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Abstract. The study deals with the theory of interior capacities of condensers in a

locally compact space, a condenser being treated here as a countable, locally finite

collection of arbitrary sets with the sign þ1 or �1 prescribed such that the closures

of oppositely signed sets are mutually disjoint. We are motivated by the known fact

that, in the noncompact case, the main minimum-problem of the theory is in general

unsolvable, and this occurs even under very natural assumptions (e.g., for the New-

tonian, Green, or Riesz kernels in Rn, nd 2, and closed condensers of finitely many

plates). Therefore it was particularly interesting to find statements of variational

problems dual to the main minimum-problem (and hence providing new equivalent

definitions to the capacity), but now always solvable (e.g., even for nonclosed,

unbounded condensers of infinitely many plates). For all positive definite kernels

satisfying Fuglede’s condition of consistency between the strong and vague (¼ weak�)
topologies, problems with the desired properties are posed and solved. Their solutions

provide a natural generalization of the well-known notion of interior equilibrium

measures associated with a set. We give a description of those solutions, establish

statements on their uniqueness and continuity, and point out their characteristic

properties. Such results are new even for classical kernels in Rn, which is important

in applications.

1. Introduction

The article is devoted to further development of the theory of interior

capacities of condensers in a locally compact space. A condenser will be

treated here as a countable, locally finite collection of arbitrary sets with the

sign þ1 or �1 prescribed such that the closures of oppositely signed sets are

mutually disjoint. For a background of the theory for condensers of finitely

many plates we refer the reader to [21]–[25]; see also M. Ohtsuka’s study [19],

where the condensers were additionally assumed to be compact. The reader

is expected to be familiar with the principal notions and results of the theory
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of measures and integration; its exposition can be found in [2, 3, 8] (see also

[10, 22] for a brief survey).

The theory of interior capacities of condensers provides a natural exten-

sion of the well-known theory of interior capacities of sets, developed by O.

Frostman [9], H. Cartan [4], and Vallée-Poussin [20] for classical kernels in

Rn and later on generalized by B. Fuglede [10] for general kernels in a locally

compact space X. However, those two theories—for sets and, on the other

hand, condensers—are drastically di¤erent. To illustrate this, it is enough to

note that, in the noncompact case, the main minimum-problem of the theory of

interior capacities of condensers is in general unsolvable, and this phenomenon

occurs even under very natural assumptions (e.g., for the Newtonian, Green, or

Riesz kernels in Rn, nd 2, and closed condensers of finitely many plates);

compare with [4, 10]. Necessary and su‰cient conditions for the problem to

be solvable have been given in [23, 25]; see Sec. 5 below for a brief survey.

Therefore it was particularly interesting to find statements of variational

problems dual to the main minimum-problem of the theory of interior capacities

of condensers, but in contrast to the last one, now always solvable—e.g., even for

nonclosed, unbounded condensers of infinitely many plates. (When speaking

on duality of variational problems, we mean their extremal values to be equal.)

In all that follows, X denotes a locally compact Hausdor¤ space and

M ¼ MðXÞ the linear space of all real-valued Radon measures n on X equipped

with the vague (¼ weak�) topology, i.e., the topology of pointwise convergence

on the class C0ðXÞ of all real-valued continuous functions on X with compact

support.

A kernel k on X is meant to be an element from FðX�XÞ, where FðYÞ
consists of all lower semicontinuous functions c : Y ! ð�y;y� such that

cd 0 unless Y is compact. The energy and the potential of a measure n A M

with respect to the kernel k are defined by

kðn; nÞ :¼
ð
kðx; yÞdðnn nÞðx; yÞ and kð�; nÞ :¼

ð
kð�; yÞdnðyÞ;

respectively, provided the corresponding integral is well-defined (as a finite

number or Gy). Let E ¼ EkðXÞ denote the set of all n A M with �y <

kðn; nÞ < y.

In the present study we shall be concerned with minimal energy problems

over certain subclasses of E, properly chosen. For all positive definite kernels

satisfying Fuglede’s condition of consistency between the strong and vague

topologies on E (see Sec. 2), those variational problems are shown to be dual

to the main minimum-problem of the theory of interior capacities of condensers

(and hence providing some new equivalent definitions to the capacity), but now

always solvable. See Theorems 2, 3, 4 and Corollaries 11, 13 below.
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Their solutions provide a natural generalization of the well-known notion

of interior equilibrium measures associated with a set (cf. [10]). We give a

description of those solutions, establish statements on their uniqueness and

continuity, and point out their characteristic properties; see Sec. 8–11. The

results obtained hold true, e.g., for the Newtonian, Green or Riesz kernels in

Rn, nd 2, as well as for the restriction of the logarithmic kernel in R2 to the

open unit disk.

2. Preliminaries: topologies, consistent and perfect kernels

Recall that a measure nd 0 is said to be concentrated on a set EHX if

the complement {E :¼ XnE is locally n-negligible; or, equivalently, if E is n-

measurable and n ¼ nE , where nE :¼ njE is the trace of n upon E.

Let MþðEÞ be the convex cone of all nonnegative measures concentrated

on E, and EþðEÞ :¼ MþðEÞVE. Also write Mþ :¼ MþðXÞ and Eþ :¼ EþðXÞ.
From now on, the kernel under consideration is always assumed to be

positive definite, which means that it is symmetric (i.e., kðx; yÞ ¼ kðy; xÞ for all

x; y A X) and the energy kðn; nÞ, n A M, is nonnegative whenever defined. Then

E forms a pre-Hilbert space with the scalar product

kðn1; n2Þ :¼
ð
kðx; yÞdðn1 n n2Þðx; yÞ

and the seminorm knkE :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
kðn; nÞ

p
; see [10]. A (positive definite) kernel is

called strictly positive definite if the seminorm knk :¼ knkE is a norm.

A measure n A E is said to be equivalent in E to a given n0 A E if

kn� n0k ¼ 0; the equivalence class, consisting of all those n, will be denoted

by ½n0�E.
In addition to the strong topology on E, determined by the seminorm k � k,

it is often useful to consider the weak topology on E, defined by means of the

seminorms n 7! jkðn; mÞj, m A E (see [10]). The Cauchy-Schwarz inequality

jkðn; mÞjc knk kmk; n; m A E;

implies immediately that the strong topology on E is finer than the weak one.

In [10], Fuglede introduced the following two properties of consistency

between the induced strong, weak, and vague topologies on Eþ:

(C) Every strong Cauchy net in Eþ converges strongly to any of its

vague cluster points;

(CW) Every strongly bounded and vaguely convergent net in Eþ converges

weakly to the vague limit;

in [11], the properties (C) and (CW) were shown to be equivalent.
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Definition 1. Following Fuglede [10], we call a kernel k consistent if it

satisfies either of the properties (C) and (CW), and perfect if, in addition, it is

strictly positive definite.

Remark 1. One has to consider nets or filters in Mþ instead of sequences,

since the vague topology in general does not satisfy the first axiom of countabi-

lity. We follow Moore’s and Smith’s theory of convergence, based on the concept

of nets (see [16]; cf. also [8, Chap. 0] and [14, Chap. 2]). However, if X

is metrizable and countable at infinity, then Mþ satisfies the first axiom of

countability (see [10, Lemma 1.2.1]) and the use of nets may be avoided.

Theorem 1 (Fuglede [10]). A kernel k is perfect if and only if Eþ is

strongly complete and the strong topology on Eþ is finer than the vague one.

Example. In Rn, nd 3, the Newtonian kernel jx� yj2�n
is perfect [4]. So

are the Riesz kernels jx� yja�n
, 0 < a < n, in Rn, nd 2 [5, 6], and the re-

striction of the logarithmic kernel �logjx� yj in R2 to the open unit disk

[15]. Furthermore, if D is an open set in Rn, nd 2, and its generalized Green

function gD exists (see, e.g., [13, Th. 5.24]), then gD is perfect as well [7].

Remark 2. As is seen from Theorem 1, the concept of consistent or perfect

kernels is an e‰cient tool in minimal energy problems over classes of nonnegative

measures with finite energy. Indeed, the theory of capacities of sets has been

developed in [10] exactly for those kernels. We shall show below that this

concept is e‰cient, as well, in minimal energy problems over classes of signed

measures associated with a condenser. This is guaranteed by a theorem on the

strong completeness of proper subspaces of E, to be stated in Sec. 12.

3. Condensers of countably many plates. Measures associated with a

condenser; their energies and potentials

3.1. Let Iþ and I� be countable (finite or infinite) disjoint sets of indices

i A N, the latter being allowed to be empty, and let I denote their union.

Assume that to every i A I there corresponds a nonempty set Ai HX.

Definition 2. A collection A ¼ ðAiÞi A I is called an ðIþ; I�Þ-condenser (or
simply a condenser) in X if every compact subset of X intersects with at most

finitely many Ai and

Ai VAj ¼ q for all i A Iþ; j A I�: ð1Þ

The sets Ai, i A Iþ, and Aj, j A I�, are said to be the positive and,

respectively, the negative plates of the condenser A. Note that any two equally

signed plates can intersect each other.
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Given Iþ and I�, let C ¼ CðIþ; I�Þ be the class of all ðIþ; I�Þ-condensers
in X. A condenser A A C is called closed or compact if all Ai, i A I , are closed

or, respectively, compact. Similarly, we call it universally measurable if all the

plates are universally measurable—that is, measurable with respect to every

n A Mþ. Next, A ¼ ðAiÞi A I is said to be finite if so is I .

Given A ¼ ðAiÞi A I , write A :¼ ðAiÞi A I . Then, due to (1), A is a (closed)

ðIþ; I�Þ-condenser. In the sequel, also the following notation will be used:

A :¼ 6
i A I

Ai; Aþ :¼ 6
i A I þ

Ai; A� :¼ 6
i A I �

Ai:

Note that Aþ and A� might both be noncompact even for a compact A.

3.2. With the preceding notation, write

ai :¼
þ1 if i A Iþ;

�1 if i A I�:

�

Given A A C, let MðAÞ consist of all (finite or infinite) linear combinations

m :¼
X
i A I

aim
i; where m i A MþðAiÞ:

Any two m1 and m2 in MðAÞ are regarded to be identical (m1 ¼ m2) if and only if

m i
1 ¼ m i

2 for all i A I . Observe that, under the relation of identity in MðAÞ thus
defined, the following correspondence is one-to-one:

MðAÞ C m 7! ðm iÞi A I A
Y
i A I

MþðAiÞ:

We call m A MðAÞ a measure associated with A, and m i, i A I , its i-coordinate.

For measures associated with a condenser, it is therefore natural to intro-

duce the following concept of convergence, actually corresponding to the vague

convergence by coordinates. Let S denote a directed set of indices, and let ms,

s A S, and m0 be given elements of the class MðAÞ.

Definition 3. A net ðmsÞs AS is said to converge to m0 A-vaguely if

m i
s ! m i

0 vaguely for all i A I :

Then MðAÞ, equipped with the topology of A-vague convergence, and the

product space
Q

i A I M
þðAiÞ become homeomorphic. Since MðXÞ is Hausdor¤,

so are both MðAÞ and
Q

i A I M
þðAiÞ (see, e.g., [14, Chap. 3, Th. 5]).
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Similarly, a set FHMðAÞ is called A-vaguely bounded if all its i-

projections are vaguely bounded—that is, if for every j A C0ðXÞ and every

i A I ,

sup
m AF

jm iðjÞj < y:

Lemma 1. If FHMðAÞ is A-vaguely bounded, then it is A-vaguely rela-

tively compact.

