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ABSTRACT. Let S be an analytically finite Riemann surface of type (p,n) with
3p+n>3 Let xeS and S=S8\{x}. Let Modg denote the x-pointed mapping
class group of S and Modg the mapping class group of S. Then the natural projection
J:T(S)— T(S) between Teichmiiller spaces induces a group epimorphism I : Modg —
Modg. It is well known that for a given Teichmiiller disk A in T(S), there is a family
F(4) of Teichmiiller disks 4(z) in T(S) parametrized by a hyperbolic plane. If 4
is invariant under a hyperbolic mapping class 0, then all known hyperbolic mapping
classes 0 € Modg for which I(0) = 6 stem from the construction of 7 (4). We show
that if @ is represented by a product of Dehn twists along two filling simple closed
geodesics, then there exist infinitely many hyperbolic mapping classes y € Modg with
I(y) = 6 so that their invariant Teichmiiller disks are not members of # (4). The result
contrasts with the original pattern established by I. Kra.

1. Introduction

Let S be an analytically finite Riemann surface of type (p,n) with
3p —3+n>0, where p is the genus and n is the number of punctures of S.
Let xe S and S=S\{x}. Let 4 be a Teichmiiller disk in the Teichmiiller
space T(S). In [10] Kra obtained a family # (4) of Teichmiiller disks 4(z)
in the Teichmiiller space 7(S) that is parametrized by the hyperbolic plane
H={zeC:Imz >0} such that (i) the natural projection J : T'(S) — T(S),
defined by ignoring the puncture x, realizes an isometric embedding with
respect to the Teichmiiller metrics on 7'(S) and 7'(S) when restricted to each
member of Z(4), and (i) J(4(z)) = 4 for each z € H.

Assume that A is an invariant disk under a hyperbolic mapping class 0 of
S. Let Modg be the x-pointed mapping class group of S. In [17] we charac-
terized an open dense subset % — H such that for every z € % the stabilizer of

A(z) € #(4) in Mody is trivial. Let

I : Modg — Modg (L.1)
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denote the natural group epimorphism of Modg onto the mapping class group
Modg. From Proposition 3 of Kra [10], for a pair (4, 6) which satisfies certain
condition (see Section 2), there exists a discrete set %y = H\% such that for each
z €U, A(z;) 697(47) is an invariant disk under a mapping class #; € Modyg,
where 0; acts on A(z;) as a hyperbolic Md&bius transformation and satisfies

1(6;) = 6, which leads to that 6; are all hyperbolic mapping classes. The main
purpose of this article is to prove the following result.

THEOREM 1.1. (1) The only hyperbolic mapping classes 0 € Mody for which
1(0) = 0 and 0(4) = A for some A e F(A) are those mapping classes obtained
from Kra’'s construction.

(2) If in addition 0 is represented by a finite product of Dehn twists along
two filling simple closed geodesics (Thurston’s construction [14, 15]), then there
exist infinitely many hyperbolic mapping classes y € Modg such that I(y) =0
while their associated Teichmiiller disks A(y) are not members of F(A).

Every hyperbolic element y € Modg is represented by a pseudo-Anosov
map f : S — S (see Thurston [14] for the definition of a pseudo-Anosov map)
with the associated dilatation A(f) which is also denoted by A(y). The number
log A(y) is the translation length of y as an isometry of 7'(S) with respect to
the Teichmiiller metric on 7(S) (see Bers [4]). It is well-known (see Arnoux—
Yoccoz [1] and Ivanov [9]) that

Spec(Mods) = {log A(y) : y are hyperbolic mapping classes on S}

is an unbounded discrete subset of R. The construction of hyperbolic mapping
classes in Theorem 1.1 (2) also yields the following corollary.

COROLLARY 1.1. Let 0 be as in Theorem 1.1 (2). Then
T ={log A(y) : y e Modg are hyperbolic mapping classes with I(y) = 0}
is an unbounded discrete subset of R.

This article is organized as follows. In Section 2, we present some back-
ground materials. In Section 3, we discuss some properties of general hyper-
bolic mapping classes of S that project to a given hyperbolic mapping class 0
on S, and prove Theorem 1.1 (1). In Section 4, we study Dehn twists and
their relationship with geometric intersection numbers of simple closed geo-
desics. In Section 5, we consider some special hyperbolic mapping classes 0
and investigate Teichmiiller disks invariant under those hyperbolic mapping
classes y of S with I(y) = . In Sections 6, we describe certain lifts of a given
Dehn twist along a simple curve on S. Section 7 is devoted to the proofs of
Theorem 1.1 (2) and Corollary 1.1.
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2. Notation and background

We first review some basic facts in Teichmiiller theory. For more infor-
mation, see Gardiner [7], Imayoshi—Taniguchi [8] and Nag [13].

