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Abstract. For two meromorphic functions sharing two one-point sets and two three-

point sets CM, we consider when one of them is a Möbius transform of the other.

1. Introduction

For nonconstant meromorphic functions f and g on C and a finite set S

in ĈC ¼ C U fyg, we say that f and g share S CM (counting multiplicities) if

f �1ðSÞ ¼ g�1ðSÞ and if for each z0 A f �1ðSÞ the two functions f � f ðz0Þ and

g� gðz0Þ have the same multiplicity of zero at z0, where the notations f �y
and g�y mean 1=f and 1=g, respectively. In particular, if S is a one-point

set fag, then we say also that f and g share a CM.

In [N], R. Nevanlinna showed the following:

Theorem 1. Let f and g be two distinct nonconstant meromorphic

functions on C and let a1; . . . ; a4 be four distinct points in ĈC . If f and g

share a1; . . . ; a4 CM, then f is a Möbius transform of g, i.e., there exists a

Möbius transformation T such that f ¼ T � g, and there exists a permutation s

of f1; 2; 3; 4g such that asð3Þ, asð4Þ are Picard exceptional values of f and g and

the cross ratio ðasð1Þ; asð2Þ; asð3Þ; asð4ÞÞ ¼ �1.

Also, in [7], Tohge considered two meromorphic functions sharing 1, �1,

y and a two-point set containing none of them.

Theorem 2. Let f and g be two nonconstant meromorphic functions on C

sharing 1, �1, y and a two-point set S ¼ fa; bg CM, respectively, where a; b0
1;�1;y. If aþ b0 0, ab0 1, aþ b0 2, aþ b0�2, ðaþ 1Þðbþ 1Þ0 4 and

ða� 1Þðb� 1Þ0 4, then f ¼ g. Otherwise one of f þ g ¼ 0, fg ¼ 1, f þ g ¼ 2,

f þ g ¼ �2, ð f þ 1Þðbþ 1Þ ¼ 4 and ð f � 1Þðg� 1Þ ¼ 4 holds.
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By Tohge’s result, we can get a uniqueness theorem of meromorphic

functions sharing three values and one two-point set CM since given three

points are mapped to 1, �1, y, respectively, by a suitable Möbius trans-

formation. For a finite set S, we denote by aS the number of elements of S.

Corollary 1. Let S1; . . . ;S4 be pairwise disjoint subsets in ĈC with

aS1 ¼aS2 ¼aS3 ¼ 1 and aS4 ¼ 2. If two nonconstant meromorphic func-

tions f and g on C share S1; . . . ;S4 CM, respectively, then f is a Möbius

transform of g.

Also, by Theorem 1.2 in [6] and its proof, we see

Theorem 3. Let S1; . . . ;S4 be pairwise disjoint subsets in ĈC with

aS1 ¼aS2 ¼ 1 and aS3 ¼aS4 ¼ 2. If two nonconstant meromorphic func-

tions f and g on C share S1, S2, S3, S4 CM, respectively, then f is a Möbius

transform of g.

On the other hand, in [5], the second author gave two meromorphic

functions sharing 0, 1, y and a three-point set with a certain specific property

which are not transformed to each other by any Möbius transformation.

Example. Let a be an entire function without zeros, and consider the

two polynomials; (i) PðzÞ ¼ z2ðz� 1Þ and (ii) PðzÞ ¼ zðz� 1Þ2. For (i) put

f ¼ aðaþ 1Þ
a2 þ aþ 1

and g ¼ aþ 1

a2 þ aþ 1
, and for (ii) put f ¼ 1

a2 þ aþ 1
and

g ¼ a2

a2 þ aþ 1
. It is easy to see that there exists no Möbius transformation

T such that f ¼ T � g. By simple calculation they share 0, 1 and y CM,

and we have Pð f Þ ¼ PðgÞ in each cases. Hence f and g share the zero sets

of PðzÞ þ c CM for any complex number c. The functions f and g share

infinitely many such three-point sets, but the sets are very restricted.

