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ABSTRACT. In this paper, we establish a fundamental asymptotic result for the solutions
to second order linear nonautonomous neutral delay differential equations. By the use
of a solution of the corresponding generalized characteristic equation, we transform the
second order neutral delay differential equation into a first order neutral delay differ-
ential equation and then we utilize its generalized characteristic equation.

1. Introduction and preliminaries

Our aim in this paper is to establish an asymptotic result for the solutions
to second order linear neutral delay differential equations with variable
coefficients and constant delays. An analogous asymptotic criterion for the
solutions to second order linear nonautonomous (non-neutral) delay differential
equations has recently been obtained by the authors [13]. Our work in the
present paper is essentially motivated by the results in the papers by Dix and
the authors [3, 4], the authors [9-13], and Yenigerioglu [14]. (Some more
details on the results in these papers may be found in [13].) For some results
closely related to the ones contained in the above mentioned articles, the reader
may look at the references cited in [11, 12].

The basic idea in the present work is essentially originated in an old but
very interesting asymptotic result due to Driver [5] concerning the solutions of
linear differential systems with small delays (see, also, Arino and Pituk [1]).
Another idea employed in this paper is that of transforming the second order
neutral delay differential equation into a first order neutral delay differential
equation, by the use of a solution of the corresponding generalized charac-
teristic equation. In the case of second order linear autonomous delay
differential equations, this idea is originated in [14] (see, also, [12]).
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For the basic theory of delay and neutral delay differential equations, we
refer to the books by Diekmann et al. [2], Driver [6], Hale [7], and Hale and
Verduyn Lunel [8].

Consider the neutral delay differential equation

(1.1) xX"(t) + c(t)x" (¢t — o) = a(t)x(1) + b(t)x(t — 1),

where ¢, a, and b are continuous real-valued functions on the interval [0, 00), and
o and t are positive real constants. Throughout the paper, by r we will denote
the positive real number defined by r = max{o,}.

By a solution of the neutral delay differential equation (1.1), we mean a
continuously differentiable real-valued function x defined on the interval
[-r,0), which is twice continuously differentiable on [—g,c0) and satisfies
(1.1) for all 7> 0.

Together with the neutral delay differential equation (1.1), we specify an
initial condition of the form

(1.2) x(1) = ¢(1) for —r <1 <0,

where the initial function ¢ is a given continuously differentiable real-valued
function on the initial interval [—r,0].

The neutral delay differential equation (1.1) together with the initial
condition (1.2) constitute an initial value problem (IVP, for short). It is
well-known (see, for example, Diekmann er al [2], Hale [7], or Hale and
Verduyn Lunel [8]; see, also, Driver [6] for the non-neutral case) that there
exists a unique solution x of (1.1) which satisfies (1.2); this unique solution x
will be called the solution of the initial value problem (1.1) and (1.2) or, more
briefly, the solution of the IVP (1.1) and (1.2).

Along with the neutral delay differential equation (1.1), we associate the
following equation

t

(13)  2(0) + 2200 + () (t — @) + 22(t — 0)] exp [— J z<s>ds}

1—a

t

= a(t) + b(1) exp [—J /l(s)ds],

-7
which will be called the generalized characteristic equation of (1.1). Equation
(1.3) is obtained from (1.1) by looking for solutions of the form x(¢) =
exp| [y A(s)ds] for t > —r, where 1 is a continuous real-valued function on the
interval [—r, c0), which is continuously differentiable on [—a, o).

A solution of the generalized characteristic equation (1.3) is a continuous
real-valued function 1 defined on the interval [—r, c0), which is continuously
differentiable on [—o, c0) and satisfies (1.3) for all > 0.
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For a given solution 1 of the generalized characteristic equation (1.3), we
consider the (first order) neutral delay differential equation

t

(1.4) (1) + c(0)z'(t — o) exp {J A(s)ds]

