A note on the sheet numbers of twist-spun knots

Shin Satoh
(Received October 31, 2008)
(Revised April 3, 2009)

Abstract

The sheet number of a 2 -knot is a quantity which reflects the complexity of the knotting in 4 -space. The aim of this note is to determine the sheet numbers of the 2- and 3-twist-spun trefoils. For this purpose, we give a lower bound of the sheet number by the quandle cocycle invariant of a $2-\mathrm{knot}$, and an upper bound by the crossing number of a $1-$ knot.

1. Introduction

An n-knot is an n-sphere smoothly embedded in the Euclidian $(n+2)$ space. We have two kinds of quantities for a 2 -knot K which are analogous to the crossing number of a 1 -knot. The triple point number $\mathrm{t}(K)$ and the sheet number $\operatorname{sh}(K)$ are the minimal numbers of triple points and sheets for all diagrams of K. There are several studies on these invariants, for example, $[9,13,14,15,19,20,21]$ for $t(K)$, and $[12,16,17,18]$ for $\operatorname{sh}(K)$. In particular, we have a table of these numbers for "elementary" 2 -knots as shown in the following.

$K:$ 2-knot	$\mathrm{t}(K)$	$\operatorname{sh}(K)$
trivial 2-knot		1
spun trefoil	0	4
spun figure-eight knot		5
spun 52-knot		6
2-twist-spun trefoil	4	
3-twist-spun trefoil	6	

Moreover, it is known that

- $\mathfrak{t}(K)=0$ if and only if K is a ribbon 2-knot [21],
- $\operatorname{sh}(K)=1$ if and only if K is a trivial 2-knot [17],

[^0]- $\mathrm{t}(K) \geq 4$ for any non-ribbon 2-knot K [15], and
- $\operatorname{sh}(K) \geq 4$ for any non-trivial 2 -knot K [17, 18].

The first four 2 -knots in the above table satisfy $\mathrm{t}(K)=0$, that is, they are ribbon 2-knots. Hence, it is natural to ask the sheet numbers of non-ribbon 2-knots, in particular, the 2- and 3-twist-spun trefoils.

In this paper, we first review the definitions of the quandle homology and cohomology groups in Section 2 and the quandle cocycle invariants of 2-knots in Section 3. In Section 4, we give a lower bound of the sheet number by using the quandle cocycle invariant (Theorem 4.5). We remark that the quandle cocycle invariant is trivial for the family of ribbon 2-knots. Section 5 is devoted to giving an upper bound of the sheet number of a twist-spun knot in terms of the crossing number of a 1-knot (Lemma 5.2 and Theorem 5.3). Combining these results, we determine the sheet numbers of the 2 - and 3 -twistspun trefoils to be four and five, respectively (Theorem 6.1).

This research is partially supported by the Japan Society for the Promotion of Science.

2. Quandle (co)homology group

A non-empty set X with a binary operation $(a, b) \mapsto a * b$ is a quandle $[10,11]$ if it satisfies the following:
(i) For any element $a \in X$, it holds that $a * a=a$.
(ii) For any elements a and $b \in X$, there is a unique element $x \in X$ which satisfies $a=x * b$.
(iii) For any elements a, b, and $c \in X$, it holds that $(a * b) * c=(a * c) *$ $(b * c)$.

Definition 2.1. A quandle X is active if there is no distinct pair of elements a and $b \in X$ with $a * b=a$.

Example 2.2. (i) The set $\mathbf{Z}_{n}=\{0,1, \ldots, n-1\}$ with the binary operation $a * b=2 b-a$ modulo n is called the dihedral quandle of order n, and denoted by R_{n}. The quandle R_{n} is active if and only if n is odd.
(ii) The set $\{0,1,2,3\}$ with the binary operation given in the following table is a quandle which is denoted by S_{4}. It is easy to see that S_{4} is active.

$$
\begin{array}{llll}
0 * 0=0, & 0 * 1=2, & 0 * 2=3, & 0 * 3=1, \\
1 * 0=3, & 1 * 1=1, & 1 * 2=0, & 1 * 3=2, \\
2 * 0=1, & 2 * 1=3, & 2 * 2=2, & 2 * 3=0, \\
3 * 0=2, & 3 * 1=0, & 3 * 2=1, & 3 * 3=3 .
\end{array}
$$

The associated group of a quandle X [7,10], denoted by $G(X)$, is the group which has a presentation

$$
\left.G(X)=\langle x \in X| x * y=y^{-1} x y \text { for } x, y \in X\right\rangle .
$$

For a quandle X, an X-set $[7,8]$ is a non-empty set S equipped with a right action $(s, g) \mapsto s \cdot g$ by the associated group $G(X)$; that is,

$$
s \cdot e=s \quad \text { and } \quad s \cdot\left(g g^{\prime}\right)=(s \cdot g) \cdot g^{\prime}
$$

for any $s \in S$, the identity element e of $G(X)$, and any $g, g^{\prime} \in G(X)$.
Example 2.3. (i) For any quandle X, the set $S=\{0\}$ with the right action $0 \cdot g=0$ for any $g \in G(X)$ is an X-set.
(ii) For any quandle X, the set $S=\mathbf{Z}_{2}=\{0,1\}$ with the right action $0 \cdot x=1$ and $1 \cdot x=0$ for any generator $x \in X$ of $G(X)$ is an X-set.