How about two meromorphic functions sharing two one-point sets and

two three-point sets? In this paper, we consider two meromorphic functions f

and g on C sharing two one-point sets and two three-point sets CM. If we

study whether there is a Möbius transformation T such that f ¼ T � g, it is

enough to consider the case where the one-point sets are f0g and fyg.

Theorem 4. Let S1 and S2 be two disjoint three-point subsets not

containing 0 in C defined by P1ðzÞ ¼ z3 þ a1z
2 þ b1zþ c1 ¼ 0 and P2ðzÞ ¼

z3 þ a2z
2 þ b2zþ c2 ¼ 0, respectively. Assume (C1) a1 0 a2 or both b1 0 b2

and c1 0 c2, and (C2) c1b2 0 b1c2 or both c1a2 0 a1c2 and c1 0 c2. If two

nonconstant meromorphic functions f and g on C share 0, y, S1, S2 CM,

respectively, then f is a Möbius transform of g.
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Remark 1. Take the transformation w ¼ 1=z which interchanges 0 and y,

then PjðzÞ becomes cjfw3 þ ðbj=cjÞw2 þ ðaj=cjÞwþ ð1=cjÞg ð j ¼ 1; 2Þ. Hence,

(C2) is the same as (C1) for these polynomials.

Corollary 2. Let S1; . . . ;S4 be pairwise disjoint subsets in ĈC with

aS1 ¼aS2 ¼ 3 and aS3 ¼aS4 ¼ 1. Assume that for any Möbius transfor-

mation T mapping S3 US4 to f0;yg, x1 þ h1 þ z1 0 x2 þ h2 þ z2, or both

x1h1 þ h1z1 þ z1x1 0 x2h2 þ h2z2 þ z2x2 and x1h1z1 0 x2h2z2, where TðSjÞ ¼
fxj; hj; zjg ð j ¼ 1; 2Þ. If two nonconstant meromorphic functions f and g on

C share S1, S2, S3, S4 CM, respectively, then f is a Möbius transform of g.

2. Representations of rank N and some lemmas

In this section we introduce the definition of representations of rank

N. Let G be a torsion-free abelian multiplicative group, and consider a q-tuple

A ¼ ða1; . . . ; aqÞ of elements ai in G.

Definition 1. Let N be a positive integer. We call integers mj repre-

sentations of rank N of aj if

Yq
j¼1

a
ej
j ¼

Yq
j¼1

a
e 0j
j ð2:1Þ

and

Xq
j¼1

ejmj ¼
Xq
j¼1

e 0jmj ð2:2Þ

are equivalent for any integers ej , e 0j with
Pq

j¼1 jejjaN and
Pq

j¼1 je 0j jaN.

Remark 2. For the existence of representations of rank N, see [5]. How-

ever, according to the construction of them in [5], (2.1) always implies (2.2) for

any integers ej , e
0
j . Hence, in Definition 2.1, it is significant that (2.2) implies

(2.1) for any integers ej , e
0
j with

Pq
j¼1 jej jaN and

Pq
j¼1 je 0j jaN.

We introduce the following lemma due to Borel, whose proof can be

found, for example, on p. 186 of [La].

Lemma 1. If entire functions a0; a1; . . . ; an without zeros satisfy

a0 þ a1 þ � � � þ an ¼ 0;

then for each j ¼ 0; 1; . . . ; n there exists some k0 j such that aj=ak is constant.

Now we investigate the torsion-free abelian multiplicative group G ¼ E=C,

where E is the abelian group of entire functions without zeros and C is the
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subgroup of all non-zero constant functions. We represent by ½a� the element

of E=C with the representative a A E. Let a1; . . . ; aq be elements in E. Take

representations mj of rank N of ½aj�. For a ¼
Qq
j¼1

a
ej
j we define its index

IndðaÞ by
Pq
j¼1

ejmj. The indices depend only on

� Qq
j¼1

a
ej
j

�
under the conditionPq

j¼1

jejjaN. Trivially Indð1Þ ¼ 0, and hence IndðaÞ ¼ 0 if and only if a is

constant. Moreover, IndðaÞ ¼ Indða 0Þ is equivalent to that a=a 0 is constant,

where a ¼
Qq
j¼1

a
ej
j and a 0 ¼

Qq
j¼1

a
e 0j
j with

Pq
j¼1

jej jaN and
Pq
j¼1

je 0j jaN.