—a

t

t—a

+24(0)z(8) + 2c(t)A(t — 0)z(t — a) exp [ J i(s)ds]

t t

— () (t = 0) + 22(t — o) UI_J z(s)ds} exp {— J,_U )L(s)ds}

t t
—b(1) U Z(s)ds] exp {— J i(s)ds} .
-7 -7
By a solution of the neutral delay differential equation (1.4), we mean a
continuous real-valued function z defined on the interval [—r, 00), which is
continuously differentiable on [—o, c0) and satisfies (1.4) for all ¢ > 0.
With the neutral delay differential equation (1.4), we associate the equation

t

(1.5) m0+zmo+dwmo—o»+ua—anwp{—j

1—a

[Mﬂ+mm$}

1

ol wale]

=c()[A(t—0)+ 22t — a)]{J

X exp {— JI /I(s)ds}

t—a

- b(t){J:r exp {— JI ,u(u)du} ds}exp {— J:T i(s)ds] ,

which is said to be the generalized characteristic equation of (1.4). The last
equation is obtained from (1.4) by seeking solutions of the form z(7) =
exp[jot u(s)ds] for t> —r, where p is a continuous real-valued function on
the interval [—r, c0).

A solution of the generalized characteristic equation (1.5) is a continuous
real-valued function p defined on the interval [—r, c0), which satisfies (1.5) for
all 1=0.

The main result of the paper (Theorem 3.1) is established in Section 3.
An auxiliary result (Proposition 2.1) used in proving Theorem 3.1, is given in
Section 2. In Section 4, an example demonstrating the applicability of our
main result is presented. The possibility of extending our results to more
general second order linear nonautonomous neutral delay differential equations
is discussed in Section 5.
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2. An auxiliary result

For our convenience, we introduce some notation. For a given solution A4
of the generalized characteristic equation (1.3), we define

t

(2.1) B4 §)(1) = {¢(z) exp {—J )»(s)ds} } for —r <1<0.

0
Clearly, @(Z;¢) is a continuous real-valued function on the initial interval
[—r,0].

Proposition 2.1 below will be used in proving the main result of the paper,
i.e., Theorem 3.1 given in the next section. This proposition essentially
establishes a transformation (via a solution of the generalized characteristic
equation (1.3)) of the second order neutral delay differential equation (1.1) into
the first order neutral delay differential equation (1.4).

ProprosITION 2.1. Let A be a solution of the generalized characteristic
equation (1.3), and define ®(4;¢) by (2.1).

Then a continuously differentiable real-valued function x defined on the
interval [—r,00) is the solution of the IVP (1.1) and (1.2) if and only if the
function z defined by

(2.2) z(1) = {x(l) exp {— J; /I(s)ds} }/ Sfor t = —r

is the solution of the neutral delay differential equation (1.4) which satisfies the
initial condition

(2.3) 2(t) = P(A9)(1) for —r <t <0.
ProoF. Consider the solution x of the IVP (1.1) and (1.2), and define

(2.4) (1) = x(¢) exp {— J(: i(s)ds] for t = —r.

Then, by taking into account the fact that 4 is a solution of the generalized
characteristic equation (1.3), we obtain, for every ¢ >0,

t

[x" (1) + c(t)x"(t — o) — a(t)x(1) — b(t)x(t — 7)] exp {—J

Oi(s)ds]
= {"(0) + 22(0)y" (1) + [ () + 22 (0] »(0)}

+e(){Y'(t—0)+ 24t —0)y' (t—a) + [\ (t — o) + 22 (t — 0)|y(t — )}

t
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= V"(0) + 2200 y'(0) + [2(0) + 27(1) — a(0)] p(1
+c(O){y"(t—0) +2A4(t—0)y' (t— o) + [A(t — o) + 2(t — 0)]y(t — 0)}

X exp {— Ji )L(s)ds} — b()y(t — 1) exp {_

—a

t

t

= y"(t) +c(t)y"(t — o) exp [J i(s)ds]

t—a

2000+ 260300 - )y - o) exp| - [ a5
Hecori-o) + 2= ol e~ | ita
soe|- [ aa] by

el - 0) + 20— ale-o) exp|- [ 10
—bte- e [ aal

=0+ 0y o) exp| - |10
2000+ 260300 - )y - o) exp - [ a5
— =)+ 2= o))~ e -l exp| - [ )

t

OO~ y(e - exp| - | 201

-t
Thus, the fact that x satisfies (1.1) for all # > 0 is equivalent to the fact that y
satisfies

