The configuration space of a model for ringed hydrocarbon molecules

Dedicated to Professor Takao Matumoto on his sixtieth birthday

Satoru Goto and Kazushi Komatsu

(Received April 1, 2008)
(Revised May 18, 2011)

Abstract

We give a mathematical model of n-membered ringed hydrocarbon molecules, and study the topology of a configuration space C_{n} of the model. Under the bond angle conditions required for ringed molecules, we prove that C_{n} is homeomorphic to ($n-4$)-dimensional sphere S^{n-4} when $n=5,6,7$. This result gives an appropriate explanation of the configuration space of n-membered ringed hydrocarbon molecules when $n=5,6$.

1. Introduction

Due to [1], representative samples of 5- and 6-membered ringed hydrocarbon molecules were retrieved from the Cambridge Structural Database. By principal-component analysis, the configuration space of 5 - or 6 -membered ringed hydrocarbon molecules is regarded as the circle S^{1} or the 2-dimensional sphere S^{2}, respectively. When $n \geq 7$, what shapes become configuration spaces havn't been specified.

As a mathematical model of n-membered ringed hydrocarbon molecules, we consider closed chains in \mathbf{R}^{3} with rigidity ([3], [4], [8], [13]). In Mathematics, the study of configurations of closed chains has been considered from a topological, an algorithmic or a kinematic viewpoint. See, for example ([2], [5], [7], [9], [10], [11], [14], [16]).

A closed chain is defined to be a graph in \mathbf{R}^{3} having vertices $\left\{v_{0}, v_{1}, \ldots\right.$, $\left.v_{n-1}\right\}$ and bonds $\left\{\beta_{1}, \beta_{2}, \ldots, \beta_{n-1}, \beta_{0}\right\}$, where β_{i} connects v_{i-1} with $v_{i}(i=1$, $2, \ldots, n-1$) and β_{0} connects v_{n-1} with v_{0}. For the sake of simplicity, let bond vectors $v_{i}-v_{i-1}$ be denoted by $\beta_{i}(i=1,2, \ldots, n-1)$ and $v_{0}-v_{n-1}$ be denoted by β_{0}.

[^0]We fix θ with $\frac{\pi}{2}<\theta<\pi$, and put 3 vertices $v_{0}=(0,0,0), v_{n-1}=(-1,0,0)$, $v_{n-2}=(\cos \theta-1, \sin \theta, 0)$. We define a configuration space of closed chains by the following:

Definition 1. We define $f_{k}:\left(\mathbf{R}^{3}\right)^{n-3} \rightarrow \mathbf{R}$ by $f_{k}\left(v_{1}, \ldots, v_{n-3}\right)=$ $\frac{1}{2}\left(\left\|\beta_{k}\right\|-1\right)$ for $k=1, \ldots, n-2$, and $g_{k}:\left(\mathbf{R}^{3}\right)^{n-3} \rightarrow \mathbf{R}$ by $g_{1}\left(v_{1}, \ldots, v_{n-3}\right)=$ $\left\langle-\beta_{0}, \beta_{1}\right\rangle-\cos \theta, g_{k}\left(v_{1}, \ldots, v_{n-3}\right)=\left\langle-\beta_{k+1}, \beta_{k+2}\right\rangle-\cos \theta$ for $k=2, \ldots, n-3$, where \langle,$\rangle denotes the standard inner product in \mathbf{R}^{3}$ and the standard norm $\|x\|=\sqrt{\langle x, x\rangle}$. We call θ a bond angle.

Then the configuration space C_{n} is defined by the following;

$$
C_{n}=\left\{p \in\left(\mathbf{R}^{3}\right)^{n-3} \mid f_{1}(p)=\cdots=f_{n-2}(p)=g_{1}(p)=\cdots=g_{n-3}(p)=0\right\} .
$$

We call f_{k}, g_{k} rigidity maps. Rigidity maps determine bond lengths and angles of the closed chain in C_{n}. The closed chains in C_{n} are equilateral polygons in \mathbf{R}^{3} with n vertices such that the bond angles are all equal to a given angle θ except for two successive ones.

When $n=5$, we assume that θ is equal to $\frac{7}{12} \pi$ that is the average of bond angles of 5 -membered ringed hydrocarbon molecules. When $n=6,7$, we assume that θ is equal to tetrahedral angle $\cos ^{-1}\left(-\frac{1}{3}\right)$ that is the standard bond angle of the carbon atom. Note that C_{n} is not the empty set. C_{n} actually includes the closed chains in Figs. 7, 8 and 9 of $\S 3$.

