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An application of capacitary functions

to an inverse inclusion problem1

Mitsuru Nakai

Abstract. An e‰cient application of capacitary functions for compact subsets of the

Royden harmonic boundary to an inverse inclusion problem concerning spaces of

Dirichlet finite and mean bounded harmonic functions in the classification theory of

Riemann surfaces is given.

1. Introduction

As usual we denote by HðRÞ the linear space of harmonic functions u on

an open Riemann surface R and by HDðRÞ the subspace of HðRÞ consisting of

u A HðRÞ with finite Dirichlet integral Dðu;RÞ of u taken over R (cf. e.g. [1]):

Dðu;RÞ :¼
ð
R

du5�du < þy:ð1Þ

An end W of R is a subregion (i.e. open and connected subset) of R such that,

firstly, RnW is a regular subregion of R and, secondly, the relative boundary

qW of W coincides with that qðRnWÞ of RnW . Then the relative class

HðW ; qWÞ is the linear subspace of HðWÞ consisting of u A HðWÞVCðRÞ
with u jRnW ¼ 0 and the relative class HDðW ; qWÞ is the linear subspace of

HðW ; qWÞ consisting of u A HðW ; qWÞ with finite Dirichlet integral Dðu;RÞ ¼
Dðu;WÞ. Then the mutual Dirichlet integral Dðu; v;RÞ of u and v in

HDðW ; qWÞ taken over R (and in reality over W ) is given by

Dðu; v;RÞ :¼
ð
R

du5�dvð2Þ

and HDðW ; qWÞ forms a Hilbert space with the mutual Dirichlet integral

Dð�; �;WÞ as its inner product so that its norm is Dð�;RÞ1=2. The normal

derivative measure �du of u A HDðW ; qWÞ, if it exists, is a Radon measure

on the Royden harmonic boundary dR ¼ dRR of R (cf. e.g. [2], [12]) such that

Dðv; u;RÞ ¼
ð
dRR

v � duð3Þ
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for every v A HDðW ; qWÞ (cf. e.g. [5]). A variational 2-capacity, or simply a

capacity, capðKÞ of a compact subset KH dRR with respect to an end W of R

is, by definition,

capðKÞ :¼ inf Dð f ;RÞ;ð4Þ

where the infimum is taken with respect to Dirichlet finite continuous functions

f on R belonging to the local Sobolev space W
1;2
loc ðRÞ such that f jKf 1 and

f jRnW e 0. Recall that a property is said to hold quasieverywhere (abbre-

viated as q.e.) on dRR if it holds on dRR except for a subset of dRR whose

every compact subset is of capacity zero. The capacitary function cK of K is

the unique extremal function for the variation (4). We obtained the following

characterization of the capacitary function cK in [9].

Theorem A. A function h on R is identical with the capacitary function

cK on R if and only if h satisfies the following four conditions: first of all,

h A HDðW ; qWÞ; second, the normal derivative measure �dh of h exists on dRR

and �dhf 0 on dRR; third, �dh ¼ 0 on dRRnK; and, fourth and lastly, h ¼ 1 q.e.

on K .

It is stated in [9] that there are many expected applications of this result, and

actually one such was given there. The purpose of this paper is to exhibit

another one of these applications by giving a simple and elementary proof

based essentially upon the above characterization of capacitary functions to the

following recent interesting result obtained by Masaoka [6]:

Theorem B. If the harmonic Hardy space HMpðRÞ of exponent p in

ð1; 2ÞU ð2;þyÞ on R coincides with the space HDðRÞ, then the linear dimension

of HMpðRÞ, denoted by dim HMpðRÞ, is finite: dim HMpðRÞ < y.

