On meromorphic functions sharing two one-point sets and two three-point sets

Yusei Sekitani and Manabu Shirosaki
(Received March 25, 2009)
(Revised August 17, 2009)

Abstract

For two meromorphic functions sharing two one-point sets and two threepoint sets CM, we consider when one of them is a Möbius transform of the other.

1. Introduction

For nonconstant meromorphic functions f and g on \boldsymbol{C} and a finite set S in $\hat{\boldsymbol{C}}=\boldsymbol{C} \cup\{\infty\}$, we say that f and g share $S \mathrm{CM}$ (counting multiplicities) if $f^{-1}(S)=g^{-1}(S)$ and if for each $z_{0} \in f^{-1}(S)$ the two functions $f-f\left(z_{0}\right)$ and $g-g\left(z_{0}\right)$ have the same multiplicity of zero at z_{0}, where the notations $f-\infty$ and $g-\infty$ mean $1 / f$ and $1 / g$, respectively. In particular, if S is a one-point set $\{a\}$, then we say also that f and g share $a \mathrm{CM}$.

In $[\mathrm{N}], \mathrm{R}$. Nevanlinna showed the following:
Theorem 1. Let f and g be two distinct nonconstant meromorphic functions on \boldsymbol{C} and let a_{1}, \ldots, a_{4} be four distinct points in $\hat{\boldsymbol{C}}$. If f and g share $a_{1}, \ldots, a_{4} C M$, then f is a Möbius transform of g, i.e., there exists a Möbius transformation T such that $f=T \circ g$, and there exists a permutation σ of $\{1,2,3,4\}$ such that $a_{\sigma(3)}, a_{\sigma(4)}$ are Picard exceptional values of f and g and the cross ratio $\left(a_{\sigma(1)}, a_{\sigma(2)}, a_{\sigma(3)}, a_{\sigma(4)}\right)=-1$.

Also, in [7], Tohge considered two meromorphic functions sharing $1,-1$, ∞ and a two-point set containing none of them.

Theorem 2. Let f and g be two nonconstant meromorphic functions on \boldsymbol{C} sharing $1,-1, \infty$ and a two-point set $S=\{a, b\} C M$, respectively, where $a, b \neq$ $1,-1, \infty$. If $a+b \neq 0, a b \neq 1, a+b \neq 2, a+b \neq-2,(a+1)(b+1) \neq 4$ and $(a-1)(b-1) \neq 4$, then $f=g$. Otherwise one of $f+g=0, f g=1, f+g=2$, $f+g=-2,(f+1)(b+1)=4$ and $(f-1)(g-1)=4$ holds.

[^0]By Tohge's result, we can get a uniqueness theorem of meromorphic functions sharing three values and one two-point set CM since given three points are mapped to $1,-1, \infty$, respectively, by a suitable Möbius transformation. For a finite set S, we denote by $\# S$ the number of elements of S.

Corollary 1. Let S_{1}, \ldots, S_{4} be pairwise disjoint subsets in $\hat{\boldsymbol{C}}$ with $\# S_{1}=\# S_{2}=\# S_{3}=1$ and $\# S_{4}=2$. If two nonconstant meromorphic functions f and g on C share $S_{1}, \ldots, S_{4} C M$, respectively, then f is a Möbius transform of g.

Also, by Theorem 1.2 in [6] and its proof, we see
Theorem 3. Let S_{1}, \ldots, S_{4} be pairwise disjoint subsets in $\hat{\boldsymbol{C}}$ with $\# S_{1}=\# S_{2}=1$ and $\# S_{3}=\# S_{4}=2$. If two nonconstant meromorphic functions f and g on C share $S_{1}, S_{2}, S_{3}, S_{4} C M$, respectively, then f is a Möbius transform of g.

On the other hand, in [5], the second author gave two meromorphic functions sharing $0,1, \infty$ and a three-point set with a certain specific property which are not transformed to each other by any Möbius transformation.

Example. Let α be an entire function without zeros, and consider the two polynomials; (i) $P(z)=z^{2}(z-1)$ and (ii) $P(z)=z(z-1)^{2}$. For (i) put $f=\frac{\alpha(\alpha+1)}{\alpha^{2}+\alpha+1}$ and $g=\frac{\alpha+1}{\alpha^{2}+\alpha+1}$, and for (ii) put $f=\frac{1}{\alpha^{2}+\alpha+1}$ and $g=\frac{\alpha^{2}}{\alpha^{2}+\alpha+1}$. It is easy to see that there exists no Möbius transformation T such that $f=T \circ g$. By simple calculation they share 0,1 and $\infty \mathrm{CM}$, and we have $P(f)=P(g)$ in each cases. Hence f and g share the zero sets of $P(z)+c$ CM for any complex number c. The functions f and g share infinitely many such three-point sets, but the sets are very restricted.

How about two meromorphic functions sharing two one-point sets and two three-point sets? In this paper, we consider two meromorphic functions f and g on \boldsymbol{C} sharing two one-point sets and two three-point sets CM. If we study whether there is a Möbius transformation T such that $f=T \circ g$, it is enough to consider the case where the one-point sets are $\{0\}$ and $\{\infty\}$.

Theorem 4. Let S_{1} and S_{2} be two disjoint three-point subsets not containing 0 in \boldsymbol{C} defined by $P_{1}(z)=z^{3}+a_{1} z^{2}+b_{1} z+c_{1}=0$ and $P_{2}(z)=$ $z^{3}+a_{2} z^{2}+b_{2} z+c_{2}=0$, respectively. Assume (C1) $a_{1} \neq a_{2}$ or both $b_{1} \neq b_{2}$ and $c_{1} \neq c_{2}$, and (C 2$) c_{1} b_{2} \neq b_{1} c_{2}$ or both $c_{1} a_{2} \neq a_{1} c_{2}$ and $c_{1} \neq c_{2}$. If two nonconstant meromorphic functions f and g on C share $0, \infty, S_{1}, S_{2} C M$, respectively, then f is a Möbius transform of g.

Remark 1. Take the transformation $w=1 / z$ which interchanges 0 and ∞, then $P_{j}(z)$ becomes $c_{j}\left\{w^{3}+\left(b_{j} / c_{j}\right) w^{2}+\left(a_{j} / c_{j}\right) w+\left(1 / c_{j}\right)\right\}(j=1,2)$. Hence, $(\mathrm{C} 2)$ is the same as $(\mathrm{C} 1)$ for these polynomials.

