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ABSTRACT. We consider the abstract initial value problem for the system of evolution
equations which describe motion of incompressible viscous and heat-conductive fluids in
a bounded domain. It is difficulty of our problem that we do not neglect the viscous
dissipation function in contrast to the Boussinesq approximation. This problem has
uniquely a mild solution locally in time for general initial data, and globally in time for
small initial data. Moreover, a mild solution of this problem can be a strong or
classical solution under appropriate assumptions for initial data. We prove the above
properties by the theory of analytic semigroups on Banach spaces.

1. Introduction

Let neZ, n>2, Q be a bounded domain in R” with its C*!-boundary
02, 0 < T < 0. Motion of incompressible viscous and heat-conductive fluids
in Q is described by the system of n+ 2 equations as follows:

divu=0 in Qx (0,7),

p{0i+ w-Vu=pf(0) —Vp+udu in Qx (0,T), (L.1)

pe{0r+ (u-V)}10 = @(u) + x40 in Q x (0,7),
where u = (uy,...,u,) is the fluid velocity, p is the pressure, 0 is the absolute
temperature, p is the density, u is the coefficient of viscosity, x is the coefficient
of heat conductivity, ¢, is the specific heat at constant volume, f = (f1,..., /)

is the external force field affected by 0, @(u) is the viscous dissipation function
defined as

O(u) = O(u,u), @(u,v) =2uD(u) : D(v), D(u) == (Vu+ (Vu) T),

I
2
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(Vu)T is the transposed matrix of Vu. These equations correspond to the law
of conservation of mass, momentum and energy respectively. Moreover, it is
required that p, u, x and ¢, are positive constants. See, for example, [12],
[15] on conservation laws of fluid motion and the derivation of the above
equations.

It is well known in [2] that the Boussinesq approximation is a simplified
model of motion of incompressible viscous and heat-conductive fluids. There
is no doubt that many investigations on the Boussinesq approximation have
been carried out for one hundred years. The Rayleigh-Bénard convection can
be considered as a typical phenomenon valid for the Boussinesq approximation
in the case where the Rayleigh number Ra is slightly larger than the critical
Rayleigh number Ra.. It is an important physical property that formation of
the Rayleigh-Bénard convection is characterized as the Bénard cellular pattern.
On the other hand, the collapse of the Bénard cellular pattern will be caused by
the relative increase in Ra to Ra.. In the case where Ra is sufficiently larger
than Ra., the Boussinesq approximation does not seem appropriate due to its
neglect of the viscous dissipation function. It is quite natural to consider (1.1)
from the hydrodynamical point of view. Some problems related to (1.1) have
been studied in recent years. Kagei and Skowron [10] discussed the existence
and uniqueness of solutions of the initial-boundary value problem for motion
of micropolar fluids with heat conduction in R®. Moreover, Kagei [11] con-
sidered global attractors for the initial-boundary value problem for (1.1) in R?.
Lukaszewicz and Krzyzanowski [13] treated the initial-boundary value prob-
lem for (1.1) in R® with moving boundaries. However, initial data (uo, 0p)
in L2(2) x L1(2) (1 < p< w,1 <g< ) except for p=¢g =2 and classical
solutions of the initial-boundary value problem for (1.1) in anisotropic Holder
spaces are not considered in their results, where LZ(£2) is the closed subspace
of (L?(Q))" defined as in section 2. Tt is necessary to discuss the existence,
uniqueness and regularity of solutions of the initial-boundary value problem for
(1.1) with initial data (ug,0y) in L2(Q) x L4(Q).

In order to meet the above requirement, we study the initial-boundary
value problem for (1.1) with the following initial-boundary data:

ul,_og=1up inQ,
up=0 ond2x(0,T),
0o =00 inQ,
Ol =0, ondx(0,T),

(1.2)

where 0, is the surface temperature on 00 assumed to be a nonnegative
constant. When we treat initial data (ug, 0p) in L2(2) x L7(£), it is useful to
transform (1.1), (1.2) into the abstract initial value problem for the system of
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evolution equations in the same Banach space as above. It is explained in
section 2 that (1.1), (1.2) are rewritten as follows:

diu+ Apu = F(u,0) in (0,T),
di0+ B,0 = G(u,0) in (0,T),
u(O) = Uy,
0(0) = 0o,

0

where A4, and B, are sectorial operators in L2(2) and L9(Q) respectively,
F(u,0) and G(u,0) are nonlinear terms corresponding to (1.1), and (1.1),
respectively. It is well known in [8, Chapter 3], [14, Chapter 6] that we
can consider not only strong solutions but also mild solutions of (1.1),
(1.2).

We are concerned with the existence, uniqueness and regularity of mild
solutions of (1.1), (1.2) in this paper. This problem has uniquely a mild
solution locally in time for general initial data, and globally in time for small
initial data. Moreover, a mild solution of this problem can be a strong or
classical solution under appropriate assumptions for initial data. We prove
the above properties by the argument based on [3], [7], [9]. First, the existence
of local mild solutions is obtained from the successive approximation method.
Second, global a priori estimates for mild solutions of (1.1), (1.2) give the
existence of global mild solutions, and make the asymptotic behavior of global
mild solutions clear.

This paper is organized as follows: In section 2, we define basic notation
used in this paper and a strong and mild solution of (1.1), (1.2), and state
our main results and some lemmas for them. We prove the existence and
uniqueness of mild solutions of (1.1), (1.2) in section 3. The regularity of mild
solutions of (1.1), (1.2) is discussed in sections 4 and 5.

2. Preliminaries and main results

2.1. Function spaces. Function spaces and basic notation which we use
throughout this paper are introduced as follows: The norm in L"(Q)
(1<r< o) and the norm in W, (Q) (the Sobolev space, ke Z, k> 0)
are denoted by | - ||, and || - ||, respectively, W% (Q) = L"(Q), || - llo,, = Il - ll,-
Ci¢ () is the set of all functions which are infinitely differentiable and have
compact support in Q. Wok”(Q) is the completion of CF(Q) in W5 (Q).
Let us introduce solenoidal function spaces. C;°(R2):={ue (C;(2))"
divu=0}. LP(Q) (1 <p< o) is the completion of Ci° () in (L7(Q))".
It follows from [4, Theorem 2] that (L?())" is decomposed into (LP(RQ))" =
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L2 (Q) @ L2(Q), where L2(Q) := {Vp;pe W!'P(Q)}. Let P, be the projection
of (LP(Q))" onto LP(Q2). Ck7(Q) (0 <y <1) is the Holder space defined as
in [1, 1.26-1.29], CK%(Q) = CK(Q), C*(Q) = C(Q).

Let / be an interval in R, X be a Banach space. C(I;X) is the set of all
X-valued functions which are continuous in I. Cp(I;X) is the set of all X-
valued functions which are bounded continuous in 7. CK(I;X) (ke Z,k > 0)
is the set of all X-valued functions which are continuously differentiable up
to the order k in I, C°(I; X) = C(I;X). In the case where I is a bounded
closed interval in R, C%7(I;X) (0 <y <1) is the set of all X-valued func-
tions which are uniformly Hélder continuous with the exponent y on 7. If 1
is not bounded or closed, ue C%7(I;X) means that ue C%’(I;; X) for any
bounded closed interval I; contained in I. CK7(I;X) is the set of all
X-valued functions u which ue C¥(I;X) and d*ue C%'(I;X), C*%(I;X) =
CH(I; X).

Cp(R;R") is the set of all R"-valued functions which are bounded con-
tinuous in R.  CK(R;R") (ke Z,k > 0) is the set of all R"-valued functions
which are continuously differentiable up to the order k¥ in R, C°(R;R") =
C(R;R"). C%!(R;R") is the set of all R"-valued functions which are uni-
formly Lipschitz continuous in R.