The above model gives an appropriate explanation of the result that the configuration space of n-membered ringed hydrocarbon molecules is regarded as the $(n-4)$-dimensional sphere when $n=5,6$. We obtain the following theorem:

Theorem 1. The configuration space C_{n} is homeomorphic to ($n-4$)dimensional sphere S^{n-4} when $n=5,6,7$.

For $n \geq 8$, there exists some bond angle θ such that closed chains satisfy the properties mentioned in $\S 2$ if we choose a bond angle larger than the tetrahedral angle $\cos ^{-1}(-1 / 3)$. Then there might be a possibility that it serve as a simulation model of the conformation of the molecule.

However, we are interested in the possibility of approximating larger macrocyclic molecules by smaller ones (e.g. $n=5,6,7$) as we did in [3], [4] and [13].

This article is arranged as follows. In Section 2 we prove preliminary results for the proof of Theorem 1. In Section 3 we prove Theorem 1.

In the following sections, we assume that $\theta=\frac{7}{12} \pi$ when $n=5$ and that $\theta=\cos ^{-1}\left(-\frac{1}{3}\right)$ when $n=6,7$.

2. Preliminaries

We need the following lemma in the proof of Theorem 1.
Lemma 1. When $n=5,6,7$, closed chains in the configuration space C_{n} satisfies the following properties (1)-(3):
(1) Any closed chain in C_{n} does not have the local configurations of successive three bonds β_{k}, β_{k+1} and $\beta_{2}(k=0,3)$ with the relation $\beta_{k}+\beta_{k+1}=\lambda \beta_{2}$ for any nonzero λ as in Figs. 1, 2, 3 and 4.
(2) Any closed chain in C_{n} does not have the local configurations of successive three bonds $\beta_{k}, \beta_{k+1}, \beta_{k+2}$ with bond angles θ and the relation $\beta_{k}=\beta_{k+2}$ as in Fig. 5, where all indices are modulo n. In particular, the rotation around the axis β_{k} does not admit a full 2π-radian roll for $k \neq 1,2,3$.

We call such local configurations as (1) and (2) the forbidden local configurations.
(3) All vertices do not be on one plane for each closed chain in C_{n}.

Fig. 1. (1) the forbidden local configuration for $k=0$ and $\lambda>0$

Fig. 2. (1) the forbidden local configuration for $k=3$ and $\lambda>0$

Fig. 3. (1) the forbidden local configuration for $k=0$ and $\lambda<0$

Fig. 4. (1) the forbidden local configuration for $k=3$ and $\lambda<0$

Fig. 5. (2) the forbidden local configuration $\beta_{k}=\beta_{k+2}$

Proof. (1) First, we give the proof in the case where $k=0$ and $\lambda>0$. By a similar argument we can treat the case where $k=3$ and $\lambda>0$. We consider a non-closed chain which consists of four bonds β_{n-1}, β_{0}, β_{1} and β_{2}. Assume that a part of this chain forms the local configuration as in Fig. 1. Then, the distance between v_{n-2} and v_{2} has the minimal value $\sqrt{1+(1-2 c)^{2}+(1-2 c) \sqrt{2-2 c}} \quad(>2)$, where $c=\cos \theta$, for $n=5$, and $\frac{1}{3} \sqrt{34+10 \sqrt{6}}(>2.54)$ for $n=6,7$.

For $n=5$, we do not get any closed chains in C_{5} from the above nonclosed chain by adding a bond β_{3} even if we forget the restriction of the bond angle at v_{3}.

For $n=6$, we do not get any closed chains in C_{6} from the above nonclosed chain by adding two bonds β_{3}, β_{4} since the distance between v_{2} and v_{4} is equal to $\frac{2 \sqrt{6}}{3}(<2)$ by the restriction of the bond angle at v_{3}.

When a non-closed chain consists of three bonds with the length 1 and the bond angle θ, we see that the distance between the end-points has the maximal value $\frac{\sqrt{57}}{3}(<2.52)$. So, we do not get any closed chains in C_{7} from the above non-closed chain by adding three bonds $\beta_{3}, \beta_{4}, \beta_{5}$.