(2.5)  y'(O)+c()y"(t — o) exp [— J

t

t—a

)v(s)ds}

t

+24(20)y' (1) + 2¢()A(t — 0) y'(t — 0) exp { J

—a

— () — o)+ 22t — )[y(1) — y(t — )] exp H

t

O = st ewp |- [ a0

-7
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for all t > 0. Moreover, we observe that, in terms of the function y, the initial
condition (1.2) is equivalently written as

t

2.6) ¥(0) = $(1) exp H

i(s)ds] for —r<t<0.
0

Furthermore, we see that y satisfies (2.5) for all # > 0 if and only if it satisfies
the equation

(2.7)  y"(t) +c(t)y"(t — o) exp {— J

t

)u(s)ds}

1—a
t

42006y (8) + 2¢(0)A(t — 0)y'(t — 0) exp [— J

1—o

= ([ (t — o) + 1*(t — 0)] Ul y'(s)ds} exp {— J, i(s)ds]

00| [ voras] exo|- | ; o) 7

for all r>0. Next, we set
(2.8) zZ(t)=y'(t)  for t > —r.

Then we observe that y satisfies (2.7) for all ¢ > 0 if and only if z satisfies (1.4)
for all > 0, i.e., if and only if z is a solution of the neutral delay differential
equation (1.4). Moreover, by the use of the function z, the initial condition
(2.6) takes the following equivalent form

t /
(2.9) z(1) = {¢(Z) exp [—J l(s)ds} } for —r<t<0.

0

Hence, it has been established that x is the solution of the IVP (1.1) and

(1.2) if and only if z is the solution of the neutral delay differential equation
(1.4) which satisfies the initial condition (2.9). Because of (2.4), it is clear that
(2.8) coincides with (2.2). Also, by taking into account the definition of
d(4;¢) by (2.1), we see that (2.9) coincides with the initial condition (2.3).
The proof of our proposition is complete.

3. The main result
Our main result in the present paper is the following theorem.

THEOREM 3.1. Let A be a solution of the generalized characteristic equation
(1.3).  Furthermore, let u be a solution of the generalized characteristic equation
(1.5). Assume that
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t

(3.1) limsup <|c(t)|[l + |u(t — o) + 24(t — 0)|0] exp{— J

1—o0

lils) + u(s)]ds}

t—o

el |4t — 0) + 22(1 a)|{Jt (=9 e {_ J‘[,u(u)du} ds}

— N

X eXp [ Jt /l(s)ds]

t—a

+ |b(z)|{J:_r(z _ 5) exp {— Jt ,u(u)du] ds} exp {— J:_, /l(s)dsD <1

Then the solution x of the IVP (1.1) and (1.2) satisfies

62 tim ({0 e [ 200 } exp - [ w1as]) = Lsi),

where L(Z, u; ¢) is some real number depending on 2, u and determined by ¢, and

/

(3.3) lim ({x(z) exp {— J(: l(s)ds} } exp {— J; ,u(s)ds]) 0.

Before we proceed to the proof of Theorem 3.1, we will present a
particular result, as a consequence of this theorem. Let A and g be as in
Theorem 3.1, and assume that (3.1) holds. Then from Theorem 3.1 it follows
that the solution x of the IVP (1.1) and (1.2) is such that

im (1+'() ~ 2(0x(0) exp{ [+ plsas} )

1— 00

exists (as a real number). Hence, the solution x satisfies

|x'(2) — A()x(2)| < K (2,155 ¢) exp{J.OM(S) + ,u(s)]ds} for all ¢ > —r,

where K (A, u; ¢) is some positive real constant. Thus, we have arrived at the
next result:

Let . and u be as in Theorem 3.1, and assume that (3.1) holds. Then, for
the solution x of the IVP (1.1) and (1.2), we have:

(i) x'— Ax is bounded if hmsup JolA(s) + p(s )]ds < o0,

(i) x’ — Ax tends to zero at o if lim fo + u(s)]ds = —o0
ProOF oF THEOREM 3.1. Let x be the solution of the IVP (1.1) and (1.2),

and define the function z by (2.2). By Proposition 2.1, the fact that x is the
solution of the IVP (1.1) and (1.2) is equivalent to the fact that z is the
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solution of the neutral delay differential equation (1.4) which satisfies the initial

condition (2.3), where @(4;¢) is defined by (2.1).
Set

(3.4) w(t) = z(¢) exp {— J;,u(s)ds] for t > —r.