Let X be a quandle, and S an X-set.
(i) The chain group $C_{n}^{\mathrm{R}}(X)_{S}$ is given by

$$
C_{n}^{\mathrm{R}}(X)_{S}= \begin{cases}\mathbf{Z}\left[S \times X^{n}\right] & n>0 \\ \mathbf{Z}[S] & n=0, \\ \{0\} & n<0\end{cases}
$$

where $\mathbf{Z}[M]$ denotes the free Abelian group generated by a set M. The boundary operation $\partial_{n}: C_{n}^{\mathrm{R}}(X)_{S} \rightarrow C_{n-1}^{\mathrm{R}}(X)_{S}$ is given by

$$
\begin{aligned}
\partial_{n}\left(s ; x_{1}, \ldots, x_{n}\right)= & \sum_{i=1}^{n}(-1)^{i}\left\{\left(s ; x_{1}, \ldots, \hat{x}_{i}, \ldots, x_{n}\right)\right. \\
& \left.-\left(s \cdot x_{i} ; x_{1} * x_{i}, \ldots, x_{i-1} * x_{i}, \hat{x}_{i}, x_{i+1}, \ldots, x_{n}\right)\right\}
\end{aligned}
$$

for $n>0$, and $\partial_{n}=0$ for $n \leq 0$. Then $C_{*}^{\mathrm{R}}(X)_{S}=\left\{C_{n}^{\mathrm{R}}(X)_{S}, \partial_{n}\right\}$ is a chain complex.
(ii) For $n \geq 2$, let $\left(S \times X^{n}\right)_{0}$ denote the subset of $S \times X^{n}$ whose elements are $\left(s ; x_{1}, \ldots, x_{n}\right)$'s with $x_{i}=x_{i+1}$ for some i. The chain group $D_{*}(X)_{S}$ is given by

$$
D_{n}(X)_{S}= \begin{cases}\mathbf{Z}\left[\left(S \times X^{n}\right)_{0}\right] & n \geq 2, \\ \{0\} & n \leq 1 .\end{cases}
$$

Since $\partial_{n}\left(D_{n}(X)_{S}\right) \subset D_{n-1}(X)_{S}$, the pair $D_{*}(X)_{S}=\left\{D_{n}(X)_{S}, \partial_{n}\right\}$ is a subcomplex of $C_{*}^{\mathrm{R}}(X)_{S}$.
(iii) The chain complex $C_{*}^{\mathrm{Q}}(X)_{S}$ is given by $C_{*}^{\mathrm{R}}(X)_{S} / D_{*}(X)_{S}$ as a quotient.
(iv) For an Abelian group A, the chain and cochain groups

$$
\left\{\begin{array}{l}
C_{*}^{\mathrm{Q}}(X, A)_{S}=C_{*}^{\mathrm{Q}}(X)_{S} \otimes A, \quad \text { and } \\
C_{\mathrm{Q}}^{*}(X, A)_{S}=\operatorname{Hom}\left(C_{*}^{\mathrm{Q}}(X)_{S}, A\right),
\end{array}\right.
$$

with the coefficient A induce the homology and cohomology groups $H_{*}^{\mathrm{Q}}(X, A)_{S}$ and $H_{\mathrm{Q}}^{*}(X, A)_{S}$, respectively. They are called the quandle homology and cohomology groups, respectively (cf. [2, 3]).

Remark 2.4. (i) If $A=\mathbf{Z}$, then we abbreviate A such as $H_{*}^{\mathrm{Q}}(X)_{S}$ and $H_{\mathrm{Q}}^{*}(X)_{S}$.
(ii) If $S=\{0\}$ as given in Example 2.3(i), then we abbreviate S such as $H_{*}^{\mathrm{Q}}(X, A)$ and $H_{\mathrm{Q}}^{*}(X, A)$, which are the original quandle (co)homology groups introduced in [1].