Let S be as in Section 1. In what follows, a conformal structure on S is
identified with a Beltrami differential. The Teichmiiller space 7'(S) is defined
as a space of equivalence classes [v] of all conformal structures v = v(S) on S,
where two conformal structures v;(S) and v,(S) are in the same equivalence

class if there is a conformal map / : v;(S) — v»(S) isotopic to the identity.

The Teichmiiller distance between two points [vi], [v2] € T(S) is defined by

d([n),[n]) = 5 inflog K1/, (22)

where the infimum is taken over all quasiconformal maps f :vi(S) — v2(S)
isotopic to vy ov;! and K[f] is the maximal dilatation of f.

According to Ahlfors and Bers [2], for each conformal structure v on S,
there is a quasiconformal map w" : C — C that fixes 0,1, 00, and satisfies

o:w'(z) { v(z) if zeH,
0 ifzeC\H.

o.wv(z)
The domain w"(H) depends only on [v]. We may therefore form the Bers fiber
space via

F(S) = {([v]),2) € T(S) x C;z e w'(H)}.

Let 7: F(S) — T(S) denote the natural projection defined by sending a point
([V],z) to [v]. Then = is holomorphic.

The group of isotopy classes of self-homeomorphisms of S is the mapp-
ing class group Modg, which naturally acts as isometries with respect to the
Teichmiiller metric on T(S). Let mod(S) be the group consisting of equiv-
alence classes [W] of self-maps w of H descending to self-maps w of S under
the universal covering map o : H — S, where two such maps Wy, W, are in the
same equivalence class if w; = w, on R. The group mod(S‘) naturally acts on
F(S) as a group of fiber-preserving holomorphic automorphisms (see Bers [3]).
More precisely, for each [#] € mod(S) and each point ([v],z) € F(S), we have

(D], 2) = (lo), »), (2.3)

where ¢ is the Beltrami coefficient of w" o w™!

and j=wowo (w") ' (2).
With the aid of the Bers isomorphism ¢ : F(S) — T(S) (Theorem 9 of [3]), the
group mod(S) is isomorphic to the x-pointed mapping class group Modg by a

conjugation ¢*:

mod(S) 3 W] & po [ 0 p~! € Mod?. (2.4)
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Let G be the covering group of the universal covering map o: H — S. Then
G can be regarded as a normal subgroup of mod(S‘). In this way, G acts on
F(S) and keeps each fiber of F(S) invariant. Under the isomorphism (2.4),
the group G is isomorphic to the subgroup 7~'(id) of Modg, where I is as
defined in (1.1). For simplicity, throughout the article we write [w]* = ¢*([W])
for [w] e mod(S). In particular, for an element s e G, we simply use the
symbol #* to denote the corresponding mapping class in 7~!(id) as well as a
representative in the mapping class.

Following Bers [4], a mapping class @ is hyperbolic if inf d([v], 8([v])) is
achieved and is positive, where d is the Teichmiiller distance on T(S) (see (2.2))
and the infimum is taken over all points [v] € T(S). Fix a hyperbolic mapping
class 0 e Modg. Then 0 is represented by an absolutely extremal Teichmiiller
map @ on a surface (call it S again). Associated to @ there is a pair of
transverse trajectories on S, and thus & in turn determines a holomorphic
quadratic differential ¢; on S which may have simple poles at punctures of S
and satisfies

||, 1#otasay = 1. (25)

Now u = ¢;/|¢s| is a (—1,1)-form on S. Let D be the unit disk {z: |7 < 1}
equipped with the hyperbolic metric |dz/(1 — |¢|*). Also let

A={t:teD} and L={ty]:te(~1,1)}.

Then A is a Teichmiiller disk and L is a Teichmiiller geodesic. It is trivial that
LcA4cT(S), and that both L and 4 are invariant under the action of 6.
For each Z e H, one constructs

Z5(2) = {(lt], w"(2)) : e D} < F(S). (2.6)

It is well known [10] that 4;(2) := ¢(24(2)) is a Teichmiiller disk in 7°(S).
We thus obtain a parametric family

F(A) ={45(2) : 2 H} (2.7)

of Teichmiiller disks in 7'(S). The natural projection J : T(S) — T(S) realizes
an isometric embedding of each Ag(2) into 7(S) with J(45(2)) = 4 with
respect to the Teichmiiller metrics on T'(S) and T'(S).