Proof. Since by [2, Chap. III, § 2, Prop. 9] any vaguely bounded part of

M is vaguely relatively compact, the lemma follows from Tychono¤’s theorem

on the product of compact spaces (see, e.g., [14, Chap. 5, Th. 13]). r

3.3. Since each compact subset of X intersects with at most finitely many

Ai, for every j A C0ðXÞ only a finite number of m iðjÞ (where m A MðAÞ is given)
are nonzero. This yields that to every m A MðAÞ there corresponds a unique

Radon measure Rm such that

RmðjÞ ¼
X
i A I

aim
iðjÞ for all j A C0ðXÞ;

its positive and negative parts in Jordan’s decomposition can be written in the

form

Rmþ ¼
X
i A I þ

m i and Rm� ¼
X
i A I �

m i;

respectively. Of course, the mapping R : MðAÞ ! M thus defined is in general

non-injective, i.e., one may choose m 0 A MðAÞ so that m 0 0 m, while Rm 0 ¼ Rm.

(It would be injective if all the plates Ai, i A I , were mutually disjoint.) We

shall call m; m 0 A MðAÞ R-equivalent whenever their R-images coincide.

Lemma 2. The A-vague convergence of ðmsÞs AS to m0 implies the vague

convergence of ðRmsÞs AS to Rm0.

Proof. This is obvious in view of the fact that the support of any

j A C0ðXÞ might have points in common with only finitely many Ai. r

Remark 3. Lemma 2 in general can not be inverted. However, if all the

sets Ai, i A I , are mutually disjoint, then the vague convergence of ðRmsÞs AS to

Rm0 implies the A-vague convergence of ðmsÞs AS to m0. This can be seen by

using the Tietze-Urysohn extension theorem (see, e.g., [8, Th. 0.2.13]).

3.4. To define energies and potentials of linear combinations m A MðAÞ, we

start with the following two lemmas, the former one being well-known (see

[10]).
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Lemma 3. Let Y be a locally compact Hausdor¤ space. If c A FðYÞ is

given, then the map n 7!
Ð
c dn is vaguely lower semicontinuous on MþðYÞ.

Lemma 4. Fix m A MðAÞ and c A FðXÞ. If
Ð
c dRm is well-defined, thenð

c dRm ¼
X
i A I

ai

ð
c dm i; ð2Þ

and
Ð
c dRm is finite if and only if the series on the right converges absolutely.

Proof. We can assume c to be nonnegative, for if not, then we replace c

by a function c 0
d 0 obtained by adding to c a suitable constant c > 0, which

is always possible since a lower semicontinuous function is bounded from below

on a compact space. Hence,ð
c dRmþ

d
X

i A I þ; icN

ð
c dm i for all N A N:

On the other hand, the sum of m i over all i A Iþ that do not exceed N

approaches Rmþ vaguely as N ! y; consequently, by Lemma 3,ð
c dRmþ

c lim
N!y

X
i A I þ; icN

ð
c dm i:

Combining the last two inequalities and then letting N ! y, we getð
c dRmþ ¼

X
i A I þ

ð
c dm i:

Since the same holds true for Rm� and I� instead of Rmþ and Iþ, respectively,

the lemma follows. r

Corollary 1. If m; m1 A MðAÞ and x A X, then

kðx;RmÞ ¼
X
i A I

aikðx; m iÞ; ð3Þ

kðRm;Rm1Þ ¼
X
i; j A I

aiajkðm i; m
j
1Þ; ð4Þ

each of the identities being understood in the sense that its right-hand side is well-

defined whenever so is the left-hand one and then they coincide. Furthermore,

the left-hand side in (3) or in (4) is finite if and only if the corresponding series on

the right converges absolutely.

Proof. Relation (3) is a direct consequence of (2), while (4) follows from

Fubini’s theorem (cf. [3, § 8, Th. 1]) and Lemma 4 on account of the fact
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that kðx; nÞ, where n A Mþ is given, is lower semicontinuous on X (see, e.g.,

[10]). r

Definition 4. Given m; m1 A MðAÞ, we shall call kð�; mÞ :¼ kð�;RmÞ the

potential of m and kðm; m1Þ :¼ kðRm;Rm1Þ the mutual energy of m and m1 (of

course, provided the right-hand side of the corresponding relation is well-

defined). For m ¼ m1 we get the energy kðm; mÞ of m; i.e., if kðRm;RmÞ is well-

defined, then

kðm; mÞ :¼ kðRm;RmÞ ¼
X
i; j A I

aiajkðm i; m jÞ: ð5Þ

Corollary 2. For m A MðAÞ to be of finite energy, it is necessary and

su‰cient that m i A E for all i A I and

X
i A I

km ik2 < y:

Proof. This follows immediately from the definition of kðm; mÞ in view of

the inequality 2kðn1; n2Þc kn1k2 þ kn2k2 for n1; n2 A E. r

Remark 4. Observe that the series in (5) actually defines the energy of the

vector measure ðm iÞi A I relative to the interaction matrix ðaiajÞi; j A I ; compare with

[12] and [17, Chap. 5, § 4]. However, our approach is essentially based on the

fact that, due to the specific interaction matrix, the same value can also be

obtained as the energy of the corresponding Radon measure Rm.

Remark 5. Since we make no di¤erence between m A MðAÞ and Rm when

dealing with their energies or potentials, we shall sometimes call a measure

associated with A simply a measure—certainly, if this causes no confusion.

3.5. Let EðAÞ consist of all m A MðAÞ of finite energy kðm; mÞ. Since MðAÞ
forms a convex cone, it is seen from Corollary 2 that so does EðAÞ.

One of the crucial arguments in our approach is that EðAÞ can be treated

as a semimetric space with the semimetric

km1 � m2kEðAÞ :¼ kRm1 � Rm2kE; m1; m2 A EðAÞ; ð6Þ

then EðAÞ and its R-image become isometric. The topology on EðAÞ defined

by means of the semimetric k � k :¼ k � kEðAÞ is called strong.

Two elements of EðAÞ, m1 and m2, are said to be equivalent in EðAÞ if

km1 � m2k ¼ 0. Note that the equivalence in EðAÞ implies R-equivalence (i.e.,

then Rm1 ¼ Rm2) provided the kernel k is strictly positive definite, and it implies

the identity (i.e., then m1 ¼ m2) if, moreover, all Ai, i A I , are mutually disjoint.
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4. Interior capacities of condensers. Elementary properties

4.1. Let H be a set in the pre-Hilbert space E or in the semimetric space

EðAÞ, an ðIþ; I�Þ-condenser A being given. In either case, let us introduce the

quantity

kHk2 :¼ inf
n AH

knk2;

interpreted as þy if H is empty. If kHk2 < y, then one can consider the

variational problem on the existence of l ¼ lðHÞ A H with minimal energy

klk2 ¼ kHk2;

such a problem will be referred to as the H-problem. The H-problem is

called solvable if a minimizer lðHÞ exists.

The following lemma is a slight generalization of [10, Lemma 4.1.1].

Lemma 5. Suppose H is convex and l ¼ lðHÞ exists. Then for any

n A H,

kn� lk2 c knk2 � klk2: ð7Þ

Proof. Let HHE. For every h A ð0; 1�, the measure m :¼ ð1� hÞlþ hn

belongs to H, and therefore kmk2 d klk2. Evaluating kmk2 and then letting

h ! 0, we get kðn; lÞd klk2, and (7) follows (see [10]).

Suppose now HHEðAÞ. Then RH is a convex subset of E, while Rl is

a minimizer in the RH-problem. What has just been shown therefore yields

kRn� Rlk2 c kRnk2 � kRlk2, which gives (7) when combined with (6). r

We shall be concerned with the H-problem for various specific H related

to the notion of interior capacity of an ðIþ; I�Þ-condenser (in particular, of a

set); see Sec. 4.2 and Sec. 8 below for the definitions.

4.2. Fix a vector-valued function g ¼ ðgiÞi A I , where all gi : X ! ð0;yÞ are

continuous, and a numerical vector a ¼ ðaiÞi A I with ai > 0, i A I . Given an

ðIþ; I�Þ-condenser A in X, write

MþðAi; ai; giÞ :¼ n A MþðAiÞ :
ð
gi dn ¼ ai

� �
;

and let MðA; a; gÞ consist of all m A MðAÞ with m i A MþðAi; ai; giÞ for all i.

Given a kernel k, also write

EþðAi; ai; giÞ :¼ MþðAi; ai; giÞVE; EðA; a; gÞ :¼ MðA; a; gÞVEðAÞ:
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Definition 5. We shall call the value

cap A :¼ capðA; a; gÞ :¼ 1

kEðA; a; gÞk2
ð8Þ

the (interior) capacity of an ðIþ; I�Þ-condenser A (with respect to k, a, and g).

Here and in the sequel, we adopt the convention that 1=0 ¼ þy. It

follows from the positive definiteness of the kernel that 0c capðA; a; gÞcy.

(See Sec. 4.4 and Sec. 4.5 below, providing necessary and su‰cient conditions

for the non-degenerated case 0 < cap A < y to hold.)

Remark 6. If I is a singleton, then any condenser consists of just one set,

say A1. If, moreover, g1 ¼ 1 and a1 ¼ 1, then the notion of interior capacity

of a condenser certainly reduces to the notion of interior capacity of a set (see

[10]). We denote it by Cð�Þ as well, i.e., CðA1Þ :¼ 1=kEþðA1; 1; 1Þk2.

Remark 7. In the case of the Newtonian kernel jx� yj�1
in R3, the notion

of capacity of a condenser A has an evident electrostatic interpretation. In the

framework of the corresponding electrostatics problem, the functions gi, i A I ,

serve as a characteristic of nonhomogeneity of the conductors Ai.

4.3. On C ¼ CðIþ; I�Þ, it is natural to introduce a partial order relation 0 by

declaring A 0
0A to mean that A 0

i HAi for all i A I . Here, A 0 ¼ ðA 0
i Þi A I .

Then capð�; a; gÞ is a nondecreasing function of a condenser, namely

capðA 0; a; gÞc capðA; a; gÞ whenever A 0
0A: ð9Þ

Given A A C, denote by fKgA the increasing filtering family of all compact

condensers K ¼ ðKiÞi A I A C such that K0A.