Definition 2.5. (i) By definition, any n-chain $\gamma \in C_{n}^{\mathrm{Q}}(X)_{S}(n \geq 1)$ can be uniquely represented by

$$
\gamma=\sum m_{s ; x_{1}, \ldots, x_{n}}\left(s ; x_{1}, \ldots, x_{n}\right),
$$

where $m_{s ; x_{1}, \ldots, x_{n}}$'s are integers and all zero except a finite number of them. The sum is taken for all $\left(s ; x_{1}, \ldots, x_{n}\right) \in S \times X^{n}$ with $x_{i} \neq x_{i+1}(i=1, \ldots, n-1)$. The length of γ is defined by

$$
\ell(\gamma)=\sum\left|m_{s ; x_{1}, \ldots, x_{n}}\right| .
$$

(ii) For an nth homology class $[\gamma] \in H_{n}^{\mathrm{Q}}(X)_{S}$, the length of $[\gamma]$ is defined by

$$
\ell([\gamma])=\min \left\{\ell\left(\gamma^{\prime}\right) \mid \gamma^{\prime} \in C_{n}^{\mathrm{Q}}(X)_{S} \text { with }\left[\gamma^{\prime}\right]=[\gamma]\right\} .
$$

(iii) For an nth cohomology class $[\theta] \in H_{\mathrm{Q}}^{n}(X, A)_{S}$, the length of $[\theta]$ is defined by

$$
\ell([\theta])=\min \left\{\ell([\gamma]) \mid[\gamma] \in H_{n}^{\mathrm{Q}}(X)_{S} \text { with }\langle[\gamma],[\theta]\rangle \neq 0\right\},
$$

where $\langle\rangle:, H_{n}^{\mathrm{Q}}(X)_{S} \times H_{\mathrm{O}}^{n}(X, A)_{S} \rightarrow A$ is the Kronecker product defined by $\langle[\gamma],[\theta]\rangle=\theta(\gamma)$ by regarding θ as a map $C_{n}^{\mathrm{Q}}(X)_{S} \rightarrow A$.

3. Quandle cocycle invariant

A 2-knot K is a 2 -sphere embedded in the Euclidian 4-space \mathbf{R}^{4} smoothly. In this paper, we always assume that K is oriented. Many notions
used in 1 -knot theory can be extended to the study of 2 -knots. The readers who are not familiar with 2 -knot theory may refer to [4, 5], for example.

A diagram of a 2 -knot is the projection image $\pi(K) \subset \mathbf{R}^{3}$ equipped with crossing information, where $\pi: \mathbf{R}^{4} \rightarrow \mathbf{R}^{3}$ is a fixed projection, and any point on $\pi(K)$ may be assumed to be a regular point, double point, an isolated triple point, or an isolated branch point. Usually, we indicate crossing information by dividing the lower disk into two pieces near a double point, and this modification can be extended to neighborhoods of a triple point and a branch point naturally. See Figure 1.

double point

triple point

branch point

Figure 1

Any 2-knot diagram D is regarded as a disjoint union of compact, connected surfaces, each of which is called a sheet. We denote by $\operatorname{sh}(D)$ and $t(D)$ the numbers of sheets and triple points of D, respectively.

The sheet number and triple point number of a 2 -knot K is the minimal number of $\operatorname{sh}(D)$'s and $t(D)$'s for all diagrams which represents (the ambient isotopy class of) K, and denoted by $\operatorname{sh}(K)$ and $\mathrm{t}(\mathrm{K})$, respectively.

Let X be a quandle, and S an X-set. A pair of maps $C=\left(C_{1}, C_{2}\right)$,

$$
\left\{\begin{array}{l}
C_{1}:\{\text { the sheets of } D\} \rightarrow X, \\
C_{2}:\left\{\text { the connected regions of } \mathbf{R}^{3} \backslash \pi(K)\right\} \rightarrow S,
\end{array}\right.
$$

is an X_{S}-coloring for D if it satisfies the following two conditions:
(1) $C_{1}(H) * C_{1}\left(H^{\prime}\right)=C_{1}\left(H^{\prime \prime}\right)$ holds near every double point, where H and $H^{\prime \prime}$ are the lower sheets and H^{\prime} is the upper sheet such that the orientation of H^{\prime} points from H to $H^{\prime \prime}$.
(2) $C_{2}(R) \cdot C_{1}(H)=C_{2}\left(R^{\prime}\right)$ holds near every regular point, where R and R^{\prime} are the regions adjacent to the sheet H such that the orientation of H points from R to R^{\prime}.
See Figure 2. The elements $C_{1}(H) \in X$ and $C_{2}(R) \in S$ are called the colors of a sheet H and a region R with respect to C, respectively. An X_{S}-coloring $C=\left(C_{1}, C_{2}\right)$ is called trivial if C_{1} is a constant map, and otherwise non-trivial. For $S=\{0\}$, we call an X_{S}-coloring an X-coloring simply.

Figure 2
Let t be a triple point of a diagram D with an X_{S}-coloring C. Among the eight regions near t, the specified region R is the one such that all the orientations of the sheets adjacent to R point away from R.