Here the harmonic Hardy space HMpðRÞ of the exponent p A ð1;þyÞ is

the class of functions u A HðRÞ such that the subharmonic function jujp is

dominated by a harmonic function on R. It is remarkable that the above

result is invalid for p ¼ 2 (cf. [7]). At least if we stand on the view point of

the inverse inclusion problem in the classification theory of Riemann surfaces,

then the above result for the case p A ð1; 2Þ is really meaningful by virtue of the

basic inclusion relation (cf. e.g. [10])

HM2ðRÞIHDðRÞð5Þ

but any possible proof for this case is more or less almost trivial. Regardless

what the intent of the above result for the case p A ð2;þyÞ is, it seems likely

that no proof of this part can be too easy. The original proof of Masaoka, the

author of [6], itself is no exception: it heavily relies upon the Doob charac-

terization ([3]) for a function u A HðRÞ to belong to HDðRÞ in terms of fine
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boundary values of u on the Martin boundary, which is highly deep and tough

and actually requires exquisitely elaborate cares to apply. On the contrary,

our proof for the case 2 < p < y using capacitary functions is quite simple,

elementary, and relatively easy. For completeness we will also append a

proof, though almost trivial, for the case 1 < p < 2. We add one more remark

here. If R is parabolic, i.e. R A OG (the class of Riemann surfaces carrying no

Green function), then both of HMpðRÞ ð1 < p < þyÞ and HDðRÞ are reduced

to the real number field R. Thus to avoid the trivial situation we may assume

that R is hyperbolic, i.e. R B OG, hereafter in this paper.

2. Proof

Theorem B will be proven for the case p A ð2;þyÞ first and then, just

for the sake of completeness, for the case p A ð1; 2Þ as a supplement. Before

starting the proof, we make a preparatory consideration valid for any

p A ð1;þyÞ. Hereafter throughout this paper we always assume that

HMpðRÞ ¼ HDðRÞð6Þ

for some p A ð1;þyÞ. We need to consider two more subspaces of HðRÞ: the
linear subspace HBðRÞ consisting of bounded harmonic functions on R and

the subspace HBDðRÞ :¼ HBðRÞVHDðRÞ. As a direct consequence of (6), we

have HDðRÞ ¼ HMpðRÞIHBðRÞ so that

HBðRÞ ¼ HBDðRÞ;ð7Þ

i.e. every bounded harmonic function on R is automatically of finite Dirichlet

integral over R. Let dW ¼ dWR (dR ¼ dRR, resp.) be the Wiener (Royden, resp.)

harmonic boundary of R (cf. e.g. [2], [12]). In general, HBðRÞ j dW ¼ CðdWÞ
but HBDðRÞ j dR is only uniformly dense in CðdRÞ. In view of (7), how-

ever, HBDðRÞ j dR is uniformly closed in CðdRÞ so that HBDðRÞ j dR ¼ CðdRÞ.
Therefore CðdWÞ ¼ CðdRÞ as Banach lattices and a fortiori

d :¼ dW 1 dRð8Þ

(cf. e.g. [13]). Since d, as dW, is a Stonean space, the family of open subsets

of d contains the base consisting of clopen (i.e. closed and open) subsets of d.

We fix an end W of R B OG. As we considered the relative class

HðW ; qWÞ corresponding to the original class HðRÞ, we also consider the

relative classes HX ðW ; qWÞ :¼ HX ðWÞVHðW ; qWÞ corresponding to original

classes HX ðRÞ for X ¼ Mp, D, B, and BD. It is easy to see that there is the

bijective mapping T of HðRÞ onto HðW ; qWÞ such that jTu� uj is dominated

by a potential pu on R for every u A HðRÞ (cf. e.g. [11]); moreover, T gives
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a vector space isomorphism between HðRÞ and HðW ; qWÞ; T preserves the

order, i.e. Tuf 0 if and only if uf 0 for u A HðRÞ; T preserves each of the

properties X ¼ Mp, D, B, BD, i.e.

TðHX ðRÞÞ ¼ HX ðW ; qWÞ ðX ¼ Mp;D;B;BDÞ:ð9Þ

Hence assuming (6) is equivalent to assuming that

HMpðW ; qWÞ ¼ HDðW ; qWÞ:ð10Þ

Then Theorem B is equivalent to that if (10) is valid for some p A ð1; 2ÞU
ð2;yÞ, then dim HMpðW ; qWÞ < y. We will prove Theorem B in this latter

form.