We use the following Lemma in the proof of Theorem 4 which is an

application of Lemma 1 (for the proof see [6, Lemma 2.3]).

Lemma 2. Assume that there is a relation

Cða1; . . . ; aqÞ1 0

where CðX1; . . . ;XqÞ A C ½X1; . . . ;Xq� is a nonconstant polynomial of degree

at most N of X1; . . . ;Xq. Then each term aX e1
1 . . .X

eq
q of CðX1; . . . ;XqÞ has

another term

bX
e 0
1

1 . . .X
e 0q
q

such that ae1
1 . . . a

eq
q and a

e 0
1

1 . . . a
e 0q
q have the same indices, where a and b are non-

zero constants.

We close this section by introducing the theorem of completely multiple

values and a generalization of Theorem 1.

Let f be a nonconstant meromorphic function, and let c be a point in

ĈC . If each zero of f � c has multiplicity greater than 1, then we call c a

completely multiple value of f . For meromorphic functions defined on C we

have from [4, Theorem E] the following:

Lemma 3. (i) A nonconstant meromorphic function on C has at most four

completely multiple values in ĈC .

(ii) A nonconstant entire function has at most two completely multiple

values in C .

(iii) A nonconstant entire function without zeros has no completely multiple

values in Cnf0g.

We give a generalization of Theorem 1 which is a constant target version

of Theorem 1 of [2].

Lemma 4. Let f and g be two nonconstant meromorphic functions on

C . Let a1; . . . ; a4 be four distinct points in ĈC and let b1; . . . ; b4 be four distinct
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points in ĈC . If f � aj and g� bj share zero CM ð j ¼ 1; . . . ; 4Þ, then f is a

Möbius transform of g.

3. Proof of Theorem 4

We give a proof by contradiction. Let us assume that

ðNMÞ f is not any Möbius transform of g:

In particular, f 0 g.

By assumption there exist entire functions without zeros a0, a1, a1 such

that

f ¼ a0g ð3:1Þ
and

f 3 þ aj f
2 þ bj f þ cj ¼ ajðg3 þ ajg

2 þ bjgþ cjÞ ð j ¼ 1; 2Þ: ð3:2Þ

By substituting (3.1) into (3.2) we have

ða30 � ajÞg3 þ ajða20 � ajÞg2 þ bjða0 � ajÞgþ cjð1� ajÞ ¼ 0 ð j ¼ 1; 2Þ:

Consider the resultant R0 of these as polynomials of g;

R0 ¼

a30 � a1 a1ða20 � a1Þ b1ða0 � a1Þ c1ð1� a1Þ 0 0

0 a30 � a1 a1ða20 � a1Þ b1ða0 � a1Þ c1ð1� a1Þ 0

0 0 a30 � a1 a1ða20 � a1Þ b1ða0 � a1Þ c1ð1� a1Þ
a30 � a2 a2ða20 � a2Þ b2ða0 � a2Þ c2ð1� a2Þ 0 0

0 a30 � a2 a2ða20 � a2Þ b2ða0 � a2Þ c2ð1� a2Þ 0

0 0 a30 � a2 a2ða20 � a2Þ b2ða0 � a2Þ c2ð1� a2Þ

��������������

��������������
¼

X
0akþla3
0ak; la3

A9kla
9
0a

k
1 a

l
2 þ

X
1akþla3
0ak; la3

A8kla
8
0a

k
1 a

l
2

þ
X

1akþla3
0ak; la3

A7kla
7
0a

k
1 a

l
2 þ

X
1akþla4
0ak; la3

A6kla
6
0a

k
1 a

l
2

þ
X

2akþla4
0ak; la3

A5kla
5
0a

k
1 a

l
2 þ

X
2akþla4
0ak; la3

A4kla
4
0a

k
1 a

l
2

þ
X

2akþla5
0ak; la3

A3kla
3
0a

k
1 a

l
2 þ

X
3akþla5
0ak; la3

A2kla
2
0a

k
1 a

l
2

þ
X

3akþla5
0ak; la3

A1kla0a
k
1 a

l
2 þ

X
3akþla6
0ak; la3

A0kla
k
1 a

l
2 1 0; ð3:3Þ
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where Ajkl are complex coe‰cients. In particular, any of the coe‰cients

