g and any U A g we use a symbol ad l
U for the

restriction of the operator adU to l, i.e. ad l
U : l ! l, ad l

UðXÞ ¼ ½U ;X �l.

Lemma 2. Suppose that ðM ¼ G=H; gÞ is a GO-space. Let m1 and m2

be AdðHÞ-invariant subspaces of m such that ðm1;m2Þ ¼ 0 and m ¼ m1 lm2.

Then for any U A m1 the operator adm2

U is skew-symmetric. If, in addition,

½h;m1� ¼ 0, then the operator adm
U is skew-symmetric.

Proof. For any X A m2 there is HX A h such that ð½HX þ X ;Y �m;XÞ ¼ 0

for all Y A m (see Lemma 1). Therefore,

0 ¼ ð½HX þ X ;U �m;XÞ ¼ ð½HX ;U �m;XÞ þ ð½X ;U �m;X Þ ¼ ð½X ;U �m;XÞ;

because ½HX ;U � A m1 and X A m2. If ½h;m1� ¼ 0, then the same is true for any

X A m. This proves the lemma. r

Lemma 3 ([10]). Let ðM ¼ G=H; gÞ be a GO-space, then the group G is

unimodular.

Proof. Here we give a more direct proof, than the original one in [10].

Suppose that the Lie algebra g ¼ LieðGÞ is not unimodular and consider its

proper subspace

u ¼ fX A g j traceðadX Þ ¼ 0g:

Obviously, hH u. Since

ad½X ;Y � ¼ ½adX ; adY � and traceðad½X ;Y �Þ ¼ traceð½adX ; adY �Þ ¼ 0;

then ½u; g�H ½g; g�H u, hence, u is an ideal of g. Consider m1 ¼ mV u and let

m2 be a (non-trivial) g-orthogonal complement to m1 in m. Since u is an ideal

of g and g is adðhÞ-invariant, then m1 and m2 are adðhÞ-invariant. On the

other hand, ½h;m2�H ½g; g�H u. Therefore, ½h;m2� ¼ 0. Now, consider any

non-trivial Y A m2. By our construction, traceðadY Þ0 0. On the other hand,
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by Lemma 1 for every X A m there is HX A h such that ð½HX þ X ;Y �m;XÞ ¼ 0.

Since ½h;m2� ¼ 0, we get ð½X ;Y �m;X Þ ¼ 0 (see also Lemma 2), that implies

traceðadY Þ ¼ 0, a contradiction. r

Lemma 4. Let ðM; gÞ be a Riemannian manifold and X be a Killing field

on ðM; gÞ. Consider any point x A M such that XðxÞ0 0. Then the integral

curve of X through the point x is a geodesic if and only if x is a critical point of

the function y A M 7! gyðX ;X Þ.

Proof. In fact, this is proved in Proposition 5.7 of Chapter VI in [13].

r

We will use a symbol Mx for the tangent space of a manifold M at a point

x A M.

Lemma 5. Let ðM; gÞ be a Riemannian manifold and g be its Lie algebra

of Killing fields. Then ðM; gÞ is a GO-manifold if and only if for any x A M and

any v A Mx there is X A g such that XðxÞ ¼ v and x is a critical point of the

function y A M 7! gyðX ;X Þ. If ðM; gÞ is homogeneous, then the latter condition

is equivalent to the following one: for any Y A g the equality gxð½Y ;X �;XÞ ¼ 0

holds.

Proof. By Lemma 4 an integral curve of X through the point x A M is

geodesic if and only if x is a critical point of the function y A M 7! gyðX ;X Þ.
If ðM; gÞ is homogeneous, then it is equivalent to the condition

Y � gðX ;XÞjx ¼ 2gxð½Y ;X �;X Þ ¼ 0

for every Y A g. r

In what follows we need the following

Proposition 1 (Theorem 2.10 in [19]). If a Killing vector field X on a

compact Riemannian manifold M satisfies the condition RicðX ;X Þa 0, then X

is parallel on M and RicðX ;X Þ1 0.

Corollary 1. If a compact homogeneous Rimannian manifold ðM; gÞ has

nonpositive Ricci curvature, then it is a Euclidean torus. In particular, its full

connected isometry group is abelian.

3. Main results

At first, we get the following remarkable result.

Theorem 1. Let ðM; gÞ be a GO-manifold, g is its Lie algebra of Killing

fields. Suppose that a is an abelian ideal of g. Then any X A a has constant

length on ðM; gÞ.
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Proof. Let x be any point in M. We will prove that x is a critical

point of the function y A M 7! gyðX ;X Þ. Since ðM; gÞ is homogeneous, then

(by Lemma 5) it su‰ces to prove that gxð½Y ;X �;XÞ ¼ 0 for every Y A g.

Consider any Y A a, then Y � gðX ;XÞ ¼ 2gð½Y ;X �;XÞ ¼ 0 on M, since a is

abelian.