Lemma 6. If K ranges over fKgA, then

capðA; a; gÞ ¼ lim
K"A

capðK; a; gÞ: ð10Þ

Proof. We can assume capðA; a; gÞ to be nonzero, since otherwise (10)

follows at once from (9). Then the set EðA; a; gÞ must be nonempty; fix m, one

of its elements. Given K A fKgA and i A I , let m i
K denote the trace of m i upon

Ki, i.e., m i
K :¼ m i

Ki
. Applying Lemma 1.2.2 from [10], we conclude that

ð
gi dm

i ¼ lim
K"A

ð
gi dm

i
K; i A I ; ð11Þ

kðm i; m jÞ ¼ lim
K"A

kðm i
K; m

j
KÞ; i; j A I : ð12Þ
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Fix e > 0. It follows from (11) and (12) that for every i A I one can

choose a compact set K 0
i HAi so that

aiÐ
gi dm

i
K 0

i

< 1þ ei�2; ð13Þ

j km ik2 � km i
K 0

i
k2j < e2i�4: ð14Þ

Having denoted K0 :¼ ðK 0
i Þi A I , for every K A fKgA that follows K0 we therefore

have
Ð
gi dm

i
K 0 0 and

m̂mK :¼
X
i A I

aiaiÐ
gi dm

i
K

m i
K A EðK; a; gÞ;

the finiteness of the energy being obtained from (14) and Corollary 2. Thus,

km̂mKk
2
d kEðK; a; gÞk2: ð15Þ

We next proceed by showing that

kmk2 ¼ lim
K"A

km̂mKk
2: ð16Þ

To this end, it can be assumed that kd 0; for if not, then A must be finite since

X is compact, and (16) follows from (11) and (12) when substituted into (5).

Therefore, for every K that follows K0 and every i A I we obtain

km i
Kkc km ikc kRmþ þ Rm�k; ð17Þ

km i � m i
Kk < ei�2; ð18Þ

the latter being clear from (14) because of kðm i
K; m

i � m i
KÞd 0. Also observe

that, by (5),

j kmk2 � km̂mKk
2jc

X
i; j A I

kðm i; m jÞ � aiÐ
gi dm

i
K

ajÐ
gj dm

j
K

kðm i
K; m

j
KÞ

�����
�����

c
X
i; j A I

"
kðm i � m i

K; m
jÞ þ kðm i

K; m
j � m

j
KÞ

þ aiÐ
gi dm

i
K

ajÐ
gj dm

j
K

� 1

 !
kðm i

K; m
j
KÞ
#
:

When combined with (13), (17), and (18), this yields

j kmk2 � km̂mKk
2jcMe for all K � K0;

where M is finite and independent of K, and the required relation (16) follows.
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Substituting (15) into (16), in view of the arbitrary choice of m A EðA; a; gÞ
we get

kEðA; a; gÞk2 d lim
K"A

kEðK; a; gÞk2:

Since the converse inequality is obvious from (9), the proof is complete. r

Let E0ðA; a; gÞ denote the class of all m A EðA; a; gÞ such that, for every

i A I , the support Sðm iÞ of m i is compact and contained in Ai.

Corollary 3. The capacity capðA; a; gÞ remains unchanged if the class

EðA; a; gÞ in its definition is replaced by E0ðA; a; gÞ. In other words,

kEðA; a; gÞk2 ¼ kE0ðA; a; gÞk2:

Proof. We can assume kEðA; a; gÞk2 to be finite, for otherwise the

corollary follows from E0ðA; a; gÞHEðA; a; gÞ. Then, by (9) and (10), for

every e > 0 there is K A fKgA such that kEðK; a; gÞk2 c kEðA; a; gÞk2 þ e.

Together with kEðK; a; gÞk2 d kE0ðA; a; gÞk2 d kEðA; a; gÞk2, this completes the

proof. r

4.4. Unless explicitly stated otherwise, in all that follows it is assumed that

capðA; a; gÞ > 0: ð19Þ

Lemma 7. For (19) to hold, it is necessary and su‰cient that any of the

following three equivalent conditions be satisfied:

( i ) EðA; a; gÞ is nonempty;

( ii )
P

i A I knik
2 < y for some ni A EþðAi; ai; giÞ;

(iii)
P

i A I kEþðAi; ai; giÞk2 < y.

Proof. The equivalence of (19) and (i) is obvious, while that of (i) and

(ii) can be obtained directly from Corollary 2. If (iii) holds, then for every

i A I one can choose ni A EþðAi; ai; giÞ so that knik2 < kEþðAi; ai; gÞk2 þ i�2,

and (ii) follows. Since (iii) is an immediate consequence of (ii), the proof is

complete. r

Corollary 4. For (19) to be satisfied, it is necessary that

CðAiÞ > 0 for all i A I : ð20Þ

If A is finite, then (19) and (20) are actually equivalent1.

1However, (19) and (20) are no longer equivalent if A is infinite—cf. Corollary 5.
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Proof. For Lemma 7, (ii) to hold, it is necessary that, for every i A I ,

there exist a nonzero measure n A EþðAiÞ, which in turn is equivalent to (20)

according to [10, Lemma 2.3.1]. Since the former implication can be inverted

whenever A is finite, the proof is complete. r

Let gi; inf and gi; sup be the infimum and the supremum of gi over Ai, and let

ginf :¼ inf
i A I

gi; inf ; gsup :¼ sup
i A I

gi; sup:

Corollary 5. If 0 < ginf c gsup < y, then (19) holds if and only if

X
i A I

a2i
CðAiÞ

< y:

Proof. Lemma 7 yields the corollary when combined with the relation

a2i
g2i; supCðAiÞ

c kEþðAi; ai; giÞk2 c
a2i

g2i; infCðAiÞ
; ð21Þ

which can be seen by reasons of homogeneity.

Indeed, to establish (21), we can certainly assume CðAiÞ to be nonzero, for

otherwise Corollary 4 with I ¼ fig shows that each of the three parts in (21)

equals þy. Therefore, there exists yi A EþðAi; 1; 1Þ. Since

ŷyi :¼
aiyiÐ
gi dyi

A EþðAi; ai; giÞ;

we get

a2i kyik
2
d g2i; infkŷyik

2
d g2i; infkEþðAi; ai; giÞk2;

and the right-hand side of (21) is obtained by letting yi range over EþðAi; 1; 1Þ.
To verify the left-hand side, fix oi A EþðAi; ai; giÞ. Then

0 < aig
�1
i; sup coiðXÞc aig

�1
i; inf < y:

Hence, oi=oiðXÞ A EþðAi; 1; 1Þ and

koik2 d a2i g
�2
i; supkEþðAi; 1; 1Þk2:

In view of the arbitrary choice of oi A EþðAi; ai; giÞ, this completes the proof.

r

4.5. In the following assertion, providing necessary conditions for cap A to be

finite, it is assumed that gi; inf > 0 for all i A I .

Lemma 8. If capðA; a; gÞ < y, then there exists j A I with CðAjÞ < y.
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Proof. Suppose, on the contrary, CðAiÞ ¼ y for all i A I . Given e > 0,

for every i A I one can choose n i A EþðAi; 1; 1Þ with compact support so that

kn ikc ea�1
i i�2gi; inf . Since then

n̂n :¼
X
i A I

aiain
iÐ

gi dn i
A EðA; a; gÞ

and kn̂nkc e
P

i A I i
�2, we arrive at a contradiction by letting e ! 0. r

The following assertion2, to be proved in Sec. 14, shows that, under proper

additional requirements, Lemma 8 can be inverted.

Corollary 6. Let k be perfect and either I� ¼ q or the following

conditions both hold:

X
i A I

aig
�1
i; inf < y; ð22Þ

sup
x AAþ;y AA�

kðx; yÞ < y: ð23Þ

If there exists j A I such that Aj is closed, CðAjÞ < y, and gj; sup < y, then

capðA; a; gÞ < y:

Remark 8. Corollary 6 remains valid if, instead of the boundedness of

gj, we require the following restriction on its growth: there exist rj A ð1;yÞ and

tj A E such that g
rj
j ðxÞc kðx; tjÞ for all x A Aj.

5. On the solvability of the main minimum-problem

Because of (19), we are naturally led to the EðA; a; gÞ-problem (cf. Sec.

4.1), i.e., the problem on the existence of l A EðA; a; gÞ with minimal energy

klk2 ¼ kEðA; a; gÞk2;

the EðA; a; gÞ-problem may certainly be regarded as the main minimum-

problem of the theory of interior capacities of condensers. The collection

(possibly empty) of all minimizing measures l in this problem will be denoted

by SðA; a; gÞ.
If, moreover, capðA; a; gÞ < y, then let us look at the EðA; a cap A; gÞ-

problem as well. By reasons of homogeneity, both the EðA; a cap A; gÞ- and

2 It is in fact a corollary to Lemma 9, to be formulated in Sec. 7 below.
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the EðA; a; gÞ-problems are simultaneously either solvable or unsolvable, and

their extremal values are related to each other by the following law:

1

kEðA; a; gÞk2
¼ kEðA; a cap A; gÞk2: ð24Þ

Assume for a moment that A is compact. Since then n 7!
Ð
gi dn is

vaguely continuous on MþðAiÞ, MðA; a; gÞ is A-vaguely compact. Therefore,

if A is additionally assumed to be finite, while k is continuous on Aþ � A�,

then the energy kmk2 is A-vaguely lower semicontinuous on EðAÞ and the

solvability of both the problems immediately follows (cf. [19, Th. 2.30]).

But these arguments break down if any of the above-mentioned three

assumptions is dropped. In particular, the class MðA; a; gÞ is no longer A-

vaguely compact whenever A is noncompact. Moreover, it has been shown by

the author that, in the noncompact case, the problems are in general unsolvable

and this occurs even under very natural assumptions (e.g., for the Newtonian,

Green, or Riesz kernels in Rn, nd 2, and finite, closed condensers).

In particular, it was proved in [23] that, if A is finite and closed, k is

perfect, and bounded and continuous on Aþ � A�, and satisfies the generalized

maximum principle (see [15, Chap. VI]), while gi ¼ gj for all i, j and

0 < ginf c gsup < y, then either of the EðA; a; gÞ- and the EðA; a cap A; gÞ-
problems is solvable for any a if and only if CðAiÞ < y for all i A I . If,

moreover, CðAi0Þ ¼ y for some i0 A I , then both the problems are unsolvable

for all a with ai0 su‰ciently large.

In [25, Th. 1], the last statement was sharpened. It was shown that if, in

addition to all the preceding assumptions, for all i0 i0,

CðAiÞ < y and Ai VAi0 ¼ q;

while kð�; yÞ ! 0 (as y ! y) uniformly on compact sets, then there exists

Li0 A ½0;yÞ such that the problems are unsolvable if and only if ai0 > Li0 .

Actually, Li0 ¼
Ð
gi0 d

~ll i0 , where ~ll is a minimizer (it exists) in the auxiliary H-

problem with H :¼ m A EðAÞ : m i A EþðAi; ai; giÞ for all i0 i0f g.

6. Standing assumptions

In view of the results reviewed in Sec. 5, it was particularly interesting to

find statements of variational problems dual to the EðA; a cap A; gÞ-problem
(and hence providing new equivalent definitions to cap A), but now solvable for

any ðIþ; I�Þ-condenser A (e.g., even nonclosed or infinite) and any vector a.

We have succeeded in this under the following conditions, which—together

with (19)—will always be tacitly assumed: the kernel k is assumed to be

consistent and either I� ¼ q, or (22) and (23) both hold.
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Remark 9. These assumptions on a kernel are not too restrictive. In

particular, they all are satisfied by the Newtonian, Riesz, or Green kernels in Rn,

nd 2, provided the Euclidean distance between Aþ and A� is nonzero, as well

as by the restriction of the logarithmic kernel in R2 to the open unit disk.

7. A-vague and strong cluster sets of minimizing nets

7.1. To formulate the results obtained, we shall need the following notation.

Denote by MðA; a; gÞ the class of all nets ðmtÞt AT HE0ðA; a; gÞ such that

lim
t AT

kmtk
2 ¼ kEðA; a; gÞk2: ð25Þ

This class is not empty, which is seen from (19) on account of Corollary 3.