2.2. Stokes and Laplace operator. For the sake of simplicity, we assume that
p=1u=1 k=1, ¢, =1 and 6; = 0 throughout this paper. Let us introduce
two linear operators 4, (1 < p < c0) and B, (1 < g < o) which appeared in
(I). B, is the Laplace operator in L7(2) with the zero Dirichlet boundary
condition defined as B, = —4, D(B,) = W>4(Q)N Wol"’(Q), where D(B,) is
the domain of B,. We introduce the Stokes operator 4, in L2(Q2) by A, =
—P,4, D(4,) = (D(B,))"NLL(RQ). It is well known in [14, Theorems 2.5.2
and 7.3.6], [5, Theorem 1] that B, and A, are sectorial operators in L?(£2) and
L2(Q) respectively. Therefore, —B, generates a uniformly bounded analytic
semigroup {e B¢}, on L4(Q), fractional powers Bf of B, can be defined for
any f >0, B) =1, where I, is the identity operator in L9(%). Similarly to
By, a uniformly bounded analytic semigroup {e "%}, on L2(£2) is generated,
fractional powers A; of A, are defined for any o« > 0. Moreover, it follows
from [6, Theorem 3] that D(A4) is characterized as D(4;) = (D(B;))" N L2(R2)
for any 0 <a<1. Let us introduce Banach spaces derived from A; and
BY. X7 (Y)) is defined as D(A)) (D(Bf)) with the norm ||- ez = 1145 - 1I,
(| - ”Yf = HBg “[l,)- A1 is the first eigenvalue of the Laplace operator with the

zero Dirichlet boundary condition.

We state some lemmas concerning sectorial operators in Banach spaces.
See, for example, [8, Chapter 1], [14, Chapter 2] on the theory of analytic
semigroups on Banach spaces and fractional powers of sectorial operators.
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LemMma 2.1 (8, Theorem 1.4.3). Let 1 <p< oo, 1 <g< 0, a>0, >0,
0< A< Ay Then

[Aze™ ull, < Cay it e Jull,, (2.1)
|BEe"50)|, < Cp, g2t Pe |0, (2.2)

for any ue LL(Q), 0 € L1(Q), where Cy,,; and Cg, g ; are positive constants.

LemMmA 2.2 (8, Theorem 1.4.3). Let l<p< oo, 1 <g<oo, 0<a<l,
0<p<l Then

(™ = L)ull, < Capoat™ [l s, (2.3)
I(e™ % = 1,)0ll, < Cp, 52”10l (2.4)

for any ue X 0e Yqﬁ, where Cy, , and Cp, g are positive constants.

Lemma 2.3 (8, Exercise 1.4.10). Let 1< p<oo, I<g<oo, 0<a<l,
0<p<l Then

le™4rul

e 0

xr = o(t™) as t — 40, (2.5)

lyp = o(t™?) as 1t — +0 (2.6)
Sfor any ue L(Q), 0 € L1(Q).

LemmA 2.4 (8, Theorem 1.6.1). Let 1< p< oo, 1<g<oo, 0<a<],
0<p<1 Then

1 20—k 1 1
+ kraay™ if = — <-<- .
X? — (Wh(Q)) 1fp Sy (2.7)
v/— whr@) if 1 2=k _1_1 (2.8)
q n r q

where — is the continuous inclusion.

2.3. Abstract initial value problem for (1.1), (1.2). Let 0< T < o0,
l<p<oo, 1<g<ow, 0<u<1, 0SB, <1, upeXy, Oe Yqﬂ”. Then
we apply P, to (1.1),, and get the following abstract initial value problem
for the system of n+ 1 evolution equations:

du+ Apu = F(u,0) in (0, T],

d0 + B,0 = G(u,0) in (0,77, 0
M(O) = Uy,

6(0) = 6o,
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where
F(u,0) :=—P,(u-V)u+ P,f(0),
Gu,0) :=—(u-V)0+ d(u).
In order to deal with (I), first of all, we shall find a solution (u, §) satisfying the
following abstract integral equations related to (I):

t
u(t) = e “ruy + J e*(H')A"F(u7 0)(s)ds,
; (In)

t
(1) = eB0y + J e IBG(u, 0)(s)ds
0

forany 0 <7< T. Let us introduce a strong and mild solution of (1.1), (1.2)
defined on [0, 7]. A strong and mild solution of (1.1), (1.2) defined on [0, o0)
is similarly defined.

DeriNITION 2.1, (u,6) is called a strong solution of (1.1), (1.2) if it
satisfies

ue C([0, T X) N C((0, T X)), due C((0,T); L2(2)),
0eC(0,T); Y)nC((0,T);Y,)),  dbeC((0,T];L)Q))
and (I).
DEerNITION 2.2, (u,6) is called a mild solution of (1.1), (1.2) if it satisfies
ue C([0, T]; X,°),
0eC([0,T); Y/)
and (II).

2.4. Main results. We will state our main results in this subsection. It is
sufficient for our main results to be assumed that p, ¢, oy and f, satisfy

I 1 1

n 1 1 2
1= 1 —_———< - ———< - 2.
max{ ,3}<p<oo, < g < o0, " 2q<n’ . p<n’ (2.9)
max Oi—l <a <1 0<p, <1
72p 1= 0 ) = M0 )
(2.10)

Po n(l 1 n{l 1
——=—=(===]=0 -1 —fo—=(——-) <1
%o 7 2 » Zq =Y, < % ﬁO 2 P q =
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and f e C%!(R;R") with the Lipschitz constant Ly, f(0) =0. The first pur-
pose of this paper is to study the existence and uniqueness of mild solutions
of (1.1), (1.2). We shall prove the following theorems:

THEOREM 2.1. Let 0< T < o0, p, q, o and B, satisfy (2.9), (2.10),
up € X0, 6o € Yqﬁ“, /e COY(R;R") with the Lipschitz constant Ly, f(0)=0.
Then there exists a positive constant T, < T depending only on n, Q, p, q, oo,
Po. wo, G0, Ly and T such that (1.1), (1.2) has uniquely a mild solution (u,0) on
[0, T.] satisfying the following continuity properties and estimates:

(1) For any op<a<l1, fo<p<l1,0<t<T,,

ue C(0, T.); X)),

ho e C(0,T.]; Y)),
lu(@)llxz < o™l 20 + [160]l ). (2.11)
100}l yp < CP P (lluo o + 11001l y0), (2.12)

where C is a positive constant independent of u, 0 and t.
(i) For any ap<a <1, fy<p <1,

[u(@lly; = o(@™)  as 1 — 40, (2.13)
10(2)||yo = o(tP™F) as t — +0. (2.14)

THEOREM 2.2. Let p, q, o9 and 5 satisfy (2.9), (2.10), ug € X0, 0o € Yqﬁ“,
/€ COY(R;R") with the Lipschitz constant Ly, f(0)=0. Then there exists
a positive constant & depending only on n, Q, p, q, a, By, Ly and A for any
0 < A< Ay such that (1.1), (1.2) has uniquely a mild solution (u,0) on [0, o)
satisfying the following continuity properties and estimates:

1My e Cy([0, 00); X, ),

tF=Poe?0 e Cy([0, 0); Y”)
()l < Cr~*e ™ (luolly 0 + 1901l 50, (2.15)
10(D)]lyp < CPoPe™* (Jfuol 0 + 1001l .50) (2.16)

Jorany ap <a <1, fo <p <1, t>0, where C is a positive constant independent
of u, 0 and t provided that

[uoll o + 1160l 50 < e

The second purpose of this paper is to discuss the regularity of mild
solutions of (1.1), (1.2). As for the regularity of (du,d,0), it will be required
that p, ¢, o9 and f, satisty
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1 1 n
>nl-—— > — - .
oco_n(p 2q>, Bo = 2 (2.17)

20(0 —ﬁo >

n
— 2.18
5 (2.18)
We shall prove the following theorems:

THEOREM 2.3. If @ mild solution (u,0) of (1.1), (1.2) in Theorem 2.1 is
defined on [0, T|, then (u,0) is a strong solution of (1.1), (1.2) on [0, T] satisfying
the following continuity properties and estimates:

(i) For some 0 <a <1, 0<f <1,

ue CO%(0,T]; X)),  due C**((0,T]; LL(Q)),
0 CoP((0, T Y)).,  dbe COF((0,T];LY(Q)),
and for any 0 <t < T,
()l xy < €7 (fluoll 20 + 1901l o) (2.19)
10)Ilyy < CP~ ! (fluoll o + 1901l .10, (2.20)

where C is a positive constant independent of u, 0 and t.
(ii) For any 0<a<l,0<f<],0<a<,0<p<],0<a<]—o,
0<p<1—p,

ue CO’&«O, T]?/Ypl)a diu € CO’&((Ov T];Xp%)’
0e Co’ﬁ((o, T);Y,)), dbe COP((0,TY; Yqﬁ)

provided that p, q, oy and f, satisfy (2.17).
(iii) Forany 0<oa<1,0<p<1,0<t<T,

lda@lx; < € gl + M0oll ) (221)
1400 yp < AP (ol + 1600l 0),  (222)

where C is a positive constant independent of u, 6 and t provided that
D, ¢, % and P, satisfy (2.17), (2.18).

