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Spectral properties of a class of generalized Ruelle operators
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ABSTRACT. We consider a class of Ruelle type operators which play an important
role in the study of singular perturbation of symbolic dynamics via thermodynamic
formalism. We study the eigenvalues of those operators with maximal modulus and
obtain necessary and sufficient conditions for them to be semisimple.

1. Introduction

Let d > 2 be an integer and S ={1,2,...,d} a finite set endowed with
the discrete topology. We write an element @ e S%* as w = wow; ..., where
Z, is the totality of nonnegative integers. We define a map o : S% — S%+
called the shift transformation by (o), = w,+1 for @ € S% and neZ.. Let
M = (M(ij)) be a d x d matrix whose entries are either 0 or 1. We con-
sider the set X, = {w e S% : M(w,w,y1) =1 for any ne Z,} and the shift
om = a| i The topological dynamical system (X},,0)) is called a subshift
of finite type with transition matrix M. For integers m >0, n>1 and a
word weS", put ,[w ={weS% : wuwni1... . Opin1 =w} and m[w}M =
mw]NZ};,. Such a set is called a cylinder set. A word ijir...i, € S" is
called M-admissible if M(ijiz) - ...  M(iy—1iy) =1. Forn>1, W,(M) denotes
the totality of AM-admissible words of S”.

Let A = (A(#)) and B = (B(ij)) be d x d transition matrices satisfying the
following conditions.

(Z.1) There exists an integer nyp > 1 such that 4™ > 0.

(2.2) B(ij) =1 implies A(i) = 1.

(2.3) X} is not empty.

Following the notion in [7], we can regard X} as the subshift obtained by the
collapsing of X7. We should note that the condition (X.3) in the present
paper is much more general than the condition (X.3) in the previous paper [7].

For 0 (0,1), we define a metric dy on S%+ so that dp(w,w’) = 0" if
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w#w and n=min{n:w, #w,} and dp(w,w)=0. The metric topology
induced by dy to S% coincides with the product topology on S%+ induced
by the discrete topology of S. Clearly 2} is a closed subset of S Z:+_ Denote
by C(2}) the totality of complex valued continuous functions on X} and by
C(Z} — R) the totality of real valued functions belonging to C(X}). Sim-
ilarly, denote by Fy(X;) the totality of complex valued Lipschitz continuous
functions with respect to dy and by Fy(X) — R) the totality of real valued
functions belonging to Fy(X}). The spaces C(X}) endowed with the su-
premum norm || f||,, = sup, x|/ ()], and Fy(27) endowed with the norm
I/lg = lIf1l, + [f]y are Banach spaces, where [f], = max;cs[f]y; with [f],; =
sup{|f (@) — f(@")|/dp(w,®") : 0,0 €[i]* and w # @'} for feF)(2}) and
iesS.
Let p € Fy(Z; — R). We define an operator %, on C(X}) by

Dpof (@)= Y (o),

i€ S:B(iwg)=1

where i - @ denotes the concatenation of i and w, ie. i- @ =iwow;... in Z}.
The operator can be regarded as an operator on Fy(X}) naturally. We note
that such an operator plays an important role in the study of singular
perturbation of symbolic dynamics in the previous paper [7].

The two main purposes of this paper are the following:

(I) Giving a necessary and sufficient condition for semisimplicity of the
eigenvalues of the operator %3, with maximal modulus in terms of the orbit
structure of the dynamics (2}, 05) (Theorem 3.2).

(II) Showing a generalization of the Ruelle-Perron-Frobenius theorem for
the operator %3, under the condition in (I) (Theorem 3.3).

As auxiliary results, we obtain a decomposition of X; by using the
pointwise exponential growth rate of #' 1 (Theorem 5.1) and the information
of detailed structure of the eigenspaces corresponding to the eigenvalues of the
operator Zp, and the dual Z;  of %, with maximal modulus (Proposition
5.3, Proposition 5.4). More precisely, we give bases of those eigenspaces under
the condition in (I).

In Section 2 we give some notions and facts which are necessary to state
the main results. The statements of the main results are given in Section 3.
In Section 4 we prove a generalization of the Ruelle-Perron-Frobenius theo-
rem for %3, under the transitivity condition (2.3), on B. In Section 5 we
investigate the exponential growth rate of %' 1 and the detailed structure of
eigenspaces corresponding to the eigenvalues of %3, and ., with maximal
modulus. Section 6 is devoted to the proofs of the main results. Finally we
give some examples in Section 7.
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2. Preliminaries

In this section we give some notions and facts which are necessary to state
our results. We assume the three conditions (X.1), (2.2) and (2.3) in the
preceding section.