A030 ¼ �c32 of a31 , A003 ¼ c31 of a31 , A930 ¼ c31 of a90a
3
1 and A903 ¼ �c32 of a90a

3
1

are not zero, and the coe‰cients A900 of a90 and A033 of a31a
3
2 are the resultant

of P1 and P2 which is not zero by assumption.

Let m0, m1, m2 be representations of ½a0�, ½a1�, ½a1� of rank 12. We see

m0 0 0 by (NM) and assume that 3m0, m1, m2 and 0 are distinct.

If m0 < 0 and m1; m2 b 0, then in (3.3), A900a
9
0 is the unique term with the

minimal index, which contradicts Lemma 2. If m1 < 0 and m0; m2 b 0, then

A030a
3
1 is the unique term with the minimal index, which is a contradiction. In

the case that m2 < 0 and m0; m1 b 0 we get the same contradiction. Hence we

may assume that all m0, m1, m2 are non-negative by taking �mj in place of mj if

they all are non-positive.

Consider the case where 0 < 3m0 < m1; m2. Note that in (3.3) the ranges of

k, l of the summation symbols of the terms containing a
j
0 ð j ¼ 0; 1; . . . ; 9Þ are

½ð11� jÞ=3�a k þ la 3þ ½ð9� jÞ=3�, where ½x� is the maximal integer not greater

than x for a real number x. For such k; l except k ¼ l ¼ 0, Indða j
0a

k
1 a

l
1Þ ¼

jm0 þ km1 þ lm2 > ð j þ 3k þ 3lÞm0 b ð j þ 3½ð11� jÞ=3�Þm0 b 9m0. Hence the

term A900a
9
0 is the unique one with the minimal index, which is a contradiction.

If 0 < m1 < 3m0; m2 or 0 < m2 < 3m0; m1, then only A030a
3
1 or A003a

3
2 , re-

spectively, has the minimal index, which is a contradiction.

Therefore we conclude that one of m1 ¼ 3m0, m2 ¼ 3m0, m1 ¼ m2, m1 ¼ 0 and

m2 ¼ 0 holds.

(I) The case where m1 ¼ 0 or m2 ¼ 0.

First we show that m1 ¼ 0 and m2 ¼ 0 are equivalent.

Assume m1 ¼ 0. Then a1 is constant. In (3.3), the term A030a
3
1 is a

nonzero constant and is the unique term containing neither a0 nor a2. Hence

there exists another constant term a
j
0a

l
2. Since Indða j

0a
l
2Þ ¼ jm0 þ lm2 > 0 for

j > 0, such term must be of j ¼ 0 and m2 ¼ 0. Therefore m1 ¼ 0 and m2 ¼ 0

are equivalent.

Now we put a1 ¼ C.

(i) The case where C ¼ 1.

It follows from P1ð f Þ ¼ CP1ðgÞ that

f 2 þ fgþ g2 þ a1ð f þ gÞ þ b1 ¼ 0: ð3:4Þ

Put Eðw1;w2Þ :¼ fz A C : ð f ðzÞ; gðzÞÞ ¼ ðw1;w2Þ or ð f ðzÞ; gðzÞÞ ¼ ðw2;w1Þg for

w1;w2 A C , and set Sj ¼ fxj; hj; zjg ð j ¼ 1; 2Þ:
First we show that Eðx2; h2Þ0q implies Eðx2; z2Þ ¼ q and Eðh2; z2Þ ¼ q.