Hence any closed chain in $C_{n}(n=5,6,7)$ does not have the local configurations as in Figs. 1 and 2.

Next, we give the proof in the case where $k=0$ and $\lambda<0$. By a similar argument we can treat the case where $k=3$ and $\lambda<0$.

For $n=5$, we consider a non-closed chain which consists of three bonds β_{0}, β_{1}, and β_{2}. Assume that this chain forms the local configuration as in Fig. 3. The distance between v_{n-1} and v_{2} is equal to $\sqrt{2-2 \cos \theta}-1$ for $n=5$. So, we do not get any closed chains in C_{5} from the above non-closed chain by adding two bonds β_{3}, β_{4} since the distance between v_{2} and v_{4} is equal to $\sqrt{2-2 \cos \theta}$ by the restriction of the bond angle at v_{3}.

For $n=6,7$, we consider a non-closed chain which consists of four bonds $\beta_{n-1}, \beta_{0}, \beta_{1}$, and β_{2}. Assume that a part of this chain forms the local configuration as in Fig. 3. Then, the distance between v_{n-2} and v_{2} has the maximal value $\frac{1}{3} \sqrt{66-18 \sqrt{2}}(<1.6)$ for $n=6,7$.

For $n=6$, we do not get any closed chains in C_{6} from the above nonclosed chain by adding two bonds β_{3}, β_{4} since the distance between v_{2} and v_{4} is equal to $\frac{2 \sqrt{6}}{3}(>1.6)$ by the restriction of the bond angle at v_{3}.

When a non-closed chain consists of three bonds with the length 1 and the bond angle θ, we see that the distance between the end-points has the minimal value $\frac{5}{3}(>1.6)$. So, we do not get any closed chains in C_{7} from the above non-closed chain by adding three bonds $\beta_{3}, \beta_{4}, \beta_{5}$.

Hence any closed chain in $C_{n}(n=5,6,7)$ does not have the local configurations as in Figs. 3 and 4.
(2) For $n=5$, we consider a non-closed chain which consists of three bonds β_{k-1}, β_{k}, and β_{k+1}. Assume that this chain forms the local configuration as in Fig. 5. The distance between v_{k-2} and v_{k+1} is equal to $\sqrt{5-4 \cos \theta}$ (>2.4) for $n=5$. So, we do not get any closed chains in C_{5} from the above non-closed chain by adding successive two bonds since the distance between the end-points is at most 2 .

For $n=6,7$, we consider a non-closed chain which consists of five bonds
$\beta_{k-2}, \beta_{k-1}, \beta_{k}, \beta_{k+1}$ and β_{k+2}. Assume that the part $\beta_{k-1}, \beta_{k}, \beta_{k+1}$ of this chain forms the local configuration as in Fig. 5.

If the bond angles at v_{k-2} and v_{k+1} are θ, the distance between the endpoints has the minimal value 3 .

For $n=6$, we do not get any closed chains in C_{6} from the above nonclosed chain by adding one bond with the length 1.

For $n=7$, we do not get any closed chains in C_{7} from the above nonclosed chain by adding successive two bonds since the distance between v_{k-3} and v_{k+2} is at most 2 .

If the bond angle at one of v_{k-2} and v_{k+1} isn't θ, we have the part of the non-closed chain, which consists of 4 bonds with the bond angles θ. Because the distance between the end-points in this part has the minimal value $\frac{8}{3}$, we see that the distance between v_{k-3} and v_{k+2} has the minimal value $\frac{5}{3}(>1.66)$.

For $n=6$, we do not get any closed chains in C_{6} from the above nonclosed chain by adding one bond with the length 1 .

For $n=7$, we do not get any closed chains in C_{7} from the above nonclosed chain by adding successive two bonds since the distance between the end-points is equal to $\frac{2 \sqrt{6}}{3}(<1.64)$ by the restriction of the included bond angle.

Hence any closed chain in $C_{n}(n=5,6,7)$ does not have the local configurations as in Fig. 5.
(3) We assume that all vertices are on one plane for some closed chain. By fogetting the bond β_{2} from the closed chain, we have the non-closed chain with the end points v_{1}, v_{2}. By Lemma 1 (2) we see that the succcessive three bonds in the non-closed chain form the planar local configuration as in Fig. 6.