THEOREM 2.4. Let (u,0) be a mild solution of (1.1), (1.2) on [0,00)
satisfying continuity properties and estimates (2.15), (2.16) in Theorem 2.2.
Then (u,0) is a strong solution of (1.1), (1.2) on [0, c0) satisfying the following
continuity properties and estimates.

(i) For some 0 <a <1, 0<f<1,

we C¥%((0,00): X)), due C**((0, 0); LL(Q)),

0 COP((0,00); ¥)),  dbeC™P((0,0);L9()),
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and for any t >0,

lu(@)llxy < Cov e (ol + 100l ), (2:23)
10) 15y < CPe (ol + 100l 0),  (2:24)

where C is a positive constant independent of u, 0 and t.
(ii) For any 0<a<l,0<f<],0<a<,0<pf<],0<a<]—uo,
0<p<1-p,
we CO%((0,0); X)),  due C**((0,0); X)),
0e C¥P((0,0);Y)),  dbeC((0,0); Y]

provided that p, q, oy and f, satisfy (2.17).
(i) For any 0<a<l1l,0<p <1, t>0,

()], < Cr=* e (fJuol| 0 + 1601l o) (2.25)

0@l < CP e (Jluoll o + 100ll ), (2.26)

where C is a positive constant independent of u, 0 and t provided that
D, ¢, o and Py satisfy (2.17), (2.18).

Some detailed considerations admit that a strong solution of (1.1), (1.2)
with initial data (ug,0p) € L2(Q) x L9() can be grasped in the classical sense.
Let p and ¢ satisfy

1 1 1 1 2
n<p< oo, n<gq< o, ——— <0, ———< - 2.27
p q 22 . 7 <n (2.27)

Then we can take o9 and f, in (2.10), (2.17), (2.18) as zeros. It is derived from
Theorems 2.3 and 2.4 that we obtain the following corollaries:

COROLLARY 2.1. Let p and q satisfy (2.27), uge LL(Q), 0y e L1(Q),
e COUR;R)NCHR;R™), f(0)=0. Then a strong solution (u,0) of (1.1),
(1.2) in Theorem 2.3 is a classical solution of (1.1), (1.2) in (0, T| satisfying the
following continuity properties:

ue C¥%((0,T]; (C**(Q))"), due C%%((0,T); (CH*(2))",
0 C™F((0,7); C*1(@)),  dibe C"F((0,T]; C"F(Q))

for any 0<&<1/2,~0</§<1/2, O<a<l—n/p, 0<p<1—n/q and for
some 0 <a <1, 0<f<1.

COROLLARY 2.2. Let p and q satisfy (2.27), uge LL(Q), 0y e L1(Q),
fe COYR;R)NCHR;R™), f(0)=0. Then a strong solution (u,0) of (1.1),
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(1.2) in Theorem 2.4 is a classical solution of (1.1), (1.2) in (0, 00) satisfying the
following continuity properties:

e CH*((0,00): (C**(Q))"),  due C**((0,0); (C1*(2))"),
0 C¥P((0,0); C*H(Q)),  dif e C¥P((0, 0); CF(Q))

for any O<&<1/2,~O<BA<1/2, O<a<l-—n/p, 0<p<1—n/q and for
some 0 <a <1, 0<f<1.

REMARK 2.1. It can be easily seen from [14, Theorem 7.3.6], [16, Theorem
1.3] that our main results are still valid, instead of (1.2), for the following initial-
boundary data:

ul,_y = o in Q,
Uyl =0 on 0Q2 x (0,T),
K(T(u, p)v), + (1 = K)ur| ;o =0 on 02 x (0, T),
0,y = 0o in @,

0|o0 = 05 or k0,0 +K,0|,0 =0 ondQx (0,T),

where v is the outward unit normal vector on 08, u, :=Vv-u, u; :=u—u,v,
T(u, p) is the Cauchy stress tensor defined as

T(u, p) = —pl, + 2uD(u),

1, is the n-th identity matrix, 0 < K < 1 is a constant, i, is a positive constant.
Moreover, it is useful to remark that (T (u,p)v), =T (u,p)v— (v-T(u, p)v)y =
2u(D@)y)..

2.5. L2 x Li-estimates for nonlinear terms. We will state and prove some
lemmas which play an important role throughout this paper. They allow us to
obtain LZ-estimates for F(u,0) and L?-estimates for G(u,0).

Lemma 2.5 (7, Lemma 2.2). Let 1 < p < o0,

1 n 1 1 n 1

< —4+=-(1—-= — 2 > —+—.

o >0, 0_51<2+2< p)’ O€1+(51>2, 061-1—51_2[)—!-2
Then

14,7 Byl )l < Cillull o ol (2.28)

for any u,ve Xp“‘, where Cy; = Ci(a1,01) is a positive constant.
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Lemma 2.6 (9, Lemma 3.3). Let 1 <p< oo, 1 <g< oo,

n(l 1 1 n 1 1
>0 sl=—- 0<dr<z4+z|1—- 0y > =
sz,ﬁz_ ) o(2>2(p q)a = 2<2+2( q)a ﬁ2+ 2>27

Bty L]

TR =gy Ty

Then

1B, (u-V)Oll, < Calful] |10

g =

oh (2.29)
for any ue X2, Oe Yqﬁz, where Cy = Cy(oa,f5,02) is a positive constant.

LemMA 2.7. Let 1 <p< oo, 1 <g< o0,

max 01+n1 ! < <1
PRAVEEYT S

1@ 0)ll, < Cllul el = (2.30)

Then

for any u,ve X2, where Cs = Cs(0p) is a positive constant.

Proor. After applying the Schwarz inequality to |[|®(u,v)|[,, we can
obtain (2.30) by (2.7) with a =0y, k=1 and r = 2g4.

LEmMMA 2.8, Let 1 <p< oo, 1 <g< o0,

max{O,E(l—l)} <p <1,
2\q »

f e COY(R;R") with the Lipschitz constant L, f(0)=0. Then
f
12/ (O)ll, < CaLrl|O1] s (2.31)
for any 0 ¢ Yfl, where Cy = C4(f)) is a positive constant.

Proor. It is known in [4, Theorem 1] that P, is a bounded operator in
(LP(2))". Since [|£ ()], < Ls|0]],, (2.31) follows from (2.8) with f = 3}, k =0
and r = p.