Corollary 2. Let S_{1}, \ldots, S_{4} be pairwise disjoint subsets in $\hat{\boldsymbol{C}}$ with $\# S_{1}=\# S_{2}=3$ and $\# S_{3}=\# S_{4}=1$. Assume that for any Möbius transformation T mapping $S_{3} \cup S_{4}$ to $\{0, \infty\}, \quad \xi_{1}+\eta_{1}+\zeta_{1} \neq \xi_{2}+\eta_{2}+\zeta_{2}$, or both $\xi_{1} \eta_{1}+\eta_{1} \zeta_{1}+\zeta_{1} \xi_{1} \neq \xi_{2} \eta_{2}+\eta_{2} \zeta_{2}+\zeta_{2} \xi_{2}$ and $\xi_{1} \eta_{1} \zeta_{1} \neq \xi_{2} \eta_{2} \zeta_{2}$, where $T\left(S_{j}\right)=$ $\left\{\xi_{j}, \eta_{j}, \zeta_{j}\right\}(j=1,2)$. If two nonconstant meromorphic functions f and g on C share $S_{1}, S_{2}, S_{3}, S_{4} C M$, respectively, then f is a Möbius transform of g.

2. Representations of rank N and some lemmas

In this section we introduce the definition of representations of rank N. Let G be a torsion-free abelian multiplicative group, and consider a q-tuple $A=\left(a_{1}, \ldots, a_{q}\right)$ of elements a_{i} in G.

Definition 1. Let N be a positive integer. We call integers μ_{j} representations of rank N of a_{j} if

$$
\begin{equation*}
\prod_{j=1}^{q} a_{j}^{\varepsilon_{j}}=\prod_{j=1}^{q} a_{j}^{\varepsilon_{j}^{\prime}} \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{j=1}^{q} \varepsilon_{j} \mu_{j}=\sum_{j=1}^{q} \varepsilon_{j}^{\prime} \mu_{j} \tag{2.2}
\end{equation*}
$$

are equivalent for any integers $\varepsilon_{j}, \varepsilon_{j}^{\prime}$ with $\sum_{j=1}^{q}\left|\varepsilon_{j}\right| \leq N$ and $\sum_{j=1}^{q}\left|\varepsilon_{j}^{\prime}\right| \leq N$.
Remark 2. For the existence of representations of rank N, see [5]. However, according to the construction of them in [5], (2.1) always implies (2.2) for any integers ε_{j}, ε_{j}^{\prime}. Hence, in Definition 2.1, it is significant that (2.2) implies (2.1) for any integers $\varepsilon_{j}, \varepsilon_{j}^{\prime}$ with $\sum_{j=1}^{q}\left|\varepsilon_{j}\right| \leq N$ and $\sum_{j=1}^{q}\left|\varepsilon_{j}^{\prime}\right| \leq N$.

We introduce the following lemma due to Borel, whose proof can be found, for example, on p. 186 of [La].

Lemma 1. If entire functions $\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n}$ without zeros satisfy

$$
\alpha_{0}+\alpha_{1}+\cdots+\alpha_{n}=0,
$$

then for each $j=0,1, \ldots, n$ there exists some $k \neq j$ such that α_{j} / α_{k} is constant.
Now we investigate the torsion-free abelian multiplicative group $G=\mathscr{E} / \mathscr{C}$, where \mathscr{E} is the abelian group of entire functions without zeros and \mathscr{C} is the
subgroup of all non-zero constant functions. We represent by $[\alpha]$ the element of $\mathscr{E} / \mathscr{C}$ with the representative $\alpha \in \mathscr{E}$. Let $\alpha_{1}, \ldots, \alpha_{q}$ be elements in \mathscr{E}. Take representations μ_{j} of rank N of $\left[\alpha_{j}\right]$. For $\alpha=\prod_{j=1}^{q} \alpha_{j}^{\varepsilon_{j}}$ we define its index $\operatorname{Ind}(\alpha)$ by $\sum_{j=1}^{q} \varepsilon_{j} \mu_{j}$. The indices depend only on $\left[\prod_{j=1}^{q} \alpha_{j}^{\varepsilon_{j}}\right]$ under the condition $\sum_{j=1}^{q}\left|\varepsilon_{j}\right| \leq N$. Trivially $\operatorname{Ind}(1)=0$, and hence $\operatorname{Ind}(\alpha)=0$ if and only if α is constant. Moreover, $\operatorname{Ind}(\alpha)=\operatorname{Ind}\left(\alpha^{\prime}\right)$ is equivalent to that α / α^{\prime} is constant, where $\alpha=\prod_{j=1}^{q} \alpha_{j}^{\varepsilon_{j}}$ and $\alpha^{\prime}=\prod_{j=1}^{q} \alpha_{j}^{\varepsilon_{j}^{\prime}}$ with $\sum_{j=1}^{q}\left|\varepsilon_{j}\right| \leq N$ and $\sum_{j=1}^{q}\left|\varepsilon_{j}^{\prime}\right| \leq N$.

We use the following Lemma in the proof of Theorem 4 which is an application of Lemma 1 (for the proof see [6, Lemma 2.3]).

Lemma 2. Assume that there is a relation

$$
\Psi\left(\alpha_{1}, \ldots, \alpha_{q}\right) \equiv 0
$$

where $\Psi\left(X_{1}, \ldots, X_{q}\right) \in \boldsymbol{C}\left[X_{1}, \ldots, X_{q}\right]$ is a nonconstant polynomial of degree at most N of X_{1}, \ldots, X_{q}. Then each term a $X_{1}^{\varepsilon_{1}} \ldots X_{q}^{\varepsilon_{q}}$ of $\Psi\left(X_{1}, \ldots, X_{q}\right)$ has another term

$$
b X_{1}^{\varepsilon_{1}^{\prime}} \ldots X_{q}^{\varepsilon_{q}^{\prime}}
$$

such that $\alpha_{1}^{\varepsilon_{1}} \ldots \alpha_{q}^{\varepsilon_{q}}$ and $\alpha_{1}^{\varepsilon_{1}^{\prime}} \ldots \alpha_{q}^{\varepsilon_{q}^{\prime}}$ have the same indices, where a and b are nonzero constants.

We close this section by introducing the theorem of completely multiple values and a generalization of Theorem 1.

Let f be a nonconstant meromorphic function, and let c be a point in $\hat{\boldsymbol{C}}$. If each zero of $f-c$ has multiplicity greater than 1 , then we call c a completely multiple value of f. For meromorphic functions defined on \boldsymbol{C} we have from [4, Theorem E] the following:

Lemma 3. (i) A nonconstant meromorphic function on \boldsymbol{C} has at most four completely multiple values in $\hat{\boldsymbol{C}}$.
(ii) A nonconstant entire function has at most two completely multiple values in \boldsymbol{C}.
(iii) A nonconstant entire function without zeros has no completely multiple values in $\boldsymbol{C} \backslash\{0\}$.

