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Abstract. We give a proof of McShane’s identity in [5] based on the investigation on

the arrangement of axes of simple hyperbolic elements in a once punctured torus group

which are represented by palindromic words. Our argument includes a short proof of

the fact that the linear measure of the infinitesimal Birman-Series set is zero.

1. Introduction

Let T be a once punctured torus equipped with a finite area hyperbolic

metric. We denote by jgj the length of a closed geodesic g on T. G. McShane

proved in [5] the identity

X
g

arcsin
1

coshðjgj=2Þ

� �
¼ p

2
; ð1:1Þ

where the sum is taken over all simple closed geodesics passing through a fixed

pair of Weierstrass points. In this note we give an alternative proof of (1.1).

Let G be a once punctured torus group, that is, a group of hyperbolic motions

on the unit disk D with the factor surface T ¼ D=G. G is freely generated by

a pair of neighbors fa; bg (for definition, see Section 2.1). It acts also on the

boundary qD of D in the complex plane C. The axes of a and b meet at

a single point O of D. Let E be the closure in qD of the set of fixed points

of generators (simple and primitive hyperbolic elements) in G whose axes

pass through O. In [5] E is called the infinitesimal Birman-Series set, and a

component of qD� E a gap of E. Our proof follows the usual steps: show

that the left hand side of (1.1) is a quarter of the sum of angles subtended by

gaps with respect to O and deduce (1.1) from the fact that the linear measure

jEj of E is zero (see [2]). However our technique is based on theorems in [3]

and [4] which characterize generators whose axes pass through O in terms

of the words of symbols in G ¼ fa; a�1; b; b�1g. By this characterization we
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establish a correspondence between positively oriented pairs of neighbors whose

axes pass through O and the gaps of E. So the identity (4.2) we obtain first

is expressed in the language of Fuchsian groups and does not involve the

hyperbolic geometry in appearance. In Section 5 we show that (1.1) and (4.2)

are identical. Our argument includes an elementary proof of that jEj ¼ 0.

2. Once punctured torus group and pair of neighbors

2.1. We regard D as a model of the hyperbolic plane. For two distinct

points p and q of qD, Lðp; qÞ will denote the directed hyperbolic line with

initial point p and terminal point q.

The group HðDÞ of orientation-preserving motions on D is identified with

SUð1; 1Þ=fGIg. A hyperbolic element g of HðDÞ has two fixed points in qD,

the repelling fixed point pg and the attracting fixed point qg. The axis axðgÞ of
g is the directed line Lðpg; qgÞ.

The once punctured torus group G is a Fuchsian subgroup of HðDÞ. Let

g be a hyperbolic element of G. Then its axis axðgÞ projects to a closed

geodesic on T which will be denoted by gg. The element g is called simple if

gg is a simple curve and primitive if g ¼ hn for an h A G and an integer n, then

n ¼G1. A simple and primitive hyperbolic element in G is called a generator.

Two generators g and h in G are called neighbors if they correspond to a pair

of simple closed curves on T with intersection number 1 and the axes of g and

h intersect in D.

An ordered pair of neighbors fa; bg in G is said to be positively oriented

when the axis of b cuts the axis of a from the right to the left. For two pairs

of neighbors fa; bg and fa 0; b 0g, we write fa; bg@ fa 0; b 0g if there exists c A G

such that fa 0; b 0g ¼ c�1fa; bgc ¼ fc�1ac; c�1bcg. We write also a@ a 0 if a 0 is

conjugate to a in G. If fa; bg is a positively oriented pair of neighbors and

fa 0; b 0g@ fa; bg, then fa 0; b 0g is positively oriented, since each c A G is an

orientation-preserving homeomorphism of D.

We fix a pair of neighbors fa; bg. Each element of G is written as a

word of the symbols a, a�1, b and b�1. If W ¼ e1e2 . . . en, where ei A G ¼
fa; a�1; b; b�1g, then n is called the length of W and denoted by lðWÞ. For

each e A G we let neðWÞ denote the number of ei’s which equals e. Since G is

free on a and b, each g A G is represented by a unique reduced word Wg, the

shortest expression of g as a word.

2.2. Each simple closed curve on T is isotopic to a unique geodesic curve.

Hence we can identify the set of the conjugacy classes of generators in G

with the set of isotopy classes of oriented simple closed curves on T. Then a

characterization of generators by words in G ¼ fa; a�1; b; b�1g is
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Theorem 2.1 ([3], see also Theorem 5.1 in [1]). Up to permutations of G

which interchange a and b, a and a�1, or b and b�1 the word W representing a

generator g in G is up to cyclic permutations either a or of the form

an1ban2b . . . ankb

where fn1; n2; . . . ; nkgH fn; nþ 1g for some positive integer n.

In [3] the theorem concerns the free group F ða; bÞ of rank 2 and its statement

is true for any element g of F ða; bÞ which forms a basis with another element

h. It is important to note that for a generator, its reduced word has at most

two symbols in G .