Let o ¼ oo be the harmonic measure on d relative to W with a reference

point o A W , i.e. o is the unique Borel measure on d such that

HW
j ðoÞ ¼

ð
d

j doð11Þ

for every j A CðdÞ, where HW
j is the usual PWB solution on W to the Dirichlet

problem on W with boundary data 0 on qW and j on d. Then HMpðW ; qWÞ
forms a Banach space equipped with the norm k�;Wkp given by

ku;Wkp :¼
ð
d

jujpdo
� �1=p

ð12Þ

for every u A HMpðW ; qWÞ. Hence we have

HMpðW ; qWÞ j d ¼ Lpðd;oÞ:ð13Þ

Similarly, HDðW ; qWÞ forms a Hilbert space equipped with the inner product

Dð�; �;WÞ so that its norm is Dð�;WÞ1=2. Observe that S :¼ HMpðW ; qWÞ1
HDðW ; qWÞ forms a Banach space under the norm k�;Wkp þDð�;WÞ1=2 since

the convergence of any sequence in S in k�;Wkp (Dð�;WÞ1=2, resp.) implies

its local uniform convergence. The identity mapping of S onto HMpðW ; qWÞ
(HDðW ; qWÞ, resp.) is clearly continuous and thus the Banach interior map-

ping principle (cf. e.g. [4], [13]) assures that S and HMpðW ; qWÞ (HDðW ; qWÞ,
resp.) are bicontinuously linear isomorphic as Banach spaces. Hence the

Banach spaces ðHMpðW ; qWÞ; k�;WkpÞ and ðHDðW ; qWÞ;Dð�;WÞ1=2Þ are

bicontinuously linear isomorphic by the identity mapping so that there exists

a constant C ¼ Cp A ½1;þyÞ such that

C�1ku;Wkp eDðu;WÞ1=2 eCku;Wkpð14Þ

for every u A HMpðW ; qWÞ1HDðW ; qWÞ. We are now ready to proceed to

the proof of Theorem B mainly for the case p A ð2;þyÞ.
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2.1. Proof for the case 2 < p < y

The standing assumption throughout this part of the proof is (10):

HMpðW ; qWÞ ¼ HDðW ; qWÞ:

We are to show that dim HMpðW ; qWÞ < þy, or, since we have (13):

HMpðW ; qWÞ j d ¼ Lpðd;oÞ;

we have to show that dim Lpðd;oÞ < y. Recall that d is a Stonean compact

Hausdor¤ space, o is a regular Borel measure on d with 0 < oðdÞ < 1, and

oðUÞ > 0 for any nonempty open subset U of d. Because of these, we see in

general that dim Lpðd;oÞ ¼ad (the number of points in d) under the con-

vention that dim � and a� are either a finite number in N (the set of positive

integers) or þy without distinguishing among infinite cardinalities. Thus

we are to show that ad < þy. We prove this by contradiction. Thus we

assume contrariwise that ad ¼ þy. Then we can maintain that there exists

at least one accumulation point in d. Otherwise every point of d is isolated

in d. Then a single point set fdg is a clopen neighborhood of each point d A d

in d and 6
d A dfdg is an open covering of the compact set d so that there exists

a finite subset fd1; d2; . . . ; dng such that 6
1eien

fdig ¼ d or d ¼ fd1; d2; . . . ; dng,
contradicting our, though erroneous, assumption ad ¼ þy. Hence there is

an accumulation point d in d. Since d is a clopen neighborhood of d,

we can find a point d1 A d and a clopen neighborhood N1 H d of d1 such

that d A dnN1. Since dnN1 is a clopen neighborhood of d, we can find a

point d2 A dnN1 and a clopen neighborhood N2 H dnN1 of d2 such that

d A dnðN1 UN2Þ. Since dnðN1 UN2Þ is a clopen neighborhood of d, we can

find a point d3 A dnðN1 UN2Þ and a clopen neighborhood N3 H dnðN1 UN2Þ
of d3 such that d A dnðN1 UN2 UN3Þ. Repeating this procedure we can choose

an infinite sequence ðdiÞi AN of mutually distinct points di A d ði A NÞ and a

sequence ðNiÞi AN of mutually disjoint clopen neighborhoods Ni of di ði A NÞ
in d. Then the relation