We give a generalization of Theorem 1 which is a constant target version of Theorem 1 of [2].

Lemma 4. Let f and g be two nonconstant meromorphic functions on C. Let a_{1}, \ldots, a_{4} be four distinct points in $\hat{\boldsymbol{C}}$ and let b_{1}, \ldots, b_{4} be four distinct
points in $\hat{\boldsymbol{C}}$. If $f-a_{j}$ and $g-b_{j}$ share zero $C M(j=1, \ldots, 4)$, then f is a Möbius transform of g.

3. Proof of Theorem 4

We give a proof by contradiction. Let us assume that
(NM) f is not any Möbius transform of g.
In particular, $f \neq g$.
By assumption there exist entire functions without zeros $\alpha_{0}, \alpha_{1}, \alpha_{1}$ such that

$$
\begin{equation*}
f=\alpha_{0} g \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
f^{3}+a_{j} f^{2}+b_{j} f+c_{j}=\alpha_{j}\left(g^{3}+a_{j} g^{2}+b_{j} g+c_{j}\right) \quad(j=1,2) . \tag{3.2}
\end{equation*}
$$

By substituting (3.1) into (3.2) we have

$$
\left(\alpha_{0}^{3}-\alpha_{j}\right) g^{3}+a_{j}\left(\alpha_{0}^{2}-\alpha_{j}\right) g^{2}+b_{j}\left(\alpha_{0}-\alpha_{j}\right) g+c_{j}\left(1-\alpha_{j}\right)=0 \quad(j=1,2)
$$

Consider the resultant R_{0} of these as polynomials of g;

$$
\begin{align*}
R_{0}= & \left|\begin{array}{cccccc}
\alpha_{0}^{3}-\alpha_{1} & a_{1}\left(\alpha_{0}^{2}-\alpha_{1}\right) & b_{1}\left(\alpha_{0}-\alpha_{1}\right) & c_{1}\left(1-\alpha_{1}\right) & 0 & 0 \\
0 & \alpha_{0}^{3}-\alpha_{1} & a_{1}\left(\alpha_{0}^{2}-\alpha_{1}\right) & b_{1}\left(\alpha_{0}-\alpha_{1}\right) & c_{1}\left(1-\alpha_{1}\right) & 0 \\
0 & 0 & \alpha_{0}^{3}-\alpha_{1} & a_{1}\left(\alpha_{0}^{2}-\alpha_{1}\right) & b_{1}\left(\alpha_{0}-\alpha_{1}\right) & c_{1}\left(1-\alpha_{1}\right) \\
\alpha_{0}^{3}-\alpha_{2} & a_{2}\left(\alpha_{0}^{2}-\alpha_{2}\right) & b_{2}\left(\alpha_{0}-\alpha_{2}\right) & c_{2}\left(1-\alpha_{2}\right) & 0 & 0 \\
0 & \alpha_{0}^{3}-\alpha_{2} & a_{2}\left(\alpha_{0}^{2}-\alpha_{2}\right) & b_{2}\left(\alpha_{0}-\alpha_{2}\right) & c_{2}\left(1-\alpha_{2}\right) & 0 \\
0 & 0 & \alpha_{0}^{3}-\alpha_{2} & a_{2}\left(\alpha_{0}^{2}-\alpha_{2}\right) & b_{2}\left(\alpha_{0}-\alpha_{2}\right) & c_{2}\left(1-\alpha_{2}\right)
\end{array}\right| \\
= & \sum_{\substack{0 \leq k+l \leq 3 \\
0 \leq k, l \leq 3}} A_{9 k l} \alpha_{0}^{9} \alpha_{1}^{k} \alpha_{2}^{l}+\sum_{\substack{1 \leq k+l \leq 3 \\
0 \leq k, l \leq 3}} A_{8 k l} \alpha_{0}^{8} \alpha_{1}^{k} \alpha_{2}^{l} \\
& +\sum_{\substack{1 \leq k+l \leq 3 \\
0 \leq k, l \leq 3}} A_{7 k l} \alpha_{0}^{7} \alpha_{1}^{k} \alpha_{2}^{l}+\sum_{\substack{1 \leq k+l \leq 4 \\
0 \leq k, l \leq 3}} A_{6 k l} \alpha_{0}^{6} \alpha_{1}^{k} \alpha_{2}^{l} \\
& +\sum_{\substack{\leq \leq k l l \leq 4 \\
0 \leq k, l \leq 3}} A_{5 k l} \alpha_{0}^{5} \alpha_{1}^{k} \alpha_{2}^{l}+\sum_{\substack{2 \leq k+l \leq 4 \\
0 \leq k, l \leq 3}} A_{4 k l} \alpha_{0}^{4} \alpha_{1}^{k} \alpha_{2}^{l} \\
& +\sum_{\substack{2 \leq k+l \leq 5 \\
0 \leq k, l \leq 3}} A_{3 k l l} \alpha_{0}^{3} \alpha_{1}^{k} \alpha_{2}^{l}+\sum_{\substack{3 \leq k+l \leq 5 \\
0 \leq k, l \leq 3}} A_{2 k l l} \alpha_{0}^{2} \alpha_{1}^{k} \alpha_{2}^{l} \\
& +\sum_{\substack{3 \leq k+l \leq 5 \\
0 \leq k, l \leq 3}} A_{1 k l} \alpha_{0} \alpha_{1}^{k} \alpha_{2}^{l}+\sum_{\substack{3 \leq k+l \leq 6 \\
0 \leq k, l \leq 3}} A_{0 k l} \alpha_{1}^{k} \alpha_{2}^{l} \equiv 0, \tag{3.3}
\end{align*}
$$

where $A_{j k l}$ are complex coefficients. In particular, any of the coefficients $A_{030}=-c_{2}^{3}$ of $\alpha_{1}^{3}, A_{003}=c_{1}^{3}$ of $\alpha_{1}^{3}, A_{930}=c_{1}^{3}$ of $\alpha_{0}^{9} \alpha_{1}^{3}$ and $A_{903}=-c_{2}^{3}$ of $\alpha_{0}^{9} \alpha_{1}^{3}$ are not zero, and the coefficients A_{900} of α_{0}^{9} and A_{033} of $\alpha_{1}^{3} \alpha_{2}^{3}$ are the resultant of P_{1} and P_{2} which is not zero by assumption.