2.3. We owe the following description to [1]. Let fa; bg be positively

oriented. We denote by Jfa;bg the subarc of qD between qa and qb which

does not contain pa. Then the fixed point p of aba�1b�1 lies in Jfa;bg. (To

see this, apply the proof of Proposition 33.23 in [9] by setting T�1 ¼ a and

U�1 ¼ b.) Likewise we see that a�1ðpÞ, a�1b�1ðpÞ and b�1ðpÞ are situated

in qD as in Figure 1. The four points p, a�1ðpÞ, a�1b�1ðpÞ and b�1ðpÞ divide

qD to four arcs. We label the arcs as follows: ½b� is the arc between p and

a�1ðpÞ, ½a�1� is the arc between a�1ðpÞ and a�1b�1ðpÞ, ½b�1� is the arc

between a�1b�1ðpÞ and b�1ðpÞ, and ½a� is the arc between b�1ðpÞ and p.

Let W ¼ e1 . . . ererþ1 be a reduced word of the symbols in G, then we define

½W � ¼ e1 . . . er½erþ1�.
Let W ¼ e1 . . . era be a reduced word. Since a sends ½b�1�U ½a�U ½b� into

½a� and a is orientation-preserving, the subarcs ½Wb�1�, ½Wa� and ½Wb� of ½W �
are arranged in anticlockwise order. We can say the same thing when ða; bÞ is

replaced by ðb�1; aÞ, ða�1; b�1Þ and ðb; a�1Þ. If W A G is a cyclically reduced

word and hyperbolic, then f½Wn�gyn¼1 is a decreasing sequence of arcs and the

attracting fixed point qW of W equals 7y
n¼1

½Wn�. This observation leads to

the following lemma.

Fig. 1
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Lemma 2.1. Let W1 and W2 be cyclically reduced words for hyperbolic

elements in G with distinct axes. Let m and n be positive integers such

that lðWm
1 Þb lðW2Þ and lðWn

2 Þb lðW1Þ. Let W m
1 ¼ e1e2 . . . ep and W n

2 ¼
f1 f2 . . . fq. Then qW1

precedes qW2
in anticlockwise order around qD starting

from p if and only if

( i ) ðe1; f1Þ equals ðb; a�1Þ, ðb; b�1Þ, ðb; aÞ, ða�1; b�1Þ, ða�1; aÞ or ðb�1; aÞ, or
(ii) There is an index number r such that ei ¼ fi for each i ¼ 1; 2; . . . ; r and

either

(a) er ¼ a and ðerþ1; frþ1Þ ¼ ða; bÞ, ðb�1; bÞ or ðb�1; aÞ, or
(b) er ¼ b�1 and ðerþ1; frþ1Þ ¼ ðb�1; aÞ, ða�1; aÞ or ða�1; b�1Þ, or
(c) er ¼ a�1 and ðerþ1; frþ1Þ ¼ ða�1; b�1Þ, ðb; b�1Þ or ðb; a�1Þ, or
(d) er ¼ b and ðerþ1; frþ1Þ ¼ ðb; a�1Þ, ða; a�1Þ or ða; bÞ.

We define two transformations on the set of pairs of neighbors:

o1fg; hg ¼ fg; hgg; o2fg; hg ¼ fgh; hg:

Note that gh is a generator, because ggh is isotopic to a Dehn twist of gg along

gh. For positive integers n we define also

snfg; hg ¼ fðghÞn�1
g; ðghÞngg; s�nfg; hg ¼ fðhgÞnh; ðhgÞn�1

hg:

These are pairs of neighbors, because

fg; hg �!o1 fg; hgg �!
o n�1

2 fgðhgÞn�1; hgg

�!o1 fgðhgÞn�1; hggðhgÞn�1g@ fðghÞn�1
g; ðghÞngg;

fg; hg �!o2 fgh; hg �!
o n�1

1 fgh; hðghÞn�1g

�!o2 fghhðghÞn�1; hðghÞn�1g@ fðhgÞnh; ðhgÞn�1
hg:

Since fa; bg is positively oriented, so are the pairs snfa; bg. This can be seen

from Lemma 2.1, but more easily from (5.1) below. Note that entries of all

snfa; bg are palindromes in the symbols a and b. Let G denote the semigroup

generated by fsn : n A Zg, where s0 is defined to be the identity.

2.4. For any positively oriented pair of neighbors fa; bg in a once-punctured

torus group, x ¼ jtr aj, y ¼ jtr bj and z ¼ jtr abj satisfy

x2 þ y2 þ z2 � xyz ¼ 0: ð2:1Þ

On the other hand, a triple of numbers ðx; y; zÞ satisfying x > 2, y > 2, z > 2

and (2.1) determines a unique conjugacy class of positively oriented pairs of

neighbors in once-punctured torus groups. Let A, B be matrices in SUð1; 1Þ
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such that x ¼ tr A and y ¼ tr B, z ¼ jtr ABj and ABA�1B�1 is parabolic. As-