Indeed, if Eðx2; h2Þ0q, then we have

x22 þ x2h2 þ h22 þ a1ðx2 þ h2Þ þ b1 ¼ 0; ð3:5Þ
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and if Eðx2; z2Þ0q, then we get

x22 þ x2z2 þ z22 þ a1ðx2 þ z2Þ þ b1 ¼ 0: ð3:6Þ

From (3.5) and (3.6) we obtain a1 ¼ �ðx2 þ h2 þ z2Þ ¼ a2. Together with (3.5),

this yields b1 ¼ b2, which contradicts (C1). Hence at least two of Eðx2; h2Þ,
Eðh2; z2Þ, Eðz2; x2Þ are empty. We may assume Eðx2; h2Þ ¼ Eðz2; x2Þ ¼ q by

rearranging the elements if necessary. Then f and g share x2 and fh2; z2g
CM, and hence by Corollary 1, f is a Möbius transform of g, which contra-

dicts (NM).

(ii) The case where C0G1.

In this case we have P1ð f Þ ¼ CP1ðgÞ and Eðx2; x2Þ ¼ Eðh2; h2Þ ¼
Eðz2; z2Þ ¼ q. We put E0ðw1;w2Þ :¼ fz A C : ð f ðzÞ; gðzÞÞ ¼ ðw1;w2Þg for

w1;w2 A C . If any of E0ðx2; h2Þ, E0ðx2; z2Þ, E0ðh2; z2Þ are not empty, then

we have P1ðx2Þ ¼ CP1ðh2Þ ¼ CP1ðz2Þ and P1ðh2Þ ¼ CP1ðz2Þ, which deduce

a contradiction C ¼ 1. By the same way at least one of E0ðw1;w2Þ and

E0ðw2;w1Þ are empty for distinct w1;w2 A C .

First assume that E0ðx2; h2Þ0q, E0ðx2; z2Þ0q. Then all of E0ðh2; z2Þ,
E0ðh2; x2Þ, E0ðz2; x2Þ are empty. If E0ðz2; h2Þ0q, then we can get a contra-

diction C ¼ 1 by the same way as above. Hence in this case, f omits h2 and

z2, and we see from P1ð f Þ ¼ CP1ðgÞ that f omits also zero. It is impossible

by the little Picard theorem.

Next we assume that E0ðx2; h2Þ0q, E0ðh2; z2Þ0q. Then E0ðx2; z2Þ ¼
E0ðh2; x2Þ ¼ E0ðz2; h2Þ ¼ q. Therefore f �1ðx2Þ ¼ g�1ðh2Þ, f �1ðh2Þ ¼ g�1ðz2Þ,
f �1ðz2Þ ¼ g�1ðx2Þ, and hence, by Lemma 4 we see that f is a Möbius trans-

form of g, which contradicts (NM).

In all other cases we can deduce contradictions.

(iii) The case where C ¼ �1.

In this case we have P1ð f Þ ¼ �P1ðgÞ and Eðx2; x2Þ ¼ Eðh2; h2Þ ¼
Eðz2; z2Þ ¼ q. If any of Eðx2; h2Þ, Eðh2; z2Þ and Eðz2; x2Þ are not empty,

then we have P1ðx2Þ ¼ �P1ðh2Þ ¼ P1ðz2Þ ¼ �P1ðx2Þ, which is a contradiction.

Hence we may assume that Eðx2; h2Þ ¼ q. Now we have

f �1ðz2Þ ¼ g�1ðx2ÞU g�1ðh2Þ; g�1ðz2Þ ¼ f �1ðx2ÞU f �1ðh2Þ:

As we have shown above m2 ¼ 0 and a2 1�1 in this case. So, similarly we

may assume

f �1ðz1Þ ¼ g�1ðx1ÞU g�1ðh1Þ; g�1ðz1Þ ¼ f �1ðx1ÞU f �1ðh1Þ:

Since we see that f and g omit 0 by P1ð f Þ ¼ �P1ðgÞ, we get by using the

second main theorem and the first main theorem of the value distribution

theory
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3Tðr; f Þa
X
j¼1;2

N r;
1

f � xj

� �
þN r;

1

f � hj

 ! !
þN r;

1

f

� �
þ Sðr; f Þ

¼
X
j¼1;2

N r;
1

g� zj

� �
þ Sðr; f Þa 2Tðr; gÞ þ Sðr; f Þ

and 3Tðr; gÞa 2Tðr; f Þ þ Sðr; gÞ by the same way. They immediately lead to

a contradiction.