Let $\mu_{0}, \mu_{1}, \mu_{2}$ be representations of $\left[\alpha_{0}\right],\left[\alpha_{1}\right],\left[\alpha_{1}\right]$ of rank 12 . We see $\mu_{0} \neq 0$ by (NM) and assume that $3 \mu_{0}, \mu_{1}, \mu_{2}$ and 0 are distinct.

If $\mu_{0}<0$ and $\mu_{1}, \mu_{2} \geq 0$, then in (3.3), $A_{900} \alpha_{0}^{9}$ is the unique term with the minimal index, which contradicts Lemma 2. If $\mu_{1}<0$ and $\mu_{0}, \mu_{2} \geq 0$, then $A_{030} \alpha_{1}^{3}$ is the unique term with the minimal index, which is a contradiction. In the case that $\mu_{2}<0$ and $\mu_{0}, \mu_{1} \geq 0$ we get the same contradiction. Hence we may assume that all $\mu_{0}, \mu_{1}, \mu_{2}$ are non-negative by taking $-\mu_{j}$ in place of μ_{j} if they all are non-positive.

Consider the case where $0<3 \mu_{0}<\mu_{1}, \mu_{2}$. Note that in (3.3) the ranges of k, l of the summation symbols of the terms containing $\alpha_{0}^{j}(j=0,1, \ldots, 9)$ are $[(11-j) / 3] \leq k+l \leq 3+[(9-j) / 3]$, where $[x]$ is the maximal integer not greater than x for a real number x. For such k, l except $k=l=0, \operatorname{Ind}\left(\alpha_{0}^{j} \alpha_{1}^{k} \alpha_{1}^{l}\right)=$ $j \mu_{0}+k \mu_{1}+l \mu_{2}>(j+3 k+3 l) \mu_{0} \geq(j+3[(11-j) / 3]) \mu_{0} \geq 9 \mu_{0}$. Hence the term $A_{900} \alpha_{0}^{9}$ is the unique one with the minimal index, which is a contradiction.

If $0<\mu_{1}<3 \mu_{0}, \mu_{2}$ or $0<\mu_{2}<3 \mu_{0}, \mu_{1}$, then only $A_{030} \alpha_{1}^{3}$ or $A_{003} \alpha_{2}^{3}$, respectively, has the minimal index, which is a contradiction.

Therefore we conclude that one of $\mu_{1}=3 \mu_{0}, \mu_{2}=3 \mu_{0}, \mu_{1}=\mu_{2}, \mu_{1}=0$ and $\mu_{2}=0$ holds.
(I) The case where $\mu_{1}=0$ or $\mu_{2}=0$.

First we show that $\mu_{1}=0$ and $\mu_{2}=0$ are equivalent.
Assume $\mu_{1}=0$. Then α_{1} is constant. In (3.3), the term $A_{030} \alpha_{1}^{3}$ is a nonzero constant and is the unique term containing neither α_{0} nor α_{2}. Hence there exists another constant term $\alpha_{0}^{j} \alpha_{2}^{l}$. Since $\operatorname{Ind}\left(\alpha_{0}^{j} \alpha_{2}^{l}\right)=j \mu_{0}+l \mu_{2}>0$ for $j>0$, such term must be of $j=0$ and $\mu_{2}=0$. Therefore $\mu_{1}=0$ and $\mu_{2}=0$ are equivalent.

Now we put $\alpha_{1}=C$.
(i) The case where $C=1$.

It follows from $P_{1}(f)=C P_{1}(g)$ that

$$
\begin{equation*}
f^{2}+f g+g^{2}+a_{1}(f+g)+b_{1}=0 . \tag{3.4}
\end{equation*}
$$

Put $E\left(w_{1}, w_{2}\right):=\left\{z \in \boldsymbol{C}:(f(z), g(z))=\left(w_{1}, w_{2}\right)\right.$ or $\left.(f(z), g(z))=\left(w_{2}, w_{1}\right)\right\}$ for $w_{1}, w_{2} \in \boldsymbol{C}$, and set $S_{j}=\left\{\xi_{j}, \eta_{j}, \zeta_{j}\right\} \quad(j=1,2)$.

First we show that $E\left(\xi_{2}, \eta_{2}\right) \neq \varnothing$ implies $E\left(\xi_{2}, \zeta_{2}\right)=\varnothing$ and $E\left(\eta_{2}, \zeta_{2}\right)=\varnothing$. Indeed, if $E\left(\xi_{2}, \eta_{2}\right) \neq \varnothing$, then we have

$$
\begin{equation*}
\xi_{2}^{2}+\xi_{2} \eta_{2}+\eta_{2}^{2}+a_{1}\left(\xi_{2}+\eta_{2}\right)+b_{1}=0 \tag{3.5}
\end{equation*}
$$

and if $E\left(\xi_{2}, \zeta_{2}\right) \neq \varnothing$, then we get

$$
\begin{equation*}
\xi_{2}^{2}+\xi_{2} \zeta_{2}+\zeta_{2}^{2}+a_{1}\left(\xi_{2}+\zeta_{2}\right)+b_{1}=0 \tag{3.6}
\end{equation*}
$$

From (3.5) and (3.6) we obtain $a_{1}=-\left(\xi_{2}+\eta_{2}+\zeta_{2}\right)=a_{2}$. Together with (3.5), this yields $b_{1}=b_{2}$, which contradicts (C 1). Hence at least two of $E\left(\xi_{2}, \eta_{2}\right)$, $E\left(\eta_{2}, \zeta_{2}\right), E\left(\zeta_{2}, \xi_{2}\right)$ are empty. We may assume $E\left(\xi_{2}, \eta_{2}\right)=E\left(\zeta_{2}, \xi_{2}\right)=\varnothing$ by rearranging the elements if necessary. Then f and g share ξ_{2} and $\left\{\eta_{2}, \zeta_{2}\right\}$ CM, and hence by Corollary $1, f$ is a Möbius transform of g, which contradicts (NM).
(ii) The case where $C \neq \pm 1$.