For non-empty subsets S’ and S” of S, let M be a #S’ x #S” matrix
with entries 0 or 1 indexed by S’ x S” so that M(ij) =0 if B(jj) =0. Let
pe C(Z} — R). We define an operator %), on C(Z}) by

Lupf@)= Y o).

ieS:M(iwg)=1

Note that if je S x S\S'xS”, we regard M(ij) as 0. Ly :M(Z])—
M(X7) denotes the dual operator of %y, which is defined by %y m(f) =
m(Ly,of) for me M(Z}) and f e C(X}), where M(Z) denotes the totality
of the complex Borel measures on ;. If ¢ is an element of Fy(X} — R),
then we can easily verify the inclusion %y ,Fy(2X}) < Fo(Z}).

By virtue of the theory of nonnegative matrices, the set S can be
decomposed as S =S(1)US((2)U---US(m) for some m >1 and 'PBP =

By By -+ By

O B ' (2.1)
. . Bmflm

o - O B,

so that for each ke {l,2,...,m} the submatrix By = (B(¥f)); jesi) of B is
irreducible (i.e. for any i, j € S(k), (Bi)"(ij) > 0 holds for some n > 0), where
P is an appropriately chosen permutation matrix. Thus we may assume that B
itself has the form as (2.1). Put 7 = {1,2,...,m} for our convenience. Note
that there exists k € T such that By is not a 1 x 1 zero matrix (0) by virtue
of the condition (X.3).

Put Xy = UieS(k)O[i]A for each ke T. Let pe Fy(X; — R). For each
k e T, A denotes the spectral radius of the operator %, , on C(X7) and put

A =max A.
keT
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It is shown in Section 5 that 2 is the spectral radius of the operator %3, on
C(Z7). In addition it turns out to be an eigenvalue of %, on Fy(X}) (see
Theorem 1.5 in [1]).

We introduce a partial order < on T as follows: k' <k if there exist
ieS(k’), jeS(k) and n >0 such that B"(ij) > 0 holds. Since the matrix B
has the form (2.1), we see that k' < k yields k' < k. We define disjoint sub-
sets Tp, 71 and T, of T by

To = {k € T : there exist k',k" € T such that k' < k,k < k" and Jp = A = A}
T, ={keT\T,: k' < k for some k'€ Ty}
T, ={ke T\T,: k' < k does not hold for any k' e Tp}.

Accordingly, S and X} are decomposed into the corresponding subsets

S;= 1) Stk) and 2(j)= | 2 for each j=0,1,2, respectively.
keT; keT;

Note that the sets 7y, 77 and 7, depend on the function ¢.
Let C = C, be a #S x #So matrix with entries 0 or 1 indexed by Sy x Sy
satisfying C(ij) = B(ij) for each i, j € Sp. Since B itself is assumed to have the

form (2.1), there exist indexes k(1) < k(2) < --- < k(mp) in T such that C is
expressed as

Cni Cin -+ Cin
0O Cxn (2.2)
. . Cmoflmo
0 e o Cmomn
so that my = #Ty and Cii = Br1yk(1), C22 = Brk@)s - - - » Comomo = Bi(mo)k(mo) -

It is easy to see that X[ is o-invariant, i.e. X} =X /.
We consider the following condition on the matrix C:

¢y, O --- O
o C
(2P) C has the form C = 2
. . . )
O - 0 GCum

We see that the condition (X@) holds if and only if the set {ke T : i, = 1}
consists of incomparable elements with respect to the order <. In particular,
() implies that Ay = A for any k € Ty.
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3. Main results

In this section, first we consider a spectral decomposition of ¥, for the
maximal eigenvalues and next we state our main results. In what follows
L (%) denotes the totality of bounded linear operators on a Banach space %

We recall that the essential spectral radius of an operator ¥ € Z(%) is the
infimum of the set of numbers r > 0 such that if the set Spec(L)N{A: |1 > r}
is not empty, it consists of a finite number of eigenvalues with finite multi-
plicity, where Spec(.#) denotes the spectrum of the operator #. It is easy to
verify the following fact.

PrOPOSITION 3.1.  Assume that the conditions (X.1), (X.2) and (X.3) are
satisfied and let ¢ € Fp(X; — R). Then the essential spectral radius of the
operator ¥g , on Fy(X}) is not greater than 0A.

Proor. The proposition follows immediately from Theorem 1.5 in [1].
In fact, it is shown that for any function G e Fy(X}), the operator .#; on
C(Z7) defined by

Mef (@)= Y Gli-o)f(i-w)
i:A(iwg)=1

turns out to be a bounded operator on Fy(X}) and satisfies that the essen-
tial spectral radius of .#; on Fy(X}) is not greater than Or, where r=
Ty . || 25 1|

Putting N = Uij;B(z‘j):OO[ij]A and G =e’(l — yy), we have /4G = MG =
Z3,, and thus the essential spectral radius of ¥, on Fy(X7) is not greater
than Or. Furthermore, r is non-zero and becomes the spectral radius of the
operator %5, on C(X7) (see Proposition 5.2). Hence r = 2.