sume that axðBÞ cuts axðAÞ from the right to the left. Then z ¼ tr AB and

tr ABA�1B�1 ¼ �2 (see [9, Lemma 33.21]). If we normalize A and B so that

ABA�1B�1 fixes 1 and that the axes of A and B meet at 0, then we have

uniquely

A ¼

x

2

xz� 2y� 2ix

2z

xz� 2yþ 2ix

2z

x

2

0
BB@

1
CCA; B ¼

y

2

yz� 2xþ 2iy

2z

yz� 2x� 2iy

2z

y

2

0
BB@

1
CCA:

ð2:2Þ
We have also

AB ¼

z� 2i

2

z

2

z

2

zþ 2i

2

0
BB@

1
CCA; BA ¼

zþ 2i

2

z

2

z

2

z� 2i

2

0
BB@

1
CCA: ð2:3Þ

3. Palindrome pair of neighbors

3.1. Let fa; bg be a pair of neighbors in G. Let O be the intersecting point

of the axes axðaÞ and axðbÞ. The axis axðgÞ of a hyperbolic element g of G

passes through O if and only if the reduced word Wg ¼ e1e2 . . . er for g of the

symbols in fa; a�1; b; b�1g is a palindrome, that is, ei ¼ erþ1�i, i ¼ 1; 2; . . . ; r.

To show this, we assume that O is the origin. A hyperbolic element A A
SUð1; 1Þ has its axis passing through O if and only if A� ¼ A, where

A� ¼ s q

r p

� �
for A ¼ p q

r s

� �
:

Therefore axðgÞ passes through O if and only if Wg ¼ e1e2 . . . er is a palin-

drome, because

ðe1e2 . . . erÞ� ¼ e�r . . . e
�
2e

�
1 ¼ er . . . e2e1:

This fact has interesting applications. See, for example, [4] and [6]. By The-

orem 2.1 we have

Lemma 3.1. Let W be the reduced word for a generator g with axis passing

through O. Then, after a suitable permutation of symbols, W ¼ a or

W ¼ an1ban2b . . . bankbankþ1

satisfying (i) ni ¼ nj if i þ j ¼ k þ 2, (ii) f2n1; n2; . . . ; nkg equals either f2n1g,
f2n1; 2n1 þ 1g or f2n1 � 1; 2n1g and (iii) naðWÞ ¼ n1 þ � � � þ nkþ1 > k ¼ nbðWÞ.
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3.2. Let p1 and p2 be distinct points of qD� fpg. We write p1 0 p2 if p1
precedes p2 in anticlockwise order around qD starting from p. Let q�n be

the attracting fixed point of ðbaÞn�1
b for n ¼ 1; 2; . . . , and qn the attracting

fixed point of ðabÞna for n ¼ 0; 1; . . . . Then by Lemma 2.1 qn 0 qnþ1 for all

integers n. See Figure 1, where an axis is labeled by the element of G which

keeps it invariant. Since qn A ½ðabÞn� and q�n A ½ðbaÞn�1� for all nb 2, we have

limn!y qn ¼ qab and limn!�y qn ¼ qba. We denote by Ifa;bg the arc on qD

between qab and qba which contains the fixed point p of aba�1b�1. We shall

call Ifa;bg the gap associated to the pair fa; bg. Its meaning is clarified by the

theorem below. If n0 0, then Jsnfa;bg is the interval in Jfa;bg between qn�1 and

qn. Thus

Jfa;bg ¼ Ifa;bg U 6
n00

Jsnfa;bg: ð3:1Þ

Two distinct intervals in the right hand side have disjoint interiors.

Theorem 3.1. In Ifa;bg there are no terminal points of axes of generators

which pass through O. Let jIfa;bgj denote the angle subtended by the arc Ifa;bg
with respect to the center O. Then

jIfa;bgj ¼ 2 arcsin
2

jtr abj

� �
: ð3:2Þ

Proof. Suppose that a generator g has its axis which passes through O

and the terminal point qg in Ifa;bg. Since G is discrete, qg cannot be p. If qg
lies between p and qab, then by Lemmas 2.1 and 3.1 the reduced word for g

has the form W ¼ an1ban2b . . . ban2ban1 , where n1 is a positive integer. Thus

WW is of the form ðabÞnaaW1 for some non-negative integer n and some word

W1. By Lemma 2.1, qW ¼ qWW 0 qab ¼ qðabÞ nþ1 . This is a contradiction.

We can prove in the same way that g cannot have an axis which passes through

O and ends between p and qba.