Now, consider Y A g such that gxðY ;UÞ ¼ 0 for every U A a. We will

prove that gxð½Y ;X �;XÞ ¼ 0. By Lemma 5, for the vector XðxÞ A Mx there

is a Killing field Z A g such that ZðxÞ ¼ XðxÞ and gxð½V ;Z�;ZÞ ¼ 0 for any

V A g. In particular, gxð½Y ;Z�;ZÞ ¼ 0. Now, W ¼ X � Z vanishes at x and

we get

gxð½Y ;X �;XÞ ¼ gxð½Y ;Z þW �;Z þWÞ ¼ gxð½Y ;Z þW �;ZÞ

¼ gxð½Y ;Z�;ZÞ þ gxð½Y ;W �;ZÞ ¼ gxð½Y ;W �;ZÞ:

Note that gxð½Y ;W �;ZÞ ¼ �gxð½W ;Y �;ZÞ ¼ gxðY ; ½W ;Z�Þ ¼ 0 because WðxÞ ¼
0 (0 ¼ W � gðY ;ZÞjx ¼ gxð½W ;Y �;ZÞ þ gxðY ; ½W ;Z�Þ) and ½W ;Z� ¼ ½X ;Z� A a.

Therefore, gxð½Y ;X �;X Þ ¼ 0. Hence, x is a critical point of the function

y A M 7! gyðX ;XÞ.
Since every x A M is a critical point of the function y A M 7! gyðX ;X Þ,

then X has constant length on ðM; gÞ. r

Remark 1. This result can be easily generalized to some cases when g is a

subalgebra of the Lie algebra of the full connected isometry group of ðM; gÞ. It

su‰ces to assume that a connected subgroup G (with the Lie algebra g) of the

full isometry group of ðM; gÞ is such that ðM ¼ G=H; gÞ is a GO-space.

In the rest of the paper we reprove the following

Theorem 2 (C. Gordon [10]). Every Riemannian GO-manifold of non-

positive Ricci curvature is symmetric.

Remark 2. It should be noted that the original proof of this theorem

(Theorem 5.1 in [10]) has an error in the claim ‘‘Since U �=L� is a compact

homogeneous space, its Ricci curvature Ric� is nonnegative’’. Nevertheless, this

error could be corrected, and the proof in [10] requires only a little modifica-

tion. But here we present a more simple proof, in which some constructions from

[10] are essentially used.

It su‰ces to prove Theorem 2 for simply connected manifolds. Indeed, if a

Rimannian homogeneous manifold M has a Riemannian symmetric space of

nonpositive Ricci curvature (equivalently, nonpositive sectional curvature) as a

universal covering space, then it is symmetric too [17, 12].

Let ðM; gÞ be a simply connected GO-manifold with nonpositive Ricci

curvature, and let G be its full connected isometry group. We know that G is
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unimodular (Lemma 3), and the isotropy subgroup H must be connected. At

first, we reduce the problem to the case when G is semisimple.

Proposition 2. Let ðM; gÞ be a simply connected GO-manifold with

nonpositive Ricci curvature. Then it is a direct metric product of a Euclidean

space Em and a simply connected GO-manifold ðM1; g1Þ (with nonpositive Ricci

curvature) with semisimple full isometry groups.

Proof. Recall that a Lie algebra g is semisimple if and only if it has

no nontrivial abelian ideal (see, e.g. Section 1.4.4 in [11]). Let g be the Lie

algebra of Killing fields on ðM; gÞ. Now, suppose that a is a nontrivial abelian

ideal of g. By Theorem 1, any nontrivial Killing field X A a has constant

length on ðM; gÞ. Since the Ricci curvature of ðM; gÞ is nonpositive, then by

Theorem 4 in [6] we get that RicðX ;X Þ ¼ 0, moreover, the Killing field X

is parallel on ðM; gÞ, and the Riemannian manifold ðM; gÞ is a direct metric

product of two Riemannian manifolds, one of which is a one-dimensional

manifold E1 tangent to Killing field X , and another one, say ð ~MM; ~ggÞ, is a simply

connected GO-manifold with nonpositive Ricci curvature.

This procedure could be repeated with ð ~MM; ~ggÞ etc., unless the last obtained

Riemannian manifold has a semisimple full isometry group (i. e. the Lie algebra

of Killing fields on the latter manifold has no nontrivial abelian ideal). This

proves the proposition. r

In what follows we suppose that the group G is semisimple. Now we

consider a reductive decomposition (see (1))

g ¼ hlm;

where g ¼ LieðGÞ, h ¼ LieðHÞ, and m is an orthogonal complement to h in g

with respect to the Killing form Bg of the (semisimple) Lie algebra g. The

Riemannian metric g is G-invariant and is determined by an AdðHÞ-invariant
Euclidean metric g ¼ ð� ; �Þ on the space m. Now we consider a maximal

compactly embedded subalgebra kH g such that hH k.

If h ¼ k, then the manifold under consideration is a symmetric space

[17, 12]. Suppose now, that h0 k. Then there are AdðHÞ-invariant sub-

spaces m1;m2 Hm such that ðm1;m2Þ ¼ 0, m ¼ m1 lm2, and k ¼ hlm1.