X
i AN

oðfdigÞ ¼ oðfdi : i A NgÞeoðdÞ < 1

implies that oðfdigÞ ! 0 ði ! yÞ. Choose a sequence ðUiÞi AN of mutually

disjoint clopen neighborhood Ui of di in d such that Ui HNi and 0 <

oðUiÞe 2oðfdigÞ þ 1=i for each i A N. Finally by choosing a suitable sub-

sequence ðVnÞn AN of ðUiÞi AN we can assume that

oðVnþ1Þ
oðVnÞ

� �1=p
< en ðn A NÞ;ð15Þ
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where e is an arbitrarily chosen but then fixed in ð0; 1=2Þ. Note that each Vn

is clopen in d (n A N) and Vn VVm ¼ q ðn0mÞ.
Let en be the harmonic measure function of the clopen subset Vn H d on

W so that en A HBðW ; qWÞ (HHMpðW ; qWÞ ¼ HDðW ; qWÞ) with the bound-

ary condition en j qW ¼ 0, en jVn ¼ 1, and en j dnVn ¼ 0 for each n A N. As

an auxiliary function to en, we consider the capacitary function cn :¼ cVn
of

the compact (and clopen in reality) subset Vn of d so that cn A HBDðW ; qWÞ
(HHMpðW ; qWÞ ¼ HDðW ; qWÞ) with the boundary condition cn j qW ¼ 0,

cn jVn ¼ 1, �dcn j df 0, and �dcn j dnVn ¼ 0 for each n A N. Here, originally

cn ¼ 1 not necessarily on the whole Vn but only on Vn except for a subset of

capacity zero. As a consequence of (7) the vanishingness of capacities and

harmonic measures for subsets of d are identical (cf. [8]). This with the fact

that Vn is not merely compact but also open (i.e. clopen) assures that cn 1 1

on Vn. Observe that Dðcn;WÞ ¼ capðVnÞeDðen;WÞ by the definition of

capðVnÞ and thus by (14) we have

C�1kcn;Wkp eDðcn;WÞ1=2 eDðen;WÞ1=2 eCken;Wkpð16Þ

for every n A N. In view of the fact that 0e cn e 1 on qW UW U d and cn ¼ 1

on Vn, we have

kcn;Wkp ¼
ð
d

jcnjpdo
� �1=p

f

ð
Vn

do

� �1=p
¼ oðVnÞ1=p:

Similarly, but more trivially, we have

ken;Wkp ¼
ð
d

jenjpdo
� �1=p

¼
ð
Vn

do

� �1=p
¼ oðVnÞ1=p:

Incorporating the above two displayed relations with (16) we deduce that

C�2oðVnÞ2=p eDðcn;WÞeDðen;WÞeC2oðVnÞ2=p ðn A NÞ:ð17Þ

We fix a sequence ðanÞn AN of strictly positive numbers an given by

a2noðVnÞ2=p ¼
1

n
ðn A NÞ:ð18Þ

Using this sequence ðanÞn AN and the sequence ðenÞn AN of harmonic measure

functions en, we consider the main sequence ðunÞn AN of functions un on

qW UW U d defined by

un :¼
X

1eien

aiei ðn A NÞð19Þ
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on qW UW U d belonging to HBDðW ; qWÞ, and similarly by using the sequence