Now we prove the second statement of the theorem. If fa; bg is a

positively oriented pair of neighbors and if x ¼ tr a, y ¼ tr b (taken to be

positive) and z ¼ jtr abj, then fa; bg is simultaneously conjugate to fA;Bg,
where A and B are as in (2.2). Since the conjugation is done by a conformal

automorphism of the unit disk, we need only to consider the pair fA;Bg. The

attracting fixed points of the matrices in (2.3) satisfiy

ImðqABÞ ¼ � 2

z
; ImðqBAÞ ¼

2

z
: ð3:3Þ

Thus jIfA;Bgj ¼ 2 arcsinð2=zÞ ¼ 2 arcsinð2=tr ABÞ. Now we complete the proof.

r
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Recall that Jfa;bg is the subarc of qD between qa and qb which contains

Ifa;bg. Suppose that Jfa;bg is seen from O with the angle jJfa;bgj. For the

matrices A and B as above we have

qA ¼ xz� 2y� 2ix

z
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 4

p ; qB ¼ yz� 2xþ 2iy

z
ffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 � 4

p : ð3:4Þ

Now (3.3) and (3.4) together with the conformality of Möbius transformations

yield

jIfa;bgj
jJfa;bgj

bmin arcsin
2

z

� ��
arcsin

2x

z
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 4

p
� �

; arcsin
2

z

� ��
arcsin

2y

z
ffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 � 4

p
 !( )

:

Since the function arcsinðtÞ=arcsinðytÞ is decreasing for t A ð0; y�1Þ for each

y > 1, we obtain

jIfa;bgj
jJfa;bgj

bc ¼ min
2

p
arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jtr gj2 � 4

q
jtr gj

0
@

1
A : g is a hyperbolic element of G

8<
:

9=
;:

ð3:5Þ

Finally we remark that the ratio jIfa;bgj=jJfa;bgj tends to 1 as minftr a; tr bg ! y.

4. Sequences of palindrome pairs of neighbors

We fix a positively oriented pair of neighbors fa; bg. Let O denote the

intersecting point of the axes of a and b. Let Pða; bÞ be the G-orbit of fa; bg.
More precisely Pða; bÞ is the minimal set satisfying the following conditions:

( i ) fa; bg A Pða; bÞ
(ii) If fg; hg A Pða; bÞ then fðghÞn�1

g; ðghÞngg, fðhgÞnh; ðhgÞn�1
hg A Pða; bÞ for

any positive integer n.

Likewise we define Pðb; a�1Þ, Pða�1; b�1Þ and Pðb�1; aÞ by the G-orbits of

fb; a�1g, fa�1; b�1g and fb�1; ag, respectively. Let P ¼ Pða; bÞUPðb�1; aÞU
Pða�1; b�1ÞUPðb; a�1Þ. For each generator which belongs to a pair in P, the

corresponding word in G is a palindrome. Hence its axis passes through O.

Let G ¼ fa; a�1; b; b�1g.

Proposition 4.1. If the reduced word Wf in G for a generator f of G is a

palindrome, then f belongs to a pair in P.

Proof. We introduce an algorithm to find a pair fa 0; b 0g in P such that

na 0 ðW 0Þ þ nb 0 ðW 0Þ ¼ 1, where W 0 is the reduced word for f in fa 0; b 0g. Then

the last equation means either f ¼ a 0 or f ¼ b 0.

Since the arguments for the proof are similar for other cases, we treat

only the case where W ¼ Wf is a word in fa; bg and naðWÞ > nbðWÞ. So
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we assume that W is am1bam2b . . . bamkbamkþ1 with m1; . . . ;mkþ1 positive and

mi ¼ mj if i þ j ¼ k þ 2. We have naðWÞ ¼ m1 þ � � � þmkþ1, nbðWÞ ¼ k and

lðWÞ ¼ naðWÞ þ nbðWÞ. There are three cases.

Case 1: k ¼ 1 or fm2; . . . ;mkg ¼ f2m1g,
Case 2: kb 2 and f2m1;m2; . . . ;mkg ¼ f2m1; 2m1 þ 1g,
Case 3: kb 2 and f2m1;m2; . . . ;mkg ¼ f2m1 � 1; 2m1g.

For Cases 1 and 2, let a1 ¼ a and b1 ¼ am1bam1 . Then fa1; b1g ¼ sm1

1 fa; bg ¼
fa; am1bam1g A P. Case 1 means W ¼ ðam1bam1Þk. Since f is a generator,

k ¼ 1 and hence f ¼ b1. For Case 2, f has the form W1 ¼ bn1
1 a1b

n2
1 a1 . . .

a1b
nl
1 a1b

nlþ1

1 . Since

nb1ðW1Þ ¼ nbðWÞ; na1ðW1Þ ¼ naðWÞ � 2m1nbðWÞ; ð4:1Þ

we have lðW1Þ < lðWÞ. Next we consider Case 3. If m1 > 1, then let

fa1; b1g ¼ fa; am1�1bam1�1g ¼ sm1�1
1 fa; bg A P. Then fa1; b1g belongs to P

and f is written as

W1 ¼ an1
1 b1a

n2
1 b1 . . . b1a

nl
1 b1a

nlþ1

1 :

Here nk A f1; 2g, k ¼ 2; . . . ; l, and n1 ¼ nlþ1 ¼ 1. Since

na1ðW1Þ ¼ naðWÞ � 2ðm1 � 1ÞnbðWÞ; nb1ðW1Þ ¼ nbðWÞ;

we have lðW1Þ < lðWÞ. If m1 ¼ 1, then W is written as ðabÞn1aðabÞn2a . . .
ðabÞnl a with positive integers n1; . . . ; nl . Let n ¼ minfn1; . . . ; nlg. Since

fa; abg is a generating pair of G, Theorem 2.1 yields subcases.