By virtue of the proposition above, the set {4 € Spec(Zg | F(,(z/j)) A=A
can be written as {A = Ao, 41,...,44-1}, where ¢ > 1 is an integer and /J,;’s are
distinct eigenvalues with finite multiplicity. By the general theory of linear
operators (see [6]), we have the decomposition

q—1
Lop = (4P + M)+ R (3.1)
=0
of the operator %, € L (Fy(2})) such that the following hold:

(1) For each j, % is the projection onto the generalized eigenspace
corresponding to the eigenvalue /;.

(2) For each j, ./; is the nilpotent operator corresponding to the
eigenvalue ;.

(3) For each j, ZR =R, = N R =RN; =0 and #,2; = NjNi=O
if i # j, where O is the zero element in Z(Fy(X7})).
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(4) The spectral radius of the operator # on Fy(X}) is less than /.

Recall that an eigenvalue 4 of an operator % is said to be semisimple
if the dimension of the generalized eigenspace of / is finite and coincides with
that of the eigenspace of A (see [6]). Now we are in a position to state our
main results.

THEOREM 3.2. Assume that (X.1), (X.2) and (X.3) are satisfied. Let
pe Fy(Z — R). Then the following are equivalent.
(1) The condition (X®) holds.
(i) sup,oy AL 1,, < +oo.
(iii) Al eigenvalues of the operator ¥ , on Fp(X}) with maximal modulus
are semisimple.
(iv) The eigenvalue i of L,y on Fy(Z)) is semisimple.

Note that the substantial part of the theorem is the implication (iv) = (i).
By this theorem, if the condition (X®) holds then %3, has the form

q—1
Lop=) WP+ R (3.2)

Jj=0

and each Z; becomes the projection onto the eigenspace of 4;. Moreover we
have the following:

THEOREM 3.3. Assume that (X.1), (X£.2), (X.3) and (X®) are satisfied.
Let p € Fy(X; — R). Then as an element of £(C(Z})), ¥, has the decom-
position (3.2).  Moreover, for each j =0,1,...,q — 1, there exist a subset To(4;)
of Ty and families {h(};,k) e C(Z}) ke To(4)} and {v(4,k)e M(Z}): ke
To(4))} such that the following hold.

(1) 2 has the form

2= > (prdv(zj,k))h(ﬂ,j,k)

ke T()(/:,’) A

for feC(XYF).

(2) The eigenspace corresponding to the eigenvalue J; of the operator
Lo L(C(ZY))) is spanned by {h(;, k) : ke To(%)}.

(3) For each ke Ty(4;), v(4;, k) is an eigenvector corresponding to the
eigenvalue J; of the dual %y, with [h(;,k)dv(Z;, k)= 1.

(4) For each ke To(4;), supp h(4,k)NZ(0) =2y and supp v(4;, k)N
2(0)=2% .

Note that the family of the functions /h(4,k) and the family of the
measures v(4,k) in Theorem 3.3 are exactly defined in Section 5. If the
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condition (X®) does not hold, each 2, may not be expressed by such a form
above. But we have the following auxiliary result for the eigenvalue of
Py C(Z7) — C(2) with maximal modulus. Recall that the period of
a nonnegative irreducible matrix M with M # (0) is defined as the greatest
common divisor of {¢ > 0: M7(jj) >0 for any j}.

PrOPOSITION 3.4.  Assume that (X.1), (2.2) and (X.3) are satisfied. Let
peFy(Z) — R). Thenj'or any eigenvalue /1~0f Ly, with maximal modulus
there exists k € Ty with A = A such that A¥ = )P for the period p of the matrix
Big.

This proposition implies that there exist an integer ¢o >0 and distinct
elements po, p1,...,p4—1 of {0,1,...,gq0 — 1} such that ;= Je¥™=nila for
each j=0,1,...,g—1.

REMARK 3.5. Even if an eigenvalue A of %, with |1| = 1 other than 1 is
semisimple, the condition (X®) is not necessarily fulfilled. We will give such
an example in Section 7.

4. A generalization of Ruelle-Perron-Frobenius Theorem

We consider a generalization of the Ruelle-Perron-Frobenius theorem
(Theorem 4.1) under the conditions (Z.1), (X.2), and the transitivity condition
(2.3); below.

(2.3); The set 2} is not empty and if 2" is the maximal o-invariant subset

of 2 then the dynamics (X, 0]y+) is topologically transitive.
Note that if B has the form as in (2.1), then each matrix By, with By # (0)
satisfies the condition (2'.3); and the maximal g-invariant subset of X3 is X5
itself. We will use this fact in Section 5.