Assume that ¢, has distinct non-puncture zeros Zj, ..., Z, on S and that &
fixes these zeros. Fix a fundamental region X' < H for G and let 2y,...,Z, < X
be such that o(z;)) =2; for i=1,2,...,m



Teichmuller disks and hyperbolic mapping classes 173

Let @;: H— H be a lift of & such that &;(2;,) =2, From (2.3), we see
that the element [@;] of mod(S), represented by @;, acts on F(S) via the
formula

[@i] ([tu], w™(20)) = (V(1)], 72), (2.8)
where v(7) is the Beltrami coefficient of w’ o®; ! and
P =w"od;o (wh) T (wh(z)) = w'(2). (2.9)

Note that x4 = ¢;/|¢;| and that the Beltrami coefficient of &, is ku for some
ke (—1,1). Easy calculations show that the Beltrami coefficient of &;! is kju
for ky = —k. The chain rule (see, for example, Gardiner [7]) then shows that

the Beltrami coefficient of w' o ;! is

tu— ku t—k
= = f D. 2.1
v(t) s (l—kt u or te (2.10)
Write M (¢) :1’:—;;. Then clearly, M :D — D is a Mobius transformation.
Recall that k is real. We see that M () = 1’:—/’; is real if and only if ¢ is real,

which says that M keeps the interval (—1,1) invariant. Hence by (2.9) and
(2.10), we can write (2.8) as

[oi)([e4d), w(20)) = ([M (1), wM ¥ (2,)). (2.11)

It follows from (2.6) and (2.11) that

Denote by 0; = [@;]". Then 6; e Modg. From (2.11), we know that [@;] leaves
invariant the line

&= {([tu], w"(z)); e (=1, 1)} © Do (2:).

Hence the mapping class 0; leaves invariant the Teichmiiller geodesic ¢(.%;) = L;
as well as the Teichmiller disk 44(2;). From Corollary 1 to Theorem 5 of
Bers [4], 0; is hyperbolic. Since I(6;) is the mapping class induced by @ that
is the projection of @, we have 1(6;) = 0.

Notice that J|, ., : 4a(Z) — A< T(S) is an isometric embedding with
respect to the Teichmiiller metrics on 7'(S) and 7(S). This implies that the

projection J : T(S) — T'(S) sends L; onto a Teichmiiller geodesic J(L;) that is
invariant under 6. This shows that L = J(L;).
Let s:4 — F(S) denote the holomorphic map that sends [iu]e 4 to

([tu], w™(2;)). Then s(4) = Z4(2;) and mos=id. Let 1: D — 4 denote the
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isometry that sends 7€ D to [tu] € 4. By (2.11) and the above discussion, we
obtain

loMofl|<A~,Z) = al(ii)
and
—1 ~
(so)oMo(sor) |(9@(£,>¢$) = [wiH(g(Iz(f,»)vn(fi).
The result is summarized in the following lemma.

LemMa 2.1 (Kra [10]). Ler fe Modg be hyperbolic and be represented by
an absolutely extremal Teichmiiller map & : S — S. Let @z be the correspond-
ing quadratic differential.  Assume that ¢z has non-puncture zeros z1,za,. .., Zm,
and that &(z;) =z Let X < H be a fundamental region for the covering map
o0, and let z; € X be such that o(z;) =z Then for each i with 1 <i < m, there
is a hyperbolic mapping class 0; € Modg such that (i) 1(0;) = 0; (i) 0; keeps
the Teichmiiller disk Ag(Z;) invariant; and (iii) if we denote by L; the invariant
Teichmiiller geodesic under 0;, then L; < Ag(2;), 0:(L;) = L; and J(L;) = L

3. Elements of & (j) invariant under hyperbolic mapping classes

In this section, we discuss more properties of the members of % (4) invari-
ant under the hyperbolic mapping class 6;. Let

A; ={g9"(44(2)) for g e G}, l<i<m. (3.12)
LemMA 3.1. A; and A; are disjoint for i # j.
PRrOOF. Suppose g*(44(2i)) = h*(4e(2;)) for some g,h e G. Then clearly,

9(Z4(2:)) = h(24(2;)). Note that the action of ge G on F(S) is

9(Za(2)) = {ltnd, g"w™ (21)}, (3.13)
where g = wig(w™)~'. So (3.13) becomes
9(Zo(2)) = {[tnd, w"g(2:)}. (3.14)

This tells us that g(Z4(2/)) = Z&(g(2;)). The same is true for i. Therefore,
Za(9(2i) = Da(h(Z;)). It follows from Lemma 3.5 of [16] that g(Z;) = h(Z)),
which says that Z; and Z; project to the same zero zZ; = Z; of ¢;. This is a
contradiction. So A4; and 4; are disjoint for i # j. O

Let
A= UAi. (3.15)

Then by Lemma 3.1, 4 is a disjoint union of A;,A4,,...,A4,. Obviously,
A< F(A).
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LemMa 3.2, Let yel\flodg‘ be hyperbolic that keeps an element A€ A
invariant.  Suppose I(y) = 0. Then there are g€ G and i€ {1,2,... ,m} such
that y =g* o 0; 0 (g*)fl, where 0; is as defined in Lemma 2.1.