Let MðA; a; gÞ ðrespectively, M 0ðA; a; gÞÞ consist of all limit points of the

nets ðmtÞt AT A MðA; a; gÞ in the A-vague topology of the space MðAÞ ðrespec-
tively, in the strong topology of the semimetric space EðAÞÞ. Also write

MðA;ca; gÞ :¼ m A MðAÞ :
ð
gi dm

i
c ai for all i A I

� �

and EðA;ca; gÞ :¼ MðA;ca; gÞVEðAÞ. Then the following lemma, to be

proved in Sec. 13 below, holds true.

Lemma 9. For every ðmtÞt AT A MðA; a; gÞ, there exist its A-vague cluster

points; hence, MðA; a; gÞ is nonempty. Moreover,

MðA; a; gÞHM 0ðA; a; gÞVEðA;ca; gÞ: ð26Þ

Furthermore, for every w A M 0ðA; a; gÞ,

lim
t AT

kmt � wk2 ¼ 0; ð27Þ

and hence M 0ðA; a; gÞ forms an equivalence class in EðAÞ.

It follows from (25)–(27) that kzk2 ¼ kEðA; a; gÞk2 for all z A MðA; a; gÞ.
Also observe that, if A ¼ K is compact, then MðK; a; gÞHMðK; a; gÞ, which

together with the preceding relation proves the following assertion.

Corollary 7. If A ¼ K is compact, then the EðK; a; gÞ-problem is

solvable. Actually,

SðK; a; gÞ ¼ MðK; a; gÞ: ð28Þ

7.2. When approaching A by compact condensers K A fKgA, we shall always

suppose all those K to be of capacity nonzero. This involves no loss of

generality, which is clear from (19) and Lemma 6. Then Corollary 7 enables
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us to introduce the (nonempty) class M0ðA; a; gÞ of all nets ðlKÞK A fKgA , where

lK A SðK; a; gÞ. Let M0ðA; a; gÞ consist of all their A-vague cluster points.

On account of Lemma 6, we have M0ðA; a; gÞHMðA; a; gÞ. Therefore,

the following assertion is an immediate consequence of Lemma 9.

Corollary 8. The class M0ðA; a; gÞ is nonempty, and

M0ðA; a; gÞHMðA; a; gÞHM 0ðA; a; gÞ:

Remark 10. Each of these three cluster sets, M0ðA; a; gÞ, MðA; a; gÞ and

M 0ðA; a; gÞ, plays an important role in our study. However, if k is additionally

assumed to be strictly positive definite (hence, perfect), while Ai, i A I , are

mutually disjoint, then all these classes coincide and consist of just one element.

7.3. Also the following notation will be used. Given w A M 0ðA; a; gÞ, write

M 0
EðA; a; gÞ :¼ ½Rw�E:

This equivalence class does not depend on the choice of w, which is seen from

Lemma 9. This lemma also yields that, for any ðmtÞt AT A MðA; a; gÞ and any

n A M 0
EðA; a; gÞ, Rmt ! n in the strong topology of the pre-Hilbert space E.

8. Extremal problems dual to the main minimum-problem

Recall that we are keeping all our standing assumptions, stated in Sec. 6.

8.1. A proposition PðxÞ involving a variable point x A X is said to subsist

nearly everywhere (n.e.) in E, where E is a given subset of X, if the set of all

x A E for which PðxÞ fails to hold is of interior capacity zero (see, e.g., [10]).

If CðEÞ > 0 and f is a universally measurable function bounded from

below n.e. in E, then we write

“ inf
x AE

” f ðxÞ :¼ supfq : f ðxÞd q n:e: in Eg:

Then

f ðxÞd “ inf
x AE

” f ðxÞ n:e: in E;

which can be obtained directly from the following known fact (see the corollary

to Lemma 2.3.5 in [10] and the remark attached to it).

Lemma 10 (Fuglede [10]). A countable union of Un VE with CðUn VEÞ ¼ 0

has interior capacity zero as well, provided these Un are universally measurable3.

3Whereas E is arbitrary.
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8.2. Let ĜG ¼ ĜGðA; a; gÞ denote the class of all Radon measures n A E such that

there exist real numbers ciðnÞ, i A I , satisfying the relations

aiaikðx; nÞd ciðnÞgiðxÞ n:e: in Ai; i A I ; ð29Þ
X
i A I

ciðnÞd 1: ð30Þ

Remark 11. For any n A ĜG , the series in (30) must converge absolutely.

Indeed, due to (19) and Corollary 3, there exists m A E0ðA; a; gÞ; then, by [10,

Lemma 2.3.1], the inequality in (29) holds m i-a.e. in X. In view of
Ð
gi dm

i ¼ ai,

this gives kðaim i; nÞd ciðnÞ for all i A I . Since, by Fubini’s theorem and Lemma

4,
P

i A I kðaim i; nÞ converges absolutely, the required conclusion follows.

We also observe that ĜGðA; a; gÞ is convex, which can be seen from Lemma

10.

The following assertion, to be proved in Sec. 17 below, holds true.

Theorem 2. Under the standing assumptions,

kĜGðA; a; gÞk2 ¼ capðA; a; gÞ: ð31Þ

If kĜGðA; a; gÞk2 < y, then we shall be interested in the ĜGðA; a; gÞ-problem
(cf. Sec. 4.1), i.e., the problem on the existence of ôo A ĜGðA; a; gÞ with

kôok2 ¼ kĜGðA; a; gÞk2;

the set of all those ôo will be denoted by ĜG ¼ ĜGðA; a; gÞ.
A minimizing measure ôo can be shown to be unique up to a summand of

seminorm zero (and, hence, it is unique whenever the kernel under consideration

is strictly positive definite). Actually, the following stronger result holds.

Lemma 11. If ôo exists, then ĜGðA; a; gÞ forms an equivalence class in E.

Proof. Since ĜG is convex, Lemma 5 yields that ĜG is contained in an

equivalence class in E. To prove that ĜG actually coincides with that equiv-

alence class, it su‰ces to show that, if n belongs to ĜG , then so do all measures

equivalent to n in E. But this follows at once from Lemma 10 and the fact

that the potentials of any two equivalent in E measures coincide n.e. in X (see

[10, Lemma 3.2.1]). r

8.3. Assume for a moment that capðA; a; gÞ is finite (cf. Sec. 4.5). Then

Theorem 2, combined with (8) and (24), shows that the ĜGðA; a; gÞ-problem and,

on the other hand, the EðA; a cap A; gÞ-problem have the same infimum, equal

to the capacity cap A, and so these two variational problems are dual.
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But what is surprising is that their infimum, cap A, turns out to be

always an actual minimum in the former extremal problem, while this is not

the case for the latter one (see Sec. 5). In fact, the following statement on the

solvability of the ĜGðA; a; gÞ-problem, to be proved in Sec. 17 below, holds true.

Theorem 3. Under the standing assumptions, if, moreover, cap A < y,

then the class ĜGðA; a; gÞ is nonempty and can be given by the formula

ĜGðA; a; gÞ ¼ M 0
EðA; a cap A; gÞ: ð32Þ

The numbers ciðôoÞ, i A I , satisfying both (29) and (30) for ôo A ĜGðA; a; gÞ, are

uniquely determined, do not depend on the choice of ôo, and can be written in

either of the forms

ciðôoÞ ¼ ai½cap A��1kðz i; zÞ; ð33Þ

ciðôoÞ ¼ ai½cap A��1 lim
s AS

kðm i
s; msÞ; ð34Þ

z A MðA; a cap A; gÞ and ðmsÞs AS A MðA; a cap A; gÞ being arbitrarily given.

The following two assertions, providing additional information about ciðôoÞ,
can be obtained directly from the preceding theorem.

Corollary 9. For every ôo A ĜGðA; a; gÞ, we have

ciðôoÞ ¼ “ inf
x AAi

”
aiaikðx; ôoÞ

giðxÞ
for all i A I : ð35Þ

Corollary 10. Inequality (30) for ôo A ĜGðA; a; gÞ is actually an equality;

i.e., X
i A I

ciðôoÞ ¼ 1: ð36Þ

Remark 12. Assume for a moment that CðAjÞ ¼ 0 for some j A I . Then,

by Corollary 4, cap A ¼ 0. On the other hand, n0 ¼ 0 belongs to ĜGðA; a; gÞ
since it satisfies both (29) and (30) with ciðn0Þ, where cjðn0Þd 1 and ciðn0Þ ¼ 0

for all i0 j. This means that identity (31) holds true in the degenerate case

CðAjÞ ¼ 0 as well, and then ĜGðA; a; gÞ consists of all n A E of seminorm zero.

What then, however, fails to hold is the statement on the uniqueness of ciðôoÞ.

Let ĜG�ðA; a; gÞ consist of all n A ĜGðA; a; gÞ for whom inequality (30) is in

fact an equality. By arguments similar to those that have been applied

above, one can see that ĜG�ðA; a; gÞ is convex, and hence all the solutions

to the minimal energy problem over this class form an equivalence class in

E. Combining this with Theorems 2, 3 and Corollary 10 leads to the following

assertion.
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Corollary 11. Under the standing assumptions,

kĜG�ðA; a; gÞk2 ¼ capðA; a; gÞ:

If, moreover, capðA; a; gÞ is finite, then the ĜG�ðA; a; gÞ-problem is solvable;

actually, M 0
EðA; a cap A; gÞ is the class of all its solutions.

Remark 13. Theorem 2 and Corollary 11 (cf. also Theorem 4 and Cor-

ollary 13 below) provide new equivalent definitions to the capacity capðA; a; gÞ.
Note that, in contrast to the initial definition (cf. Sec. 4.2), no restrictions on the

supports and total masses of measures from the classes ĜGðA; a; gÞ or ĜG�ðA; a; gÞ
have been imposed; the only restriction involves their potentials. These defi-

nitions to capðA; a; gÞ are new even for a finite, compact condenser; compare with

[19]. They are not only of obvious academic interest, but turned out also to be

important for numerical computations; see [18].

8.4. Our next purpose is to formulate an H-problem such that it is still dual

to the EðA; a cap A; gÞ-problem and solvable, but now with H consisting of

measures associated with a condenser.

Let GðA; a; gÞ consist of all m A EðAÞ for whom both the relations (29) and

(30) hold (with m in place of n). In other words, let

GðA; a; gÞ :¼ fm A EðAÞ : Rm A ĜGðA; a; gÞg:

Observe that the class GðA; a; gÞ is convex and

kGðA; a; gÞk2 d kĜGðA; a; gÞk2: ð37Þ

We proceed by showing that inequality (37) is in fact an equality and that the

minimal energy problem, when considered over GðA; a; gÞ, is still solvable.