In what follows we assume the conditions (2.1), (2.2) and (2.3),. Let
9 € Fy(27 — R) and C be the matrix with the form given in (2.2). Since X'/
is o-invariant, . is a subset of X*. Furthermore, C is irreducible by the
condition (2.3); and thus X} = 2" holds. Let p >0 be the period of the
matrix C. By the theory of nonnegative matrices, there exists a permutation
matrix P such that

o Chp O --- (0]
0] O (Cxn
o Co-1p

¢, 0 -~ 0 O



188 Haruyoshi TANAKA

¢ o o - 0
o C 0 .
‘PC’P=|: o & . 0 (4.1)
0 .. 0
o o0 --- 0 C,

so that each submatrix C~’J is aperiodic. Therefore we may assume that C itself
has the form as the former matrix of (4.1). Denote by Sy ; the index set of
the matrix C}H and put X( j) = U:eso_,omA for each j=0,1,...,p—1. Then
we have X(0 Up] ), TE=(XO0)UX()U---UX(p—1)NZE and

JC(X(])DZC) :X(]+1)ﬂEC (mod p) for each j=0,1,...,p—1

by the form (4.1).
Now we give the statement of the theorem.

THEOREM 4.1. Assume that (X.1), (X.2) and (X.3); are satisfied. Let
pe Fy(Z; — R). Then we obtain the spectral decomposition
p—1
Lsy=> Ap;Ppj+ s (4.2)
J=0
of L, L(Fp(Zy)) such that the following hold.
(1) There exists Ag >0 such that Jp ;= Jpe¥™ =l for each j.
(2) For each j, Pp ; is the projection onto the one-dimensional eigenspace
corresponding to the eigenvalue Ag; which is given by

ggyjf: <J’2+deB‘j>hB"j-

Here vg ;e M(XZ}) is an eigenvector corresponding to the eigenvalue g ; of
the operator <y, and hg ; € Fyp(X7) is an eigenfunction corresponding to the
eigenvalue g ; of the operator Lp , with f2+ hpjdvg ;=1 In particular, vg =
vp.o is a Borel probability measure supported on X§ and hg = hg is a nonneg-
ative function supported on X(0)UX(1). Moreover, vg,j| s Zk:o VB y (1)1
and hg j| s = S hgl g™ hold, where x = e2V=1lp,

(3) gg}/%g = %BQBJ =0 for each ] and ]3’,,7371 =0 lf i# ]

(4)  The spectral radius of the operator Rp on Fy(X7}) is less than .

(5) As an element of ¥ (C(ZY)), Lp, has the decomposition (4.2). In
particular, for any f e C(X})

-1

—pn cppn
‘g Lg oS — § v8,/()hs,;
Jj=0

=0.

o0

lim

n— o0
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We also obtain the following corollary to Theorem 4.1 for the triplet
(4g,hp,vp). We denote by Zc,. the Ruelle operator on C(Zt) of the
potential ¢, = go|2;. Put he = h3|22 and V¢ = vB|2;.

COROLLARY 4.2. We assume the same conditions as in Theorem 4.1. Then
Ze. (,,(_izc = Jshc, gc*,qzc‘N’C = AgVc and Vc(izc) =1 hold. Consequently, log Ap
and hgvg become the topological pressure of ¢ and the Gibbs measure on X}
of the potential ¢, respectively.

Our theorem might be a sort of folklore theorem but it is hard to find
the literature with a complete proof for such a general case as we need. The
special case of the theorem was proved in our previous paper [7], where we
imposed the mixing condition (X.3),, below instead of (X.3);.

(2.3)y, 24 is not empty and if 2" is the maximal o-invariant subset of X
then the dynamics (2", a|ys+) is topologically mixing.

Stoyanov [10] also consider the special case when the transition matrices A

and B are identical and irreducible.

In order to prove Theorem 4.1, we need some auxiliary results.

For the sake of convenience, for each k,k'e€Z, we write Cy = Cyr if
k=j (mod p) and k' = j' (mod p) for some j,; €{0,1,...,p—1}. Simi-
larly, for each k € Z, we write X (k) = X(j) and Sox = So; if k = j (mod p)
for some je{0,1,...,p—1}.

As in [7], we can write Sy, S1, S» and X(0), 2(1), 2(2) in Section 2 as

So={ieS:oi]°# T},
S1 ={ieS\S : there exist n>1 and je Sy such that B"(ji) > 0},
S, ={ieS\Sy:for any n>1 and je Sy, B"(ji) = 0},
and X(j) = UieS,O[i]A for each j=0,1,2. It is easy to see the following:

LEMMA 4.3. Let w = wow; ...w,—1 be B-admissible. Then we have the
Sfollowing.
(1) If wo,wu—1 €Sy, then w1, ws...,wy-2 € Sp.
2) If woe S, then wy,wy,...,w,—1 €S1 and n < d.
) If wy_1 €8y, then wo,w1,...,0,2 €S> and n < d.
If n>d, then woe SoUS, and w,_1 € SopUS.
5) TE=023.

N W
=

(
(
(
(

Proor. For the proof see Lemma 2.2 and Proposition 2.4 in [7].
For fe C(X}), we write fc = f| si- We also need the following:

Lemma 4.4, (1) For any f e C(Xy), we have % .f(w) =0 for any n>d
and w € X(2).
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(2) If feC(Z)) satisfies Lg of = A on Z(0)UZX(2) for some A e C with
A#0, then Lp,f =Af on X(1) if and only iff:}fd.,fB’{(p(fxz(o)) on X(1).