PrOOF. We may assume that 4 € A;. Write = ¢~ !'(4). By definition,
for some ge G, 2 =g(Zs(21)). Recall that Dg(2,) = {[tu], w*(21)} for u=
¢:/|ds| and te D\{0}. By the same argument as in Lemma 3.1, we have
9(24(21)) = Z3(g(21)) and thus 9(Z4(g(21))) € 4;. By Lemma 2.1 and (3.14),
the hyperbolic element g* o 0] o (g*)f1 keeps 4 and a Teichmiiller geodesic L
invariant, where L ¢ 4. Let ¥ = ¢ '(L). By (3.13), n(¥) = J(L) = L, where
we recall that 7 : F(S) — T(S) is the (holomorphic) natural projection which
sends ([v],z) to [v], and L = T(S) is the Teichmiiller geodesic invariant under
the hyperbolic 6.

By hypothesis, y also keeps A invariant. Let L' = 4 be the invariant

Teichmiiller geodesic under y. Suppose L’ # L. Note that J|,: 4 — T(S) is
an isometric embedding, J(L') is also a Teichmiiller geodesic in 7'(S). Thus
J(L') # L. By Lemma 3.2 of [17], J(L') is an invariant Teichmiiller geodesic
under the action of 7(y) = §. We see that § keeps both L and J(L') invariant.
By the uniqueness part of Theorem 4 of Bers [4], L=J(L'). So we must
have L' = L. In other words, y and ¢g* o 0; o (g*)_1 share a common invari-
ant Teichmiiller geodesic. Whence, it follows that there is an integer « such

that
y =g olo(g*) " (3.16)

To see that « = 1, we note that I(y*) = I(y)* = é“.~ From (3.16) and Lemma
2.1 we obtain I(y*) = I(g* 00,0 (g*)"") =1(0)) =0. So 0= 0" and thus that
o =1. Therefore y =g* 00,0 (g*)fl. This completes the proof of Lemma
3.2. (]

REMARK 1. In (3], Bers proved that for any hyperbolic mapping class
0, there is an invariant Teichmiiller geodesic under the mapping class. For the
uniqueness part of the result, we refer to Bestvina—Feighn [5]. The idea is to
use the so-called “‘flaring condition™ to construct ending laminations 1" and ).~
for the hyperbolic ( pseudo-Anosov) mapping class 0 which determine the desired
Teichmiiller geodesic.

The following lemma says that there is no element in (j)\A~ that is
invariant under any hyperbolic mapping class y that projects to 6, which
together with Lemma 3.2 completes the proof of (1) of Theorem 1.1.

Lemma 3.3. Let y e Modg be a hyperbolic mapping class that keeps a
Teichmiiller disk A € 7 (A) invariant.  Assume that 1(y) =6. Then 4 € A.
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PrOOF. Let [@] € mod(S) be such that [&]" =y and [®)(Z) = & for 7 =
@~ 1(4). Since & is a lift of @, the Beltrami coefficient of & is also ku. Now
by assumption, & is of the form (2.6). By Lemma 2.1, 7|, : ¥ — T(S) is am
embedding, & crosses the central fiber H = F(S) exactly once. Set z= 2 NH.
Then 2 = 94(%).

From the same computation as in the proof of Lemma 2.1, the action of
(@] on F(S) can be written as

(@] ([, w(2)) = (M (), w4 (2")) - for 2 =d(2),  (3.17)

where M :D — D, as defined in the proof of Lemma 2.1, is a Mdobius
transformation that sends (—1,1) to (—1,1).

Now from (3.17), we know that [@](Z2;(Z)) is of form (2.6) that passes
through ([0],2'). If 2’ # 2, then by Lemma 3.5 of [17], [@](Z(2)) would be
disjoint from Z;(%), and this would imply that [®](Z4(2)) # Z(2), and hence
y(4) # 4. This is a contradiction. Thus we conclude that 2/ = 2. That is,
@(z) =z. Letting Z = p(Z), it follows that

a(2) = d(e(2)) = o(@(2)) = o(2) = 2.

Observe that @ is an absolutely extremal map; it does not fix any point away
from zeros of ¢ and punctures of S. We see that Z is one of the non-puncture
zeros of ¢y, 1.e., Z€{Z1,...,Z,}. Assume that Z=Z;. Then there exists an
element g € G such that g(2;) =z, which tells us that

9(@a(21) = .
It follows that
A=09(2)=099(Za(21))) = 9" (4s(21)).

By (3.12), 4 € 4;. This proves Lemma 3.3. O

4. Dehn twists and intersection numbers of simple closed geodesics

Let & be the set of oriented simple closed geodesics on S. For any
ce ¥, we define the positive Dehn twist along ¢ as a self-map of S obtained
by cutting S along ¢, rotating one of the copies of ¢ by 360 degrees in the
counterclockwise direction and gluing the two copies back together. If we
regard a cylinder on S as the annulus o7 = (R/rZ) x [0, 5] so that (R/rZ) x {s}
is identified with ¢, then with respect to the coordinates (x, y) on ./, the Dehn
twist can also be expressed as (x,y)+— (x+ yr/s,y). In what follows, the
Dehn twist and the mapping class represented by the Dehn twist are both
denoted by the same symbol z..
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For a map f:S — S, we use the symbol f(c) to denote the geodesics
homotopic to the image curve of ¢ under the map f. The image curve is
denoted by c¢(f). For any a,be &, let #{a,b} denote the set of points of
intersections between a and b. #{a,b} is empty if and only if a=5 or a
and b are disjoint. Let i(a,b) denote the cardinality of #{a,b}. Assume that
¢ intersects both a and b.