Case 3-1: fn1; . . . ; nlg ¼ fng,
Case 3-2: fn1; . . . ; nlg ¼ fn; nþ 1g and n1 ¼ n,

Case 3-3: fn1; . . . ; nlg ¼ fn; nþ 1g and n1 ¼ nþ 1.

Let fa1; b1g ¼ fðabÞna; ðabÞnþ1
ag ¼ snþ1fa; bg A P. Case 3-1 means that W ¼

ððabÞnaÞ l . Since f is a generator, l ¼ 1 and W ¼ a1. We can write W as

W1 ¼ a
p1
1 b1a

p2
1 . . . aps

1 b1a
psþ1

1 for Case 3-2 and W1 ¼ b
p1
1 a1b

p2
1 . . . bps

1 a1b
psþ1

1 for

Case 3-3, with some positive integers p1; . . . ; psþ1. For Case 3-2, the word

W1 in the pair fa1; b1g ¼ fðabÞn1a; ðabÞn1þ1
ag satisfies

na1ðW1Þ ¼ ðn1 þ 1ÞnaðWÞ � ðn1 þ 2ÞnbðWÞ;

nb1ðW1Þ ¼ �n1naðWÞ þ ðn1 þ 1ÞnbðWÞ:

Thus we have lðW1Þ < lðWÞ. For Case 3-3, with the pair fa1; b1g ¼
fðabÞn1�1

a; ðabÞn1ag, we have the equations

na1ðW1Þ ¼ n1naðWÞ � ðn1 þ 1ÞnbðWÞ; nb1ðW1Þ ¼ �ðn1 � 1ÞnaðWÞ þ n1nbðWÞ

and hence lðW1Þ < lðWÞ. For all the cases above, if 1 < lðW1Þ < lðWÞ, we
repeat this step with fa; bg replaced by fa1; b1g. Then after finite steps we find
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a pair fa 0; b 0g in P such that lðW 0Þ ¼ 1, where W 0 is the reduced word for f in

fa 0; b 0g. r

Let P1 be the collection of fa; bg, fb�1; ag, fa�1; b�1g and fb; a�1g. We

define Pn, n ¼ 2; 3; . . . , inductively by the collection of all smfc; dg with

fc; dg A Pn�1 and m A Z� f0g. Thus, a pair fg; hg of P which belongs to

Pn has the form fðcdÞm�1
c; ðcdÞmcg or fðdcÞmd; ðdcÞm�1

dg for some fc; dg A
Pn�1 and for some positive integer m. By (3.1) applied to the pairs in P1, we

see that qD is divided into four gaps Ifa;bg, Ifb�1;ag, Ifa�1;b�1g, Ifb;a�1g and

infinitely many subarcs Jfg;hg, fg; hg A P2. Each Jfg;hg is in turn divided into

the gap Ifg;hg and subarcs Jsmfg;hg of P3 defined for all non-zero integers m.

By continuing this observation we see that qD is divided into the union of gaps

Ifg;hg with fg; hg A P and its complement E. Let us consider the sequence of

sets En ¼ qD�6n

k¼1
6fg;hg APk

Ifg;hg. We apply (3.5) to all fg; hg A P to have

jIfg;hgjb cjJfg;hgj. Let j � j denote also the angular measure on qD with respect

to O. Then jEnþ1ja ð1� cÞjEnj < ð1� cÞnjE1j for all n. Thus we obtain that

jEj ¼ 0, a result due to Birman and Series [2]. By Proposition 4.1, E is the

closure of the set of all fixed points of generators whose axes pass through O,

or the infinitesimal Birman-Series set in [5]. By using (3.2) we obtain

X
fg;hg AP

2 arcsin
2

jtr ghj

� �
¼ 2p: ð4:2Þ

Let PðaÞ ¼ Pða; bÞUPðb�1; aÞ. Since Ifg;hg and Ifg�1;h�1g are antipodal with

respect to O, fg; hg and fg�1; h�1g contribute the same angle to the sum.

Hence we obtain

X
fg;hg APðaÞ

arcsin
2

jtr ghj

� �
¼

X
fg;hg APðaÞ

arcsin
1

coshðjgghj=2Þ

 !
¼ p

2
; ð4:3Þ

where ggh is the simple closed geodesic which is the projection of the axis of gh.

5. Equivalence of the series constants

In this section we prove that the two identities (1.1) and (4.3) are identical

when the pair of Weierstrass points P2 and P3 is chosen as described below.