In this case we have $P_{1}(f)=C P_{1}(g)$ and $E\left(\xi_{2}, \xi_{2}\right)=E\left(\eta_{2}, \eta_{2}\right)=$ $E\left(\zeta_{2}, \zeta_{2}\right)=\varnothing$. We put $E_{0}\left(w_{1}, w_{2}\right):=\left\{z \in \boldsymbol{C}:(f(z), g(z))=\left(w_{1}, w_{2}\right)\right\}$ for $w_{1}, w_{2} \in \boldsymbol{C}$. If any of $E_{0}\left(\xi_{2}, \eta_{2}\right), E_{0}\left(\xi_{2}, \zeta_{2}\right), E_{0}\left(\eta_{2}, \zeta_{2}\right)$ are not empty, then we have $P_{1}\left(\xi_{2}\right)=C P_{1}\left(\eta_{2}\right)=C P_{1}\left(\zeta_{2}\right)$ and $P_{1}\left(\eta_{2}\right)=C P_{1}\left(\zeta_{2}\right)$, which deduce a contradiction $C=1$. By the same way at least one of $E_{0}\left(w_{1}, w_{2}\right)$ and $E_{0}\left(w_{2}, w_{1}\right)$ are empty for distinct $w_{1}, w_{2} \in \boldsymbol{C}$.

First assume that $E_{0}\left(\xi_{2}, \eta_{2}\right) \neq \varnothing, E_{0}\left(\xi_{2}, \zeta_{2}\right) \neq \varnothing$. Then all of $E_{0}\left(\eta_{2}, \zeta_{2}\right)$, $E_{0}\left(\eta_{2}, \xi_{2}\right), E_{0}\left(\zeta_{2}, \xi_{2}\right)$ are empty. If $E_{0}\left(\zeta_{2}, \eta_{2}\right) \neq \varnothing$, then we can get a contradiction $C=1$ by the same way as above. Hence in this case, f omits η_{2} and ζ_{2}, and we see from $P_{1}(f)=C P_{1}(g)$ that f omits also zero. It is impossible by the little Picard theorem.

Next we assume that $E_{0}\left(\xi_{2}, \eta_{2}\right) \neq \varnothing, E_{0}\left(\eta_{2}, \zeta_{2}\right) \neq \varnothing$. Then $E_{0}\left(\xi_{2}, \zeta_{2}\right)=$ $E_{0}\left(\eta_{2}, \xi_{2}\right)=E_{0}\left(\zeta_{2}, \eta_{2}\right)=\varnothing$. Therefore $f^{-1}\left(\xi_{2}\right)=g^{-1}\left(\eta_{2}\right), f^{-1}\left(\eta_{2}\right)=g^{-1}\left(\zeta_{2}\right)$, $f^{-1}\left(\zeta_{2}\right)=g^{-1}\left(\xi_{2}\right)$, and hence, by Lemma 4 we see that f is a Möbius transform of g, which contradicts (NM).

In all other cases we can deduce contradictions.
(iii) The case where $C=-1$.

In this case we have $P_{1}(f)=-P_{1}(g)$ and $E\left(\xi_{2}, \xi_{2}\right)=E\left(\eta_{2}, \eta_{2}\right)=$ $E\left(\zeta_{2}, \zeta_{2}\right)=\varnothing$. If any of $E\left(\xi_{2}, \eta_{2}\right), E\left(\eta_{2}, \zeta_{2}\right)$ and $E\left(\zeta_{2}, \xi_{2}\right)$ are not empty, then we have $P_{1}\left(\xi_{2}\right)=-P_{1}\left(\eta_{2}\right)=P_{1}\left(\zeta_{2}\right)=-P_{1}\left(\xi_{2}\right)$, which is a contradiction. Hence we may assume that $E\left(\xi_{2}, \eta_{2}\right)=\varnothing$. Now we have

$$
f^{-1}\left(\zeta_{2}\right)=g^{-1}\left(\xi_{2}\right) \cup g^{-1}\left(\eta_{2}\right), \quad g^{-1}\left(\zeta_{2}\right)=f^{-1}\left(\xi_{2}\right) \cup f^{-1}\left(\eta_{2}\right)
$$

As we have shown above $\mu_{2}=0$ and $\alpha_{2} \equiv-1$ in this case. So, similarly we may assume

$$
f^{-1}\left(\zeta_{1}\right)=g^{-1}\left(\xi_{1}\right) \cup g^{-1}\left(\eta_{1}\right), \quad g^{-1}\left(\zeta_{1}\right)=f^{-1}\left(\xi_{1}\right) \cup f^{-1}\left(\eta_{1}\right)
$$

Since we see that f and g omit 0 by $P_{1}(f)=-P_{1}(g)$, we get by using the second main theorem and the first main theorem of the value distribution theory

$$
\begin{aligned}
3 T(r, f) & \leq \sum_{j=1,2}\left(N\left(r, \frac{1}{f-\xi_{j}}\right)+N\left(r, \frac{1}{f-\eta_{j}}\right)\right)+N\left(r, \frac{1}{f}\right)+S(r, f) \\
& =\sum_{j=1,2} N\left(r, \frac{1}{g-\zeta_{j}}\right)+S(r, f) \leq 2 T(r, g)+S(r, f)
\end{aligned}
$$

and $3 T(r, g) \leq 2 T(r, f)+S(r, g)$ by the same way. They immediately lead to a contradiction.
(II) The case where $\mu_{1}=3 \mu_{0}$ or $\mu_{2}=3 \mu_{0}$.

First we show that $\mu_{1}=3 \mu_{0}$ and $\mu_{2}=3 \mu_{0}$ are equivalent.
Assume $\mu_{1}=3 \mu_{0}$. Then we have $\mu_{2} \neq 0$, otherwise $3 \mu_{0}=\mu_{1}=\mu_{2}=0$ by the case (I), which is a contradiction.

We have denied $0<\mu_{2}<3 \mu_{0}, \mu_{1}$ and hence $\mu_{2} \geq \mu_{1}=3 \mu_{0}$. If $\mu_{2}>3 \mu_{0}$, $A_{903} \alpha_{0}^{9} \alpha_{2}^{3}$ is the unique term with the maximal index, which is a contradiction. So we get also $\mu_{2}=3 \mu_{0}$. Therefore $\mu_{1}=3 \mu_{0}$ and $\mu_{2}=3 \mu_{0}$ are equivalent, and we can deduce contradictions as in the case (I).
(III) The case where $\mu_{1}=\mu_{2}$.