Fig. 6. the planar local configuration of the succcessive three bonds
Then we can explicitly calculate of the distance between v_{1} and v_{2} in the non-closed chain. When $n=5$, the distance between v_{1} and v_{2} is equal to $-2 \cos \theta \sqrt{2-2 \cos \theta}(<0.9)$. When $n=6$, the distance between v_{1} and v_{2} is equal to $\frac{1}{9}(<1)$. When $n=7$, the distance between v_{1} and v_{2} is equal to $\frac{10 \sqrt{6}}{27}$ (<0.91).

Since the distance between v_{1} and v_{2} is shorter than 1 , all vertices do not be on one plane for each closed chain in C_{n}.

By Lemma 1 we obtain the following proposition:
Proposition 1. The configuration space C_{n} is an orientable closed ($n-4$)dimensional submanifold of $\mathbf{R}^{3 n-9}$ when $n=5,6,7$.

Proof. We define $F:\left(\mathbf{R}^{3}\right)^{n-3} \rightarrow \mathbf{R}^{2 n-5}$ by $F=\left(f_{1}, \ldots, f_{n-2}, g_{1}, \ldots, g_{n-3}\right)$. Then $C_{n}=F^{-1}(\{O\})$ for $O=(0, \ldots, 0) \in \mathbf{R}^{2 n-5}$.

We show that $O \in \mathbf{R}^{2 n-5}$ is a regular value of F. So, it suffices to prove that the gradient vectors $\left(\operatorname{grad} f_{1}\right)_{p}, \ldots,\left(\operatorname{grad} f_{n-2}\right)_{p},\left(\operatorname{grad} g_{1}\right)_{p}, \ldots,\left(\operatorname{grad} g_{n-3}\right)_{p}$ are linearly independent for any $p \in F^{-1}(\{O\})=C_{n}$, where $(\operatorname{grad} f)_{p}=$ $\left(\frac{\partial f}{\partial x_{j}}(p)\right)_{j}$. It is convenient to decompose the gradient vectors of f_{k} and g_{k} into 1×3 blocks. We have the following forms:

$$
\begin{aligned}
\left(\operatorname{grad} f_{1}\right)_{p} & =\left(\beta_{1}, 0, \ldots \ldots, 0\right), \\
& \vdots \\
\left(\operatorname{grad} f_{k}\right)_{p} & =\left(0, \ldots, 0,-\beta_{k}, \beta_{k}, 0, \ldots, 0\right), \\
& \vdots \\
\left(\operatorname{grad} f_{n-2}\right)_{p} & =\left(0, \ldots \ldots, 0,-\beta_{n-2}\right), \\
\left(\operatorname{grad} g_{1}\right)_{p} & =\left(-\beta_{0}, 0, \ldots \ldots, 0\right), \\
& \vdots \\
\left(\operatorname{grad} g_{k}\right)_{p} & =\left(0, \ldots, 0, \beta_{k+2}, \beta_{k+1}-\beta_{k+2},-\beta_{k+1}, 0, \ldots, 0\right), \\
& \vdots \\
\left(\operatorname{grad} g_{n-4}\right)_{p} & =\left(0, \ldots, 0, \beta_{n-2}, \beta_{n-3}-\beta_{n-2}\right), \\
\left(\operatorname{grad} g_{n-3}\right)_{p} & =\left(0, \ldots \ldots, 0, \beta_{n-1}\right),
\end{aligned}
$$

where β_{k} denotes the bond vectors of the closed chain corresponding to $p \in C_{n}$, $0=(0,0,0)$.

Assume that the gradient vectors $\left(\operatorname{grad} f_{1}\right)_{p}, \ldots,\left(\operatorname{grad} f_{n-2}\right)_{p}$, $\left(\operatorname{grad} g_{1}\right)_{p}, \ldots,\left(\operatorname{grad} g_{n-3}\right)_{p}$ are linearly dependent. Then $c_{k} \neq 0$ and $\sum_{i=1}^{n-2} c_{i}\left(\operatorname{grad} f_{i}\right)_{p}+\sum_{i=1}^{n-3} c_{i+n-2}\left(\operatorname{grad} g_{i}\right)_{p}=(0, \ldots, 0)$ for some k.