The color of t with respect to C is the element $(s ; a, b, c) \in S \times X^{3}$, where s is the color of the specified region R, and a, b, and c are the colors of the bottom, middle, and top sheets adjacent to R, respectively. See Figure 3.

Figure 3
The sign of t is positive if the ordered triple of the orientations of the top, middle, and bottom sheets matches with the orientation of \mathbf{R}^{3}, and otherwise negative. We denote it by $\varepsilon(t) \in\{ \pm 1\}$.

For a diagram D with an X_{S}-coloring C, the 3-chain $\gamma_{D, C}$ is defined by

$$
\gamma_{D, C}=\sum_{t} \varepsilon(t) \cdot(s ; a, b, c) \in C_{3}^{\mathrm{R}}(X)_{S}=\mathbf{Z}\left[S \times X^{3}\right],
$$

where the sum is taken for all triple points t of D and $(s ; a, b, c)$ is the color of t.

We remark that the 3-chain $\gamma_{D, C}$ is a 3-cycle, that is, $\partial_{3}\left(\gamma_{D, C}\right)=0$. Hence, it defines a third homology class $\left[\gamma_{D, C}\right] \in H_{3}^{\mathrm{Q}}(X)_{S}$.

Theorem 3.1 (cf. [1, 3, 7]). (i) For a diagram D of a 2 -knot K, the multiset

$$
\Psi(D)=\left\{\left[\gamma_{D, C}\right] \in H_{3}^{\mathrm{Q}}(X)_{S} \mid C: X_{S} \text {-colorings for } D\right\}
$$

is independent of a particular choice of D.
(ii) For a third cohomology class $[\theta] \in H_{\mathrm{Q}}^{3}(X, A)_{S}$, the multi-set

$$
\Phi_{\theta}(D)=\left\{\left\langle\left[\gamma_{D, C}\right],[\theta]\right\rangle \in A \mid C: X_{S} \text {-colorings for } D\right\}
$$

is independent of a particular choice of D.
The multi-set $\Phi_{\theta}(D)$ in Theorem 3.1 is called the quandle cocycle invariant of K associated with $[\theta] \in H_{\mathrm{Q}}^{3}(X, A)_{S}$, and denoted by $\Phi_{\theta}(K)$.

Definition 3.2. Let t be a triple point of D with an X_{S}-coloring C, and $(s ; a, b, c) \in S \times X^{3}$ the color of t. We say that t is non-degenerated with respect to C if $a \neq b \neq c$, and degenerated if $a=b$ or $b=c$.

Let $t(D, C)$ denote the number of non-degenerated triple points of D with respect to an X_{S}-coloring C.

Proposition 3.3. Let $[\theta] \in H_{\mathrm{Q}}^{3}(X, A)_{S}$ be a third cohomology class. Assume that the quandle cocycle invariant $\Phi_{\theta}(K)$ of a 2 -knot K contains a nonzero element. Then for any diagram D of K, it holds that $t(D, C) \geq \ell([\theta])$.

Proof. By assumption, there is an X_{S}-coloring C for D such that $\left\langle\left[\gamma_{D, C}\right],[\theta]\right\rangle \neq 0$. Hence, it holds that $\ell\left(\left[\gamma_{D, C}\right]\right) \geq \ell([\theta])$. On the other hand, it follows by definition that $t(D, C) \geq \ell\left(\left[\gamma_{D, C}\right]\right)$. Hence, we have $t(D, C) \geq$ $\ell([\theta])$.

We remark that the number $t(D, C)$ is originally introduced to give a lower bound of the triple point number as follows.

Theorem 3.4 ([20]). If $\Phi_{\theta}(K)$ contains a non-zero element, then it holds that

$$
\mathrm{t}(K) \geq \ell([\theta])
$$

Proof. Any diagram D of K satisfies $t(D) \geq t(D, C) \geq \ell([\theta])$ by Proposition 3.3.

4. Lower bound of sheet number

Recall that a diagram D of a 2 -knot K is the projection image $\pi(K)$ equipped with crossing information. For a double point p, the preimage $\left(\left.\pi\right|_{K}\right)^{-1}(p)$ consists of a pair of points, which are called the lower and upper points with respect to the height function of the projection. Let $\Lambda_{-}=\Lambda_{-}(D)$ denote the closure of the lower points in K. The set Λ_{-}is regarded as a disjoint union of a graph and a finite number of circles embedded in K. In particular, every vertex of Λ_{-}has degree 1 or 4 . More precisely, a branch
point b of D gives a 1 -valent vertex $b^{*}=\left(\left.\pi\right|_{K}\right)^{-1}(b)$ of Λ_{-}, and a triple point t gives a 4 -valent vertex t^{*} on the bottom disk. We call t^{*} the bottom point of t. See Figure 4, where the solid and dotted lines mean Λ_{-}and the closure of the set of upper points in K, respectively.