5.1. For materials in this paragraph, see [7]. Let Wg be the reduced word

for a generator g in G ¼ fa; a�1; b; b�1g. Then in the homology group

H1ðTÞ ¼ G=½G;G�, g is homologous to naðWgÞaþ nbðWgÞb, and naðWgÞ and

nbðWgÞ are coprime integers. For each pair of neighbors fg; hg, there exists

a homeomorphism j of T onto itself which sends ga and gb to gg and
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gh, respectively. Obviously fg; hg is positively oriented if and only if j is

orientation-preserving. Since both fa; bg and fg; hg give bases of H1ðTÞ,

det
naðWgÞ nbðWgÞ
naðWhÞ nbðWhÞ

� �
¼G1; ð5:1Þ

and the determinant above equals 1 if and only if fg; hg is positively oriented.

Let S denote the set of isotopy classes of unoriented simple closed curves

in T. We can identify S with the set of unoriented closed geodesics, because

each isotopy class has a unique geodesic representative g. If the axes of

two generators g and g 0 project to g, then g 0 is conjugate either to g or to g�1,

and hence nbðWgÞ=naðWgÞ ¼ nbðWg 0 Þ=naðWg 0 Þ. Thus nbðWgÞ=naðWgÞ depends

only on g. We write slopeðgÞ ¼ nbðWgÞ=naðWgÞ and define a mapping

slope : S ! Q̂Q ¼ QU
�
1
0

�
.

There exists a complex number t with ImðtÞ > 0 such that Ct ¼
C� ðZþ ZtÞ is a covering surface of T such that the lifts of a and b define

the transformations z 7! zþ 1 and z 7! zþ t, respectively, generating the group

of covering transformations ~GGGH1ðTÞ. We say that a straight line in C has

slope q=p if it is parallel to the line passing through 0 and pþ qt. Each pair

of coprime integers ðp; qÞ defines a simple closed curve c in T, which is the

projection of a line in Ct with slope q=p. Since the correspondence q=p 7! ½c�
is the inverse of slope,

Lemma 5.1. The mapping slope : S ! Q̂Q which sends gg to nbðWgÞ=naðWgÞ
is bijective.

By this lemma we identify S with fgq=p : p=q A Q̂Qg, where gq=p is the

geodesic curve with slopeðgq=pÞ ¼ q=p. Let ~PP1, ~PP2 and ~PP3 denote the ~GG-orbits

of the points 1
2 þ 1

2 t,
1
2 t and 1

2 , respectively, and let P1, P2 and P3 be their

projections in T. If the puncture is filled by a point P4, then P1, P2, P3 and

P4 are the Weierstrass points of the torus T ¼ TU fP4g. We divide S into

three subsets S12, S13 and S23 so that gq=p A Sjk if gq=p passes through Pj and

Pk, or equivalently there exists a line with slope q=p which meets points of
~PPj and ~PPk. Therefore, gq=p belongs to S12, S13 or S23 in accordance with

ðp; qÞ1 ð1; 0Þ, ð0; 1Þ or ð1; 1Þ mod 2.

The projection of O is P1, because it is the intersection of ga ¼ g0=1 and

gb ¼ g1=0. If fg; hg A PðaÞ, then the axes of g and h pass through O. Hence

gg and gh pass through P1. By (5.1) either gg or gh belongs to S12 and the

other belongs to S13. Then ggh belongs to S23. So we can define a mapping

F : PðaÞ ! S23 by the correspondence Fðfg; hgÞ ¼ ggh. For the rest of this

section we will show that F is bijective.
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Let f f ; gg be a pair in PðaÞ. Let Wf ¼ w1 . . .wm be the reduced word for

f and Wg ¼ wmþ1 . . .wn the one for g. Since fg is also a generator, by Lemma

3.1, either fw1; . . . ;wngH fa; bg or fw1; . . . ;wngH fb�1; ag. Thus their juxta-

position Wfg ¼ w1 . . .wmwmþ1 . . .wn is the reduced word for fg. Note that Wfg

is cyclically reduced too. Suppose that gf1g1 ¼ gf2g2 for two pairs f f1; g1g and

f f2; g2g in PðaÞ. Since f2g2 is conjugate either to f1g1 or ð f1g1Þ�1, Wf2g2 is a

cyclic permutation of Wf1g1 or W�1
f1g1

. This is possible only when exactly either

Pða; bÞ or Pðb�1; aÞ contains both f f1; g1g and f f2; g2g, and Wf2g2 is a cyclic

permutation of Wf1g1 . Since the proof for the other case can be modified

easily, we consider the case where f f1; g1g A Pða; bÞ. Let p1 ¼ naðWf1Þ, q1 ¼
nbðWf1Þ, r1 ¼ naðWg1Þ, s1 ¼ nbðWg1Þ, p2 ¼ naðWf2Þ, q2 ¼ nbðWf2Þ, r2 ¼ naðWg2Þ
and s2 ¼ nbðWg2Þ. We show that r1 ¼ r2 and s1 ¼ s2. If this is not the case,

we can assume without loss of generality that r1 b r2 and s1 > s2 if r1 ¼ r2.