Then, as u is a solution of the generalized characteristic equation (1.5), we
derive, for every ¢ > 0,

{z’(t) +¢(t)Z'(t — o) exp [— J:a /l(s)ds]
+24(0)2(6) + 26()At — 3)=(t — &) exp [— J:J /l(s)ds}

— ()t = o) + A2t — )] U:_ﬂz(s)ds} exp {— J:_J i(s)ds}

s soefen] | soul} ][0

— /(1) + s()w(0)] + (W (¢ = 0) + (i — ) w(t — )]

X exp{ J:ﬂ[i(s) + ,u(s)}ds} + 22(e)w(t) 4+ 2¢()A(t — o)w(t — o)
J

X exp{— - [A(s) + ,u(s)}ds} —c(O)[)(t =) + 22t — 0)]

y {J:_U w(s) exp {— JI ,u(u)du} ds} exp {— J,t_(, i(s)ds}

X exp {— J:a l(s)ds}

+b() {L w(s) exp {— Jt /x(u)du} ds} exp [— J:_T l(s)ds}
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w0+ el - ) exp{ ~ [ 6) + ol

+ (et o)+ 2200 - exp{ = [ 16) + s}

o= s o] _oo|- ] wora] o)

ol

.l Lol sl

+elute =)+ 200 - olhtr— o) exp [ (a9 + ol

(Ot = 0) + A2t — )] {J:U w(s) exp {— Jl ,u(u)du} ds}

X eXp { J:U i(s)ds}
1 b(1) {J:_ w(s) exp {— Jt ,u(u)du} ds} exp [— J:_T /l(s)ds}

=0+ el te -y exp{ = | 1360) sl
= clutt = o) + 244t = () = wle - ] exp - [ b+ s |
+ (DM (1= 0) + 22 — )] {J:G[W(Z) — w(s)] exp {— J[ ,u(u)du} ds}

X exp {— J:U i(s)ds}

—b(1) {J:T[w(t) — w(s)] exp {— Jl ,u(u)du} ds} exp {— J:T /l(s)ds] .

So, z is a solution of the neutral delay differential equation (1.4) if and only if
w satisfies
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t

(3.5)  w(t) + c(t)w'(t — o) exp{— J [A(s) + ,u(s)]ds}

—a

= c()[u(t = 0) + 22(1 = 9)][w(1) — w(t - 7)]

<exp{ - [ v Faldsp = (0 (1= 0) + 22t~ o)

t—o

X {J:U[w(t) — w(s)] exp {— J:,u(u)du} ds} exp [— J:U /l(s)ds]

+b() {Jt () — w(s)] exp [— Jl ,u(u)du] ds} exp {— J’ i(s)ds]

-7 N -7

for all > 0. Moreover, we see that the initial condition (2.3) can be written
in the following equivalent form

(3.6) w(t) = @(4; ¢)(¢) exp {— J(:,u(s)ds} for —r<t<0.

We have thus proved that x is the solution of the IVP (1.1) and (1.2) if and
only if w satisfies (3.5) for all + > 0 and also w satisfies the initial condition
(3.6).

By the definitions of the functions z and w by (2.2) and (3.4), respectively,
we have

w(t) = {x(t) exp [— J; /l(s)ds} }/ exp {— J; y(s)ds} for t = —r.

Thus, by taking into account (3.2) and (3.3), we conclude that all we have to
prove is that

(3.7) tlim w(t) exists (as a real number)
and
(3.8) llim w'(r) = 0.