26. X x Yf-estimates for nonlinear terms. First, we will fix four exponents
oy, o, f; and B, in Lemmas 2.5-2.8 after the choice of two exponents J; in
Lemma 2.5 and J> in Lemma 2.6. We take J, (d2) as zero in the case where
oo >0 (fy, > 0), and as an arbitrary positive constant in the case where op = 0
(B =0). It is essential for (2.9), (2.10) that we make an appropriate choice
of o in Lemma 2.5, o, in Lemmas 2.6 and 2.7, f; in Lemma 2.8 and f,
in Lemma 2.6. Some elementary demonstrations admit that we can chose
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g <op <1 —=01,00<o0n<1—901,py<p; <1—0;and f, <p, <1—, which
satisfy not only assumptions for Lemmas 2.5-2.8 but also

1—
200 +01 < 1+ o, o + Py + 02 < 1+ o, oy < op + 2ﬁ0, (2.32)

n/l 1
o

. n(l 1
pr=1—00+p, lfoco—[)’o—2<_>1

ﬁl < 1 — 0o +ﬁ0 lf
(2.33)

These exponents are fixed throughout this paper.
Second, we obtain X X Y, f-estimates for nonlinear terms which appeared
n (II). Let 0<a<1-0;,0<p<1—-0, 0<i< 4, and set

9mmmzje“”ﬂwde

0

G(u,0)(t) = Jl e 9B G (u, 0)(s)ds.

0
Then |7 (u,0)(1)|ly. and |[|%(u,0)(?)||s are estimated as follows:

t

X < CA,,,oc+51,lC1 J (l—s)—(a+(51) —A(t—s) ||”( )||§(;1 ds
0

17 (u, 0) (1)

t
+ CAM;,QLfJ (t—5) " )0(s)|| o ds, (2.34)
0 q

w2 106)] s

t
||@(u, 0)([)” Yq/l < CBL,,/)’+52,/1C2 Jo(t — S)f(ﬁﬁh)efi(lfs) ||u(s)|

t
+CBq,ﬁ,ﬂcgj (t — )P u(5)]| ds (235)
0 4

for any 0 <r<T. Let (u;,0;) and (up,0,) be two mild solutions of (I.1),
(1.2). Then we have that

17 (ua, 02)(1) = F (1, 01) (1) | x»

t

sqwmwaju—w“”%ﬂfwwwn
0

o lla(s)]

%)
x [[(uz — ur)(s)]

= ds
X

t
+ CA[“MC4LfJ (t—5) e (02— 0) ()] i ds, (2.36)
0 q
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12, 02)(0) = %2, 00) (D)9

t N
< CBq,ﬂ+6z,/1C2 J (t— S)—(/f-ﬁ-éz)e—)((t—‘v) (e — ul)(S)HX;z [162(s)]] v/ ds
0
t
b Co s [ (1= P (50— ) s
O q

t
+ CBq./)’,/ZC3J (t=5) e I (|lur ()]
0

x2 llua(s)llx2)

X | (u2 = 1) (s)]

X;z ds (237)

forany 0<tr<T.

3. Proof of Theorems 2.1 and 2.2

We will prove Theorems 2.1 and 2.2 in this section. In proving our main
results, simplified notation is given as follows: We drop two subscripts p
and ¢ attached to P, 4, B, X* and Y”# in the sequel. It is useful to remark

that a generic positive constant independent of u, 6 and ¢ is simply denoted by
C.

3.1. Existence of local mild solutions. We construct a mild solution (u,8) of
(1.1), (1.2) by the following successive approximation (u™,0™) (me Z,m > 0):

u(t) = e uy,
{ 0°(1) = 50, Gl
{um+1 — u() —l—f(um?é"”),

3.2
gm-&-l _ 00 + g(umvem). ( )

It is assured by the following lemma that {¢*~*u™} and {t~%0"}, are well-
defined as sequences in C([0, T]; X*) for « = aj,0 and in C([0,T]; Y*) for
B = P, P, respectively.

LemMa 3.1.  Let oo = oy, 00, f = 1,0, Then there exist monotone increas-

ing continuous functions K{" and K3y on [0,T) for any me Z, m > 0 such that

K77,(0) =0, K74(0) =0,

" (9)
107 ()llyr < KJy(0)2P0F (3.4)

v < Kl (01, (3.3)

Jor any 0 <t < T, K", < K", K3'y < KJ'f' on [0, 7).
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Proor. We give the inductive definition of Kj”, and Kj"; with respect to
m. K], and K, are defined as

KP(0) = sup s [Ju’(s) - (3.5)
0<s<t

K y(6) = sup sP )| 0°(5)]| - (3.6)
0<s<t

It is obvious from (3.5), (3.6) that (3.3), (3.4) with m =0 hold for any 0 <
t<T. Moreover, (2.5), (2.6) yield that K}, (0) =0, K;,(0)=0. Assume
that there exist K{", and K;"; for some me Z, m > 0. After applying (2.34),

(2.35) to (u™,0™), it is derived from (3.2) that we have that

"1 (2)]

xe S KJ (0
+ Cyurs,. 2 C1B(1 — (a+61), 1+ 2(ag — 1))
x K", (1)1 2020
+ CA,G{,}LC4LfB(1 -, 1 +ﬂ0 - ﬁl)Kzn:l/jl (t)tl+ﬁ(]7a7ﬁlv
||0m+1()j)||wf < Kzovﬁ(l)l‘ﬂ“*ﬂ
+ C.p16,,CrB(1 — (B+62), 1 + a9+ fy — 02 — )
x Klma (I)szlg (l‘)ZlJro‘f)JrﬁO*ﬁ*O‘Z*ﬂz*t;z
» X2 5P
¥ Cap GBI B, 1+ 2(o — s)K{ (124142052

for any 0 < ¢ < T, where B(x, y) is the beta function. Therefore, K/ and
KZ’”EI can be defined as

K" (1) = K7 (1)
+ CA,aJr&l,iClB(l — (OC—|—(51),1 + 2(0(0 — 0(1))

X Km

i (Z)2t1+050—2051—(51

+ CA‘a,).C4L/'B(1 —a,l —|—ﬂ0 — ﬁl)Kzn.lﬁl (Z)Z‘1+ﬁ07‘°‘0*ﬁ17 (37)
Ky (n) = K3 4(0)
+ Co.p100, 2 CrB(1 = (f +02), 1 + 00 + By — 02 = )
x Kln-,lotzO)KZr‘nﬁz(l)ll+“°_“2—ﬁz—(5z

+ Cpp i GB(1 — B, 1+ 2(00 — 0‘2))1{{712(f)2f1+2a°7/}°72a2- (3.8)
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It follows from (3.7), (3.8) that
™ Ol < K (0,

10" (D)l ys < K3 ()P

forany 0 <7< 7. Furthermore, we utilize inductive assumptions for K{", and
K3, and conclude that K7/ (0) = 0, ngl(o) =0. It can be easily seen from
the induction with respect to m that K{", < K["/', K}, < K3";' on [0,T) for
any meZ, m > 0.

We can see easily that a mild solution (u,0) of (1.1), (1.2) is constructed by
the following lemmas. Set K"(7) = max{K{",(1), KJ"s(t); 00 = o1, 00,8 = B, b}
Then it follows from Lemma 3.1 that K™ is a monotone increasing continuous
function on [0, 7| satisfying K™(0) =0, K™ < K™*! on [0, 7] for any me Z,
m > 0. It is required that C is independent of not only u, 0 and ¢ but also m
throughout this subsection.

LemMma 3.2. Let oy and P satisfy (2.33),. Then there exists a positive
constant Ty < T depending only on n, Q, p, q, ao, Py, to, 0o, Ly and T such that
{r2=20u™},and {tP~Po0™}, are Cauchy sequences in C([0, T\]; X*) for o= oy, 0
and in C([0,T]; YP) for p = By,B, respectively.