Figure 4

Remark 4.1. (i) The set of the connected regions of the complement $K \backslash \Lambda_{-}$has a one-to-one correspondence to the set of the sheets of D.
(ii) If D is X_{S}-colored, then we give each region of $K \backslash \Lambda_{-}$the color assigned to the corresponding sheet of D naturally.

Let C be an X_{S}-coloring for a diagram D. We define the subgraph $\Lambda_{-}(C)$ of Λ_{-}whose edges and circles satisfy the following condition: The regions of $K \backslash \Lambda_{-}(C)$ on both sides of an edge/circle have different colors with respect to C. In particular, any 1 -valent vertex b^{*} of Λ_{-}and the edge incident to b^{*} do not belong to $\Lambda_{-}(C)$.

Lemma 4.2. Let X be an active quandle, C an X_{S}-coloring for a diagram D, and t a triple point of D.
(i) If t is a degenerated triple point with respect to C, then the bottom point t^{*} has degree 2 or 4 in $\Lambda_{-}(C)$, or does not belong to $\Lambda_{-}(C)$.
(ii) If t is a non-degenerated triple point, then t^{*} has degree 3 or 4 in $\Lambda_{-}(C)$.

Proof. Let $a_{i}(i=1,2,3,4), b_{j}(j=1,2)$, and c be the colors of the bottom, middle, and top sheets, respectively, and $e_{k}(k=1,2,3,4)$ the edges incident to t^{*} in Λ_{-}as shown in Figure 5.

Figure 5
(i) If $a_{1}=b_{1}=c$, then we have $a_{1}=a_{2}=a_{3}=a_{4}$. Hence, the four edges e_{1}, \ldots, e_{4}, and the bottom point t^{*} do not belong to $\Lambda_{-}(C)$.

If $a_{1}=b_{1} \neq c$, then we have $a_{1}=a_{2} \neq a_{3}=a_{4}$. Hence, the edges e_{3} and e_{4} belong to $\Lambda_{-}(C)$ and e_{1} and e_{2} do not belong to $\Lambda_{-}(C)$. In particular, t^{*} has degree 2 in $\Lambda_{-}(C)$.

If $a_{1} \neq b_{1}=c$, then $a_{1} \neq a_{2}=a_{3} \neq a_{4}$. Hence, the four edges e_{1}, \ldots, e_{4} belong to $\Lambda_{-}(C)$, and t^{*} has degree 4 in $\Lambda_{-}(C)$.
(ii) Since $a_{1} \neq b_{1} \neq c$, we have $a_{1} \neq a_{2}$ and $a_{3} \neq a_{4}$. Hence, the edges e_{1} and e_{2} belong to $\Lambda_{-}(C)$. Assume that neither edge of e_{3} nor e_{4} belong to $\Lambda_{-}(C)$, that is, $a_{1}=a_{3}$ and $a_{2}=a_{4}$. Since $a_{1} * c=a_{3}, a_{2} * c=a_{4}$, and X is active, we have $c=a_{1}=a_{2}$. This contradicts to $a_{1} \neq a_{2}$. Hence, at least one of e_{3} and e_{4} belongs to $\Lambda_{-}(C)$, and t^{*} has degree 3 or 4 in $\Lambda_{-}(C)$.

Assume that $\Lambda_{-}(C)$ is a disjoint union of m connected graphs and n circles. Let $v_{i}(i=3,4)$ denote the number of vertices of degree i, and r the number of the connected regions of $K \backslash \Lambda_{-}(C)$. The following is easily obtained by the calculation of the Euler characteristic of a 2-sphere. See Figure 6.

$$
r=11, v_{3}=6, v_{4}=2, m=2, n=3
$$

Figure 6

Lemma 4.3. $r=\frac{1}{2} v_{3}+v_{4}+m+n+1$.
Proposition 4.4. Let X be an active quandle, and C an X_{S}-coloring for a diagram D. If $t(D, C)>0$, then it holds that $\operatorname{sh}(D) \geq \frac{1}{2} t(D, C)+2$.

Proof. Recall that $\operatorname{sh}(D)$ is coincident with the number of the connected regions of the complement $K \backslash \Lambda_{-}$. Since $\Lambda_{-}(C) \subset \Lambda_{-}$, it holds that $\operatorname{sh}(D) \geq r$. On the other hand, it follows by Lemma 4.2 that $\frac{1}{2} v_{3}+v_{4} \geq \frac{1}{2}\left(v_{3}+v_{4}\right) \geq$ $\frac{1}{2} t(D, C)$. Furthermore, it holds that $m \geq 1$ by $t(D, C)>0$. By $n \geq 0$ and Lemma 4.3, we have $\operatorname{sh}(D) \geq \frac{1}{2} t(D, C)+2$ immediately.