Now we will show that all vertices of the closed chain corresponding to p are on one plane by using Lemma 1 (1), (2) in what follows. Let v_{0}, v_{1}, \ldots, v_{n-1} denote the vertices of the closed chain corresponding to p. Since two successive bond vectors β_{k}, β_{k+1} are linearly independent for $k \neq 1,2$, we
get that $c_{2} \neq 0$. Then the first 1×3 blocks of gradient vectors implies that the vertices v_{0}, v_{1}, v_{2} and v_{n-1} are on one plane and the second 1×3 blocks of gradient vectors implies that the vertices v_{1}, v_{2}, v_{3} and v_{4} are on one plane.

When $n=6,7$, by Lemma 1 (1) the second and third 1×3 blocks of gradient vectors implies that $c_{n+1} \neq 0$. Then the vertices v_{2}, v_{3}, v_{4} and v_{5} are on one plane.

When $n=7$, the vertices $v_{1}, v_{2}, \ldots, v_{5}$ are on one plane by the above argument.

If $\beta_{2}= \pm \beta_{4}$, then $\beta_{k}=-\beta_{k+2}$ by Lemma 1 (2) and the distance between v_{1} and v_{5} is equal to $\frac{2}{3}$. So, we do not get any closed chains in C_{7} from the above non-closed chain by adding successive three bonds since the distance between the end-points has the minimal value $\frac{5}{3}$. Thus we see that $\beta_{2} \neq \pm \beta_{4}$, and get that $c_{3} \neq 0$. Due to the forbidden local configuration of Fig. 5 in Lemma 1 (2), We have the relation $3 \beta_{3}-2 \beta_{4}+3 \beta_{5}=0$. By using $c_{3} \neq 0$ and this relation, the third and fourth 1×3 blocks of gradient vectors implies that $c_{9} \neq 0$. Then the vertices v_{3}, v_{4}, v_{5} and v_{6} are on one plane.

Hence we see that all vertices $v_{0}, v_{1}, \ldots, v_{n-1}$ are in the plane through v_{1}, v_{2} and v_{n-1} for $n=5,6,7$.

This contradicts Lemma 1 (3). Therefore $O \in \mathbf{R}^{2 n-5}$ is a regular value of F and we obtain that C_{n} is an orientable closed $(n-4)$-dimensional submanifold of $\mathbf{R}^{3 n-9}$ by the regular value theorem. The proof of Proposition 1 is completed.

Remark 1. For $n \geq 8$ and $\theta=\cos ^{-1}\left(-\frac{1}{3}\right)$, some closed chains in C_{n} have forbidden local configurations of Lemma 1 (1), (2). So, we cannot apply the proof of Proposition 1 to the $n \geq 8$ cases.

3. The proof of Theorem 1

We define $h:\left(\mathbf{R}^{3}\right)^{n-3} \rightarrow \mathbf{R}$ by $h\left(v_{1}, \ldots, v_{n-3}\right)=\frac{x_{2}}{\sqrt{x_{2}^{2}+x_{3}^{2}}}$, where $v_{1}=$ $\left(x_{1}, x_{2}, x_{3}\right)$. Due to [12, p. 25, Remark 1], [15, p. 380, Lemma 1] we have the extension of Reeb's theorem that M is homeomorphic to a sphere if M is a compact manifold and f is a differentiable function on M with only two critical points.

We show that $h \mid C_{n}$ is a differentiable function on C_{n} with only two critical points. Due to [6] for a function on a manifold embedded in Euclidean space, $p \in C_{n}$ is a critical point of $h \mid C_{n}$ for $h:\left(\mathbf{R}^{3}\right)^{n-3} \rightarrow \mathbf{R}$ if and only if there exist $a_{i} \in \mathbf{R}$ such that $(\operatorname{grad} h)_{p}=\sum_{i=1}^{n-2} a_{i}\left(\operatorname{grad} f_{i}\right)_{p}+\sum_{i=1}^{n-3} a_{i+n-2}\left(\operatorname{grad} g_{i}\right)_{p}$. We can easily check that $(\operatorname{grad} h)_{p}=\left(0, \frac{x_{3}^{2}}{\sin ^{3} \theta},-\frac{x_{2} x_{3}}{\sin ^{3} \theta}, 0, \ldots, 0\right)$. Note that the first
1×3 block $\left(0, \frac{x_{3}^{2}}{\sin ^{3} \theta},-\frac{x_{2} x_{3}}{\sin ^{3} \theta}\right)$ is orthogonal to β_{0} and β_{1}. So, we see that $a_{2} \neq 0$ if $(\operatorname{grad} h)_{p}=\sum_{i=1}^{n-2} a_{i}\left(\operatorname{grad} f_{i}\right)_{p}+\sum_{i=1}^{n-3} a_{i+n-2}\left(\operatorname{grad} g_{i}\right)_{p} . \quad$ By the same argument as the proof of Proposition 1 in $\S 2$, we obtain that the configuration of the closed chain corresponding to a critical point p satisfies that the vertices $v_{i}(i=1, \ldots, n-1)$ are on one plane $\operatorname{Span}\left\langle\beta_{2}, \beta_{3}\right\rangle=\operatorname{Span}\left\langle\beta_{2}, \ldots, \beta_{n-1}\right\rangle$.