Proor. It follows from (2.32), (2.33),, (3.7), (3.8) that K™ satisfies the
following inductive inequality with respect to m:

K" (1) < KO(t) + CK™ (1) + CK™ (1)1 +Fo——h (3.9)

forany 0 <¢t< T, meZ, m>0. Since K°(0) =0, K™ < K™ on [0, T] and
1+, — o — f; >0, an elementary calculation shows that there exists a posi-
tive constant 7; < T such that K™ < CK® on [0,7;]. Therefore, we can utilize
(3.3), (3.4) to obtain that

max {7 [u" (1)l .} < CK(1), (3.10)
max {t#75)|0™(1)||ys} < CK°(2) (3.11)

B=P1:5>

for any 0 < ¢t < 7;. It is sufficient for the conclusion that we give X *-estimates
for u™' —u™ and YP-estimates for ™' —@™. It can be easily seen from
(2.34), (2.35), (3.2) with m =0 that

max {r*|(u' —u®)(1)||y.} < CK°(0)(K°(r) + 1),

o=01, 0

max (R0~ 00)0)) < RO
=P1:P2
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for any 0 <¢<7;. By (2.36), (2.37), (3.10), (3.11) and the induction with
respect to m, we obtain that

max {r*||(u"*! —u")(0)][y.} < CK°())(K°(1) + 1)

oL=0l1, 02
x {C(K (2) + ¢! PPy (3.12)

Smax, {0 = 0™)(0)]|ya} < CKO(1)(K°(1) + 1)(CK (1)) (3.13)
=P1P2

for any 0 < ¢ <7;. Since K°(0) =0 and 1+ f, — a9 — B > 0, we can take a
positive constant T} < 7, satisfying C(K*(T}) + T, 70"y <1, cK°(Ty) < 1.
Then {r*~%u™}, and {t#~%0™}  are Cauchy sequences in C([0, T}]; X*) and in
C([0, T]; Y#) respectively.

Lemma 3.3. Let ag and f satisfy (2.33),. Then there exists a positive
constant T, < T depending only on n, Q, p, q, ao, By, uo, 0o, Ly and T such that
{rr=2oumy, and {tP~Po0™}, are Cauchy sequences in C([0, T»); X*) for o= oy, 0
and in C([0, T»]; YP) for B = pB,,p, respectively.

Proor. Notice that 1+ f, — o9 —f; =0 from (2.33),. Then we must
consider, instead of (3.9), the following inductive inequality with respect to m:

K" (0) < KD, (1) + CKYY, (1) + CK3Yy (1), (3.14)
K;;l(z) < K40+ C(K[",, (K3, (1) + K;fjaz(l)z)

for any oo =oy,0, f=p,0,, 0<t<T, meZ, m=>0 which is derived from
(3.7), (3.8). It can be easily seen from (3.14) that

K"2(1) < C(K°(1) + K" (1)* + K™ (1)) (3.15)

forany 0 < ¢ < T. Since K°(0) =0 and K < K™ < K™*2 on [0, T], an ele-
mentary calculation shows that there exists a positive constant 7, < 7" such that
K" < CK° on [0,7,]. It remains to give X *-estimates for "' — 4™ and Y/-
estimates for ™! — 0™, but we can carry out the same proof as in Lemma 3.2.

Set T. = min{7T}, T>}. Then it follows from Lemmas 3.2 and 3.3 that
there exists a pair of two functions (u,0) satisfying

we C((0,T.); X™),
0 e C((0,T.); Y
such that

{t“w — 7 in C(0, T X%) as m — o, (3.16)

th=ho0" — th=Fo9 in C([0,T.); Y*) as m — oo
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for o = oy, 00, f = f1,6,- By applying the dominated convergence theorem to
(3.2), we can conclude that (u,0) satisfies (II) in (0, 7.].

3.2. X* x YP-estimates for local mild solutions. We will deal with basic prop-
erties of local mild solutions of (1.1), (1.2). It is sufficient for (2.11)—(2.14) that
we prove the following lemma:

LemMmaA 3.4. Let (u,0) be a mild solution of (1.1), (1.2) in (0, T,] given by
(3.16). Then

7 lu() — e Mugl| . < CKO(1), (3.17)
P5)0(1) — e B0y vy < CKO(2) (3.18)

Jor any ap<a<l, fo<p<1, 0<t<T,., where C is a positive constant
independent of u, 0 and t.

Proor. It is easy to see that (3.10), (3.11) with (i, 0) instead of (u™,0™)
hold for any ay <a<1-90;, fy <f<1—-0,. By applying (3.10), (3.11) to
(2.34), (2.35), we have that

1 Ju(t) — e ugl| . < CKO()(K°(1) + 1),
tﬁ*ﬁo”@(l«) _ eitBQOHWi < CKO([)Z

forany op <a<1—-90y, fo<pf<1—062, 0<t<T, Furthermore, the choice
of J; and J, allows us to assume that op <o <1, fy <f < 1. These inequal-
ities lead clearly to (3.17), (3.18).

It follows from (3.17) with o = a9, (3.18) with f = f, that

lee(r) = ol =0 < [I(e™* = Dyutoll 20 + CK°(0), (3.19)
10(2) = Ooll s < lI(e™* = )00l ys0 + CK(7) (3.20)

for any 0 < ¢ < T,. By taking ¢ as zero, (3.19), (3.20) imply that u(0) = uo,
6(0) = 6y, consequently, (u,6) is a mild solution of (1.1), (1.2) on [0, T%.]. It is
obvious from (3.17), (3.18) that

0 u(0) e < 70l uo |y« + CK(1), (3:21)
0| ys < P Folle” P00l y s + CK(1) (3.22)

for any ap <a <1, fp<f<l1, 0<t<T, (2.1), (2.2), (3.21), (3.22) yield
clearly (2.11), (2.12). Moreover, it can be easily seen from (2.5), (2.6), (3.21),
(3.22) that (2.13), (2.14) hold for any oy < a <1, iy <p < 1.

3.3. Uniqueness of mild solutions. We proceed to the uniqueness of mild
solutions of (1.1), (1.2) on [0,7]. Throughout this subsection, it is required
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that C is a positive constant independent of ¢, consequently, C may depend on
uand 0. Forany oo <a<l, f<f<1,0<7<t<T, let us introduce the
following notation:

lu(@)lly = 7 (@)l x5
101)ll gy = " P10y,
1, 0) (D)l (0, ) = (D)l ) + 110 )

[l sy = sup s [Juls)]] -,
O<s<t

101l 5.y = sup s"P)10(s)]l s,
0<s<t

Gt Ol 5, .0y = N2all 0y + 101l . 1y

0y = X [la(5) -

101l g, ) = max [[0(s)[] s,

T<s<t
||(Zl, H)H(agﬂ;r,t) = ||u||(a;r,t) + ||0||(ﬂ,r,t)

It is clear that the uniqueness is derived from the continuous dependence with
respect to initial data. We prove the following lemma:

LemMa 3.5. Let (u,0) and (i1,0) be two mild solutions of (1.1), (1.2) on
[0, T] with initial data (uo, 0) and (iiy, 0y) respectively which satisfy the following
conditions:

(i) For any ap <o <1, fy<p<1,

" Pu e C([0,T]; X7),
P, tFhg e C (0, T); YF).
(ii) For any o <a <1, fy<p <1,
[u(@lly= = o(@™), [Ja(@)]ly. = o) as 1 — 0,
10)lys = o), 10@)llys = o) as 1 — +0.
Then
= 2,0 = 0)(1) gy < Cll 10 — 7o, O — Bo)ll 1 (3.23)

for any og<a<l, fo<p<1, 0<t<T, where C is a positive constant
independent of t.
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Proor. Dy, D and M are defined as
Do = || (1o — 110, 60 — o)l (. g,
D(1) = max{||(u — @,0 = )|, .0, 1 = .0 = 0|, .0},
M (2) = max{{|ull . s [[1l] ;00 N2 (4075 10 0205 101,20}
By applying (2.36), (2.37) to (u,0) and (i,0), we have that

(=) (1)l < Clluo — o]l 5y + CM (D) ||t — ] )
+ Ct' B0 =) 4 (3.24)
160 = 0) ()5 < Cll0 — Ooll g,y + CM ()| (= 8,0 = D)l (5, 5,00y (3:25)

for any oy <a<1—-0;, fp<pf<1—-6, 0<t<T. Moreover, it can be
easily seen from (3.24) with o = oy, 0, (3.25) with = f,,f, that

D(t) < CDy+ CN(#)D(t) (3.26)
for any 0 <t < T, where
I+fy—0—p1
N(f) = { M(t) + ¢+ ! %f (2.33),,
M(1) if (2.33),.