(3) If feC(Z)) satisfies Lp,f =4 on X} for some LeC, then
Lo fc = M.

Proor. The assertions (1) and (3) follow from Lemma 3.3 (1) and (4) in
[7], respectively. It remains to show (2). Assume that % ,f = Af on 2(0)U
2(2) for some f e C(2}) and e C\{0}. Since &' f =2"f on X(0)UZX(2)
for any n>1, we have f =0 on X(2) by (1). Furthermore, for n > d and
weX(0)UX(1), %% flo)=L ,(f1s0)(@) by Lemma 4.3(4). Thus we
have only to show that the fact f = fd,%f o([Zs0)) on 2(1) yields the equa-
tion ¥,/ =Af. We have that for v € 2(1), if(w) = /T"’\,?B‘f(/)(/lf'xz(o))(w) =
)fd,?B(f{/)((JB,q,f))(E(o))(w) = )fd‘,?B‘f;]f(w) = % ,f(w). Therefore the asser-
tion (2) is valid.

For ¢ > 0, we define a family 4. of functions by
Ac={feC(ZF):0<f <1 and if wy=w) then f(w) < f(w)ew )},

By the standard technique in thermodynamic formalism ([7], [8]), we see that
for ¢ > ¢; = [p],0/(1 — 0) there exist Az >0 and gp e A, such that % ,gp =
Jpgp and |gs|l, =1. We state the outline of the proof. Choose any c
with ¢ > [p],0/(1 — ). For each n > 1, we can define a continuous operator
TS H)
5.0 (/)]
subset of C(Z}). By the Schauder-Tychonoff theorem, L, has a fixed point
gn in A.. Namely, we have L ,(gn+1) = Jugn and 4, = || L, (9: +1)| -
Note that ||g,||,, =1. Choose any subsequence (n;) and gp € A, such that
gn, — 9gp as k— oo in C(ZF). It is easy to check that limy_ ., 4, =
||<f37¢g1;||OO = /13, gB,wgB = /lBgB and ”gBHw =1. The fact ;»B > 0 follows
from the inequality 4, > e ?l« for any n > 1.

By virtue of Lemma 4.4 (1) and (2), we have supp gg = Z(0)UX(1). We
write go = gp + Xs(2), ¢ = ¢ —10g go 0 04 + 1og go — log A5 and P = Zp5. Put

L,: 4., — A. by L,f = Note that A4, is a compact convex

Kj = exp(2nvV —1j/p),
_ 1—
&o = 1x) T95 axy oo A6 Ty and
&=CEo+ 15 U(LYE s
for each jeZ. We have the following:

Lemma 4.5.  For each j =0,1,...,p — 1, k; is an eigenvalue of & on C(X7)
and &; is an eigenfunction corresponding to x;.  Furthermore, if f € C(X7) with
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f #0 and ne C with |y| =1 satisfy Lf =nf, then there exist 0 < j < p and a
constant ¢ € C such that n =x; and [ = ;.

Proor. Note that if ij,i €Sy satisfy B(iji) =1 then iy €Sp; and
i €So j+1 for some j. Therefore for each j=0,1,...,p—1, jxxm(w) =
Xx(j+1)(®) holds for we 2(0). It is easy to check that Zp,¢ =1 on
2(0). On the other hand, #¢; = k;¢&; on 2(1) by Lemma 4.4(2). Thus ¢&; is
an eigenfunction corresponding to the eigenvalue x; for each j.

Next we show that if f e C(Z) with f # 0 satisfies Pf = x;f for some j,
then there exists a constant ¢ € C such that f = c¢;. Let g =Re f. Since (7
is a positive operator, #”g =g holds. Choose any @' ,w? e X(k) such that
inf,c xs) 9() = (") = e1(K) and sup,,¢ gy 9() = g(w?) = c2(k). Then for
each i=1,2 and n > 1, we have

0= g(wi) — (k) = Z ESI7IJ¢(u'wi)(g(u . CO[) — ci(k)}(z(())(u . 601))
ueS":u-wh € Wy 1(B)
=Y g o)) — k), (43)

ueS":u-wj € Wypi1(C)

where S,,¢ = >, 61 @oak. Since the function g(u- ) — ¢;(k) is nonnegative

if i=1 and is nonpositive if i =2, we have g = ¢;(k) on () o;"{w'} and
so g =ci(k) on L NX (k). We notice ¢;(k) = ca(k). Therefore g = Re f is
constant on X (k). By a similar argument, we have that Im f is constant on
X (k). Thus we see that f is constant ¢(k) e C on X (k) for each k. Now
we show f = ¢(0)¢;. We note that Zc ;. fc = k;fc holds. By a basic prop-
erty of the operator ¢ ;., we have c(k) = C(O)K;k foreach k=1,2,...,p—1
(see [10]). Therefore f = c(0)¢; on X(0). The equation f = ¢(0)¢; on X(1)
follows from Lemma 4.4(2).