In this case $0<\mu_{1}=\mu_{2}<3 \mu_{0}$ by what we have shown, and α_{2} / α_{1} is a constant. Put $C=\alpha_{2} / \alpha_{1}$, then

$$
\begin{aligned}
(1- & C) f^{3} g^{3}+\left(a_{1}-C a_{2}\right) f^{3} g^{2}+\left(a_{2}-C a_{1}\right) f^{2} g^{3} \\
& +\left(b_{1}-C b_{2}\right) f^{3} g+a_{1} a_{2}(1-C) f^{2} g^{2}+\left(b_{2}-C b_{1}\right) f g^{3} \\
& +\left(c_{1}-C c_{2}\right) f^{3}+\left(b_{1} a_{2}-C a_{1} b_{2}\right) f^{2} g+\left(a_{1} b_{2}-C b_{1} a_{2}\right) f g^{2}+\left(c_{2}-C c_{1}\right) g^{3} \\
& +\left(c_{1} a_{2}-C a_{1} c_{2}\right) f^{2}+b_{1} b_{2}(1-C) f g+\left(a_{1} c_{2}-C c_{1} a_{2}\right) g^{2} \\
& +\left(c_{1} b_{2}-C b_{1} c_{2}\right) f+\left(b_{1} c_{2}-C c_{1} b_{2}\right) g+c_{1} c_{2}(1-C)=0 .
\end{aligned}
$$

If $C \neq 1$, then we see from this equation that f and g have neither zeros nor poles. If $C=1$, then the above equation reduces to

$$
\begin{align*}
& \left(a_{1}-a_{2}\right) f^{2} g^{2}+\left(b_{1}-b_{2}\right) f g(f+g)+\left(c_{1}-c_{2}\right)\left(f^{2}+f g+g^{2}\right) \\
& \quad+\left(b_{1} a_{2}-a_{1} b_{2}\right) f g+\left(c_{1} a_{2}-a_{1} c_{2}\right)(f+g)+\left(c_{1} b_{2}-b_{1} c_{2}\right)=0 . \tag{3.7}
\end{align*}
$$

Then if $a_{1} \neq a_{2}$ and $b_{1} c_{2} \neq c_{1} b_{2}, f$ and g have neither zeros nor poles. In both cases where $C \neq 1$ and where $C=1, a_{1} \neq a_{2}, b_{1} c_{2} \neq b_{2} c_{1}$, by Lemma 1 one of $f^{m} g^{n}$ is constant, where m and n are integers with $0 \leq|m|,|n| \leq 3$. Since f and g are not constant, $m n \neq 0$, and we have $|m| \neq|n|$ by the assumption (NM). Without loss of generality we may assume that $1 \leq|m|<|n| \leq 3$. Then we get
$|m| T(r, f)=|n| T(r, g)+O(1)$. On the other hand by the second fundamental theorem

$$
\begin{aligned}
6 T(r, f) \leq & \sum_{j=1,2}\left(N\left(r, \frac{1}{f-\xi_{j}}\right)+N\left(r, \frac{1}{f-\eta_{j}}\right)+N\left(r, \frac{1}{f-\zeta_{j}}\right)\right) \\
& +N(r, 1 / f)+N(r, f)+S(r, f) \\
= & \sum_{j=1,2}\left(N\left(r, \frac{1}{g-\xi_{j}}\right)+N\left(r, \frac{1}{g-\eta_{j}}\right)+N\left(r, \frac{1}{g-\zeta_{j}}\right)\right) \\
& +N(r, 1 / g)+N(r, g)+S(r, f) \\
\leq & 8 T(r, g)+S(r, f) .
\end{aligned}
$$

These yield $6|n| \leq 8|m|$ which does not hold for any $(|m|,|n|)=(1,2),(1,3)$, $(2,3)$.

Hence $C=1$, and at least one of $a_{1}=a_{2}$ and $b_{1} c_{2}=b_{2} c_{1}$ hold in the case.
By symmetricity we consider only the case where $C=1$ and $a_{1}=a_{2}$. In this case, we have $\alpha_{1}=\alpha_{2}$ and

$$
\begin{aligned}
R_{0} & =\left|\begin{array}{cccccc}
\alpha_{0}^{3}-\alpha_{1} & a_{1}\left(\alpha_{0}^{2}-\alpha_{1}\right) & b_{1}\left(\alpha_{0}-\alpha_{1}\right) & c_{1}\left(1-\alpha_{1}\right) & 0 & 0 \\
0 & \alpha_{0}^{3}-\alpha_{1} & a_{1}\left(\alpha_{0}^{2}-\alpha_{1}\right) & b_{1}\left(\alpha_{0}-\alpha_{1}\right) & c_{1}\left(1-\alpha_{1}\right) & 0 \\
0 & 0 & \alpha_{0}^{3}-\alpha_{1} & a_{1}\left(\alpha_{0}^{2}-\alpha_{1}\right) & b_{1}\left(\alpha_{0}-\alpha_{1}\right) & c_{1}\left(1-\alpha_{1}\right) \\
\alpha_{0}^{3}-\alpha_{1} & a_{1}\left(\alpha_{0}^{2}-\alpha_{1}\right) & b_{2}\left(\alpha_{0}-\alpha_{1}\right) & c_{2}\left(1-\alpha_{1}\right) & 0 & 0 \\
0 & \alpha_{0}^{3}-\alpha_{1} & a_{1}\left(\alpha_{0}^{2}-\alpha_{1}\right) & b_{2}\left(\alpha_{0}-\alpha_{1}\right) & c_{2}\left(1-\alpha_{1}\right) & 0 \\
0 & 0 & \alpha_{0}^{3}-\alpha_{1} & a_{1}\left(\alpha_{0}^{2}-\alpha_{1}\right) & b_{2}\left(\alpha_{0}-\alpha_{1}\right) & c_{2}\left(1-\alpha_{1}\right)
\end{array}\right| \\
& =\left|\begin{array}{cccccc}
\alpha_{0}^{3}-\alpha_{1} & a_{1}\left(\alpha_{0}^{2}-\alpha_{1}\right) & b_{1}\left(\alpha_{0}-\alpha_{1}\right) & c_{1}\left(1-\alpha_{1}\right) & 0 & 0 \\
0 & \alpha_{0}^{3}-\alpha_{1} & a_{1}\left(\alpha_{0}^{2}-\alpha_{1}\right) & b_{1}\left(\alpha_{0}-\alpha_{1}\right) & c_{1}\left(1-\alpha_{1}\right) & 0 \\
0 & 0 & \alpha_{0}^{3}-\alpha_{1} & a_{1}\left(\alpha_{0}^{2}-\alpha_{1}\right) & b_{1}\left(\alpha_{0}-\alpha_{1}\right) & c_{1}\left(1-\alpha_{1}\right) \\
0 & 0 & b_{0}\left(\alpha_{0}-\alpha_{1}\right) & c_{0}\left(1-\alpha_{1}\right) & 0 & 0 \\
0 & 0 & 0 & b_{0}\left(\alpha_{0}-\alpha_{1}\right) & c_{0}\left(1-\alpha_{1}\right) & 0 \\
0 & 0 & 0 & 0 & b_{0}\left(\alpha_{0}-\alpha_{1}\right) & c_{0}\left(1-\alpha_{1}\right)
\end{array}\right| \\
& =\left(\alpha_{0}^{3}-\alpha_{1}\right)^{2}\left|\begin{array}{cccc}
\alpha_{0}^{3}-\alpha_{1} & a_{1}\left(\alpha_{0}^{2}-\alpha_{1}\right) & b_{1}\left(\alpha_{0}-\alpha_{1}\right) & c_{1}\left(1-\alpha_{1}\right) \\
b_{0}\left(\alpha_{0}-\alpha_{1}\right) & c_{0}\left(1-\alpha_{1}\right) & 0 & 0 \\
0 & b_{0}\left(\alpha_{0}-\alpha_{1}\right) & c_{0}\left(1-\alpha_{1}\right) & 0 \\
0 & 0 & \left.\alpha_{0}-\alpha_{1}\right) & c_{0}\left(1-\alpha_{1}\right)
\end{array}\right|
\end{aligned}
$$