(II) The case where m1 ¼ 3m0 or m2 ¼ 3m0.

First we show that m1 ¼ 3m0 and m2 ¼ 3m0 are equivalent.

Assume m1 ¼ 3m0. Then we have m2 0 0, otherwise 3m0 ¼ m1 ¼ m2 ¼ 0 by

the case (I), which is a contradiction.

We have denied 0 < m2 < 3m0; m1 and hence m2 b m1 ¼ 3m0. If m2 > 3m0,

A903a
9
0a

3
2 is the unique term with the maximal index, which is a contradiction.

So we get also m2 ¼ 3m0. Therefore m1 ¼ 3m0 and m2 ¼ 3m0 are equivalent,

and we can deduce contradictions as in the case (I).

(III) The case where m1 ¼ m2.

In this case 0 < m1 ¼ m2 < 3m0 by what we have shown, and a2=a1 is a

constant. Put C ¼ a2=a1, then

ð1� CÞ f 3g3 þ ða1 � Ca2Þ f 3g2 þ ða2 � Ca1Þ f 2g3

þ ðb1 � Cb2Þ f 3gþ a1a2ð1� CÞ f 2g2 þ ðb2 � Cb1Þ fg3

þ ðc1 � Cc2Þ f 3 þ ðb1a2 � Ca1b2Þ f 2gþ ða1b2 � Cb1a2Þ fg2 þ ðc2 � Cc1Þg3

þ ðc1a2 � Ca1c2Þ f 2 þ b1b2ð1� CÞ fgþ ða1c2 � Cc1a2Þg2

þ ðc1b2 � Cb1c2Þ f þ ðb1c2 � Cc1b2Þgþ c1c2ð1� CÞ ¼ 0:

If C0 1, then we see from this equation that f and g have neither zeros nor

poles. If C ¼ 1, then the above equation reduces to

ða1 � a2Þ f 2g2 þ ðb1 � b2Þ fgð f þ gÞ þ ðc1 � c2Þð f 2 þ fgþ g2Þ

þ ðb1a2 � a1b2Þ fgþ ðc1a2 � a1c2Þð f þ gÞ þ ðc1b2 � b1c2Þ ¼ 0: ð3:7Þ

Then if a1 0 a2 and b1c2 0 c1b2, f and g have neither zeros nor poles. In both

cases where C0 1 and where C ¼ 1, a1 0 a2, b1c2 0 b2c1, by Lemma 1 one of

f mgn is constant, where m and n are integers with 0a jmj, jnja 3. Since f and

g are not constant, mn0 0, and we have jmj0 jnj by the assumption (NM).

Without loss of generality we may assume that 1a jmj < jnja 3. Then we get
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jmjTðr; f Þ ¼ jnjTðr; gÞ þOð1Þ. On the other hand by the second fundamental

theorem

6Tðr; f Þa
X
j¼1;2

N r;
1

f � xj

� �
þN r;

1

f � hj

 !
þN r;

1

f � zj

� � !

þNðr; 1=f Þ þNðr; f Þ þ Sðr; f Þ

¼
X
j¼1;2

N r;
1

g� xj

� �
þN r;

1

g� hj

 !
þN r;

1

g� zj

� � !

þNðr; 1=gÞ þNðr; gÞ þ Sðr; f Þ

a 8Tðr; gÞ þ Sðr; f Þ:

These yield 6jnja 8jmj which does not hold for any ðjmj; jnjÞ ¼ ð1; 2Þ; ð1; 3Þ;
ð2; 3Þ.

Hence C ¼ 1, and at least one of a1 ¼ a2 and b1c2 ¼ b2c1 hold in the case.