Finally, we show that if 5 € C is an eigenvalue of % satisfying |5y| = 1 then
n” =1. Assume that fe C(2}) with /#0 and 7€ C with || =1 satisfy
Pf=nf. By virtue of Lemma 4.4(1)(2), we have f|5,) =0 and f]zq) # 0.
Note that |f]| < #”|f| for any n > 1. Using a similar method to (4.3), we
have that |f| = sup,,c s |f(w)| on (. Thus fc #0. By the (usual) Ruelle-
Perron-Frobenius theorem (see [1], [2], [8], [10]) for the operator ¢ g., the
equation ¢ ;. fc =nfc yields n? = 1.

LEMMA 4.6. (1) There exists a constant ¢; > 0 such that for all f e C(Z})
and n> 1, | 2], < el f]l,.

(2) There exist constants c3,cs >0 such that for any f € Fy(Z}) and
n>d,

[2"1y < 30"[f)g + call flo-
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The proof is quite similar to that of Lemma 3.7 in [7]. So we omit it.

Now we are in a position to be able to apply the Ionescu Tulcea-
Marinescu theorem in [5] to the operator # by virtue of Lemma 4.6. By
Lemma 4.5, we have the decomposition

~
L
%z

Z=) K
j

+ R (4.4)

Il
o

of the operator £ e Z(Fy(X1)), where (1) for each j, 2 is the projection onto
the one-dimensional eigenspace corresponding to the eigenvalue x; which has
the form 2 = lim,_.,(1/n) ;- O(K]) gk () PR = RP; = O for each j and
PP = O if i # j, and (3) the spectral radius of the operator # on Fp(X}) is
less than 1. Since the Banach space (Fy(X7), | - || |g) is densely embedded into
the Banach space (C(X}),|-]l,.), the operator £ as an element £ (C(X7}))
has the decomposition as (4.4). By the simplicity of x;, for any fe C(Z})
there exists a number y,;(f) € C such that Pf =w(f)¢ and w(&) =1. We
see that 4; is a bounded linear functional on C(2}). Therefore, 4 can be
regarded as a complex Borel measure on X7 by the Riesz Representation
theorem. These measures have the following properties.

LemMA 4.7. For each j=0,1,....p— 1, we have the following.

(1) 2w =K.

(2) The measure y, is positive and supp py = 25 holds.

G) w(fxxw) = K}"ﬂo(f)(x(k)) Sor each k =0,1,...,p—1 and f e C(Z}).

~ Proor. (1) By the decomposition (4.4), rju;(f)¢; = Kj@f = PP f) =
P(Lf) = ,u,(g’f)fl for any f € C(Z*). Thus we have £* W = Kl

(2) Note that (1/n)> O(K,) k$* converges to P, in L(Fy(ZF)) as
n— oo. Since Z is a positive operator and xy = 1 holds, 2, is positive and
thus so is 4. We show supp py = 23. For we 2 \2} with B(w,w,41) =0
for some n > 0, we have u(,[wo . .. w,]") = uo(féf;lxo[wnmwn]/i) =0. Therefore
supp iy = 24. We show the converse inclusion. By p,(&p) = Mo(fo){z(())) =1,
we see that s(,[i]") >0 for some ieSy. Choose any we X} and n>d.
Note that w, ; €Sy by Lemma 4.3. By C"*!(w,_1i) >0 for some n; >0,
#0(ol0 - 01 1*) = (LT 1) 2 I g ([i]4) > 0. There-
fore w e supp u,. Hence X < supp u.

(3) Note that x;(fxs1) =0 for any fe C(X}) by the definition of
2(1). Therefore, by putting £ :,uj|2;, Zé g 0 =1 holds for each j=
1,2,...,p—1. Thus, the Ruelle-Perron-Frobenius theorem for the operator
Zc.g. yields the assertion (3) (see [10]).

Now we can prove Theorem 4.1 and Corollary 4.2.
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Proor oF THEOREM 4.1. Put

Py f = (Jgolf dﬂj>gofj, Ref = ipgoR(9;'f),

-1
Vg, = <Jgol dﬂo) go'wy,  hpj= <Jgol dﬂo>goéj,

Ag,j = ABK;j

for each j=0,1,...,p—1 and feC(X}). Then we can easily see the
validity of the assertions (1)—(5) in the theorem.

ProoF OF COROLLARY 4.2. Note that /pvp(f) = heve(f) for any fe
C(zy) and ve(he) =vp(hg) = 1. The assertion follows immediately from
Proposition 4.4(3) and the general theory of the thermodynamic formalism
(see [2]).

We prove the following for our later convenience.

PropoSITION 4.8.  Under the assumptions as in Theorem 4.1, we have the
following.

(1) For each we X(0)UX(1), lim,.. (£ ,1())"" = Jp.