Theorem 4. Under the standing assumptions,

kGðA; a; gÞk2 ¼ capðA; a; gÞ: ð38Þ

If, moreover, cap A is finite, then the GðA; a; gÞ-problem is solvable and the class

GðA; a; gÞ of all its solutions o is given by the formula

GðA; a; gÞ ¼ M 0ðA; a cap A; gÞ: ð39Þ

Proof. We can assume cap A to be finite, for if not, then (38) is obtained

directly from (31) and (37). Then, according to Lemma 9 with a cap A instead

of a, the class M 0ðA; a cap A; gÞ is nonempty; fix w, one of its elements. It is

clear from its definition and identity (32) that w A EðAÞ and Rw A ĜGðA; a; gÞ.
Hence, w A GðA; a; gÞ and, therefore,

kĜGðA; a; gÞk2 ¼ kwk2 d kGðA; a; gÞk2:
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In view of (31) and (37), this proves (38) and, as well, the inclusion

M 0ðA; a cap A; gÞHGðA; a; gÞ:

But the right-hand side of this inclusion is an equivalence class in EðAÞ, which
follows from the convexity of GðA; a; gÞ and Lemma 5 in the same manner as

in the proof of Lemma 11. Since, by Lemma 9, also the left-hand side is an

equivalence class in EðAÞ, the two sets must actually be equal. r

Corollary 12. If A ¼ K is compact and cap K < y, then any solution to

the EðK; a cap K; gÞ-problem gives, as well, a solution to the GðK; a; gÞ-problem.

Proof. This is obtained from (39), combined with (26) and (28) for

a cap K in place of a. r

Remark 14. In case cap A < y, fix o A GðA; a; gÞ and ôo A ĜGðA; a; gÞ.
Since, by (32) and (39), kðx;oÞ ¼ kðx; ôoÞ n.e. in X, the numbers ciðoÞ, i A I ,

satisfying (29) and (30) for o instead of n, are uniquely determined and equal

ciðôoÞ. This implies that relations (33)–(36) hold, as well, for o in place of ôo.

Remark 15. In Theorems 3, 4 and Corollary 11, no restrictions on the

topology of Ai, i A I , have been imposed. So, all the ĜGðA; a; gÞ-, ĜG�ðA; a; gÞ-,
and GðA; a; gÞ-problems are solvable even for a nonclosed, infinite condenser A.

Remark 16. If I is a singleton and g1 ¼ 1, then Theorems 2, 3, 4 and

Corollaries 11, 12 can be derived from [10]. Moreover, then one can choose

o A GðA; a; gÞ so that oðXÞ ¼ a1CðA1Þ, and exactly these o are called the

interior equilibrium measures associated with the set A1 [10]. However, this fact

in general can not be extended to a condenser A consisting of more than one

plate; that is, in general,

GðA; a; gÞVEðA; a cap A; gÞ ¼ q;

which is caused by the unsolvability of the EðA; a cap A; gÞ-problem.

9. Interior equilibrium constants associated with a condenser

9.1. Throughout Sec. 9, it is always required that capðA; a; gÞ < y. Due to

the uniqueness statement in Theorem 3, the following notion naturally arises.

Definition 6. The numbers

Ci :¼ CiðA; a; gÞ :¼ ciðôoÞ; i A I ;

satisfying both (29) and (30) for ôo A ĜGðA; a; gÞ, are said to be the (interior)

equilibrium constants associated with A.
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Corollary 13. The interior capacity capðA; a; gÞ is equal to inf kðn; nÞ,
where n ranges over all n A E (similarly, n A EðAÞ) such that, for every i A I ,

aiaikðx; nÞdCiðA; a; gÞgiðxÞ n:e: in Ai:

The infimum is attained at any ôo A ĜGðA; a; gÞ (respectively, o A GðA; a; gÞ), and
hence it is an actual minimum.

Proof. This follows from Theorems 2, 3, 4 and Remark 14. r

9.2. Some properties of the interior equilibrium constants CiðA; a; gÞ, i A I ,

have already been provided by Theorem 3 and Corollaries 9, 10. Also observe

that, if I is a singleton, then certainly C1ðA; a; gÞ ¼ 1 (cf. [10, Th. 4.1]).

Corollary 14. Cið�; a; gÞ, i A I , are continuous under exhaustion of A by

the increasing filtering family of all compact condensers K0A. Namely,

CiðA; a; gÞ ¼ lim
K"A

CiðK; a; gÞ:

Proof. Under our assumptions, 0 < cap K < y for every K A fKgA, and
hence there exists lK A SðK; a cap K; gÞ. Substituting lK into (33) yields

CiðK; a; gÞ ¼ ai½cap K��1
kðl i

K; lKÞ: ð40Þ

On the other hand, it follows from Lemma 6 that the net cap A½cap K��1lK,

where K A fKgA, belongs to the class MðA; a cap A; gÞ. Substituting it into

(34) and then combining the relation obtained with (40), we get the corollary.

r

Corollary 15. Assume that, for some j A I , CðAjÞ ¼ y and gj; inf > 0.

Then CjðA; a; gÞc 0.

Proof. Suppose, on the contrary, that Cj > 0. Given ôo A ĜGðA; a; gÞ, we
have ajajkðx; ôoÞdCjgj; inf > 0 n.e. in Aj. Hence, according to Lemma 3.2.2

from [10], CðAjÞc a2j kôok
2
C�2

j g�2
j; inf < y, which is a contradiction. r

Remark 17. Lemma 8, which has already been proved by elementary

arguments, can also be obtained as a consequence of Corollary 15. Indeed, if it

were true that CðAiÞ ¼ y for all i A I , then, by Corollary 15, the sum of Ci,

where i ranges over I , would be not greater than 0, which is impossible.

10. Interior equilibrium measures associated with a condenser

As always, we are keeping all our standing assumptions, stated in Sec.

6. Throughout Sec. 10, it is also required that capðA; a; gÞ < y. Our next

purpose is to introduce a notion of interior equilibrium measures gA associated
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with the condenser A such that the characteristics obtained possess properties

similar to those of interior equilibrium measures associated with a set. Fu-

glede’s theory of interior capacities of sets [10] serves here as a model case.

10.1. If A ¼ K is compact, then, as follows from Theorem 4, Corollary 12 and

Remark 14, any minimizer lK in the EðK; a cap K; gÞ-problem has the desired

properties, and so gK might be defined by the formula

gK :¼ lK; where lK A SðK; a cap K; gÞ:

However, as is seen from Remark 16, in the noncompact case the desired

notion can not be obtained as just a direct generalization of the corresponding

one from the theory of capacities of sets. Having in mind that, similar to our

model case, the required distributions should give a solution to the GðA; a; gÞ-
problem and be strongly and A-vaguely continuous under exhaustion of A by

compact condensers, we arrive at the following definition.

Definition 7. We shall call gA A EðAÞ an (interior) equilibrium measure

associated with the condenser A if there exist a subnet ðKsÞs AS of ðKÞK A fKgA and

lKs
A SðKs; a cap Ks; gÞ such that the net ðlKs

Þs AS converges to gA both A-

vaguely and strongly. Let DðA; a; gÞ denote the collection of all those gA.

Lemmas 6 and 9 enable us to rewrite the above definition in the following,

apparently weaker, form:

DðA; a; gÞ ¼ M0ðA; a cap A; gÞ: ð41Þ

Theorem 5. DðA; a; gÞ is nonempty, A-vaguely compact, and it is contained

in an equivalence class in EðAÞ. Furthermore,

DðA; a; gÞHGðA; a; gÞVEðA;ca cap A; gÞ: ð42Þ

Given g :¼ gA A DðA; a; gÞ, we have

kgk2 ¼ cap A; ð43Þ

aiaikðx; gÞdCigiðxÞ n:e: in Ai; i A I ; ð44Þ

where Ci ¼ CiðA; a; gÞ, i A I , are the interior equilibrium constants. Actually,

Ci ¼
aikðg i; gÞ
cap A

¼ “ inf
x AAi

”
aiaikðx; gÞ

giðxÞ
: ð45Þ

In case I� 0q, assume moreover that kðx; yÞ is continuous on Aþ � A�, while

kð�; yÞ ! 0 (as y ! y) uniformly on compact sets. Then, for every i A I ,

aiaikðx; gÞcCigiðxÞ for all x A Sðg iÞ; ð46Þ
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and hence

aiaikðx; gÞ ¼ CigiðxÞ n:e: in Ai VSðg iÞ:

Also note that DðA; a; gÞ is contained in an R-equivalence class in MðAÞ
provided the kernel k is strictly positive definite, and it consists of a unique

element gA if, moreover, all Ai, i A I , are mutually disjoint.

Remark 18. As is seen from Theorem 5, the properties of interior equilib-

rium measures associated with a condenser are quite similar to those of interior

equilibrium measures associated with a set (compare with [10, Th. 4.1]). The

only important di¤erence is that the signc in (42) in general can not be omitted—

even for a finite and closed, though noncompact, condenser (cf. Remark 16).

Remark 19. Like in the theory of interior capacities of sets, in general

none of the i-coordinates of gA is concentrated on Ai (unless Ai is closed).

Indeed, consider X ¼ Rn, where nd 3, kðx; yÞ ¼ jx� yj2�n
, Iþ ¼ f1g, I� ¼ f2g,

g1 ¼ g2 ¼ 1, a1 ¼ a2 ¼ 1, and let A1 ¼ fx : jxj < rg and A2 ¼ fx : jxj > Rg,
where 0 < r < R < y. Then it can be shown that

gA ¼ g
A
¼ ½yþ � y�� cap A;

where yþ and y� are obtained by the uniform distribution of unit mass over the

spheres Sð0; rÞ and Sð0;RÞ, respectively. Hence, jgAjðAÞ ¼ 0.

10.2. The purpose of this section is to point out characteristic properties of the

interior equilibrium measures and the interior equilibrium constants.

Proposition 1. Let m A EðAÞ admit the properties

kmk2 ¼ capðA; a; gÞ;

aiaikðx; mÞd
aikðm i; mÞ
cap A

giðxÞ n:e: in Ai; i A I :

Then m is equivalent in EðAÞ to every gA A DðA; a; gÞ and, for all i A I ,

CiðA; a; gÞ ¼
aikðm i; mÞ
cap A

¼ “ inf
x AAi

”
aiaikðx; mÞ

giðxÞ
:

Actually, there holds the following stronger result, to be proved in Sec. 19.

Proposition 2. Let n A EðAÞ and bi A R, i A I , satisfy the relations

aiaikðx; nÞd bigiðxÞ n:e: in Ai; i A I ; ð47Þ
X
i A I

bi ¼
cap Aþ knk2

2 cap A
: ð48Þ
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Then n is equivalent in EðAÞ to every gA A DðA; a; gÞ and, for all i A I ,

bi ¼ CiðA; a; gÞ ¼ “ inf
x AAi

”
aiaikðx; nÞ

giðxÞ
: ð49Þ

Thus, under the conditions of Proposition 1 or 2, if, moreover, k is strictly

positive definite and all Ai, i A I , are mutually disjoint, then the measure under

consideration is actually the (unique) interior equilibrium measure gA.

11. On continuity of the interior capacities, equilibrium measures, and

equilibrium constants

11.1. Given An ¼ ðAn
i Þi A I , n A N, and A in C, we shall write An " A if

An 0Anþ1 for all n and Ai ¼ 6
n AN An

i for all i A I .

Following [1, Chap. 1, § 9], we call a locally compact space countable at

infinity if it can be written as a countable union of compact sets.