LEMMA 4.1.  With the above conditions, i(a,t*(b)) — +o0 as k — +oo.

REMARK 2. The author is grateful to the referee for pointing out that a
related result can be found in [6]. For completeness and reference purpose, we
outline the proof below.

Proor. We use similar notations #{b(¢X),a} and i(h(tX),a) to denote
the set of points of intersection between b(¢*) and a and the cardinality of
#{b(t*),a}, respectively. There are two types of points in #{b(tX),a}: (1)
points of intersection arising from the Dehn twist 7X; and (II) existing points of
intersection between a and b.

We first assume that ¢ does not contain any points of intersection between
a and b. Thus a small annular neighborhood A4(c) of ¢ can be chosen so that
A(c) does not contain any points of intersection between a and b. Let f. be
performed within A4(c). This means that f[g 4, =id. By assumption, all
type (I) points lie in A(c) and all type (II) points lie outside of A(c).

By the definition of the Dehn twists, as k — +o0, b(z¥) can intersect a as
many times as possible, and all these type (1) points lie in 4(c) and stay in one
side of ¢. This tells us that the number of type (I) points goes to infinity as
k — 4+oo. Observe that in the deformation process from b(z¥) to *(b), a type
(I) point cannot cancel any type (I) point. However, it is possible for a type
(I) point to cancel a type (II) point. But since there are only finitely many
type (II) points, we see that there are at most finitely many type (I) points that
could possibly cancel some type (II) points. We conclude that i(a,%(b)) —
+o0 as k — +o0.

If ¢ contains some points of intersection between a and b, then these points
stay in #{b(¢¥),a} and during the deformation from b(z¥) to t¥(b), these
intersection points do not cancel with any type (1) points or any other type (II)
points. O

As a simple example, we consider a special case where a and b are disjoint.
In this case, i(a,t*(b)) > |k| for any integer k; and i(a, t*(b)) = |k| if and only
if i(a,c) =i(b,c) = 1.

Let ¢1,c0 € & be disjoint, and homotopic to each other as x is filled in.
That is, ¢, ¢y are boundary components of an x-punctured cylinder P. Then
there is a primitive simple hyperbolic element 4 e G such that /i* € Modg
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is represented by t;ol ot.. Conversely, for any primitive hyperbolic element
h € G, there are ¢, ¢y € & so that h* = t(,‘o1 ot and {cy, ¢} forms the boundary
of an x-punctured cylinder P on S (Theorem 2 of [10] and Theorem 2 of [12]).
Since ¢; is disjoint from c¢o, t,, and f,, commute. Let ¢ be the central curve
of such an x-punctured cylinder P, by which we mean that ¢ is a simple curve
that passes through x and is disjoint from ¢y and c¢;.

Let a,b e ¥ be as before. Let P be an x-punctured cylinder with 0P =
{co,c1} so that its central curve c¢ intersects both ¢ and b. This means that
both ¢ and b go through P. Let he G be the primitive simple hyperbolic
element so that A* is represented by t;{)l ot

LEMMA 4.2. With the above conditions, we have i(a,(h*)*(b)) — +oo as
k — +o0.

Proor. Let A(cy), A(ci) be small annular neighborhoods of ¢y and ¢,
respectively. Make P a little bit larger so that P contains A(cy) and A(cy).
By the construction, we obtain

#{a,b(1;" 0 1})} = #{a,b(1;*)} U#{a,b(})}. (4.18)
It follows that

i(a,b(1;* 01k)) > i(a,b(1.%)) +i(a,b(1})) — i(a,b). (4.19)
Observe that i(a,b(t,*)) — +o0 and i(a,b(tX)) — +o0 as k — +oo (see also
Lemma 4.1). From (4.19) one can conclude that

i(a,b(tc’ok o tf‘l)) — 400

as k — +oo. By the same argument of Lemma 4.1, we know that in order to
prove i(a, (h*)*(b)) — +o0, we need to show (i) during the deformation from
b(t.F o 1k) to the geodesic (h*)"(b), any type (I) point in #{a,b(z,*)} does not
cancel a type (I) point in #{a,b(zX)}, and (ii) during the deformation any two
type (I) points in #{a,b(l;ok)} or in #{a,b(t*)} cannot cancel each other.

Note that points in #{a,b(t,* o t*)} are canceled in pairs, and two inter-
section points z; and z, between a and b(tC‘Ok o t(’fl ) are canceled each other if
and only if {zj,z,} are vertices of a bigon. So the proof will be completed
once we show that all the components of S\{a,b(t;ok o Zf,‘] )} lying in P are not
bigons.