ðanÞn AN again and the sequence ðcnÞn AN of capacitary functions cn, we also

consider the auxiliary sequence ðvnÞn AN to the main sequence ðunÞn AN given

by

vn :¼
X

1eien

aici ðn A NÞð20Þ

also on qW UW U d belonging to HBDðW ; qWÞ.
We will evaluate kun;Wkp and Dðun;WÞ1=2 for every n A N. We work on

the former first. Since junjp ¼ 0 on dn6
1eien

Vi and junjp ¼ jaieijp ¼ a
p
i ei ¼ a

p
i

on each Vi ð1e ie nÞ, we see that

kun;Wkp
p ¼

ð
d

junjpdo ¼
ð
61eienVi

junjpdo ¼
X

1eien

ð
Vi

a
p
i do ¼

X
1eien

a
p
i oðViÞ:

In view of (18), a
p
i oðViÞ ¼ 1=i p=2 ð1e ie nÞ and thus

kun;Wkp
p ¼

X
1eien

1

i p=2
e
X
i AN

1

i p=2
¼: K < þy

because p=2 > 1. Hence we see that

kun;Wkp eK 1=p < þy ðn A NÞ:ð21Þ

As the core of the present proof, the essential task is the estimation of

the Dirichlet norm Dðun;WÞ1=2 for every n A N and for the purpose the

auxiliary functions vn ðn A NÞ will play a decisive role. To save the notations

we write Dð�Þ and Dð�; �Þ for the Dirichlet integral Dð�;WÞ and the mutual

Dirichlet integral Dð�; �;WÞ omitting the integrating domain W . We observe

the inequalities

DðunÞ þDðvnÞ � 2Dðun; vnÞf 0 ðn A NÞð22Þ

since the lefthand side of the above is Dðun � vnÞf 0. We next compute

Dðun; vnÞ and DðvnÞ. First we have

Dðun; vnÞ ¼ D
X

1eien

aiei;
X

1e jen

ajcj

 !
¼
X

1eien

a2i Dðei; ciÞ þ 2
X1;...;n
i< j

aiajDðei; cjÞ:

Since ei � dci ¼ �dci ¼ ci � dci on d, we see that

Dðei; ciÞ ¼
ð
d

ei � dci ¼
ð
d

ci � dci ¼ DðciÞ ð1e ie nÞ:
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Similarly as above we have ei � dcj ¼ 0 on d for i0 j and thus

Dðei; cjÞ ¼
ð
d

ei � dcj ¼ 0 ð1e i < je nÞ:

By the above three displayed relations, we obtain

Dðun; vnÞ ¼
X

1eien

a2i DðciÞ ðn A NÞ:ð23Þ

We turn to the computation of DðvnÞ ðn A NÞ. As before, viewing

DðvnÞ ¼ D
X

1eien

aici;
X

1e jen

ajcj

 !
;

we deduce that

DðvnÞ ¼
X

1eien

a2i DðciÞ þ 2
X1;...;n
i< j

aiajDðci; cjÞ:ð24Þ

Since 0e ci e 1 and �dcj f 0 on d and further �dcj j dnVj ¼ 0 and cj jVj ¼ 1

(for this, cf. the introduction of cj in the second paragraph of the present

section 2.1), we have 0e ci � dcj e �dcj ¼ cj � dcj on d and therefore

Dðci; cjÞ ¼
ð
d

ci � dcj e
ð
d

cj � dcj ¼ DðcjÞ ¼
DðcjÞ
DðciÞ

� �1=2
� ðDðciÞDðcjÞÞ1=2;

i.e. we have obtained that

Dðci; cjÞe
DðcjÞ
DðciÞ

� �1=2
� ðDðciÞDðcjÞÞ1=2 ð1e i < je nÞ:ð25Þ

By (17), C�1oðVkÞ1=p eDðckÞ1=2 eCoðVkÞ1=p ðk ¼ i; jÞ and these imply

DðcjÞ
DðciÞ

� �1=2
eC 2 oðVjÞ

oðViÞ

� �1=p
¼ C2 oðViþ1Þ

oðViÞ
� oðViþ2Þ
oðViþ1Þ

� . . . � oðVjÞ
oðVj�1Þ

� �1=p

ð1e i < je nÞ. By the choice (15), we see that

DðcjÞ
DðciÞ

� �1=2
eC2e i � e iþ1 � . . . � e j�1 ¼ C2eð j�iÞðiþ j�1Þ=2

eC2e ið j�iÞ:

That is, we have obtained

DðcjÞ
DðciÞ

� �1=2
eC2e ið j�iÞ ð1e i < je nÞ:ð26Þ

230 Mitsuru Nakai



Again by (17) and (18), we see that

aiajðDðciÞDðcjÞÞ1=2 eCaioðViÞ1=p � CajoðVjÞ1=p ¼ C2ð1=ijÞ1=2 eC2

so that we have deduced that

aiajðDðciÞDðcjÞÞ1=2 eC 2 ð1e i < je nÞ:ð27Þ

Putting (25), (26), and (27) together, we conclude that

aiajDðci; cjÞeC4e ið j�iÞ ð1e i < je nÞ

and thus we see that

X1;...;n
i< j

aiajDðci; cjÞeC 4
X

1eien

X
iþ1e jen

e ið j�iÞ

 !

eC 4
X
i AN

X
k AN

e ik

 !
¼ C4

X
i AN

e i

1� e i

eC 4
X
i AN

e i

1� e
¼ C 4 e

ð1� eÞ2
e 2C4;

i.e. we get the estimate of the second term on the righthand side of (24):

2
X1;...;n
i< j

aiajDðci; cjÞe 4C4 ðn A NÞ:ð28Þ

Finally, concerning the estimate of the first term on the righthand side of (24),

or the righthand side term of (23), we examine a2i DðciÞ: by (17) and (18) we see

that

X
1eien

a2i DðciÞfC�2
X

1eien

a2i oðViÞ2=p ¼ C�2
X

1eien

1

i
fC�2ðgþ log nÞ;

where g is the Euler constant so that

X
1eien

a2i DðciÞfC�2ðgþ log nÞ ðn A NÞ:ð29Þ

Putting (23) and (24) to (22) we obtain

DðunÞ þ
X

1eien

a2i DðciÞ þ 2
X1;...;n
i< j

aiajDðci; cjÞ � 2
X

1eien

a2i DðciÞf 0
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so that

DðunÞf
X

1eien

a2i DðciÞ � 2
X1;...;n
i< j

aiajDðci; cjÞ:

Applying the estimates (28) and (29) to the righthand side of the above, we get

DðunÞfC�2ðgþ log nÞ � 4C 4 ðn A NÞ:ð30Þ

Putting (21) and the above (30) to the rightmost inequality of (14), we obtain

ðC�2ðgþ log nÞ � 4C4Þ1=2 eCK 1=p

for every n A N, which is clearly impossible and thus we are done. r

2.2. Proof for the case 1 < p < 2 (Supplementary)

Supposing HMpðW ; qWÞ ¼ HDðW ; qWÞ, we are to show that

dim HMpðW ; qWÞ < þy or equivalently dim Lpðd;oÞ < þy, which is equi-

valent to ad < þy. In view of

HDðW ; qWÞ ¼ HMpðW ; qWÞIHM2ðW ; qWÞIHDðW ; qWÞ;

we see that HMpðW ; qWÞ ¼ HM2ðW ; qWÞ so that

Lpðd;oÞ ¼ L2ðd;oÞ:ð31Þ

Contrary to the assertion, assume that ad ¼ þy and we are to derive a

contradiction. From ad ¼ þy it follows that there is a sequence ðVnÞn AN of

mutually disjoint clopen subset Vn of d such that

0 < oðVnÞ < n�ð4�pÞ=ð2�pÞ ðn A NÞ:ð32Þ

Let en be the harmonic measure function of Vn relative to W ðn A NÞ and

choose an A ð0;þyÞ such that

a2noðVnÞ ¼
1

n
ðn A NÞ:ð33Þ

Then consider

u :¼
X
n AN

anen:

Since, under the assumption (33), the requirement (32) is equivalent to the

inequalities that ap
noðVnÞ < 1=n2, we can o¤hand see that

u A Lpðd;oÞnL2ðd;oÞ;

contradicting (31). r
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