Since (u,0) and (&,0) satisfy (i), (ii), N is a monotone increasing continuous
function on [0, 7] satisfying N(0) =0. Then we can take a positive constant
79 < T satisfying CN(79) < 1, consequently, D(7g) < CDy. It remains to prove
(3.23) forany 1o <t <T. Foranyt<7<T, D(z,-) and M(z,-) are defined
as

D(z, 1) = max{||(u — 7,0 = Ol p.c.), 1 = 8,0 = O s, pyie 0}

M(T’ t) = maX{Hu”(al;r,t)? ||u||(oc2;r,t)7 ||uH(aq;r,t)’ ||l’_l||(ot2;r,t)’ ||0||(ﬂ2‘rt)}

Notice that (u,0) and (@, 0) satisfy

u(t) = e~ =My(7) 4 Jz e IR (4, 0) (s)ds,

T

(3.27)

(1) = e~ (=IBY(7) + Jte“S)BG(u, 0)(s)ds

T
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for any 1 <¢<T. Then, by subtracting (3.27) with (&, 0) from (3.27) with
(u,0), we obtain that

(e = @) (0)l 0« < lle™ (0 — @) (2) | -

[ e 4w, 0) — F@ B0l

10— D)Dllys < B0 — D)) ys
+JW““%Q%@*G@@KMW$

T

for any a9 <o <1-0;, fy<f<1—-0,, 1<t<T. It is obvious that

fk“”%nmw—mmmmnm@

are estimated like (2.36), (2.37), consequently, we have that

| = @)(1) - < 2 Do+ Ct = 1) ™ M (2o, Tllu = il
+C( =)' 710 =0l .0, (3.28)
10 = 0)(0)lly» < Ce* " Dy
+C{(r=0)"" 4 (1= ) Ty M (2, T)

x| —,0 - D), (3.29)

0, B237,1)

for any 7 <¢ < T. Similarly to (3.26), it follows from (3.28) with a = oy, oy,
(3.29) with = f,,p, that

D(z,1) < C(z2* + 0 ")Dy + CN(z,1)D(z, 1) (3.30)
for any v <t < T, where
N(z, 1) = {(1— 7)) 4 (1 = )BT M (2, T) + (1= 1)

It is clear that there exists a positive constant 7; < T — 7 independent of 7 such
that CN(z,7+ 71) < 1, consequently, D(r,7+71) < CDy. We repeat to carry
out the same argument as above, and obtain D(z¢, T) < CDj.
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3.4. Existence of global mild solutions. The main purpose of this subsection is
to extend a mild solution of (1.1), (1.2) locally in time to the one globally in
time. By virtue of Theorem 2.1, it is essential for Theorem 2.2 that we obtain
global X “-estimates (2.15) for u and global Y”-estimates (2.16) for 6. For any
0< A< A, A<l <Ay, A<Zdy<min{2), 4}, let us introduce monotone
increasing continuous functions on [0, c0) defined as

E; ,(t) = sup s“*““e’l“'Hu(s)\

X*
O<s<t

E p(t) = sup s"70e™0(s)|| -
O<s<t

It is clear that (2.15), (2.16) are established by proving the following lemma:

LeEmMA 3.6.  There exists a positive constant ¢ depending only on n, Q, p, q,
oo, Po, Ly and A for any 0 < i < Ay such that

Ey (1) < C([Juol

Es 5(1) < C([uo]

X% +||90Hyﬂn)7 (331)
xoo + [0l yr) (3.32)

Jorany ap <o <1, fy <p <1, t>0, where C is a positive constant independent
of u, 0 and t provided that

[[uoll xoo + 100l yn <e.
Proor. It follows from (II);, (2.34) that
(=

%0 u(1)] Mol

X2 S CA.ZX*C{().M e

+ Ca oy, Ct* %0 B E (1)
t

« (Z . s)7(96+5|)sfz(ocl710)87(217/11)st
JOo

+ CA,gz,/l] C4Lflo(—(xoe—(/11—),)IEZ"ﬂl (l)
t

x| (1 = sy B s g
0

< Caaag, iy |0l x 20 + C[H%iza]i&leihEl,a] (t)z
+ CLfll+/50—“u—/f1 e—(zz—l)sz’ﬂl ([)7

E15(0) < C(l[uoll o + Ero (1) + Ly p, (1)) (3.33)



392 Ryohei Kakizawa
for any oy <o <1—90j, t>0. Similarly to (3.33), we can utilize (II),, (2.35)
to obtain that

e 0(0) |y < Crgpp e 2100l s,

+ Ch pyo, i Cot?Poe” BTRE L (1)Es g (1)

t
X (z _ S)_</’)+52)S*<“2*“0)*(ﬁz*ﬁo)e*(/{+12*21)‘Vds
0

+ Cp4.1,Ca tﬂ_ﬁ(’e_ul_b)tEl,xz (02

t
x | (t— S)*ﬂsz(azfao)ef(ule)sds
JO

< Cgppy i 100l yso + Ct' 00727202 By (1) Ey (1)

N Ct]+2a0_ﬁo_2“28—(2/1—/12)1E1 O(2(1)2’

Ezp(1) < C(|00ll ym + En oo (1) B2, (1) + En,(1)*) (3.34)

for any fo<pf<1—05, t>0. Set E(t)=max{E (1), Erp(t);o= 0,00,
B =p,0,}. Then (3.33), (3.34) yield that

E() < C{(lluollx= + |00l yn) + E(0)*} (3.35)
for any 7> 0. An elementary calculation shows that
E(1) < C(lluollx=o + 100l ys) (3.36)

for any ¢ > 0 provided that |lug||y- and ||6o| ys are sufficiently small. There-
fore, it is clear from (3.36) that (3.31), (3.32) are established by (3.33), (3.34).

4. Proof of Theorems 2.3 and 2.4

We will prove Theorems 2.3 and 2.4 in this section. Since the proof of
Theorem 2.4 is essentially the same as the proof of Theorem 2.3, we have only
to prove Theorem 2.3. Moreover, in proving Theorem 2.3, we restrict our-
selves to the case where 61 =0, 9, = 0. Even if 6; > 0 or d, > 0, it is sufficient
for Theorem 2.3 that we slightly modify the argument in this section.

4.1. X*x YP-estimates for integrals. Theorems 2.3 and 2.4 are established
by the following lemmas:

LemMa 4.1 (9, Lemma 3.4). Let 1 < p < o0,

F(1) = J; e IR (5)ds (4.1)
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with F € C((0, T); LE(Q)) satisfying
[F@), < Crt™* (4.2)

for any 0 <t<t+h<T, where Cr is a positive constant, 0 <a < 1. Then
(i) Forany 0<a<l1, 0<a<l—ao,

F e C¥*((0,T]; X%).
(i) For any 0<t<t+h<T,
|7 (t+h) = F (D)l ya < Ly Cp(h' 70+ W' 77570, (43)
where Lz = Lz (0,d) is a positive constant.

LemMa 4.2 (3, Lemmas 2.13 and 2.14, 9, Lemma 3.5). Let 1 < p < o0, &
be an integral given by (4.1) with F e C((0,T]; L2(2)) satisfying (4.2) and

IF(t+h) — F(0)], < Lih®t (4.4)

for any 0 <t<t+h<T, where Lr is a positive constant, 0 < b <1, ¢ > 0.
Then
(1) Forany 0<a<b 0<a<b O0<a<b-—ua,

F e C¥(0,T); XY,  dF e C"((0,T]; X%).
(ii) For any 0<t<T,

(i) For any 0 <t < T,

where Cz| = Cz 1(b,c) is a positive constant.
(iv) Forany 0<o<b, 0<t<T,

17 (1)]

F )|y < Cr1(Crt™* + LFz”“’), (4.5)

o < ng'72(CFt7(“+a) _‘_LFl(bf(ahH’))7 (46)

where Cz )= Cgz (o, b,c) is a positive constant.

Notice that regularity lemmas similar to Lemmas 4.1 and 4.2 are still valid
for B, G and ¥ instead of 4, F and # respectively.