Let K � be a compact connected Lie group with the Lie algebra k and H �

be its subgroup corresponded to the subalgebra hH k. We have k ¼ hlm1,

therefore m1 could be identified with the tangent space at the point eH � of a

compact homogeneous manifold M � ¼ K �=H �. We consider a K �-invariant

Riemannian metric g� on M � that is generated with the inner product ð� ; �Þjm1
.

Note that K � may not act e¤ectively on M � ¼ K �=H �, but this is not impor-

tant for calculation of the Ricci curvature of ðM �; g�Þ.
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We choose a ð� ; �Þ-orthonormal basis X1;X2; . . . ;Xr, r ¼ dimðm1Þ, in m1,

and ð� ; �Þ-orthonormal basis Y1;Y2; . . . ;Ys, s ¼ dimðm2Þ, in m2. Denote the

Ricci curvature of ðM �; g�Þ by Ric� and the Killing forms of k and g by Bk

and Bg respectively. Using (2) and the fact that g is unimodular (Lemma 3 is

not necessary, because every semisimple Lie algebra is unimodular), we get

RicðX ;XÞ ¼ � 1

2
BgðX ;XÞ � 1

2

X

i

j½X ;Xi�mj
2 � 1

2

X

i

j½X ;Yi�mj
2

þ 1

4

X

i; j

ð½Xi;Xj �m;X Þ2 þ 1

4

X

i; j

ð½Yi;Yj�m;XÞ2 þ 1

2

X

i; j

ð½Xi;Yj �m;X Þ2

and

Ric�ðX ;XÞ ¼ � 1

2
BkðX ;XÞ � 1

2

X

i

j½X ;Xi�m1
j2 þ 1

4

X

i; j

ð½Xi;Xj �m1
;X Þ2

for any X A m1. By Lemma 2

BgðX ;XÞ ¼ BkðX ;X Þ þ
X

i

ð½X ; ½X ;Yi��m;YiÞ ¼ BkðX ;X Þ �
X

i

j½X ;Yi�m2
j2;

ð½Xi;Yj�m;XÞ2 ¼ ð½Yj;Xi�m1
;XÞ2 ¼ ð½Yj ;X �m1

;XiÞ2;
X

i; j

ð½Xi;Yj �m;XÞ2 ¼
X

i

j½X ;Yi�m1
j2;

then we get

Proposition 3 ([10]). For any X A m1 the equality

Ric�ðX ;XÞ ¼ RicðX ;X Þ � 1

2

X

1ai< jar

ð½Yi;Yj�m1
;XÞ2

holds.

Since ðM ¼ G=H; gÞ has nonpositive Ricci curvature, then from Propo-

sition 3 we get Ric�ðX ;XÞa 0 for any X A m1. Since ðM � ¼ K �=H �; g�Þ is a

compact homogeneous Riemannian manifold with nonpositive Ricci curvature,

then it is a Euclidean torus by Corollary 1. Therefore, Ric�ðX ;X Þ ¼ 0 for

all X A m1 and m1 lies in the center of k. Now, from Proposition 3 we get

RicðX ;X Þ ¼ 0 and ð½m2;m2�m1
;X Þ ¼ 0 for all X A m1. Hence, ½m2;m2�H

hlm2.

Let p be a Bg-orthogonal compliment to k in g. It is well known that

½p; p�H k; if h1 :¼ ½p; p�, then g1 :¼ h1 l p is a maximal semisimple ideal of

noncompact type in the Lie algebra g.
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Now we will prove that p ¼ m2. By Lemma 2 we get that for any

U A m1 the operator adm
U is skew-symmetric. The same is true for any U A h,

and, therefore, for any U A k ¼ hlm1. From the relations pHm, h1 H k,

½k;m1� ¼ 0, and ½k; p� ¼ p we get

ðm1; pÞ ¼ ðm1; ½k; p�mÞ ¼ �ð½k;m1�m; pÞ ¼ 0;

since the operators adm
U are skew-symmetric for all U A k. This proves p ¼ m2.

Therefore, h1 :¼ ½p; p� ¼ ½m2;m2�H hlm2, and we get h1 H h.

Let g2 be a Bg-orthogonal compliment to g1 in g. Then g2 is a maximal

compact semisimple ideal in the Lie algebra g. If h2 is a Bg-orthogonal

compliment to h1 in h, then g2 ¼ h2 lm1. Recall that ½h2;m1�H ½h;m1� ¼ 0.

Hence, h2 is an ideal in the Lie algebra g. Since the homogeneous space G=H

is e¤ective, then h2 is trivial. Since m1 ¼ g2 is commutative (m1 lies in the

center of k), then it is also trivial (otherwise, g2 is not semisimple). Hence,

h ¼ k, and ðM ¼ G=H; gÞ is a symmetric space.

Therefore, Theorem 2 is completely proved. r
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