Observe that the spin map z;o" o z("1 can also be obtained by the following
procedure: fill in the point x, push the point x along ¢ k times, and when x
returns to its original position, remove x from the surface. Figure 1 below
depicts the portion of the curve b(r;¥or5) in P in the case of k = 3.
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Fig. 1

Let .# denote the collection of intervals of {a\#{a,b(t ko té‘l )} contained
in P. For any component C of S\{a,b(t;ok otfl)} lying in P, let T e S be
one of boundary components of C (shown in Figure 1). Let zel. From
Figure 1, we find that there is a path in C that connects from z to a point
z'el’ for I #1'. This shows that any component of S\{a,b(z,*oX)} that
lies in P is not a bigon. This completes the proof of Lemma 4.2. O

5. Lifts of Dehn twists

From Section 4, the Dehn twist #; for a simple closed geodesic ¢ on S can
be similarly defined. In this section, we review the construction of some lifts
of a positive Dehn twist on S. Let é be a simple closed geodesic on S. Let
7:H — H be any lift of 7z under the universal covering map S: H — S. That
is, 7 satisfies

(1) Gt =G and (if) poT=1t:00p,

where (i) says that 7 descends a map W on S and (ii) says that w = r;. Observe
that the set

{07'(¢)} = {geodesics ¢ = H : o(¢) = ¢}

is a disjoint union of geodesics in H and divides H into infinitely many simply
connected and convex regions. Let 2 be one of such regions. Figure 2 (a)
depicts such a region with boundary components lying in {o~'(¢)}. That is,
Q= {07 (&)}

For each ¢ e {07'(¢)}, let K; denote a small ““crescent” neighborhood of ¢é
so that o(K;) is an annular neighborhood A(¢) of é. Let Q) = Q be a smaller
region obtained from £ by removing K; N2 from Q for all ¢ € 6Q2. Let Z € Q,
and z = g(¢) € S. Then z stays outside of 4(¢). Note that the Dehn twist 7;
can be performed so that #[g 4, =id. Hence 7e(z) =z. From (ii) above,

0o0t(2) =t;00(2) =t:z) =z
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It turns out that z and 7(Z) are G-equivalent, i.e., there is an element g: € G
such that 7(2) = ¢g:(2). Since G is discrete and Q) is connected, g; does not
depends on Ze ;. Write g =¢g: and define

=g ' (5.1)
One can easily check that 7, also satisfies the above conditions (i) and (ii). In
addition, the restriction 7g|, = id.

Now the complement H\Q is a disjoint union of half-planes. In what
follows, we denote by % the collection of all components of H\Q.

Let 5 be a simple closed geodesic on S that intersects ¢ and z € . Then 7
can be lifted to a geodesic § passing through z. Parameterize j = $(¢), —o0 <
1 < 400, so that (0) = 2. Since 7 intersects ¢, (f) crosses a component U of
H\Q for some 7y > 0. Also, 7(#) crosses a different component U’ of H\Q for
some #; < 0. See Figure 2 (b).

We claim that to|, #id. Suppose to the contrary that 7o|, =id. If
70|y =1d, then 7o() and § share the same endpoints X and Y. So 7o($) is
homotopic to 7 (rel the endpoints), which leads to that #:(7) is homotopic to 7.
This is a contradiction. If to|,, #id, then since to(J) projects to #:(7), the
geodesic connecting X and 7o(Y) is invariant under the action of a hyperbolic
element of G. It follows that there are two hyperbolic elements of G that
share one fixed point X. This contradicts that G is discrete.

Since U is arbitrary, we conclude that 7g|; # id for any component Uy
of H\Q. To understand the action of 7o on each component Uy of H\Q, we
observe that j(¢) projects to 7(¢). By examining the action of 7z on j(z), we
find that the point §(#; ) travels along the circle ¢ once in the counterclockwise
direction, returns to its original position, and glues with 7(7;). Thus 7o sends
7(t,) to a G-equivalent point 7o(j(t;)). It turns out that 7o sends $(¢) to a
“broken” geodesic.
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Observe that geodesics in {o~'(¢)} lying in Uy divides Uy into infinitely
many (mutually disjoint) regions Q;, i=1,2,.... As we mentioned before,
the restriction of 7o to each Qu\{K;:¢e dQy} is realized by a non-trivial
hyperbolic element of G. We also notice that geodesics in {o~!(¢)} that lie in
Uy determines infinitely many half-planes contained in U,. These half-planes
form a partially ordered set A; defined by inclusion, and elements of %, are
considered maximal elements in Ul./l[. For any point Z € Uy that lies outside
of {K; : ¢ € 07'(¢)}, there are only finitely many elements Uy, Uyy, - - . , Uk € Ay
such that