$$
\begin{aligned}
& =\left(\alpha_{0}^{3}-\alpha_{1}\right)^{2} \times \\
& \left|\begin{array}{cccc}
\alpha_{0}^{3}-\alpha_{1} & a_{1}\left(\alpha_{0}^{2}-\alpha_{1}\right) & b_{1}\left(\alpha_{0}-\alpha_{1}\right) & c_{1}\left(1-\alpha_{1}\right) \\
b_{0}\left(\alpha_{0}-\alpha_{1}\right) & c_{0}\left(1-\alpha_{1}\right) & 0 & 0 \\
0 & b_{0}\left(\alpha_{0}-\alpha_{1}\right) & c_{0}\left(1-\alpha_{1}\right) & 0 \\
-c_{0} / c_{1}\left(\alpha_{0}^{3}-\alpha_{1}\right) & -a_{1}\left(c_{0} / c_{1}\right)\left(\alpha_{0}^{2}-\alpha_{1}\right) & \left(b_{0}-b_{1} c_{0} / c_{1}\right)\left(\alpha_{0}-\alpha_{1}\right) & 0
\end{array}\right| \\
& =-\left(\alpha_{0}^{3}-\alpha_{1}\right)^{2}\left(1-\alpha_{1}\right)\left|\begin{array}{ccc}
b_{0}\left(\alpha_{0}-\alpha_{1}\right) & c_{0}\left(1-\alpha_{1}\right) & 0 \\
0 & b_{0}\left(\alpha_{0}-\alpha_{1}\right) & c_{0}\left(1-\alpha_{1}\right) \\
-c_{0}\left(\alpha_{0}^{3}-\alpha_{1}\right) & -a_{1} c_{0}\left(\alpha_{0}^{2}-\alpha_{1}\right) & \left(c_{1} b_{0}-b_{1} c_{0}\right)\left(\alpha_{0}-\alpha_{1}\right)
\end{array}\right| \\
& \equiv 0,
\end{aligned}
$$

where $b_{0}=b_{2}-b_{1}, c_{0}=c_{2}-c_{1}$. Since $\alpha_{0}^{3} \not \equiv \alpha_{1}$ and $\alpha_{1} \not \equiv 1$, the final determinant is identically equal to zero. It is expanded as

$$
\begin{aligned}
b_{0}^{2}\left(c_{1} b_{0}\right. & \left.-b_{1} c_{0}\right)\left(\alpha_{0}-\alpha_{1}\right)^{3}-c_{0}^{3}\left(1-\alpha_{1}\right)^{2}\left(\alpha_{0}^{3}-\alpha_{1}\right) \\
& +a_{1} b_{0} c_{0}^{2}\left(1-\alpha_{1}\right)\left(\alpha_{0}-\alpha_{1}\right)\left(\alpha_{0}^{2}-\alpha_{1}\right) \\
= & b_{0}^{2}\left(c_{1} b_{0}-b_{1} c_{0}\right)\left(\alpha_{0}^{3}-3 \alpha_{0}^{2} \alpha_{1}+3 \alpha_{0} \alpha_{1}^{2}-\alpha_{1}^{3}\right) \\
& -c_{0}^{3}\left(\alpha_{0}^{3}-\alpha_{1}-2 \alpha_{0}^{3} \alpha_{1}+2 \alpha_{1}^{2}+\alpha_{0}^{3} \alpha_{1}^{2}-\alpha_{1}^{3}\right) \\
& +a_{1} b_{0} c_{0}^{2}\left(-\alpha_{1}^{3}+\alpha_{1}^{2}+\alpha_{0} \alpha_{1}^{2}+\alpha_{0}^{2} \alpha_{1}^{2}-\alpha_{0} \alpha_{1}-\alpha_{0}^{2} \alpha_{1}-\alpha_{0}^{3} \alpha_{1}+\alpha_{0}^{3}\right) \\
\equiv & 0 .
\end{aligned}
$$

Since $0<\mu_{1}<3 \mu_{0}$, among all terms which appear in the above the term $\alpha_{0}^{3} \alpha_{1}^{2}$ is the unique one with the maximal index. Hence its coefficient $c_{0}=0$, i.e., $c_{1}=c_{2}$, which contradicts (C 1).

Now we have completed the proof.

4. Exceptional cases

In this section we treat the cases which are excluded by Theorem 4; (a) $a_{1}=a_{2}, b_{1}=b_{2}$; (b) $a_{1}=a_{2}, \quad c_{1}=c_{2}$; (c) $c_{1} b_{2}=b_{1} c_{2}, \quad c_{1} a_{2}=a_{1} c_{2}$; (d) $c_{1} b_{2}=b_{1} c_{2}, c_{1}=c_{2}$. The final case is equivalent to that $c_{1}=c_{2}, b_{1}=b_{2}$, and we treat only the cases (a) and (b) since the case (c) is equivalent to the case (a) by symmetricity. For simplicity we write $\alpha=\alpha_{0}$.
(a) The case of $a_{1}=a_{2}, b_{1}=b_{2}$.