We notice that, when (3.7) is true, tlim w(t) depends on A, u and is determined
— 00

by the solution x, i.e., it is determined by the initial function ¢. The proof
of the theorem will be accomplished by establishing (3.7) and (3.8).
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From (3.5) it follows immediately that

t

(39) WD) + (W't — o) exp{—J A(s) + ,u(s)}ds}

t—a
t

= c(0lur =)+ 2400 o)l | | W

1—a

« exp{— Jl 1A(s) + u(s)]ds} — O (1 — )+ 22t - )]

« {J:U UI w’(u)du} exp [— jl ,u(u)du} ds} exp [— J:g }.(s)ds}
+ b(t){J:T Ut w’(u)du] exp [— Jr u(u)du} ds} exp {— J:T i(s)ds]

for all £ >r—o. Assumption (3.1) implies the existence of an integer m > 1
such that

t

O(A, 1) = sup <|c(l)|[1 + |u(t — o) + 24(t — 0)|0] exp{—J [A(s) + ,u(s)]ds}

t>mr—o 1—o

t t

e Wt — o) + A2(t - a)|{L7(z — 5) exp [— J ﬂ(u)du] ds}

X exp {— Jl i(s)ds}

—a

+ |b(z)|{J:T(t —5) exp {— ‘[:,u(u)du} ds} exp {— J:T A(s)ds} > <1

Clearly, 0(4,u) > 0. Assume that 0(4,4) =0. Then from the definition of
0(2, 1) it follows immediately that c¢(¢) = b(t) =0 for ¢ > mr — g, and conse-
quently (3.9) guarantees that w' =0 on [mr—o,00). This means that w is
equal to a real constant on [mr—og,00). In this case, (3.7) and (3.8) are
always valid. So, in what follows, we may (and do) suppose that 0(4,u) > 0.
Hence, we have

(3.10) 0<00,p < 1.

Furthermore, we see that the maximum of |w/| on the interval
[(m—1)r —o,mr — o] depends on A, u, and x; so, it depends on A, u, and ¢.
Define

M2, ;) = max{|w'(¢)| : (m—1)r—o <t <mr—a}.
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Then
(3.11) w'(2)| < M(%, 15 ¢) for m—1)r—o<t<mr—o.

We shall prove that M(4,u;¢) is a bound of w’ on the whole interval
[(m—1)r—go,), ie., that

(3.12) W' (2)] < M(Z, 145 9) for all 1> (m—1)r—o.

For this purpose, we consider an arbitrary positive real number &. Then (3.11)
gives

(3.13) W' ()] < M(A,p;4) +¢  for (m—1)r—o <t <mr—o.
We claim that
(3.14) w'()| < M(A,u;4) +&  for every t > (m—1)r—o.
Otherwise, because of (3.13), there exists a point & > mr — o so that
W) < M(Z, ;) +e for (m—1)r—a<t<g, and
WO = M4 1 4) +e.

Then, by taking into account the definition of 6(4, ) and by using (3.10), from
(3.9) we get

M@ p;¢) +e
= Q)
<10l - o) exp{ - | 16)+ utols}
le@ne =)+ 22 =] wlas] exod= | )+ o}

@)1 — o) + 726~ o>|{jé U ) exp| - j s

E—a Lds

X exXp {— Ji /l(s)ds}

é—ao

+ ()] {E_ Ué |w’(u)|du] exp [— f ,u(u)du] ds} exp [— J:_ mm}
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¢

< (1@ + e — o) + 2406 = o] exf - [CE: s |

(@I - ) + A3 - )I{J;_J(f 9 exp- fuw)du] o
X exp{ ) ds} +16(&) { (& —s)exp [ f,u(u)du] ds}
a8

X exp

o) ) M G gis) +

< 0(4, p)[M (/1 1) + €l
< M(A ;) + e

This is a contradiction, which establishes our claim, i.e., that (3.14) holds true.
Since (3.14) is valid for all real numbers ¢ > 0, we conclude that (3.12) is
always satisfied. Furthermore, by using (3.12), from (3.9) we obtain, for every
t>mr— o,

|w'<z>|<|<>||w’<z—o>|exp{—j' 409 + s

[ ] e~ [ g+ o)
(O] 14'( — o) + 2( { [ du} exp{ ()du}ds}

X eXp [— J:_a /l(s)ds]