We transform the closed chains by the congruent transformation that maps v_{n-1}, v_{n-2} and v_{n-3} to $(0,0,0),(-1,0,0)$ and $(\cos \theta-1, \sin \theta, 0)$ in this order, and we denote the image of v_{k} as w_{k}. This congruent transformation can be expressed by the composition of a translation and a rotation around z-axis and a rotation around x-axis. Because the vertices $w_{i}(i=1, \ldots, n-1)$ are in the $x y$-plane, it becomes easy to find the coordinates of the vertices w_{i} concretely.
$n=5$:
By the definition of w_{i}, we have the coordinates of vertices:

$$
\begin{aligned}
& w_{2}=(\cos \theta-1, \sin \theta, 0), \\
& w_{3}=(-1,0,0), \\
& w_{4}=(0,0,0),
\end{aligned}
$$

where $\cos \theta=\frac{-\sqrt{6}+\sqrt{2}}{4}$.
Since w_{1}, \ldots, w_{4} are in $x y$-plane, we put $w_{1}=(a, b, 0)$. By the restriction of the bond length, we see that $\left\|w_{2}-w_{1}\right\|=1$. By the restriction of the bond angle at w_{0}, we see that $\left\|w_{4}-w_{1}\right\|=\sqrt{2-2 \cos \theta}$. Then $(x, y)=(a, b)$ is a solution of a pair of equations: $x^{2}+y^{2}=2-2 \cos \theta,(x+1-\cos \theta)^{2}+$ $(y-\sin \theta)^{2}=1$. Because of the existence of w_{0}, the coordinate of w_{1} is uniquely determined as follows:

$$
\begin{aligned}
& a=\frac{1}{4}(-3+\sqrt{2}-\sqrt{6}+\sqrt{-7-8 \sqrt{2}+8 \sqrt{3}+4 \sqrt{6}}) \\
& b=(1-\cos \theta) a+\frac{1}{2}-\cos \theta
\end{aligned}
$$

We put $w_{0}=\left(x_{1}, x_{2}, x_{3}\right)$. By the restriction of the bond angle at w_{4}, we see that $x_{1}=-\cos \theta$. Then $(y, z)=\left(x_{2}, x_{3}\right)$ is a solution of a pair of equations: $\cos ^{2} \theta+y^{2}+z^{2}=1, \quad(a+\cos \theta)^{2}+(b-y)^{2}+z^{2}=1$. The coordinate of w_{0} is determined as follows:

$$
\begin{aligned}
& x_{1}=-\cos \theta, \\
& x_{2}=(1-\cos \theta+a \cos \theta) / b, \\
& x_{3}= \pm \sqrt{1-x_{1}^{2}-x_{2}^{2}} .
\end{aligned}
$$

$n=6$:
Since w_{1}, \ldots, w_{5} are in $x y$-plane, we can calculate the coordinate of w_{2} concretely by the restriction of the bond angle at w_{3}. Note that $\cos \theta=-1 / 3$. We have the coordinates of vertices:

$$
\begin{aligned}
& w_{2}=(-5 / 9,10 \sqrt{2} / 9,0) \\
& w_{3}=(\cos \theta-1, \sin \theta, 0)=(-4 / 3,2 \sqrt{2} / 3,0) \\
& w_{4}=(-1,0,0) \\
& w_{5}=(0,0,0)
\end{aligned}
$$