In the proof we obtained these on treating $\alpha_{1} \equiv 1$ as a contradiction. In that case we have

$$
\begin{equation*}
\left(f^{2}+f g+g^{2}\right)+a_{1}(f+g)+b_{1}=0 . \tag{4.1}
\end{equation*}
$$

By substituting (3.1) into this we get $\left(\alpha^{2}+\alpha+1\right) g^{2}+a_{1}(\alpha+1) g+b_{1}=0$, and rewrite as

$$
\begin{aligned}
& \left\{2\left(\alpha^{2}+\alpha+1\right) g+a_{1}(\alpha+1)\right\}^{2}=a_{1}^{2}(\alpha+1)^{2}-4 b_{1}\left(\alpha^{2}+\alpha+1\right) \\
& \quad=\left(a_{1}^{2}-4 b_{1}\right) \alpha^{2}+2\left(a_{1}^{2}-2 b_{1}\right) \alpha+\left(a_{1}^{2}-4 b_{1}\right)
\end{aligned}
$$

The entire function α without zeros is nonconstant by (NM). So, since it has no completely multiple values by Lemma $3, a_{1}^{2}-4 b_{1}=0$ or the final side above is a perfect square of α which implies $\left(a_{1}^{2}-2 b_{1}\right)^{2}-\left(a_{1}^{2}-4 b_{1}\right)^{2}=0$, i.e., $b_{1}=0$ or $b_{1}=a_{1}^{2} / 3$.
(1) The case of $b_{1}=a_{1}^{2} / 4$.

Take an entire function β such that $\beta^{2}=\alpha$, and let

$$
g=-\frac{a_{1}}{2\left(\beta^{2}+\beta+1\right)} \quad \text { and } \quad f=-\frac{a_{1} \beta^{2}}{2\left(\beta^{2}+\beta+1\right)}
$$

They satisfy (4.1), but we can see that one of them is not any Möbius transform of the other. In this case the defining polynomials of S_{j} are $z^{3}+a_{1} z^{2}+\frac{a_{1}^{2}}{4} z+c_{j} \quad(j=1,2)$.
(2) The case where $b_{1}=0$.

Let

$$
g=-\frac{a_{1}(\alpha+1)}{\alpha^{2}+\alpha+1} \quad \text { and } \quad f=-\frac{a_{1} \alpha(\alpha+1)}{\alpha^{2}+\alpha+1} .
$$

They satisfy (4.1), but one of them is not any Möbius transformation of the other. In this case the defining polynomials of S_{j} are $z^{3}+a_{1} z^{2}+c_{j}(j=1,2)$.
(3) The case where $b_{1}=a_{1}^{2} / 3$.

Let

$$
g=\frac{a_{1}\left(\omega_{1} \alpha+\omega_{2}\right)}{\alpha^{2}+\alpha+1} \quad \text { and } \quad f=\frac{a_{1} \alpha\left(\omega_{1} \alpha+\omega_{2}\right)}{\alpha^{2}+\alpha+1}
$$

where ω_{1} and ω_{2} are the two roots of $3 z^{2}+3 z+1=0$. Then f and g satisfy (4.1) and there is no Möbius transformation T such that $f=T \circ g$. In this case the defining polynomials of S_{j} are $z^{3}+a_{1} z^{2}+\frac{a_{1}^{2}}{3} z+c_{j}(j=1,2)$.
(b) The case where $a_{1}=a_{2}, c_{1}=c_{2}$.

In the proof we obtained these on treating $\alpha_{2} / \alpha_{1} \equiv 1$ as a contradiction. Moreover note that f and g have no zeros since otherwise $b_{1} c_{2}=c_{1} b_{2}$ by (3.7), and hence $P_{1}=P_{2}$, which is a contradiction. Then we have from (3.7)

$$
\begin{equation*}
f g(f+g)+a_{1} f g-c_{1}=0 \tag{4.2}
\end{equation*}
$$

Rewrite this as $g f^{2}+\left(g^{2}+a_{1} g\right) f-c_{1}=0$ and

$$
\left\{2 g f+\left(g^{2}+a_{1} g\right)\right\}^{2}=\left(g^{2}+a_{1} g\right)^{2}+4 c_{1} g=g\left(g^{3}+2 a_{1} g^{2}+a_{1}^{2} g+4 c_{1}\right)
$$

Since g omits 0 , it has at most two completely multiple values by Lemma 3 . Hence the cubic polynomial $z^{3}+2 a_{1} z^{2}+a_{1}^{2} z+4 c_{1}$ has a multiple zero. We can obtain $c_{1}=\frac{a_{1}^{3}}{27}$ by simple calculation. Take an entire function β such that
$\beta^{3}=\alpha$ and put

$$
f=\frac{a_{1} \beta^{2}}{3(\beta+1)} \quad \text { and } \quad g=\frac{a_{1}}{3 \beta(\beta+1)} .
$$

Then f and g satisfy (4.2), and there exists no Möbius transformation T such that $f=T \circ g$. In this case the defining polynomials of S_{j} are $z^{3}+a_{1} z^{2}+$ $b_{j} z+\frac{a_{1}^{3}}{27}(j=1,2)$.

Acknowledgement

The authors would like to express thanks to the referee for careful comments.

References

[1] S. Lang, Introduction to Complex Hyperbolic Spaces, Springer-Verlag, New York, 1987.
[2] P. Li and C.-C. Yang, On two meromorphic functions that share pairs of small functions, Complex Variables, 32 (1997), 177-190.
[3] R. Nevanlinna, Einige Eindeutigkeitssätze in der Theorie der meromorphen Funktionen, Acta Math., 48 (1926), 367-391.
[4] M. Shirosaki, On polynomial which determine holomorphic mappings, J. Math. Soc. Japan, 49 (1997), 289-298.
[5] M. Shirosaki, On meromorphic functions sharing three values and one set, Kodai Math. J., 29 (2006), 475-484.
[6] M. Shirosaki and Masaharu Taketani, On meromorphic functions sharing two one-point sets and two two-point sets, Proc. Japan Acad., Ser. A, 83 (2007), 32-35.
[7] K. Tohge, Meromorphic functions covering certain finite sets at the same points, Kodai Math. J., 11 (1988), 249-279.

Yusei Sekitani

Network Software Development Operations Unit
1st Development Division
NEC Communication Systems
1-4-28 Mita Minato-ku
Tokyo 108-0073, Japan
E-mail: yusei_with@yahoo.co.jp

Manabu Shirosaki
Department of Mathematical Sciences
School of Engineering
Osaka Prefecture University
Sakai 599-8531, Japan
E-mail: mshiro@ms.osakafu-u.ac.jp

[^0]: 2000 Mathematics Subject Classification. Primary 30D35.
 Key words and phrases. Uniqueness theorem, Shared values, Nevanlinna theory.