By symmetricity we consider only the case where C ¼ 1 and a1 ¼ a2. In

this case, we have a1 ¼ a2 and

R0 ¼

a30 � a1 a1ða20 � a1Þ b1ða0 � a1Þ c1ð1� a1Þ 0 0

0 a30 � a1 a1ða20 � a1Þ b1ða0 � a1Þ c1ð1� a1Þ 0

0 0 a30 � a1 a1ða20 � a1Þ b1ða0 � a1Þ c1ð1� a1Þ
a30 � a1 a1ða20 � a1Þ b2ða0 � a1Þ c2ð1� a1Þ 0 0

0 a30 � a1 a1ða20 � a1Þ b2ða0 � a1Þ c2ð1� a1Þ 0

0 0 a30 � a1 a1ða20 � a1Þ b2ða0 � a1Þ c2ð1� a1Þ

��������������

��������������

¼

a30 � a1 a1ða20 � a1Þ b1ða0 � a1Þ c1ð1� a1Þ 0 0

0 a30 � a1 a1ða20 � a1Þ b1ða0 � a1Þ c1ð1� a1Þ 0

0 0 a30 � a1 a1ða20 � a1Þ b1ða0 � a1Þ c1ð1� a1Þ
0 0 b0ða0 � a1Þ c0ð1� a1Þ 0 0

0 0 0 b0ða0 � a1Þ c0ð1� a1Þ 0

0 0 0 0 b0ða0 � a1Þ c0ð1� a1Þ

��������������

��������������

¼ ða30 � a1Þ2
a30 � a1 a1ða20 � a1Þ b1ða0 � a1Þ c1ð1� a1Þ

b0ða0 � a1Þ c0ð1� a1Þ 0 0

0 b0ða0 � a1Þ c0ð1� a1Þ 0

0 0 b0ða0 � a1Þ c0ð1� a1Þ

���������

���������
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¼ ða30 � a1Þ2 �

a30 � a1 a1ða20 � a1Þ b1ða0 � a1Þ c1ð1� a1Þ
b0ða0 � a1Þ c0ð1� a1Þ 0 0

0 b0ða0 � a1Þ c0ð1� a1Þ 0

�c0=c1ða30 � a1Þ �a1ðc0=c1Þða20 � a1Þ ðb0 � b1c0=c1Þða0 � a1Þ 0

���������

���������
¼ �ða30 � a1Þ2ð1� a1Þ

b0ða0 � a1Þ c0ð1� a1Þ 0

0 b0ða0 � a1Þ c0ð1� a1Þ
�c0ða30 � a1Þ �a1c0ða20 � a1Þ ðc1b0 � b1c0Þða0 � a1Þ

�������
�������

1 0;

where b0 ¼ b2 � b1, c0 ¼ c2 � c1. Since a30 2 a1 and a1 2 1, the final deter-

minant is identically equal to zero. It is expanded as

b20ðc1b0 � b1c0Þða0 � a1Þ3 � c30ð1� a1Þ2ða30 � a1Þ

þ a1b0c
2
0ð1� a1Þða0 � a1Þða20 � a1Þ

¼ b20ðc1b0 � b1c0Þða30 � 3a20a1 þ 3a0a
2
1 � a31Þ

� c30ða30 � a1 � 2a30a1 þ 2a21 þ a30a
2
1 � a31Þ

þ a1b0c
2
0ð�a31 þ a21 þ a0a

2
1 þ a20a

2
1 � a0a1 � a20a1 � a30a1 þ a30Þ

1 0:

Since 0 < m1 < 3m0, among all terms which appear in the above the term a30a
2
1

is the unique one with the maximal index. Hence its coe‰cient c0 ¼ 0, i.e.,

c1 ¼ c2, which contradicts (C1).

Now we have completed the proof.

4. Exceptional cases

In this section we treat the cases which are excluded by Theorem 4;

(a) a1 ¼ a2, b1 ¼ b2; (b) a1 ¼ a2, c1 ¼ c2; (c) c1b2 ¼ b1c2, c1a2 ¼ a1c2; (d)

c1b2 ¼ b1c2, c1 ¼ c2. The final case is equivalent to that c1 ¼ c2, b1 ¼ b2,

and we treat only the cases (a) and (b) since the case (c) is equivalent to the

case (a) by symmetricity. For simplicity we write a ¼ a0.