Theorem 4.5. Let X be an active quandle, and $[\theta] \in H_{\mathrm{Q}}^{3}(X, A)_{S}$ a third cohomology class. If the quandle cocycle invariant $\Phi_{\theta}(K)$ of a 2-knot K contains a non-zero element, then it holds that

$$
\operatorname{sh}(K) \geq \frac{1}{2} \ell([\theta])+2
$$

Proof. It follows by Propositions 3.3 and 4.4 that any diagram D of K satisfies $\operatorname{sh}(D) \geq \frac{1}{2} t(D, C)+2 \geq \frac{1}{2} \ell([\theta])+2$.

5. Upper bound of sheet number

Let k be a 1 -knot, and r a non-negative integer. We take a tangle T in the upper-half space $\mathbf{R}_{+}^{3}=\{(x, y, z, 0) \mid x, y \in \mathbf{R}, z \geq 0\}$ whose knotting represents the 1 -knot k. By spinning \mathbf{R}^{3} about the axis $\mathbf{R}^{2}=\{(x, y, 0,0) \mid x, y \in \mathbf{R}\}$, we recover the 4 -space $\mathbf{R}^{4}=\left\{(x, y, z \cos \theta, z \sin \theta) \mid x, y \in \mathbf{R}, z \geq 0, \theta \in S^{1}\right\}$.

We take a 3-ball B in \mathbf{R}_{+}^{3} such that the knotting part of T is entirely contained in B. In the spinning process of \mathbf{R}_{+}^{3}, we simultaneously rotate $B r$ full twists with keeping the points $T \cap \partial B$. The trace of T provides a 2-knot. We call it the r-twist-spun knot, and denote it by $\tau^{r} k[22]$. See Figure 7.

Figure 7

Remark 5.1. (i) The 0 -spun knot $\tau^{0} k$ is called the spun knot simply. The spun knot has a diagram which is obtained from a tangle diagram of k in the upper-half plane by spinning it about the axis. The diagram has neither triple point nor branch point. Hence, we have $\mathfrak{t}\left(\tau^{0} k\right)=0$ and $\operatorname{sh}\left(\tau^{0} k\right) \leq$ $\mathrm{c}(k)+1$, where $\mathrm{c}(k)$ is the crossing number of the 1 -knot k.
(ii) Every 1-twist-spun knot is a trivial 2-knot; that is, it bounds a 3-ball embedded in \mathbf{R}^{4} [22].
(iii) If $r \geq 2$ and k is a non-trivial 1-knot, then $\tau^{r} k$ is always non-ribbon [6]. Moreover, any diagram of $\tau^{r} k$ must have at least four triple points [15].

To construct a diagram of a twist-spun knot $\tau^{r} k$, we consider the sequence of Reidemeister moves for a tangle diagram T of k in the upper-half plane \mathbf{R}_{+}^{2} as shown in the upper row of Figure 8. Assume that T has n crossings.

Figure 8
$1 \rightarrow 2$: The deformation is realized by an ambient isotopy of \mathbf{R}_{+}^{2}.
$2 \rightarrow 3$: The tangle goes over the terminal path with several Reidemeister moves II and n Reidemeister moves III.
$3 \rightarrow 4$: A single Reidemeister move I is performed.
$4 \rightarrow 5$: The deformation is realized by an ambient isotopy of \mathbf{R}_{+}^{2}.
$5 \rightarrow 6$: The tangle goes under the initial path with several Reidemeister moves II and n Reidemeister moves III.
$6 \rightarrow 7$: A Reidemeister move II and a Reidemeister move I are performed.
It is known that the sequence represents a full twist of the tangle (cf. [20]). We take r copies of the sequence in a pile to obtain a diagram D of $\tau^{r} k$ in \mathbf{R}^{3} with open book structure. In particular, Reidemeister moves I and III in the sequence correspond to a branch point and a triple point of D, respectively.

To obtain the set Λ_{-}from D, we arrange the lower crossings in a line at each stage of the sequence. See the lower row of Figure 8. Here, \tilde{T} indicates the immersed curve obtained from the diagram T by ignoring crossing information, and the number of the parallel curves is equal to n. We put r copies of the trace in a pile to obtain the set Λ_{-}on a 2 -sphere. See Figure 9.

Figure 9

Lemma 5.2. For a non-trivial $1-k n o t k$ and $r \geq 2$, it holds that

$$
\operatorname{sh}\left(\tau^{r} k\right) \leq\{2 \mathrm{c}(k)-1\} r+2 .
$$

Proof. We take a tangle diagram of k which realizes the crossing number $n=\mathrm{c}(k)$. For the graph Λ_{-}constructed as above, it is not difficult to count the number of the connected regions of the complement $\tau^{r} k \backslash \Lambda_{-}$as follows;

$$
\operatorname{sh}(D)=1+(n-1) r+n r+1=(2 n-1) r+2 .
$$

Since $\operatorname{sh}\left(\tau^{r} k\right) \leq \operatorname{sh}(D)$, we have the conclusion.
Assume that a tangle diagram T has a particular pair of crossings labeled a and b as shown in the top-left of Figure 10, where the boxed sub-tangle T^{\prime}

Figure 10
has $n-2$ crossings. We consider the sequence of Reidemeister moves for T as in the top row of the figure.