Since Wf2g2 is a cyclic permutation of Wf1g1 , p1 þ r1 ¼ p2 þ r2 and q1 þ s1 ¼
q2 þ s2. Since f f1; g1g and f f2; g2g are positively oriented,

0 ¼ det
p1 þ r1 q1 þ s1

r1 s1

� �
� det

p1 þ r1 q1 þ s1

r2 s2

� �
¼ det

p1 þ r1 q1 þ s1

r1 � r2 s1 � s2

� �
:

Thus r1 � r2 > 0 and s1 � s2 > 0, and there exist coprime positive integers m

and n with

mðp1 þ r1; q1 þ s1Þ ¼ nðr1 � r2; s1 � s2Þ:

Since p1 þ r1 and q1 þ s1 are coprime too, n must be 1. But this contradicts

that p1 þ r1 > r1 � r2 or q1 þ s1 > s1 � s2. Thus r1 ¼ r2 and s1 ¼ s2 and hence

p1 ¼ p2 and q1 ¼ q2. By Lemma 5.1 f1 and f2 are conjugate and so are g1
and g2. Since they are simple and primitive, and their axes pass through O,

f1 ¼ f2 and g1 ¼ g2. We conclude that the map F is injective.

5.2. In what follows all rational numbers q=p are such that p and q are

coprime and p > 0. We identify Q̂Q with the set of vertices of the Farey

tessellation T of the upper half plane (see [7]): Two vertices q=p and s=r are

connected by an edge in T if and only if

det
p q

r s

� �
¼G1: ð5:2Þ

If q=p, q1=p1 and q2=p2 are vertices of a triangle in T and the edge connecting

q1=p1 and q2=p2 separates q=p from �q=p, then

q

p
¼ q1 þ q2

p1 þ p2
: ð5:3Þ

(If q=p ¼ �n=1 is a negative integer, let q1=p1 ¼ �1=0 and q2=p2 ¼ ð�nþ 1Þ=1.)
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Let gq=p A S23 and choose q1=p1 and p2=q2 as above. Then by (5.2) and

(5.3) either gq1=p1 or gq2=p2 belongs S12 and the other belongs to S13. The

identity (5.2) means that gq1=p1 and gq2=p2 meet at a single point, and this point

must be P1. Therefore gq1=p1 and gq2=p2 define a pair of neighbors f f ; hg such

that gf ¼ gq1=p1 , gh ¼ gq2=p2 and gfh ¼ gq=p and such that the axes of f and h

pass through O. Since gfh ¼ ghf , by interchanging f and h, if necessary, we

assume that f f ; hg is positively oriented. Moreover, by replacing f f ; hg by

f f �1; h�1g, if necessary, we assume that the reduced word for f has the

symbols in fa; bg or in fb�1; ag. We consider the case where the word is in

fa; bg. The other case follows simply by replacing fa; bg by fb�1; ag. By

Proposition 4.1 there are a generator g and s A G such that f f ; gg ¼ sfa; bg.
Since both f f ; gg and f f ; hg are positively oriented,

det
1 0

nf ðWhÞ ngðWhÞ

� �
¼ ngðWhÞ ¼ 1;

where Wh is the reduced word for h in f f ; f �1; g; g�1g. Since the axes of

f , g and h pass through O, Wh is a palindrome in f f G 1; gg. Therefore

h ¼ f ngf n for some integer n. If nb 0, then f f ; hg ¼ sn
1sfa; bg A PðaÞ and

gfh ¼ Fðf f ; hgÞ. So in order to show that F is surjective, what is left for us is

to prove

Lemma 5.2. Let f f ; gg A Pða; bÞ. If h ¼ f �ngf �n for a positive integer

n, then there exists a pair f f1; g1g A PðaÞ such that f1g1 is conjugate to fh or to

ð fhÞ�1
and hence Fðf f1; g1gÞ ¼ gfh.

Proof. Let f f ; gg ¼ sm1
sm2

. . . smp
fa; bg. Our proof is by induction on p.

If p ¼ 0, that is, if f f ; gg ¼ fa; bg, then f f ; hg ¼ fa; a�nba�ng. In this case

let f f1; g1g ¼ fan�1b�1an�1; ag ¼ sn�1
�1 fb�1; ag. Then we have f1g1 @ ð fhÞ�1.

If p > 0, let fc; dg ¼ sm2
. . . smp

fa; bg A Pða; bÞ. Then f f ; gg ¼ fðcdÞm�1
c;

ðcdÞmcg if m ¼ m1 > 0 and f f ; gg ¼ fðdcÞmd; ðdcÞm�1
dg if m ¼ �m1 > 0.

If n ¼ 1, then fh ¼ gf �1 ¼ cd if m1 > 0 and fh ¼ ðdcÞ�1 if m1 < 0. In

this case we can let f f1; g1g ¼ fc; dg. Now we assume that nb 2. If m ¼
m1 b 2, then let f f1; g1g ¼ sn�2

�1 sm�1fc; dg. So f1 ¼ ððcdÞm�1
cÞn�2ððcdÞm�2

cÞ �
ððcdÞm�1

cÞn�2 and g1 ¼ ðcdÞm�1
c. Since

h�1 ¼ ððcdÞm�1
cÞnððcdÞmcÞ�1ððcdÞm�1

cÞn

¼ ððcdÞm�1
cÞn�1ððcdÞm�2

cÞððcdÞm�1
cÞn�1;

we have f �1h�1 ¼ f1g1. If m1 ¼ 1, then f f ; gg ¼ fc; cdcg and f f ; hg ¼
fc; c�nþ1dc�nþ1g. In this case, we replace f f ; gg by fc; dg ¼ sm2

. . . smp
fa; bg.