It is useful for the time derivative of strong solutions of (1.1), (1.2) to be
stated the following generalized Gronwall lemma:

LemMA 4.3 (9, Remark to Lemma 3.6). Let y be a nonnegative continuous
and integrable function in (0, T satisfying

! m t
y() < Z ait™™ + Z b; L(l — ) Piy(s)ds (4.7
i1 =
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Jor any 0 <t <T, where a; >0, b; >0, 0<o; <1, 0<p; <1. Then
) < CZal “(1+ By (1)e Pt ZBk (4.8)
i=1

Jor any 0<t<T, where C=C(oy,...,00,0,...,5,) is a positive constant,

np=[B/(1 =P+ 1, fp=max{f;j=1,....m}
k
- (Z bj(t)> . bty =bit' P
J=1

4.2. Regularity of mild solutions. We will show not only that a mild solution
of (1.1), (1.2) can be a strong solution but also that (2.19), (2.20) are estab-
lished. It can be easily seen from Lemmas 2.5-2.8, (2.11), (2.12) that

1 (1, 0)(1)]], < C(e2C0=) 4 PP (Jfuoll 0 + (160l o), (4.9)
1G(u, 0)(1)ll, < C(eotPom2abr 4 200D (lug| g + [0l o) (4.10)

for any 0 <t <T. Since
u(t+h) —u(t) = (e — De ug + F (u,0)(t + h) — F (u,0)(1),
O(t+h) — 0(t) = (e — e 00 + G(u,0)(t + h) — %(u, 0)(1)
for any 0 <t <t+h<T, it follows from (4.3), (4.9), (4.10) that
[t + ) = u(t)| o < C(RP 072700 4 172 200m) =2 ghoh)
X (lluoll 0 + 1100y ), (4.11)
10(t + h) — 0(2)|| yr < C(hP2¢Po~P=b2  pl=Byotho=ea=hy 4 pl=f (=)
X (lluoll 0 + 1100l y0) (4.12)

forany 0<b; <1l—a, 0<by<1—f 0<t<t+h<T. Itis derived from
(4.11) with o = oy, 00, (4.12) with = f,,f, that

F(u,0) € C**((0, T]; L2(R)), (4.13)
G(u,0) e CO#((0, T]; L1(Q)) (4.14)

for any 0 <& <min{l —o;,1—f,}, 0 <f <min{l — o, 1 —f,}. Therefore,
Lemma 4.2 (i), (ii) admit that (u,0) is a strong solution of (1.1), (1.2). By
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applying (4.5) to (II), we have that
()l < CM(0)(luol

xo0 + 100l ys), (4.15)

00|y < CMa(0) (ol w0 + 100l y0) (4.16)
for any 0 <t < T, where

M, (l) =14 t]+oto—20(1 + t2(1+oc0—2oq) + t2+ﬂ0—211—ﬂ|

+ t1+/}o*“0*ﬂ1 + 12+/}o*/31*“2*/}2 + 12+°‘0*51 *2‘12,

Mo(t) i= 1 + 10— abe 242020y 4 2h—pi—o—h;
L MH0po2m | 24300 —Py-2m-2m | 2oy -2
1 2—n—py) 4 2H30—fy-3m—p;
It is clear from (2.32), (2.33) that (2.19), (2.20) are established by (4.15), (4.16).
REMARK 4.1. Theorem 2.3 (i) can be, more precisely, stated as follows:
ue CO*((0,T;; X",  due C™*((0,T];X%),
0e COP((0, T YY),  dbec™((0,T); Y

for any 0<ég<min{l —a;, 1=}, 0<f<min{l —o,1—4}, 0<a<
min{l —oy, 1 = g1}, 0<f<min{l —on,1—p}, 0<a<min{l —oy, 1 -4}
—o, 0 <f<min{l —o,1 —f,} = p.

4.3. Regularity of the time derivative of strong solutions. We will obtain the
stronger regularity of strong solutions of (1.1), (1.2) under appropriate assump-
tions for p, g, oy and f,. Notice that (u,0) satisfies (3.27) for any
0<7<t<T. Then it can be easily seen from (3.27) that

u(t+h) —u(t) = (e — e u(z)

+h
+ J e~ IR (4 0)(s)ds

T

+ Jt e INE(u,0)(s+ h) — F(u, 0)(s))ds,  (4.17)

T

0t +h) = 0(t) = (7" — De™"0(z)

+h
+ J e~ Fh=IBG(y, 0)(s)ds

T

+ JI e IB(G(u, 0)(s + 1) — G(u,0)(s))ds (4.18)

T
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for any t<t<t+h<T. It follows from (2.1), (2.3), (2.19), (4.9) that
I = De™u(@) . < Ch(t =) (luoll =0 + |00l yn ),

t+t
j e E (1, 0)(s) |y ds

T

T+h
< C[ s sl o + 0] )

T

< Ch(t — 1) (@) PP (|luo |y + 100l y )

for any a9 <o <1, 1<t<t+h<T. Similarly to u and F(u,0), we can
utilize (2.2), (2.4), (2.20), (4.10) to obtain that

Ie™® = De™0(0)ly» < Cht = 7) <P~ (Juoll =0 + 160l y0 ).

t+t
j e 9B G, 0)(5)]|yods

T

+h
= CJ (t+h—s) P (sothmeahe g 2= )ds([lug || o + (100l ys0)

T

< Ch(t =) (@ 4 20072 (Jlug| o + (100l )

forany fy <f<1l,71<t<t+h<T. Therefore, it follows from (4.17), (4.18)
that

[t +h) = u())] -

< Cr(@)h(t =) 7T ([luolly = + 1100l ys)

t

+ CA,oz,/lJ

T

(t =) IF(u,0)(s + h) — F(u,0)(s)]| ,ds, (4.19)
16(2 +h) = 0(D)] ys

< Co(0)h(t =) PP (fluoll o + 16011 o)
+ Cgp. Jr(t - s)f/j||G(u7 0)(s +h) — G(u,0)(s)| ,ds (4.20)

T

for any t <t <t+h<T, where

Ci(r) :=C(1+ glto=20 4 -[1*/30*050*/31)7

Cz(‘[’) — C(l + T1+a07127ﬂ2 + Tl+2xofﬂ072az).
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Moreover, we can obtain LZ-estimates for F(u,0)(t+ h) — F(u,0)(r) and L9-
estimates for G(u,0)(t+ h) — G(u,0)(¢r) with the aid of (4.19), (4.20), conse-
quently,

([ (u, 0) (2 + ) — F(u, 0)(1)]],

< Ch{(t =) 7 4 (1= ) P Y (luoll o + 11601l )

€ [ (-9 PO+ )~ Flu,0)(5)] b

T

+ CJ (t— s)fﬁ‘ 1G(u, 0)(s + h) — G(u, 0)(s)]| ,ds, (4.21)

G (u,0)(t + h) — G(u,0) (1),
< Ch{(l _ T)ﬂz(.[hrarl + Tmo+ﬂofﬁrl) + (t _ T)*ﬂzz-aoJrﬂo*“z*l}

X ([[wollx=0 + 1100l y0)

+ C(e™ 4 Tﬂo—/fz) JI([ — 3)7“2 ||F(u7 0)(5‘ + h) — F(”) 9)(S)||pds

T

+ oo Jr(t — )G, 0)(s + h) — G(u, 0)(s)]| ds (4.22)

T

for any t<t<t+h<T. Let p, q, 2o and f5, satisfy (2.17), and set
y(0) = |F(u,0)(t + h) — F(u, 0)(1)||, + | G(u, 0)(t 4 h) — G(u, 0)(1) |,

By applying Lemma 4.3 for (z, T — h] instead of (0,7] to (4.21), (4.22) and
letting 7 = ¢/2, we have that

y() < ChRM (1) ([[uoll x«0 + 1160l y) (4.23)
for any 0 <t < T — h, where
M(1) = 2000~ hoBi=l | pokbo—sn—fr=l y (2(o0-00)-1,
It is clear from (4.23) that
F(u,0) € C*'((0, T); LY(R)),
G(u,0) e C*1((0, T]; LY(Q)).