Theorem 6. Let either gi; inf > 0 for all i A I or the space X be countable at

infinity. If An, n A N, are universally measurable and An " A, then

capðA; a; gÞ ¼ lim
n AN

capðAn; a; gÞ: ð50Þ

Assume moreover that capðA; a; gÞ is finite, and let gn :¼ gAn
, n A N, denote an

arbitrary interior equilibrium measure associated with An. If g is any of the

A-vague limit points of ðgnÞn AN (such a g exists), then g is actually an interior

equilibrium measure associated with A and

lim
n AN

kgn � gk2 ¼ 0:

Furthermore,

CiðA; a; gÞ ¼ lim
n AN

CiðAn; a; gÞ for all i A I : ð51Þ

Thus, if k is additionally assumed to be strictly positive definite (hence,

perfect) and all Ai, i A I , are mutually disjoint, then the (unique) interior

equilibrium measure associated with An approaches the (unique) interior equi-

librium measure associated with A both A-vaguely and strongly.

Remark 20. Theorem 6 remains true if ðAnÞn AN is replaced by the

increasing filtering family of all compact condensers K such that K0A.

Moreover, then the assumption that either gi; inf > 0 for all i A I or X is countable

at infinity can be omitted. Cf., e.g., Lemma 6 and Corollary 14.
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Remark 21. If I is a singleton and g1 ¼ 1, then Theorem 6 has been

proved by Fuglede (see [10, Th. 4.2]).

11.2. The rest of the article is devoted to proving the results formulated in

Sec. 7–11 and is structured as follows. Theorems 2, 3, 5, and 6 will be proved

in Sec. 17, 18, and 20. Their proofs utilize a description of the potentials of

measures from the classes M 0ðA; a; gÞ and M0ðA; a; gÞ, to be given in Sec. 15

and 16 by Lemmas 14 and 15, respectively. In turn, Lemmas 14 and 15 use a

theorem on the strong completeness of proper subspaces of EðAÞ, which is a

subject of the next section.

12. Strong completeness of measures associated with condensers

12.1. Keeping all our standing assumptions on k, g, a, and A, stated in Sec. 6,

we consider EðA;ca; gÞ to be a topological subspace of the semimetric space

EðAÞ; the induced topology is likewise called the strong topology.

Theorem 7. If A is closed, then the semimetric space EðA;ca; gÞ is

complete. In more detail, if ðmsÞs AS HEðA;ca; gÞ is a strong Cauchy net and

m is one of its A-vague cluster points (such a m exists), then m A EðA;ca; gÞ and

lim
s AS

kms � mk2 ¼ 0: ð52Þ

Assume, in addition, that the kernel is strictly positive definite (hence, perfect)

and all Ai, i A I , are mutually disjoint. If, moreover, ðmsÞs AS converges strongly

to m0 A EðAÞ, then actually m0 A EðA;ca; gÞ and ms ! m0 A-vaguely.

Remark 22. In view of the fact that the semimetric space EðA;ca; gÞ is

isometric to its R-image, Theorem 7 has thus singled out a strongly complete

topological subspace of the pre-Hilbert space E, whose elements are signed

measures. This is of independent interest since, according to a well-known

counterexample by H. Cartan [4], the whole space E is strongly incomplete even

for the Newtonian kernel jx� yj2�n
in Rn, nd 3.

Remark 23. Let k be strictly positive definite (hence, perfect). If, more-

over, I� ¼ q, then Theorem 7 remains true for EðAÞ in place of EðA;ca; gÞ
(compare with Theorem 1). A question still unanswered is whether this is the

case if Iþ and I� are both nonempty. We can however show that this is

really so for the Riesz kernels jx� yja�n
, 0 < a < n, in Rn, nd 2 (cf. [21, Th.

1]). The proof is based on Deny’s theorem [5] stating that, for the Riesz kernels,

E can be completed by making use of distributions of finite energy.

12.2. We start with the lemmas to be used below in the proof of Theorem 7.

298 Natalia Zorii



Lemma 12. MðA;ca; gÞ is A-vaguely bounded; hence, it is A-vaguely

relatively compact.

Proof. Fix i A I , and let a compact set KHAi be given. Since gi is

positive and continuous, the relation

ai d

ð
gi dm

i
d m iðKÞ min

x AK
giðxÞ; where m A MðA;ca; gÞ;

yields

sup
m AMðA;ca;gÞ

m iðKÞ < y:

This implies that MðA;ca; gÞ is A-vaguely bounded, and hence it is A-vaguely

relatively compact by Lemma 1. r

Lemma 13. Suppose A is closed. If a net ðmsÞs AS HEðA;ca; gÞ is strongly
bounded, then its A-vague cluster set is nonempty and contained in EðA;ca; gÞ.

Proof. According to Lemma 12, the A-vague cluster set of ðmsÞs AS is

nonempty, and it is contained in MðA;ca; gÞ in consequence of Lemma 3.

Thus, it is enough to prove that each of its elements has finite energy.

To this end, observe that ðRmsÞs AS is strongly bounded by (5). We

proceed by showing that so are the nets ðRmþ
s Þs AS and ðRm�

s Þs AS, i.e.,

sup
s AS

kRmGs k
2 < y: ð53Þ

Of course, this needs to be proved only when I� 0q; then, according to the

standing assumptions, (22) and (23) both hold. Since
Ð
gi dm

i
s c ai, we get

sup
s AS

m i
sðXÞc aig

�1
i; inf for all i A I : ð54Þ

Consequently, by (22),

sup
s AS

RmGs ðXÞc
X
i A I

aig
�1
i; inf < y:

Because of (23), this implies that kðRmþ
s ;Rm

�
s Þ remains bounded from above

on S; hence, so do kRmþ
s k

2 and kRm�
s k

2.

Now, if ðmdÞd AD is a subnet of ðmsÞs AS that converges A-vaguely to some

m, then, by Lemma 2, ðRmþ
d Þd AD and ðRm�

d Þd AD converge vaguely to Rmþ

and Rm�, respectively. Applying Lemma 3 with Y ¼ X�X and c ¼ k, we

conclude from (53) that Rmþ and Rm� are of finite energy, which yields

kðm; mÞ < y. r
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Corollary 16. If a net ðmsÞs AS HEðA;ca; gÞ is strongly bounded, then,

for every i A I , km i
sk

2
and kðm i

s; msÞ are bounded on S.

Proof. Fix i A I . In view of (53), the required relation

sup
s AS

km i
sk

2 < y ð55Þ

will be proved once we establish the inequality

X
l; j A IG

kðml
s ; m

j
s ÞdC > �y ð56Þ

with a constant C, independent of s. Since (56) is obvious when kd 0, one can

assume X to be compact. Then k, being lower semicontinuous, is bounded

from below on X (say by �c, where c > 0), while A is finite. Furthermore,

then gl; inf > 0 for every l A I and, therefore, (54) holds. This implies

kðml
s ; m

j
s Þd�alajg

�1
l; infg

�1
j; infc for all l; j A I ;

and (56) follows.

These arguments also show that kðm i
s;Rm

þ
s Þ and kðm i

s;Rm
�
s Þ are bounded

from below on S. Since these functions of s are bounded from above as

well, which is clear from (53) and (55) by the Cauchy-Schwarz inequality, the

required boundedness of kðm i
s; msÞ follows. r

12.3. Proof of Theorem 7. Suppose A is closed, and let ðmsÞs AS be a strong

Cauchy net in EðA;ca; gÞ. Since such a net converges strongly to each of its

strong cluster points, ðmsÞs AS can certainly be assumed to be strongly bounded.

Then, by Lemma 13, there exists an A-vague cluster point m of ðmsÞs AS and

m A EðA;ca; gÞ: ð57Þ

We next proceed by verifying (52). Of course, there is no loss of

generality in assuming ðmsÞs AS to converge A-vaguely to m. Then, by Lemma

2, ðRmþ
s Þs AS and ðRm�

s Þs AS converge vaguely to Rmþ and Rm�, respectively.

Since, by (53), these nets are strongly bounded in Eþ, the property (CW) (see

Sec. 2) shows that they approach Rmþ and Rm�, respectively, in the weak

topology as well, and so Rms ! Rm weakly. This gives, by (6),

kms � mk2 ¼ kRms � Rmk2 ¼ lim
l AS

kðRms � Rm;Rms � RmlÞ

and hence, by the Cauchy-Schwarz inequality,

kms � mk2 c kms � mk lim inf
l AS

kms � mlk;
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which proves (52) as required, because kms � mlk becomes arbitrarily small

when s; l A S are both su‰ciently large.

Suppose now that k is strictly positive definite, while all Ai, i A I , are

mutually disjoint, and let the net ðmsÞs AS converge strongly to some m0 A EðAÞ.
Given an A-vague limit point m of ðmsÞs AS, we derive from (52) that

km0 � mk ¼ 0, hence Rm0 ¼ Rm since k is strictly positive definite, and finally

m0 ¼ m because all the Ai are mutually disjoint. In view of (57), this means

that m0 A EðA;ca; gÞ, which is a part of the desired conclusion. Moreover, m0
has thus been shown to be identical to any A-vague cluster point of ðmsÞs AS.
Since the A-vague topology is Hausdor¤, this implies that m0 is actually the

A-vague limit of ðmsÞs AS (cf. [1, Chap. I, § 9, n� 1, cor.]), which completes the

proof. r

13. Proof of Lemma 9

Fix any ðmsÞs AS and ðntÞt AT in MðA; a; gÞ. It follows by standard argu-

ments that

lim
ðs; tÞ AS�T

kms � ntk2 ¼ 0; ð58Þ

where S � T is the directed product of the directed sets S and T (see, e.g.,

[14, Chap. 2, § 3]). Indeed, by the convexity of EðA; a; gÞ,

2kEðA; a; gÞkc kms þ ntkc kmsk þ kntk:

Hence, by (25),

lim
ðs; tÞ AS�T

kms þ ntk2 ¼ 4kEðA; a; gÞk2;

and the parallelogram identity, applied to Rms and Rnt in E, yields (58).

Relation (58) implies that ðmsÞs AS is strongly fundamental. Thus, accord-

ing to Theorem 7, there exists an A-vague cluster point m of ðmsÞs AS and,

moreover, m A EðA;ca; gÞ and ms ! m strongly. This means that MðA; a; gÞ
and M 0ðA; a; gÞ are both nonempty and satisfy inclusion (26).

It is left to prove that ms ! w strongly, where w A M 0ðA; a; gÞ is arbitrarily

given. But then one can choose a net in MðA; a; gÞ, say ðntÞt AT , that converges
to w strongly, and repeated application of (58) gives immediately the desired

conclusion. r

14. Proof of Corollary 6

Note that, under the assumptions made in the corollary, all the require-

ments from Sec. 6 hold true, and so Lemma 9 is applicable.

301Capacities of condensers with countably many plates



Fix ðmsÞs AS A MðA; a; gÞ; then, by Lemma 9, its strong and A-vague cluster

sets have some m0 A EðA;ca; gÞ in common. Taking a subnet if necessary, we

assume that ms ! m0 both strongly and A-vaguely.

Let Aj be closed, CðAjÞ < y, and let gj either be bounded or satisfy the

restriction on the growth, mentioned in Remark 8. Then, applying arguments

similar to those from [24] (see the proof of Lemma 13 therein), we get

ð
gj dm

j
0 ¼ lim

s AS

ð
gj dm

j
s ;

and consequently m0 0 0. Due to the strict positive definiteness of the kernel,

we thus have km0k
2 0 0. When combined with km0k

2 ¼ kEðA; a; gÞk2, this

establishes the required inequality cap A < y. r

15. Potentials of strong cluster points of minimizing nets

15.1. The aim of this section is to provide a description of the potentials of

measures from the class M 0ðA; a; gÞ. As usual, we are keeping all our standing

assumptions, stated in Sec. 6.