Then f f ; hg ¼ f f ; f �nþ1gf �nþ1g. Since s is replaced by sm2
. . . smp

, by hy-
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pothesis of induction there is a pair f f1; g1g A PðaÞ with Ff f1; g1g ¼ gfh. If

m ¼ �m1 > 0, then let f f1; g1g ¼ sn�2
�1 s�ðmþ1Þfc; dg. So f1 ¼ ððdcÞmdÞn�2 �

ððdcÞmþ1
dÞððdcÞmdÞn�2 and g1 ¼ ðdcÞmd. Since

h�1 ¼ ððdcÞmdÞnððdcÞm�1
dÞ�1ððdcÞmdÞn ¼ ððdcÞmdÞn�1ððdcÞmþ1

dÞððdcÞmdÞn�1;

we have f �1h�1 ¼ f1g1. r

Now we complete the proof that F is bijective. Thus (4.3) and (1.1) are

identical.

6. McShane’s identity for torus with one hole

Let G be a Fuchsian group generated by a and b such that D=G is a

torus with one boundary curve. We assume that axðbÞ cuts axðaÞ from the

right to the left and that x ¼ tr a, y ¼ tr b are positive. Then z ¼ tr ab > 0

and t ¼ trðaba�1b�1Þ < �2, where t ¼ �xyzþ x2 þ y2 þ z2 � 2, and the con-

jugacy class of G is determined by the quadraple ðx; y; z; tÞ (see [9, 33.D]). It

has a representative generated by

A ¼

x

2

�2yþ xz� ix
ffiffiffiffiffiffiffiffiffiffi
2� t

p

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � t� 2

p

�2yþ xzþ ix
ffiffiffiffiffiffiffiffiffiffi
2� t

p

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � t� 2

p x

2

0
BBBB@

1
CCCCA;

B ¼

y

2

�2xþ yzþ iy
ffiffiffiffiffiffiffiffiffiffi
2� t

p

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � t� 2

p

�2xþ yz� iy
ffiffiffiffiffiffiffiffiffiffi
2� t

p

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � t� 2

p y

2

0
BBBB@

1
CCCCA:

Here A and B A SUð1; 1Þ are chosen so that the axes of A and B intersect at the

origin and that the real axis is perpendicular to the axis of ABA�1B�1. Let

p ¼ 1. A similar argument to the one in Section 3 shows that the subarc

IfA;Bg on qD between qAB and qBA which contains p is a gap for the group

generated by A and B. Let JfA;Bg denote the subarc between qA and qB which

contains p. Since

Im qA ¼ � x
ffiffiffiffiffiffiffiffiffiffi
2� t

pffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 4

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � t� 2

p ; Im qB ¼ y
ffiffiffiffiffiffiffiffiffiffi
2� t

pffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 � 4

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � t� 2

p

Im qAB ¼ �
ffiffiffiffiffiffiffiffiffiffi
2� t

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � t� 2

p ; Im qBA ¼
ffiffiffiffiffiffiffiffiffiffi
2� t

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � t� 2

p ;
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the ratio of the angle subtended by IfA;Bg and the one subtended by JfA;Bg
satisfies

jIfA;Bgj
jJfA;Bgj

bmin
arcsin

ffiffiffiffiffiffi
2�t

pffiffiffiffiffiffiffiffiffiffiffiffi
z2�t�2

p
� �

arcsin x
ffiffiffiffiffiffi
2�t

pffiffiffiffiffiffiffiffi
x2�4

p ffiffiffiffiffiffiffiffiffiffiffiffi
z2�t�2

p
� � ; arcsin

ffiffiffiffiffiffi
2�t

pffiffiffiffiffiffiffiffiffiffiffiffi
z2�t�2

p
� �

arcsin
y
ffiffiffiffiffiffi
2�t

pffiffiffiffiffiffiffiffi
y2�4

p ffiffiffiffiffiffiffiffiffiffiffiffi
z2�t�2

p

� �
8>><
>>:

9>>=
>>;:

As in Section 3 this yields jIfa;bgj > cjJfa;bgj for all positively oriented pairs of

neighbors fa; bg in G, where c is a constant defined as in (3.5), and we can

show that the linear measure of the infinitesimal Birman-Series set is 0 and

deduce a variation of (1.1) in [8, Corollary 1.10]

X
g

arcsin
coshðjdj=4Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sinh2ðjgj=2Þ þ cosh2ðjdj=4Þ
q

0
B@

1
CA¼ p

2
;

where d is the geodesic homotopic to the boundary curve and g runs over all

simple closed geodesics passing through the Weierstrass points other than the

intersection of ga and gb.
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