Since w_{1}, \ldots, w_{5} are in $x y$-plane, we put $w_{1}=(a, b, 0)$. By the restriction of the bond length, we see that $\left\|w_{2}-w_{1}\right\|=1$. By the restriction of the bond angle at w_{0}, we see that $\left\|w_{5}-w_{1}\right\|=\sqrt{2-2 \cos \theta}$. Then $(x, y)=(a, b)$ is a solution of a pair of equations: $x^{2}+y^{2}=2-2 \cos \theta,(x+5 / 9)^{2}+$ $(y-10 \sqrt{2} / 9)^{2}=1$. Because of the existence of w_{0}, the coordinate of w_{1} is uniquely determined as follows:

$$
a=\frac{4}{9}, \quad b=\frac{10 \sqrt{2}}{9} .
$$

We put $w_{0}=\left(x_{1}, x_{2}, x_{3}\right)$. By the restriction of the bond angle at w_{5}, we see that $x_{1}=-\cos \theta$. Then $(y, z)=\left(x_{2}, x_{3}\right)$ is a solution of a pair of equations: $\cos ^{2} \theta+y^{2}+z^{2}=1, \quad(a+\cos \theta)^{2}+(b-y)^{2}+z^{2}=1$. The coordinate of w_{0} is determined as follows:

$$
\begin{aligned}
& x_{1}=-\cos \theta=\frac{1}{3} \\
& x_{2}=(1-\cos \theta+a \cos \theta) / b=\frac{8 \sqrt{2}}{15} \\
& x_{3}= \pm \sqrt{1-x_{1}^{2}-x_{2}^{2}}=\frac{2 \sqrt{2}}{5}
\end{aligned}
$$

For $n=6$ the vertex w_{1} have comparatively simple coordinates.
$n=7$:
Since w_{1}, \ldots, w_{6} are in $x y$-plane, we can calculate the coordinate of w_{2}, w_{3} concretely by the restriction of the bond angle at w_{3}, w_{4}. Note that $\cos \theta=$ $-1 / 3$. We have the coordinates of vertices:

$$
\begin{aligned}
& w_{2}=(8 / 27,20 \sqrt{2} / 27,0), \\
& w_{3}=(-5 / 9,10 \sqrt{2} / 9,0),
\end{aligned}
$$

$$
\begin{aligned}
& w_{4}=(\cos \theta-1, \sin \theta, 0)=(-4 / 3,2 \sqrt{2} / 3,0) \\
& w_{5}=(-1,0,0) \\
& w_{6}=(0,0,0)
\end{aligned}
$$

Since w_{1}, \ldots, w_{6} are in $x y$-plane, we put $w_{1}=(a, b, 0)$. By the restriction of the bond length, we see that $\left\|w_{2}-w_{1}\right\|=1$. By the restriction of the bond angle at w_{0}, we see that $\left\|w_{6}-w_{1}\right\|=\sqrt{2-2 \cos \theta}$. Then $(x, y)=(a, b)$ is a solution of a pair of equations: $x^{2}+y^{2}=2-2 \cos \theta,(x-8 / 27)^{2}+$ $(y-20 \sqrt{2} / 27)^{2}=1$. Because of the existence of w_{0}, the coordinate of w_{1} is uniquely determined as follows:

$$
a=\frac{1}{432}(154+5 \sqrt{6574}), \quad b=\frac{1}{432}(385 \sqrt{2}-2 \sqrt{3287}) .
$$

We put $w_{0}=\left(x_{1}, x_{2}, x_{3}\right)$. By the restriction of the bond angle at w_{6}, we see that $x_{1}=-\cos \theta$. Then $(y, z)=\left(x_{2}, x_{3}\right)$ is a solution of a pair of equations: $\cos ^{2} \theta+y^{2}+z^{2}=1, \quad(a+\cos \theta)^{2}+(b-y)^{2}+z^{2}=1$. The coordinate of w_{0} is determined as follows:

$$
\begin{aligned}
& x_{1}=\frac{1}{3}, \\
& x_{2}=(1-\cos \theta+a \cos \theta) / b=(-a+4) / 3 b, \\
& x_{3}= \pm \sqrt{1-x_{1}^{2}-x_{2}^{2}} .
\end{aligned}
$$

Thus the vertices $v_{1}, v_{2}, \ldots, v_{n-1}$ are uniquely determined and just two positions of the vertex v_{0} are determined for original closed chains with vertices $\left\{v_{0}, v_{1}, \ldots, v_{n-1}\right\}$. Then we have just two configurations of closed chains corresponding to the critical points. These two are mirror symmetric with respect to the plane $\operatorname{Span}\left\langle\beta_{2}, \beta_{3}\right\rangle$. Hence we obtain that $h \mid C_{n}$ has only two critical points. See Figs. 7, 8, and 9 for the critical configurations. We note that when $n=6$, configurations of closed chains corresponding to critical points have reflection symmetry in the plane, through v_{0} and v_{3}, perpendicular to $\operatorname{Span}\left\langle\beta_{2}, \beta_{3}\right\rangle$ as in Fig. 8.