2) If ve M(Xy) and J.€ C with |J| = Ap satisfy Ly ,v = 2v, then there
exist ce C and 0 < j < p such that v = cvp.

Proor. (1) Note that %' 1= %' xsusq) for any n>d. From the
inequality
;ughB _ géfth < gn P < ggrf(phB _ )vghB
sl el = =200 = infygra) e infropusay b’

the assertion is valid.

(2) Put vg=gov and k =1/Ap. We have P*vy = Kkvy. Assume that
kP # 1. Since wvo(f) = vo(L"f) = S0 1w (fIvo(E) + vo(R™f) converges
to Zf’z])lu,(f)vo(éi) as n— oo for any fe C(X}), vo must be 0. On the
other hand, we assume x = x; for some 0 < j < p. Note that vo(f)y)) =0
forany f e C(27) and vy(X (k)) = K;‘vo(X(O)) for any k. Moreover, it is easy
to see that v(&;) = pvo(X(0)) and vy(&;) =0 if i # j. Thus we obtain that
for any fe C(2}),

~
L

vo(/f) = vo(r; ”g"f)Z (cire; ) "as(f )vo((&) + 16" vo (")

I}
o

= pro(X(0)p(f) + 1, "vo(R"f) — pvo(X (0)e(f)

as n— oo. Hence v=cvg; with ¢ =vy(X(0))puy(gy").
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5. Auxiliary results

In this section, using the pointwise exponential growth rate of gB’f(pl,
we obtain a decomposition of the space X} and the detailed structure of
eigenspaces of %, and %, with maximal modulus. Those results will be
used to prove the main results.

First we state the following theorem.

THEOREM 5.1. Assume that (X.1), (X.2) and (X.3) are satisfied. Let
pe Fy(Z — R). Then there exist a decomposition of X} as X} = Y(0)U
Y(W)U---UY(r) and numbers ny > n, > --- > n, = —oo such that the following
are valid.

(1) Each set Y (i) is an open and closed subset of X7.

.1
(2) For any we Y (i), lim . log %', 1(w) =1n;, where log 0 is regarded
n—oo ’
as —oo.

Recall that for each k € T, A; denotes the spectral radius of the operator
Ly on C(2)) and Xy = Uies(k)9[i]A= where S(k) is the index set of the
matrix By, We put 1 =maxier 4x. As we mentioned in the preceding
section, Theorem 4.1 is applicable to %3, , in the case when By # (0).
We denote by 1z, the resulting eigenvalue. Notice that for each k, i = Ag,
if By # (0) and Je =0 if By = (0). In order to prove Theorem 5.1, we need
the following:

PROPOSITION 5.2.  Assume that (X.1), (X2.2) and (X.3) are satisfied. Let
peFy(Xy —R). Put T(k)={k'eT:k' <k} for each keT and define
)\,() T — [0, OO) by A(k) = MaXgse (k) /lk/. Then

lim ! log 7' ,1(w) = log A(k) (5.1

n—oo N

holds for each ke T and w e Xy.

Once Proposition 5.2 is established, it is easy to prove Theorem 5.1. In-
deed, let y >, > --->n, be the distinct values of log A(k)’s. Put Y (i) =
U er{Zk : m; =log A(k)} for each i =0,1,...,r. Then the assertions (1) and
(2) in Theorem 5.1 follow.

ProoF OF ProPOSITION 5.2. We write %5 = %3, for simplicity. First
we consider the case when A(k) =0. In this case it is obvious that for any
k' e T(k), Jx =0 and so By = (0). Therefore L l(w) =0 for any n>d
and w € (J; pp 2k~ Thus (5.1) holds for any ke T with A(k) = 0.

Next we consider the case when A(k) >0. We prove the following
inequalities which yield the validity of the assertion:
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hrnmf1 log Z51(w) = log A(k) for each we Xy, and (5.2)

lim sup’11 max log £} 1(w) < log A(k). (5.3)

The inequality (5.2) is proved as follows. Note that lim,_.(1/n) log Zg 1(w)
=log A for each we X} by replacing B and X(0)UZX(1) with By and X%,
respectively, in Proposition 4.8(1). Choose any k € T and k' € T(k) satisfying
Ak) >0 and A = A(k). Then for any we X and o' € X there exists a
word w e S9! such that - w-wy is B-admissible. Therefore we have

Lt () = LH L) (0) = es Ll (o) - w - ) = sy, Moy w- o),

where ¢s = e “lI?ll.. Furthermore,

1
log 2 (w) > log ¢s + P log

k! l(w(,) : W ' a))

1
n+d +d

— log A = log A(k)

as n — oo. Thus the inequality (5.2) is valid.

The inequality (5.3) is proved for each ke T inductively, as follows.
If k=1eT, k'<k yields k'=k=1. This implies that A(1)=4, and
Lyl (w) =%y 1(w) for any welX; and n>1. Therefore we see that
limsup,_,, (1/n) log max,c s, Z5'1(w) = limsup,_,,(1/n) log max,es, L5 ()
=log A(1). The inequality (5.3) is valid when k = 1.