+15(9)] {L_ U ' () |du] exp {— J ,u(u)du} ds} exp [— J:_T i(s)ds]

< (1010 + bt o)+ 2300 - D)o exp{ - || o+ s |

t
()] |u(t — o) + 2A(t — o)

F1e()] 1X(t — o) + A2(t - a){f_a(t _ 5)exp {— J:,u(u)du} ds}

X exXp [— J:U /l(s)ds]

o[ o] [ woadasfew|- [ ] ) s,
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So, in view of the definition of O(4,u), it holds that
(3.15) W ()| < 0(A,u)M (2, p;4)  for all 1 >mr —o.

By using (3.9) and taking into account the definition of 0(4, u) as well as having
in mind (3.12) and (3.15), one can prove, by an easy induction, that

(3.16) WD) < (002, 1)]" M (Z, 1; §)
forall t>(m—1+nr—o (n=0,1,2,...).

In particular, from (3.16) it follows that

(3.17) W (O] < 102, 0))" M (2 i §)
for all t>(m—1+n)r (n=0,1,2,...).

Working exactly as in the last part of the proof of the main result in the
previous authors’ paper [13] (see, also, the proofs of the main results in [3, 4]),
we can take into account (3.10) and use (3.17) to conclude that (3.7) and (3.8)
hold true.

The proof of the theorem is completed.

4. An example

In this section, we will present an example, which demonstrates the
applicability of our main result, i.e., of Theorem 3.1.

ExampLE 4.1. Consider the neutral delay differential equation (1.1) with

1 1 1
C(Z):—§7 61(1)22(I+3)7 b(t):_2(t+l)’ for t>0
and
o=1 T=2

i.e., the neutral equation

1 1 1

(4.1) M) =5 =550 — 55

x(t=2).

In this case, the generalized characteristic equation (1.3) becomes

t

42) A0+ - % (= 1)+ A2t — 1)] exp {— J i(s)ds}

t—1

T2 1+ 3 z<z1+ n P [‘ J }““)ds} '
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We immediately see that (4.2) has the solution

At) = for t > —2.

1
t+3
For this solution 4 of (4.2), the generalized characteristic equation (1.5) is
written as follows

(4.3) u(t) + 133 {,u(l 1)+ t+22] ;j_—i exp {— J:_1 y(s)ds}

2(t 1+ 3) J,t_z P [— J_:u(u)du] ds.

It is easy to verify that (4.3) admits the solution

wit)y=0 for ¢t > 0.

Furthermore, we see that assumption (3.1) takes the form

lim su ! 1+ 2 t+2+ : <1

H%pz t+2)t+3 t+3 ’
This inequality holds true, i.e., condition (3.1) is always satisfied. Now, with
the neutral delay differential equation (4.1), we associate the initial condition

(4.4) x(t) = ¢(1) for -2 <t<0,

where ¢ is a given continuously differentiable real-valued function on [—2,0].
By applying Theorem 3.1, we conclude that the solution x of the IVP (4.1) and

(4.4) satisfies
. [ x() /7
}g?c L‘i‘—3] =/(¢),

where /(¢) is some real number determined by ¢, and

"
lim [ﬂ} =0
— 0 [+ 3

5. Discussion

Let us consider the case of second order linear nonautonomous neutral
delay differential equations involving the first order derivative of the unknown
function. More precisely, consider the neutral delay differential equation

(5.1)  x"(1) + c()x"(t = o) + p(D)x' (1) + q(0)x"(1 — p) = a(t)x(1) + b(1)x(1 — 1),
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where ¢, p, g, a, and b are continuous real-valued functions on the interval
[0,00), and o, p, and 7 are positive real constants. As it concerns equation
(5.1), r stands for the positive real number defined by r = max{s,p,7}. The
techniques applied in proving our results (i.e., Proposition 2.1 and Theorem
3.1) can equally well be employed to prove analogous results for the more
general case of the initial value problem (5.1) and (1.2).