The sequence is similar to the previous one, and the differences are as follows:
$2 \rightarrow 3$: The sub-tangle T^{\prime} goes over the terminal path with several Reidemeister moves II and $n-2$ Reidemeister moves III.
$3 \rightarrow 4: \quad$ A Reidemeister move II and a Reidemeister move I are performed.
$5 \rightarrow 6$: The sub-tangle T^{\prime} goes under the initial path with several Reidemeister moves II and $n-2$ Reidemeister moves III.
$6 \rightarrow 7$: A pair of Reidemeister moves II and a Reidemeister move I are performed.
It is known that the sequence also represents a full twist of the tangle (cf. [20]). In the middle and bottom rows of Figure 10, we illustrate the trace of the lower crossings arranged in a line at each stage, where the middle row is the case that the under-crossing of a comes before the over-crossing of b with respect to the orientation of T, and the bottom row is the opposite case.

Theorem 5.3. Suppose that a non-trivial 1-knot k has a minimal diagram which contains the portion \downarrow or (Then for $r \geq 2$, it holds that

$$
\operatorname{sh}\left(\tau^{r} k\right) \leq\{2 \mathrm{c}(k)-5\} r+2 .
$$

Proof. We may assume that k has a tangle diagram which contains a sub-tangle T^{\prime} with $n-2$ crossings as above, where $n=\mathrm{c}(k)$.

We consider the case that the set Λ_{-}is obtained by taking r copies of the traces in the middle row of Figure 10. The case in the bottom row can be similarly proved. By observing Λ_{-}as shown in Figure 11, we count the number of the connected regions of the complement $\tau^{r} k \backslash \Lambda_{-}$as follows;

$$
\operatorname{sh}(D)=1+(n-2) r+(n-3) r+1=(2 n-5) r+2 .
$$

Since $\operatorname{sh}\left(\tau^{r} k\right) \leq \operatorname{sh}(D)$, we have the conclusion.

Figure 11

6. 2- and 3-twist-spun trefoils

Let k be the trefoil knot. It follows by Theorem 5.3 that $\operatorname{sh}\left(\tau^{r} k\right) \leq r+2$. In particular, we have $\operatorname{sh}\left(\tau^{2} k\right) \leq 4$ and $\operatorname{sh}\left(\tau^{3} k\right) \leq 5$.

Theorem 6.1. (i) The 2-twist-spun trefoil has the sheet number four.
(ii) The 3-twist-spun trefoil has the sheet number five.

Proof. (i) In [16], we prove that if a 2 -knot K admits a non-trivial X coloring for some quandle X, then it holds that $\operatorname{sh}(K) \geq 4$. Since the 2 -twistspun trefoil $\tau^{2} k$ admits a non-trivial R_{3}-coloring, it holds that $\operatorname{sh}\left(\tau^{2} k\right) \geq 4$. Hence, we have $\operatorname{sh}\left(\tau^{2} k\right)=4$. (Recently, we prove that $\operatorname{sh}(K) \geq 4$ for any nontrivial 2-knot K [17, 18].)
(ii) It is known that $H_{\mathrm{Q}}^{3}\left(S_{4}, \mathbf{Z}_{2}\right) \cong\left(\mathbf{Z}_{2}\right)^{3}$ (cf. [1]). Let $[\theta]$ be a non-zero cohomology class of this group. Then the quandle cocycle invariant of the 3-twist-spun trefoil is given by

$$
\Phi_{\theta}\left(\tau^{3} k\right)=\{0(4 \text { times }), 1(12 \text { times })\}
$$

which contains a non-zero element.
In [20], we prove that if a homology class $[\gamma] \in H_{3}^{\mathrm{Q}}\left(S_{4}\right)_{\mathbf{Z}_{2}}$ satisfies $\langle[\gamma],[\theta]\rangle \neq 0 \in \mathbf{Z}_{2}$, then it holds that $\ell([\gamma]) \geq 6$ and hence $\ell([\theta]) \geq 6$. Here, the product is taken by regarding [θ] as a cohomology class of $H_{\mathbf{Q}}^{3}\left(S_{4}, \mathbf{Z}_{2}\right)_{\mathbf{Z}_{2}}$. By Theorem 4.5, we have

$$
\operatorname{sh}\left(\tau^{3} k\right) \geq \frac{1}{2} \ell([\theta])+2 \geq 5
$$