Therefore, Lemma 4.2 (i) yields Theorem 2.3 (ii). Let p, ¢, o9 and S, satisfy
(2.18) in addition to (2.17). By applying (4.6) to (II), it follows from (4.9),
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(4.10), (4.23) that
(0 dyu(0)| o < CMA () ([luolly = + 1100l y ), (4.24)
N0 ye < CMa(0)([[uoll 0 + 100l ys0) (4.25)
for 0 <t < T, where
Mi(£) = 1 + ¢1t20=2m o fltho=sn—Py | fltho=on—y | l+s-2m

Mz([) = 1 + [H—ol()—dz—ﬂz + [1+2a0—ﬂ0—2o¢2 + [l+2a0—ﬂ0—2m + [l—ﬂ]'

It is obvious from (2.32), (2.33) that (2.21), (2.22) are established by (4.24),
(4.25).

REMARK 4.2.  Even if p, q, o and P, satisfy only (2.9), (2.10), it can be
easily seen from (4.13), (4.14) that (2.21), (2.22) hold for any 0 <o <
min{l —oy,1 —f}, 0 <f <min{l — o, 1 — f,}.

5. Proof of Corollaries 2.1 and 2.2

We will prove Corollaries 2.1 and 2.2 in this section. Since Corollary 2.2
is proved the same as in Corollary 2.1, it is sufficient for Corollaries 2.1 and
2.2 that we prove Corollary 2.1.

5.1. (Wkr)" x Wkd-estimates for nonlinear terms. We will state and prove
some lemmas for (Wk?)" x Wkd-estimates. It is assured by them that we
establish (W*7)"-estimates for F(u,0) and W %-estimates for G(u,0).

Lemma 5.1 (7, Lemma 3.3). (i) Let n < p < oo. Then
1P(u-V)oll, < Cllully vl , (5.1)

for any u,ve (WP(Q))", where C = C(p) is a positive constant.
(i) Let 1<p< oo, keZ, k>n/p. Then

1PQu-V)olly , < Cllully ,l[vllg11,, (52)

for any ue (WhP(Q))", ve (WKLr(Q))", where C = C(k,p) is a positive
constant.

Lemma 52. (i) Let n< p< oo, 1 <g<oo. Then
(- V)0l < Cllully 1101l 4 (5:3)

for any ue (WhP(Q))", 0 e Wh4(Q), where C = C(p,q) is a positive constant.
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(i) Let l<p<oo,l<gqg<o,q<p, keZ, k>n/q Then
(- V)0l y < Cllulli 10011, (5.4)
for any ue (Whr(Q))", 0e W*h4(Q), where C = C(k,p,q) is a positive
constant.
Proor. (i) Notice that W!7(Q) < C(Q) from the Sobolev embedding
theorem. Then we obtain that
(- V)Oll, < Cllull 1101l ,
< Cllully 1015 4

(i) It is known in [1, Theorem 4.39] that W*4(Q) is a Banach algebra
for any ke Z, k > n/q. Therefore, the conclusion follows immediately from
the above fact and ¢ < p.

LemMmAa 53. (i) Let l<p<oo, l<g< oo, 2g<p. Then

[@(u, v)ll, < Cllully vl , (5.5)

or any u,v € whr(Q " where C=C p,q) is a positive constant.
y
i) Let 1<p<oo, l<qg<oo,2¢q<p, keZ, k>n/p. Then
p

1D(u 014 < Cllullir pllollisr, (5.6)
for any u,ve (WKLP(Q))", where C = C(k,p,q) is a positive constant.
Proor. (i) After applying the Schwarz inequality to ||®(u,v)
obtain (5.5) by WP (Q) — wh2(Q).
(i) It can be easily seen from the Leibniz rule and the Schwarz inequality
that [|D(u,v)|lx 4 < Cllullgr1,29/lVll5s1,25-  Therefore, WhHlr(Q) — whktl.24(Q)
implies (5.6).

|,» we can

Lemma 54. (i) Let n<p< oo, n<q< o, g<p, feC"'(R;R") with
the Lipschitz constant Ly, f(0)=0. Then

I (O)l, < CLr[[01]1,4 (5.7)

for any 0 e WhH4(Q), where C = C(p,q) is a positive constant.
(i) Let n<p<ow, n<g<ow, qg<p, [feC"'(RR")NC(R;R"),
f(0)=0. Then

127 (O, = Cloll,,, (5-8)
for any 0 e W>1(Q), where C = C(p,q) is a positive constant.

PrOOF. (i) Since P is a bounded operator in (LP(Q))" and | f(0)], <
Ly||0]|,,, it follows from W'4(Q) — LP(Q) that we have (5.7).
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(i) It is known in [7, Lemma 3.3] that P is a bounded operator not
only in (LP(R))" but also in (W!'7(Q))". Since f e C*!(R;R")NC'(R;R")
implies f” € C,(R;R"), we can see easily that || f(0)[|; , < C||0], ,- Therefore,
(5.8) follows immediately from W?24(Q) — Wr(Q).

5.2. Regularity of strong solutions. It is sufficient for Corollary 2.1 that we
obtain the following lemmas:

LEMMA 5.5. Let p and q satisfy (2.27), f e C%Y(R;R"), f(0) =0. Then
F(u,0) € CO*((0, T]; (W' (2))"),
G(u,0) e C*P((0, T); Wh4(Q))
for any 0<a<1,0<p<1.

Proor. It follows immediately from Theorem 2.3 (ii), Lemmas 5.1-5.4 (ii)
with &k = 1.

LEMMA 5.6. Let p and q satisfy (2.27), f € C*Y(R;R"), f£(0) =0. Then
ue CO*((0, TT; (W*(Q)"),
0 e COP((0, T); w(Q))
for any 0 <a<1/2, 0<p<1/2.

ProoF. It is clear from (2.7), (2.8) that X2 — (W'r(Q))", Y2 —
Wwh4(Q). By applying Theorem 2.3 (ii) with o = 1/2, B = 1/2 to (d,u,d,0), the
conclusion follows immediately from Lemma 5.5, u = A~ (F(u,0) — du), 0 =
B Y(G(u,0) — d,0).

Lemma 5.7. Let p and q satisfy (2.27), fe C%'(R;R")NC'(R;R"),
f(0)=0. Then

d,F (u,0) € C**((0, T]; LY(Q)),
diG(u,0) € C™P((0, T); LY(2))
SJor any 0 < a <min{l —ay,1 —f,}, 0 <p< min{l — o, 1 — f,}.

Proor. It follows immediately from Theorem 2.3 (ii) with o = oy, 0,
p = pi.p>, Lemmas 5.1-5.4 (i).

LeMMA 5.8. Let p and q satisfy (2.27), fe C*'(R;R")NC!(R;R"),
f(0)=0. Then

dfueco‘&((oa T]7X1)7 dtzueco‘&((oa TLXOC)v
doe (0, T);Y"),  d’0ec((0,T); Y")
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for any 0<g<min{l —a;,1 =4}, 0<f<min{l —o,1—4,}, 0<a<
min{l —oq,1 =4}, 0<p<min{l —o, 1 -}, 0<a<min{l —oy,1-p}
—a, 0 <f<min{l —oy, 1 —p,} —p.

ProoF. Lemma 5.7 admits that we differentiate (I) with respect to ¢ and
obtain the following abstract integral equations:

t
du(t) = e =94 du(t) + J eI G F (u, 0)(s)ds,

T

t
40(1) = =98 d0(c) + J 98 4, G(u, 0)(5)ds

T

for any 0 <t <t<T. Therefore, the conclusion follows immediately from
Lemmas 4.2 ([3, Lemma 2.14]) and 5.7.

It follows from the Sobolev embedding theorem that W +1r(Q) —
Ck2(Q), Wkl4(Q) — CHF(Q) for any keZ, k>0, 0<a<1—n/p, 0<
p<1—n/q. Therefore, Lemmas 5.6 and 5.8 imply Corollary 2.1.
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