Next, we consider the more general case of the second order linear
nonautonomous neutral delay differential equation

(52) X0+ ax"(t—a) + p)x (1) + 3 g (0x' (1 = p))

iel jeJ

= a()x(t) + Y bi(1)x(1 — 1),

keK

where I, J, and K are initial segments of natural numbers, ¢; for i€ I, p, g; for
jedJ, a, and by for k € K are continuous real-valued functions on the interval
[0,00), and g; for i e I, p; for j e J, and 7, for k € K are positive real constants.
As customary, it is assumed that g;, # g, for i}, i € I with i} # iy, P # P, for
ji,jp€J with j; # j,, and Tk, # Tk, for ki,koe K with k| #k,. As it
concerns the neutral delay differential equation (5.2), we use the notation r =
max{max 0;,max p;, max rk} (r is a positive real number). By using the
iel jeJ keK

methods applied in obtaining the results in this paper, we can derive analogous
results for the solution of the more general initial value problem (5.2) and (1.2).

We would be especially interested in the possibility of generalizing our
results in the case of second order linear neutral delay differential equations
with variable coefficients and variable delays. In case the delays are variable
and bounded, this seems easy to be achieved. However, the general case of
variable delays seems to be somewhat more difficult. Furthermore, it would be
interesting to generalize our results for second order linear nonautonomous
neutral delay differential equations with infinitely many distributed type delays.

References

[1] O. Arino and M. Pituk, More on linear differential systems with small delays, J. Differ-
ential Equations 170 (2001), 381-407.

[2] O. Diekmann, S. A. van Gils, S. M. Verduyn Lunel and H.-O. Walther, Delay Equations:
Functional-, Complex-, and Nonlinear Analysis, Applied Mathematical Sciences 110,
Springer-Verlag, New York, 1995.

[3] J. G. Dix, Ch. G. Philos and I. K. Purnaras, An asymptotic property of solutions to linear
nonautonomous delay differential equations, Electron. J. Differential Equations 2005 (2005),
No. 10, pp. 1-9.



[4]

(13]

(14]

An asymptotic result for neutral equations 63

J. G. Dix, Ch. G. Philos and I. K. Purnaras, Asymptotic properties of solutions to linear
non-autonomous neutral differential equations, J. Math. Anal. Appl. 318 (2006), 296-304.
R. D. Driver, Linear differential systems with small delays, J. Differential Equations 21
(1976), 148-166.

R. D. Driver, Ordinary and Delay Differential Equations, Applied Mathematical Sciences
20, Springer-Verlag, New York, 1977.

J. Hale, Theory of Functional Differential Equations, 2nd ed., Applied Mathematical
Sciences 3, Springer-Verlag, New York, 1977.

J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations,
Applied Mathematical Sciences 99, Springer-Verlag, New York, 1993.

Ch. G. Philos and I. K. Purnaras, An asymptotic result and a stability criterion for linear
nonautonomous delay difference equations, Arch. Math. (Basel) 83 (2004), 243-255.

Ch. G. Philos and I. K. Purnaras, Asymptotic behaviour and stability to linear non-
autonomous neutral delay difference equations, J. Difference Equ. Appl. 11 (2005), 503-513.
Ch. G. Philos and I. K. Purnaras, On non-autonomous linear difference equations with
continuous variable, J. Difference Equ. Appl. 12 (2006), 651-668.

Ch. G. Philos and I. K. Purnaras, Behavior of the solutions to second order linear
autonomous delay differential equations, Electron. J. Differential Equations 2007 (2007),
No. 106, pp. 1-35.

Ch. G. Philos and I. K. Purnaras, An asymptotic property of the solutions to second order
linear nonautonomous delay differential equations, Math. Comput. Modelling 49 (2009),
1350-1358.

F. Yenigerioglu, The behavior of solutions of second order delay differential equations, J.
Math. Anal. Appl. 332 (2007), 1278-1290.

Ch. G. Philos
Department of Mathematics
University of loannina
P. O. Box 1186
451 10 Ioannina
Greece
E-mail: cphilos@cc.uoi.gr

I K. Purnaras
Department of Mathematics
University of loannina
P. O. Box 1186
451 10 Ioannina
Greece
E-mail: ipurnara@cc.uoi.gr