Hence, it holds that $\operatorname{sh}\left(\tau^{3} k\right)=5$.
We have an alternative proof of Theorem 6.1(i) similarly to that of (ii). In fact, for a generator [θ] of $H_{\mathrm{Q}}^{3}\left(R_{3}, \mathbf{Z}_{3}\right) \cong \mathbf{Z}_{3}$, we have

$$
\Phi_{\theta}\left(\tau^{2} k\right)=\{0(3 \text { times }), 1(6 \text { times })\}
$$

and $\ell([\theta])=4$. Hence, it holds that $\operatorname{sh}\left(\tau^{2} k\right) \geq \frac{4}{2}+2=4$.
Question 6.2. Does the r-twist-spun trefoil have the sheet number $r+2$ for $r \geq 4$?

References

[1] J. S. Cater, D. Jelsovsky, S. Kamada, L. Langford, and M. Saito, Quandle cohomology and state-sum invariants of knotted curves and surfaces, Trans. Amer. Math. Soc. 355 (2003), 3947-3989.
[2] J. S. Carter, D. Jelsovsky, S. Kamada, and M. Saito, Quandle homology groups, their Betti numbers, and virtual knots, J. Pure Appl. Algebra 157 (2001), 345-358.
[3] J. S. Carter, S. Kamada, and M. Saito, Geometric interpretations of quandle homology and cocycle knot invariants, J. Knot Theory Ramifications 10 (2001), 345-358.
[4] J. S. Carter, S. Kamada, and M. Saito, Surfaces in 4-space, Encyclopaedia of Mathematical Sciences, 142. Low-Dimensional Topology, III. Springer-Verlag, Berlin, 2004.
[5] J. S. Carter and M. Saito, Knotted surfaces and their diagrams, Mathematical Surveys and Monographs, 55, Amer. Math. Soc., Providence, RI, 1998.
[6] T. Cochran, Ribbon knots in S^{4}, J. London Math. Soc. (2) 28 (1983), no. 3, 563-576.
[7] R. Fenn and C. Rourke, Racks and links in codimmension two, J. Knot Theory Ramifications 1 (1992), 343-406.
[8] R. Fenn, C. Rourke, and B. Sanderson, Trunks and classifying spaces, Appl. Categ. Structures 3 (1995), 321-356.
[9] E. Hatakenaka, An estimate of the triple point numbers of surface-knots by quandle cocycle invariants, Topology Appl. 139 (2004), no. 1-3, 129-144.
[10] D. Joyce, A classifying invariants of knots, the knot quandle, J. Pure Appl. Algebra 23 (1982), 37-65.
[11] S. Matveev, Distributive groupoids in knot theory (Russian), Mat. Sb. (N.S.) 119 (1982), 78-88; English translation: Math. USSR-Sb. 47 (1984), 73-83.
[12] M. Saito and S. Satoh, The spun trefoil needs four broken sheets, J. Knot Theory Ramifications, 14 (2005), 853-858.
[13] S. Satoh, Minimal triple point numbers of some non-orientable surface-links, Pacific J. Math. 197 (2001), no. 1, 213-221.
[14] S. Satoh, Non-additivity for triple point numbers on the connected sum of surface-knots, Proc. Amer. Math. Soc. 133 (2005), no. 2, 613-616.
[15] S. Satoh, No 2-knot has triple point number two or three, Osaka J. Math. 42 (2005), no. 3, 543-556.
[16] S. Satoh, Sheet number and quandle-colored 2-knot, to appear in J. Math. Soc. Japan.
[17] S. Satoh, Triviality of 2-knot with one or two sheets, to appear in Kyushu J. Math.
[18] S. Satoh, Triviality of 2-knot with three sheets, preprint.
[19] S. Satoh and A. Shima, The 2-twist-spun trefoil has the triple point number four, Trans. Amer. Math. Soc. 356 (2004), no. 3, 1007-1024.
[20] S. Satoh and A. Shima, Triple point numbers and quandle cocycle invariants of knotted surfaces in 4-space, New Zealand J. Math. 34 (2005), no. 1, 71-79.
[21] T. Yajima, On simply knotted spheres in \mathbf{R}^{4}, Osaka J. Math. 1 (1964), 133-152.
[22] E. C. Zeeman, Twisting spun knots, Trans. Amer. Math. Soc. 115 (1965), 471-495.

Shin Satoh
Department of Mathematics
Kobe University
Rokkodai-cho, Nada-ku
Kobe 657-0013, Japan
E-mail: shin@math.kobe-u.ac.jp

[^0]: 2000 Mathematics Subject Classification. Primary 57Q45; Secondary 57Q35.
 Key words and phrases. 2-knot, diagram, sheet, triple point, branch point.