ZeUgc - c Uy c Uy = U

For i =0,...,m, we let g;; be the primitive hyperbolic element of G that keeps
Uy invariant and takes the same orientation as that of the Dehn twist ;.
Then

Tg(f) = 9gko9kl - - .gkm(f). (5.2)

By construction, we also see that 7 is a quasiconformal map. From (5.2), the
map 7o acts like a Mbius transformation on each component of H\( ) K¢, but
for a different component, the Mdbius transformation is different. This partic-
ularly implies that the Beltrami coefficient of 7o is supported on the union

U{K:: ee {07! (O}

Thus the map 7o extends to a quasiconformal homeomorphism of H onto
itself, and the restriction 7go|g is quasisymmetric. Hence [zo] € mod(S). By
Lemma 3.2 of [16], we see that

[ral” = t, (5:3)

where ¢ € . is homotopic to ¢ on S as x is filled in.

Recall that all boundary components of € are geodesics in {o~'(¢)}. For
each ¢ € 002, there is a primitive simple hyperbolic element s € G that keeps
¢ invariant and takes the same orientation as that of #;. By Theorem 2 of
[10, 12], we can write i* = tc‘ol o t., where ¢y, ¢ are the boundary geodesics of an
x-punctured cylinder P on S and c is also determined by (5.3), which means
that ¢y and ¢ are disjoint and are homotopic to each other when x is filled in.
From the above construction, the geodesic ¢ € % depends only on 2 and not
on any particular boundary component of Q2. The following result is inter-
esting in its own right.

PrROPOSITION 5.1.  There is a bijection between the set of elements of Ug and
the set of x-punctured cylinders on S all of which share the common boundary
geodesic c.
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Fig. 3

Figure 3 above exhibits two x-punctured cylinders P and P’ on S that
share the common boundary component c.

6. Constructions of hyperbolic mapping classes through lifts of Dehn twists

In the rest of this article, we assume that the hyperbolic mapping class @
(introduced in Section 1) is also represented by a finite product of Dehn twists:

A=l (6.4)

where m;, n; are integers and (a, l;) is a pair of filling simple closed geodesics on
S (in the sense that each component of S\{aU b} is either a topological disk or
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a topological once punctured disk). This means that 2 and @& both represent 6.
That is to say, Z is isotopic to @& via an isotopy F(-,7), 0 <t<1. Note that
for i=1,2,...,m, 1(2,-) =@(z;). Thus the curves ¢; = F(Z;,1), 0 <t <1, are
closed curves which may or may not be trivial.

Let 2 be a component of S\{a,b}. Let @, and Q, respectively be
the components of H\{o !(a)} and H\{p '(b)}, such that QN Q, # & and
o(21NW2y) = Q. By the same construction as in Section 5, for the geodesics
a and 5, we can obtain the two lifts 7o, and 7q, of 7; and #;, respectively. Let

Ao = H T3, o
i
where n; and m; are as given in (6.4). By Lemma 3.2 of [16], we have

[TQI]* =1 and [TQZ]* =1p (6.5)

for some a,b € & that are homotopic to @ and b as x is filled in. It is obvious
that I([A]") = 0. Unfortunately, due to lack of evidence, we do not know
whether [19]" is a hyperbolic mapping class.

To find a way around, we fix the region Q;, and make various selections
for Q. Note that different choices of €, give rise to different lifts of ;.
Our aim is to choose a sequence {2} of regions in H so that the corre-
sponding lifts 7q,, of #; satisfy the following additional condition: for each k,
the product

Ik = Hrgl o, (6.6)

determines a hyperbolic mapping class [4¢]" in Modg whose associated Teich-
miiller disk 4 is not a member of 7 (4) (as defined in (2.7)), while it still holds
that I([Ax]") = 6.

As (a, I;) fills S, we can choose a simple closed geodesic ¢ so that (i ¢
is different from @ and b; and (ii) ¢ intersects both @ and b. There are
many ways to acquire such a geodesic ¢. The easiest way is to choose ¢
to be the geodesic representative 15(15) in the homotopy class of the image
curve b(z;). Clearly, the geodesic ¢ obtained in this way satisfies (i) and (ii)
above.

Choose Q so that ¢NQ # . Let ¢ = H be a geodesic such that o(¢) = ¢
and ¢N(Q1NQy) # . It is evident that ¢ goes across maximal elements
Uego, and V €Uq,. Let he G be the primitive simple hyperbolic element
whose axis is ¢ and whose repelling fixed point Y is covered by V. See
Figure 4 (a).

Since X is the attracting fixed point of 4 and JV stays away from the
repelling fixed point Y of A, hX(0V) shrinks to the point X for large positive
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integers k. As a consequence, we can choose a sufficiently large integer k¢ so
that

VYUU=H  for k > k.