Fig. 7. $n=5$

Fig. 8. $n=6$

Fig. 9. $n=7$

Acknowledgement

The authors would like to express their sincere gratitude to Ms. H. Hayashi for graphics, and to Mr. J. Yagi and Mr. K. Kashihara for the helpful comments. The authors would like to express their sincere gratitude to the refree and the editor for a lot of valuable suggestions.

References

[1] F. H. Allen and M. J. Doyle, Automated conformational analysis from crystallographic data. 6. Principal-component analysis for n-membered carbocyclic rings ($n=4,5,6$): Symmetry considerations and correlations with ring-puckering parameters, Acta Cryst. B47 (1991), 412-424.
[2] G. M. Crippen and T. F. Havel, Distance Geometry and Molecular Conformation, Wiley, New York, 1988.
[3] S. Goto, The configuration space of a mathematical model for ringed hydrocarbon molecules (2) (in Japanese), (The 2008 autumn Conference): Society of Computer Chemistry, Japan (SCCJ).
[4] S. Goto, T. Munakata and K. Komatsu, Pharmacoinformatical and mathematical study for the diversity of three-dimensional structures and the conformational interconversion of macrocyclic compound, J. Pharm. Soc. Jpn. 126 (2006), 266-269.
[5] T. F. Havel, Some examples of the use of distances as coordinates for Euclidean geometry, J. Symbolic Computation 11 (1991), 579-593.
[6] H. Kamiya, Weighted trace functions as examples of Morse functions, Jour. Fac. Sci. Shinshu Univ. 7 (1971), 85-96.
[7] M. Kapovich and J. Millson, On the moduli space of polygons in the Euclidean plane, J. Diff. Geom. 42 (1995), 430-464.
[8] K. Komatsu, The configuration space of a mathematical model for ringed hydrocarbon molecules (1) (in Japanese), (The 2008 autumn Conference): Society of Computer Chemistry, Japan (SCCJ)
[9] W. J. Lenhart and S. H. Whitesides, Reconfiguring closed polygonal chains in Euclidean d-space, Jour. Discrete Comput. Geom. 13 (1995), 123-140.
[10] R. J. Milgram and J. C. Trinkle, Complete path planning for closed kinematic chains with spherical joints, Internat. J. Robotics Res. 21 (2002), 773-789.
[11] R. J. Milgram and J. C. Trinkle, The geometry of configuration spaces for closed chains in two and three dimensions, Homology, Homot., Appl. 6 (2004), 237-267.
[12] J. Milnor, Morse Theory, Princeton University Press, Princeton, 1969.
[13] T. Munakata, S. Goto and K. Komatsu, Conformational flexibility effect of one configuration difference, J. Pharm. Soc. Jpn. 126 (2006), 270-273.
[14] J. O'Hara, The configuration space of planar spidery linkages, Topology Appl. 154 (2007), 502-526.
[15] R. Rosen, A weak form of the star conjecture for manifolds, Abstract 570-28, Notices Amer. Math. Soc. 7 (1960), 380.
[16] D. Shimamoto and C. Vanderwaart, Spaces of polygons in the plane and Morse theory, American Math. Month. 112 (2005), 289-310.

Satoru Goto
Department of Pharmaceutical Sciences
The School of Pharmacy
International University of Health and Welfare
Tochigi 324-8501, Japan
E-mail: s.510@iuhw.ac.jp
Kazushi Komatsu
Depertment of Mathematics
Faculty of Science
Kochi University
Kochi 780-8520, Japan
E-mail: komatsu@kochi-u.ac.jp

[^0]: 2010 Mathematics Subject Classification. Primary 52C99; Secondary 57M50, 58E05, 92E10.
 Key words and phrases. Configuration space, Morse function, Molecular structure.