Lemma 14. There exist hi A R, i A I , such that, for every w A M 0ðA; a; gÞ,

aiaikðx; wÞd aihigiðxÞ n:e: in Ai; i A I ; ð59Þ
X
i A I

aihi ¼ kEðA; a; gÞk2: ð60Þ

These hi, i A I , are uniquely determined and can be given by either of the

formulas

hi ¼ kðz i; zÞ; ð61Þ

hi ¼ lim
s AS

kðm i
s; msÞ; ð62Þ

where z A MðA; a; gÞ and ðmsÞs AS A MðA; a; gÞ are arbitrarily chosen.

Proof. Throughout the proof, we shall assume every net of the class

MðA; a; gÞ to be strongly bounded, which certainly involves no loss of gen-

erality.

Fix z A MðA; a; gÞ and choose ðmtÞt AT A MðA; a; gÞ that converges A-

vaguely to z. We begin by showing that, for every i A I ,

kðz i; zÞ ¼ lim
t AT

kðm i
t ; mtÞ: ð63Þ
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Since, by Corollary 16, km i
tk is bounded from above on T (say by M1), while

m i
t ! z i vaguely, the property (CW) yields that m i

t approaches z i also weakly.

Hence, for every e > 0,

jkðz i � m i
t ; zÞj < e

if t A T is su‰ciently large. Furthermore, by the Cauchy-Schwarz inequality,

jkðm i
t ; zÞ � kðm i

t ; mtÞj ¼ jkðm i
t ;Rz� RmtÞjcM1kz� mtk; t A T :

Since, by Lemma 9, mt ! z strongly, the last two relations combined give (63).

We next proceed by proving that hi, i A I , defined by means of (61), satisfy

both (59) and (60), where w A M 0ðA; a; gÞ is arbitrarily given. Indeed, since

X
i A I

aikðz i; zÞ ¼ kzk2 ¼ kEðA; a; gÞk2;

identity (60) follows. To establish (59), we assume, on the contrary, that there

exist j A I and a set Ej HAj of interior capacity nonzero such that

ajajkðx; wÞ < ajhjgjðxÞ for all x A Ej: ð64Þ

Then one can choose n A Eþ with compact support so that SðnÞHEj andÐ
gj dn ¼ aj. Integrating the inequality in (64) with respect to n gives

aj½kðw; nÞ � hj � < 0: ð65Þ

To get a contradiction, for every h A ð0; 1� we write

~mm i
t :¼

m
j
t � hðm j

t � nÞ if i ¼ j;

m i
t otherwise:

(

Clearly,

~mmt :¼
X
i A I

ai ~mm
i
t A E0ðA; a; gÞ; t A T ;

and consequently

kEðA; a; gÞk2 c k~mmtk
2 ¼ kmtk

2 � 2ajhkðmt; m
j
t � nÞ þ h2km j

t � nk2: ð66Þ

The coe‰cient of h2 is bounded from above on T (say by M0), while,

according to Lemma 9, mt ! w strongly. Combining (61), (63) and then

substituting the result obtained into (66) therefore gives

0cM0h
2 þ 2ajh½kðw; nÞ � hj�:

By letting here h ! 0, we arrive at a contradiction to (65), which proves (59).
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To establish the uniqueness statement, consider some other h 0
i , i A I , satis-

fying both (59) and (60). Then they are necessarily finite and, for every i,

aiaikðx; wÞdmaxfaihi; aih 0
iggiðxÞ n:e: in Ai; ð67Þ

which is seen from Lemma 10. Since m i
t is concentrated on Ai and has finite

energy and compact support, [10, Lemma 2.3.1] shows that the inequality in

(67) holds m i
t -a.e. in X. Integrating it with respect to m i

t and then summing up

over all i A I , in view of
Ð
gi dm

i
t ¼ ai we have

kðmt; wÞd
X
i A I

maxfaihi; aih 0
ig; t A T :

Passing here to the limit as t ranges over T , we obtain

kwk2 ¼ lim
t AT

kðmt; wÞd
X
i A I

maxfaihi; aih 0
igd

X
i A I

aihi ¼ kEðA; a; gÞk2

and, hence, maxfaihi; aih 0
ig ¼ aihi for all i A I , since the extreme left and right

parts of this chain of inequalities are equal. Applying the same arguments

again, but with the roles of hi and h 0
i reversed, we get hi ¼ h 0

i , i A I , as claimed.

What is left is to show that hi can be written in the form (62), where

ðmsÞs AS A MðA; a; gÞ is arbitrarily given. By Corollary 16, kðm i
s; msÞ is bounded

on S. Choose a cluster point h0i of fkðm i
s; msÞ : s A Sg; then, in consequence of

Lemma 12, one can select an A-vaguely convergent subnet ðmdÞd AD of ðmsÞs AS
such that limd AD kðm i

d ; mdÞ ¼ h0i . However, what has already been proved

yields h0i ¼ hi. Since this means that any cluster point of the net kðm i
s; msÞ,

s A S, coincides with hi, the desired relation (62) follows. r

15.2. From now on, hi ¼: hiðA; a; gÞ, i A I , will always denote the numbers

appeared in Lemma 14. They are uniquely determined by relation (59), where

w A M 0ðA; a; gÞ is arbitrarily chosen, taken together with (60).

This statement on uniqueness can actually be strengthened as follows.

Corollary 17. Given w A M 0ðA; a; gÞ, choose h 0
i A R, i A I , so that

X
i A I

aih
0
i d kEðA; a; gÞk2:

If, moreover, (59) hold for h 0
i in place of hi , then h 0

i ¼ hiðA; a; gÞ for all i A I .

Proof. This follows in the same manner as the uniqueness statement in

Lemma 14. r

The following assertion is specifying Lemma 14 for a compact condenser

K.

304 Natalia Zorii



Corollary 18. Let A ¼ K be compact. For every lK A SðK; a; gÞ, we

have

aiaikðx; lKÞd aikðl i
K; lKÞgiðxÞ n:e: in Ki; ð68Þ

and hence

aikðx; lKÞ ¼ kðl i
K; lKÞgiðxÞ l i

K-a:e: in X: ð69Þ

Proof. It follows from (28) and (61) that hiðK; a; gÞ ¼ kðl i
K; lKÞ, which

leads to (68) when substituted into (59). Since l i
K has finite energy and is

supported by Ki, the inequality in (68) holds l i
K-a.e. in X. Hence, (69) must

be true, for if not, then we would arrive at a contradiction by integrating the

inequality in (68) with respect to l i
K. r

16. Potentials of A-vague cluster points of minimizing nets

In this section we restrict ourselves to measures x of the class M0ðA; a; gÞ.
It is clear from Corollary 8 that their potentials admit all the properties

described in Lemma 14 (see also Corollary 17). Our purpose is to show that,

under proper additional restrictions on k, that description can be sharpened as

follows.

Lemma 15. In the case where I� 0q, assume moreover that kðx; yÞ is

continuous on Aþ � A�, while kð�; yÞ ! 0 (as y ! y) uniformly on compact

sets. Given x A M0ðA; a; gÞ, for all i A I we have

aiaikðx; xÞd aikðx i; xÞgiðxÞ n:e: in Ai; ð70Þ

aiaikðx; xÞc aikðx i; xÞgiðxÞ for all x A Sðx iÞ; ð71Þ

and hence

aikðx; xÞ ¼ kðx i; xÞgiðxÞ n:e: in Ai VSðx iÞ:

Proof. By definition, one can choose lK A SðK; a; gÞ such that x is an A-

vague cluster point of the net ðlKÞK A fKgA . Since, in consequence of Lemma 6,

this net belongs to MðA; a; gÞ, from (61) and (62) we get

hi ¼ kðx i; xÞ ¼ lim
K A fKgA

kðl i
K; lKÞ; i A I :

Substituting this into (59) with x in place of w gives (70) as required.

To establish (71), we fix i (say i A Iþ) and x0 A Sðx iÞ. Without loss of

generality it can certainly be assumed that

lK ! x A-vaguely: ð72Þ
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Because of (69) and (72), there is xK A Sðl i
KÞ with the properties

xK ! x0 as K " A; ð73Þ

aikðxK; lKÞ ¼ kðl i
K; lKÞgiðxKÞ:

Taking into account that, by [10, Lemma 2.2.1], the map ðx; nÞ 7! kðx; nÞ is

lower semicontinuous on the product space X�Mþ (where Mþ is equipped

with the vague topology), we conclude from what has just been shown that the

desired relation (71) will follow once we prove

kðx0;Rx�Þ ¼ lim
K A fKgA

kðxK;Rl�K Þ: ð74Þ

The case we are thus left with is I� 0q. Then, according to our

standing assumptions, (22) holds, and therefore there is q A ð0;yÞ such that

Rl�K ðXÞc q for all K A fKgA: ð75Þ

Since, by (72) and Lemma 2, Rl�K ! Rx� vaguely, from Lemma 3 we also get

Rx�ðXÞc q: ð76Þ

Fix e > 0. Under the assumptions of the lemma, one can choose a

compact neighborhood Wx0 of the point x0 in Aþ and a compact neighborhood

F of Wx0 in X such that F� :¼ F VA� is nonempty and

kðx; yÞj j < q�1e for all ðx; yÞ A Wx0 � {F : ð77Þ

In the rest of the proof, ~{{ and ~qq denote respectively the complement and

the boundary of a set relative to A� (where A� is treated as a topological

subspace of X). Having observed that kj
Wx0

�A� is continuous, we proceed by

constructing a function j A C0ðWx0 � A�Þ that admits the properties

jjWx0
�F�

¼ kjWx0
�F�

; ð78Þ

jjðx; yÞjc q�1e for all ðx; yÞ A Wx0 � ~
{{F�: ð79Þ

To this end, we consider a compact neighborhood V� of F� in A� and

write

f :¼ k on Wx0 � ~qqF�;

0 on Wx0 � ~qqV�:

(

Note that E :¼ ðWx0 � ~qqF�ÞU ðWx0 � ~qqV�Þ is a compact subset of the Hausdor¤

and compact, hence normal, space Wx0 � V� and f is continuous on E. By

using the Tietze-Urysohn extension theorem, we deduce from (77) that there

is a continuous function f̂f : Wx0 � V� ! ½�eq�1; eq�1� such that f̂f jE ¼ f jE .
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Thus, the function in question can be defined as follows:

j :¼
k on Wx0 � F�;

f̂f on Wx0 � ðV�nF�Þ;
0 on Wx0 � ~

{{V�:

8><
>:

Furthermore, since j is continuous on Wx0 � A� and has compact support,

one can choose a compact neighborhood Ux0 of x0 in Wx0 so that

jðx; yÞ � jðx0; yÞj j < q�1e for all ðx; yÞ A Ux0 � A�: ð80Þ

Therefore, if n A MþðA�Þ is an arbitrary measure with nðXÞc q, then, in

consequence of (77)–(80), for all x A Ux0 we get

jkðx; nj
{F Þjc e; ð81Þ

kðx; njF Þ ¼
ð
jðx; yÞdðn� nj

{F ÞðyÞ; ð82Þð
jðx; yÞdnj

{F ðyÞ
����

����c e; ð83Þð
½jðx; yÞ � jðx0; yÞ�dnðyÞ

����
����c e: ð84Þ

Finally, let us choose K0 A fKgA so that for all K that follow K0 we have

xK A Ux0 and ð
jðx0; yÞdðRl�K � Rx�ÞðyÞ

����
���� < e;

such a K0 exists by reason of (72) and (73).