Figure 4 (b) shows the situation when k is large, not only #¥(¥7) and U have an
overlap, but also #X(V)U U covers the entire H. Let

TQ,, = hkTQZhik. (6.7)

By a simple calculation, the maps Ax as defined in (6.6) are lifts of 2.
Further, if we write 7, = [4]”, then obviously, I(y,) = 6 for all k > k;. By the
same argument of Theorem 1.1 of [16], y, € Modg are all hyperbolic mapping
classes. By Bers [4], 7, keeps a unique Teichmiiller disk 4, invariant.

Theorem 1.1 (2) then follows from the following result.

THEOREM 6.1. Some Teichmiiller disks Ay are not members of F (j).

7. Proof of Theorem 6.1 and Corollary 1.1

ProoF oF THEOREM 6.1. If all zeros of ¢; are punctures of S, then the
set A (as defined in (3.15)) is empty. Hence by Lemma 3.3, all 4; obtained
at the end of Section 6 are not members of #(4). Thus we may assume
that {z,...,Z,}, m > 1 is the set of non-puncture zeros of ¢,. By taking a
suitable power if necessary, we also assume that @ fixes these zeros.

Suppose that for all k > ko, Ay € #(4). By Lemma 3.3 again, 4; € 4
and thus 4y € A; for some ie{l,2,...,m}, which tells us that there are
infinitely many Teichmiiller disks 4 that lie in the same set, say, A;. Hence
we may further assume without loss of generality that all Ay, k > ko, lie in
A;. For any k,/ > ko, by Lemma 3.2, there are elements A, /h; € G such
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that y, =hjol 0 (h,f)f1 and y;=hfo0 0 (hl*)fl. Let / be fixed and let
k — 4+00. We have

s\ —1 * w0\ —1 *
Or = (hy) " oyohg=(hj) oy oh.

We conclude that y, and y; are conjugate by an element g; € Modg for some
gr € G. That is,

Ve =9gioyo (g,j)_l for an element g; € G. (7.1)
It follows immediately that
log A(y;) = log A(y,), for all k > k. (7.2)
On the other hand, it was shown in [16] that
[to,]" =1, and [to,.]" = th,, (7.3)

where a has already been given as in (6.5) and by € . Obviously, ¢ and by

are homotopic to @ and b, respectively, if a,b; are viewed as curves on S.
From (6.6) and (7.3), we see that y, = [4]" is determined by the pair

(a, by) of simple closed geodesics on S. More precisely, for all k > ky we have

1

=[] = [H Tfilfgi,fr] = [ ony e <t (7.4)
i

(where <{5,&) denotes the group generated by & and #). For simplicity, in the
rest of the article we write oy = i(a,b;). By Corollary 6.7 of Leininger [11],
the dilatation A(y,) is greater or equal to the larger root of the quadratic
equation

24+ Q2-0})z+1=0,

and the equality holds if and only if the pseudo-Anosov representative f of y,
is of form (z,01,)*". This implies that

(07 — 2+ axy/op — 4). (71.5)

An estimate shows that if g; > 2,

N —

() =

(0f =2+ oxr/or —4) > o} — g, — L. (7.6)

N —

To complete the proof of Theorem 6.1, we need the following lemma.

LemMA 7.1. As k — +o0, 07 —ox — 1 — +o0.
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ProoF. By the definition, oy = i(a,b;). To see what the curves by are,
we use (6.5), (6.7) and (7.3) to calculate as follows.

tn, = [ta,,]" = (h*)* o [t0,]" o (h*) ™ = (1) 0ty 0 (W) =104 (77)

A basic fact about Dehn twists is that #5 = ¢, if and only if the two curves &
and y are homotopic to each other. From this fact along with (7.7), we see
that

(h*)*(b) = b. (7.8)

Recall that 7 e G (constructed in Section 6) is a primitive simple hyperbolic
element. By Theorem 2 of [12] or Theorem 2 of [10], ~A* is represented by a
spin map t;ol o l,, where {cp,c1} bounds an x-punctured cylinder P. Since ¢
intersects both a and b, it is not difficult to verify that the central curve c
intersects both a and b (otherwise, ¢ world be disjoint from a or b, which
contradicts the definition of ¢). Now from Lemma 4.2, we deduce that

i(a, (h*)*(b)) — +o0,
as k — +oo. It follows from (7.8) that
ox = i(a, by) = i(a, (") (b)) — +o0, as k — +oo.

Hence O'/% —or—l=ox(ox —1)— 1 — 400 as k — +oo. This completes the
proof of Lemma 7.1. O]

Let us now return to the proof of Theorem 6.1. From Lemma 7.1, (7.5)
and (7.6), we conclude that log A(y,) — 400 as k — +oo. This contradicts
(7.2), and hence the proof of Theorem 6.1 is complete. O

PrOOF OF COROLLARY 1.1. By the argument of Theorem 1.1, we know
that 7 is unbounded. The discreteness of Spec(Modg) in R can be deduced
from a theorem of [1] and [9]. Since J < Spec(Mods), 7 is also a discrete
subset of R. O
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