(a) The case of a1 ¼ a2, b1 ¼ b2.

In the proof we obtained these on treating a1 1 1 as a contradiction. In

that case we have

ð f 2 þ fgþ g2Þ þ a1ð f þ gÞ þ b1 ¼ 0: ð4:1Þ
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By substituting (3.1) into this we get ða2 þ aþ 1Þg2 þ a1ðaþ 1Þgþ b1 ¼ 0, and

rewrite as

f2ða2 þ aþ 1Þgþ a1ðaþ 1Þg2 ¼ a21ðaþ 1Þ2 � 4b1ða2 þ aþ 1Þ

¼ ða21 � 4b1Þa2 þ 2ða21 � 2b1Þaþ ða21 � 4b1Þ:

The entire function a without zeros is nonconstant by (NM). So, since it has

no completely multiple values by Lemma 3, a21 � 4b1 ¼ 0 or the final side above

is a perfect square of a which implies ða21 � 2b1Þ2 � ða21 � 4b1Þ2 ¼ 0, i.e., b1 ¼ 0

or b1 ¼ a21=3.

(1) The case of b1 ¼ a21=4.

Take an entire function b such that b2 ¼ a, and let

g ¼ � a1

2ðb2 þ b þ 1Þ
and f ¼ � a1b

2

2ðb2 þ b þ 1Þ
:

They satisfy (4.1), but we can see that one of them is not any Möbius

transform of the other. In this case the defining polynomials of Sj are

z3 þ a1z
2 þ a21

4
zþ cj ð j ¼ 1; 2Þ.

(2) The case where b1 ¼ 0.

Let

g ¼ � a1ðaþ 1Þ
a2 þ aþ 1

and f ¼ � a1aðaþ 1Þ
a2 þ aþ 1

:

They satisfy (4.1), but one of them is not any Möbius transformation of the

other. In this case the defining polynomials of Sj are z3 þ a1z
2 þ cj ð j ¼ 1; 2Þ:

(3) The case where b1 ¼ a21=3.

Let

g ¼ a1ðo1aþ o2Þ
a2 þ aþ 1

and f ¼ a1aðo1aþ o2Þ
a2 þ aþ 1

;

where o1 and o2 are the two roots of 3z2 þ 3zþ 1 ¼ 0. Then f and g satisfy

(4.1) and there is no Möbius transformation T such that f ¼ T � g. In this

case the defining polynomials of Sj are z3 þ a1z
2 þ a21

3
zþ cj ð j ¼ 1; 2Þ:

(b) The case where a1 ¼ a2, c1 ¼ c2.

In the proof we obtained these on treating a2=a1 1 1 as a contradiction.

Moreover note that f and g have no zeros since otherwise b1c2 ¼ c1b2 by (3.7),

and hence P1 ¼ P2, which is a contradiction. Then we have from (3.7)

fgð f þ gÞ þ a1 fg� c1 ¼ 0: ð4:2Þ
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Rewrite this as g f 2 þ ðg2 þ a1gÞ f � c1 ¼ 0 and

f2g f þ ðg2 þ a1gÞg2 ¼ ðg2 þ a1gÞ2 þ 4c1g ¼ gðg3 þ 2a1g
2 þ a21gþ 4c1Þ:

Since g omits 0, it has at most two completely multiple values by Lemma 3.

Hence the cubic polynomial z3 þ 2a1z
2 þ a21zþ 4c1 has a multiple zero. We

can obtain c1 ¼
a31
27

by simple calculation. Take an entire function b such that

b3 ¼ a and put

f ¼ a1b
2

3ðb þ 1Þ and g ¼ a1

3bðb þ 1Þ :

Then f and g satisfy (4.2), and there exists no Möbius transformation T such

that f ¼ T � g. In this case the defining polynomials of Sj are z3 þ a1z
2 þ

bjzþ
a31
27

ð j ¼ 1; 2Þ.
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