Applying now (81)–(84) to each of the measures Rl�K and Rx�, which is

possible due to (75) and (76), for all K that follow K0 we therefore obtain

jkðxK;Rl�K Þ � kðx0;Rx�Þjc jkðxK;Rl�K jF Þ � kðx0;Rx�jF Þj þ 2e

c

ð
jðxK; yÞdRl�K ðyÞ �

ð
jðx0; yÞdRx�ðyÞ

����
����þ 4e

c

ð
½jðxK; yÞ � jðx0; yÞ�dRl�K ðyÞ

����
����

þ
ð
jðx0; yÞdðRl�K � Rx�ÞðyÞ

����
����þ 4e

c eþ eþ 4e ¼ 6e;

and (74) follows by letting e ! 0. The proof is complete. r
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17. Proof of Theorems 2 and 3

We begin by showing that

capðA; a; gÞc kĜGðA; a; gÞk2: ð85Þ

To this end, kĜGðA; a; gÞk2 can certainly be assumed to be finite. Then there

are n A ĜGðA; a; gÞ and m A E0ðA; a; gÞ, the existence of m being clear from (19)

and Corollary 3. By [10, Lemma 2.3.1], the inequality in (29) holds m i-a.e. in

X. Integrating it with respect to m i and then summing up over all i A I , we get

kðn; mÞd
X
i A I

ciðnÞ;

hence kðn; mÞd 1 in consequence of (30), and finally

knk2kmk2 d 1

by the Cauchy-Schwarz inequality. The last relation, being valid for arbitrary

n A ĜGðA; a; gÞ and m A E0ðA; a; gÞ, implies (85), which in turn immediately yields

Theorem 2 provided cap A ¼ y.

We are thus left with establishing both Theorems 2 and 3 in the case where

cap A < y. Then the EðA; a cap A; gÞ-problem can be considered as well.

Taking (8) and (24) into account, we deduce from Lemmas 9 and 14 with a

replaced by a cap A that, for every w A M 0ðA; a cap A; gÞ,

kwk2 ¼ cap A ð86Þ

and there are unique ~hhi A R, i A I , such that

aiaikðx; wÞd ~hhigiðxÞ n:e: in Ai; i A I ; ð87Þ
X
i A I

~hhi ¼ 1: ð88Þ

Actually,

~hhi ¼ ai½cap A��1hiðA; a cap A; gÞ; i A I ; ð89Þ

where hiðA; a cap A; gÞ, i A I , are the numbers uniquely determined in Sec. 15.

Using Lemma 10 and the fact that the potentials of equivalent in E

measures coincide n.e. in X, we conclude from (87) and (88) that

M 0
EðA; a cap A; gÞH ĜGðA; a; gÞ:

Together with (85) and (86), this implies that, for every s A M 0
EðA; a cap A; gÞ,

cap A ¼ ksk2 d kĜGðA; a; gÞk2 d cap A;

which completes the proof of Theorem 2.
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The last two relations also yield M 0
EðA; a cap A; gÞH ĜGðA; a; gÞ. As both

the sides of this inclusion are equivalence classes in E (see Lemma 11), they

must be equal, and (32) follows.

Applying Corollary 17 for a cap A in place of a, we deduce from (32)

that ciðôoÞ, i A I , satisfying (29) and (30) for n ¼ ôo A ĜGðA; a; gÞ, are uniquely

determined, do not depend on the choice of ôo, and are actually equal to ~hhi.

Therefore, substituting (61) and, subsequently, (62) for a cap A in place of a

into (89), we get (33) and (34). This proves Theorem 3. r

18. Proof of Theorem 5

We start by observing that DðA; a; gÞ is nonempty, contained in an

equivalence class in EðAÞ, and satisfies the inclusions

DðA; a; gÞHMðA; a cap A; gÞHM 0ðA; a cap A; gÞVEðA;ca cap A; gÞ: ð90Þ

Indeed, this follows from (41), Corollary 8, and Lemma 9, the last two being

taken for a cap A in place of a.

Substituting (39) into (90) gives (42) as required. Since, by (42), every

g A DðA; a; gÞ is a minimizer in the GðA; a; gÞ-problem, relations (43) and (44)

are obtained directly from Theorems 3 and 4 in view of Definition 6. To show

that CiðA; a; gÞ can be given by means of (45), one only needs to substitute g

instead of z into (33)—which is possible due to (90)—and to use Corollary 9.

Assume for a moment that, if I� 0q, then the kernel kðx; yÞ is con-

tinuous on Aþ � A�, while kð�; yÞ ! 0 (as y ! y) uniformly on compact sets.

To establish (46), it su‰ces to apply Lemma 15 (with a cap A in place of a)

to g, which can be done because of (41), and to substitute (45) into the result

obtained.

To prove that DðA; a; gÞ is A-vaguely compact, fix ðgsÞs AS HDðA; a; gÞ.
In consequence of (42) and Lemma 12, this net is A-vaguely relatively compact.

Let g0 denote one of its A-vague cluster points, and let ðgtÞt AT be a subnet of

ðgsÞs AS that converges A-vaguely to g0. In view of (41), the proof will be

completed once we show that

g0 A M0ðA; a cap A; gÞ: ð91Þ

According to (41), for every t A T one can choose a subnet ðKstÞst ASt
of

the net ðKÞK A fKgA and lst A SðKst ; a cap A; gÞ for all st A St such that ðlstÞst ASt

converges A-vaguely to gt. Consider the Cartesian product
Q
fSt : t A Tg—

that is, the collection of all functions c on T with cðtÞ A St, and let D denote

the directed product T �
Q
fSt : t A Tg (see, e.g., [14, Chap. 2, § 3]). For any

given ðt;cÞ A D, write

Kðt;cÞ :¼ KcðtÞ and lðt;cÞ :¼ lcðtÞ:
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Then the theorem on iterated limits from [14, Chap. 2, § 4] yields that the

net ðlðt;cÞÞðt;cÞ AD converges A-vaguely to g0. Since, as is seen from the above

construction, ðKðt;cÞÞðt;cÞ AD forms a subnet of ðKÞK A fKgA , this proves (91).

r

19. Proof of Proposition 2

Consider n A EðAÞ and bi A R, i A I , satisfying both (47) and (48), and fix

arbitrarily gA A DðA; a; gÞ and ðmtÞt AT A MðA; a cap A; gÞ. Since m i
t is concen-

trated on Ai and has finite energy and compact support, the inequality in (47)

holds m i
t -a.e. in X. Integrating it with respect to m i

t and then summing up over

all i A I , in view of (43) and (48) we obtain

2kðmt; nÞd kgAk
2 þ knk2; t A T :

But ðmtÞt AT converges to gA in the strong topology of the semimetric space

EðAÞ, which is clear from (90) and Lemma 9 with a cap A instead of a.

Therefore, passing in the preceding relation to the limit through T , we get

kn� gAk
2 ¼ 0;

which is a part of the conclusion of the proposition.

In turn, the last relation implies that the right-hand side in (48) is in fact

equal to 1 and, as well, that n A M 0ðA; a cap A; gÞ. Since, by Theorem 3, the

latter means that Rn A ĜGðA; a; gÞ, the claimed relation (49) follows. r

20. Proof of Theorem 6

To establish (50), fix m A EðA; a; gÞ. Then either gi; inf > 0 for all i, and

consequently m iðXÞ < y, or X is countable at infinity; in any case, every Ai is

contained in a countable union of m i-integrable sets. Therefore, by Proposi-

tions 4.14.1 and 4.14.6 from [8] (see also Appendix in [26]),ð
gi dm

i ¼ lim
n AN

ð
gi dm

i
An
; i A I ;

kðm i; m jÞ ¼ lim
n AN

kðm i
An
; m j

An
Þ; i; j A I ;

where m i
An

denotes the trace of m i upon Ai
n. Applying the same arguments as

in the proof of Lemma 6, but now based on the preceding two relations instead

of (11) and (12), we arrive at (50) as required.

In view of (19) and (50), capðAn; a; gÞ, n A N, can certainly be assumed to

be nonzero. Suppose moreover that capðA; a; gÞ is finite; then, by (9), so is

capðAn; a; gÞ. Hence, according to Theorem 5, there exists

gn :¼ gAn
A DðAn; a; gÞ: ð92Þ
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Observe that Rgn is a minimizer in the ĜGðAn; a; gÞ-problem, which is clear

from (32), (39), and (42). Since, furthemore, ĜGðAnþ1; a; gÞH ĜGðAn; a; gÞ, ap-

plication of Lemma 5 to H ¼ ĜGðAn; a; gÞ, n ¼ Rgnþ1, and l ¼ Rgn gives

kgnþ1 � gnk
2
c kgnþ1k

2 � kgnk
2:

Also note that kgnk
2, n A N, is a Cauchy sequence in R, because, as a result of

(50), its limit exists and is finite. Combined with the preceding inequality, this

proves that ðgnÞn AN is a strong Cauchy sequence in EðAÞ.
Besides, since cap An c cap A, (42) yields ðgnÞn AN HEðA;ca cap A; gÞ.

Hence, by Theorem 7, there exists an A-vague cluster point g of ðgnÞn AN and,

moreover, gn ! g strongly. Let ðgtÞt AT denote a subnet of the sequence

ðgnÞn AN that converges A-vaguely and strongly to g. We next proceed by

showing that

g A DðA; a; gÞ: ð93Þ

For every t A T , consider the filtering family fKtgAt
of all compact con-

densers Kt 0At. Then, by (92), there exist a subnet ðKstÞst ASt
of ðKtÞKt A fKtgAt

and

lst A SðKst ; a cap Kst ; gÞ such that ðlstÞst ASt
converges both strongly and A-

vaguely to gt. Consider the Cartesian product
Q
fSt : t A Tg—that is, the

collection of all functions c on T with cðtÞ A St, and let D denote the directed

product T �
Q
fSt : t A Tg. Given ðt;cÞ A D, write

Kðt;cÞ :¼ KcðtÞ and lðt;cÞ :¼ lcðtÞ:

Then the theorem on iterated limits from [14, Chap. 2, § 4] yields that the net

ðlðt;cÞÞðt;cÞ AD converges both strongly and A-vaguely to g. Since ðKðt;cÞÞðt;cÞ AD
forms a subnet of ðKÞK A fKgA , this proves (93) as required.

What is finally left is to prove (51). By Corollary 14, for every n A N one

can choose a compact condenser K0
n 0An so that

jCiðAn; a; gÞ � CiðK0
n ; a; gÞj < n�1; i A I :

This K0
n can be chosen so large that the sequence obtained, ðK0

nÞn AN, forms a

subnet of ðKÞK A fKgA ; therefore, repeated application of Corollary 14 yields

lim
n AN

CiðK0
n ; a; gÞ ¼ CiðA; a; gÞ:

This leads to (51) when combined with the preceding relation. r
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