Next we prove that if (5.3) holds for each 1 <k’ < k, then so does for
k. Let B; be a d x d matrix with entries 0 or 1 such that B;(ij) = B(jj) if
ieSU---US,, and B;(ij) = 0 otherwise. Put B, = B— B;. Then %5 has the
form % = %, + ¥5,. Since BB, = O, we have %5, ¥ = O. Furthermore,
Ly l(w) = Ly 1(w) for any w € Xj and n > 0. We have that for any w € X,

Ly W) = (Lo, + L5,)" Zg" L o

< Z,?é;jl( max j 1(®).

DEX)

Note that [|Zg 1], <ccA(k)" holds for any 7 >0 and for some constant
c¢. Indeed, if Ay >0, then it follows from the uniform boundedness of
i,:””of;klew for n. If J; =0, then Zy, = O for any n>d and thus it is
valid by putting ¢ = maxo<,<d(||,%]kk1|| A(k)7). On the other hand, we
claim that for any ¢ > 0 there exist numbers ny > 1 and ¢7 > 0 such that
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Ly () < c7(A(k)e?)" for any n=ny and weXy;. Indeed, note that for
k' € T(k)\{k}, the inequalities (5.3) and A(k’) < A(k) are satisfied. We can
choose n; > 1 so that Z}'1(w’) < (A(k)e?)" for any k' e T(k)\{k}, n >n; and
o' € Z. Note that if By(ij) =1 for some je S(k) then ie S(k') for some
k' e T(k)\{k}. Therefore we put ng = n; + 1 and ¢; = A(k) '|| %, 1||,,. Con-
sequently, we obtain

1 ] 1 S v
. log max Lil(w) < Zl g(Z c6\|$B’21||OC J+ZC6C7/1 )

we,
k j=0 J=ng

< log A(k) + log s + log <Z e‘"’)

j=0
— log A(k) + ¢

as n — oo, where cg is a sufficiently large number depending on ny. Therefore
we have that the inequality (5.3) is valid for each k€ T. Now the proof of
(5.1) is complete.

In the rest of this section, we give auxiliary results on eigenfunctions
of %, and eigenvectors of %y , With maximal modulus by using Proposi-
tion 5.2. Assume that two matrices A and B satisfy the conditions (X.1)-
(2.3) and B has the form (2.1). Let pe Fy(X; — R). For each k € T with
Bii # (0), pr denotes the period of the matrix Bj. Consider the triplet
(2B, j» MBu js VBw.j) ER X C(ZF) x M(Z)) for j=0,1,..., pr — 1 obtained by
putting B = By in Theorem 4.1. Then supp /g, ; = 2% and supp vg, = ngk
hold. We need the following notation in the sequel. For each ke Ty and
neC with |y| = 4, we put

(hg,. i vBy.;) if n=24p, ; for some 0 < j< pp—1
h k k _ s ) ks J ke ».J
(ho(n, k), vo(n, k) {(070) otherwise.

Note that for any ke T;UT,, the spectral radius Je of the operator
Lo on C(XT) is strictly less than ). We write T} as {ki,...,ks} with
ki <--- <k, For each keT, and neC with |y| =4, let h(n,k)e C(Z})
be such that h(y, k) = ho(n, k) + hi(n, k), where hi(n,k) =>"", h(n, k,k;),

hin, k. ky) = (nI — gBk]kl,¢)_lgBkk|7¢h0(777k) and

hin, k. ki) = (nI — gBk,-/c,--,90)7133%-,(.0//10(777k)

i—
(0] = Ly.0)" Loy oh (0, K, K;)
1

J
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for each i =2,3,...,s, inductively. Similarly, we write T, as {/;,...,/;} with
I >--+>1. Let v(n,k)e M(Z}) be such that v(n,k) = vo(n, k) + vi(n,k),
where vi(17,k) = > v(n, k, 1)),

v(n, k,l1) = (gg,lk”p(ﬂl - 3311111(0)71)*‘/0(’7’]() and

V(”],k,li) = (gB/ik,w(’/]I - egf?/‘/l.,(ﬂ)_])*1}()(777k)

i—
+ > (Lo o0l = Loy 0) ") V(0 K, 1)
J=1

—_

for each i =2,...,t, inductively.
We have the following:

PROPOSITION 5.3.  Assume that (X.1), (X2.2) and (X.3) are satisfied. Let
peFy(Zt —R). Assume that ge C(X}) and ieC with |A| =2 satisfy
Lp.og =Ag. Then we have the following:

(1) g=0 on X(2).

(2) If g=0 on 2(0), then g=0 on X(1).

(3) If the condition (X®) holds, then there exists a vector () in C™ such

that g has the form g =7} 1. Bih(4 k).

PROPOSITION 5.4.  Assume that (X.1), (X.2) and (X.3) are satisfied. Let
peFy(ZT — R). Assume that ve M(X}) and AeC with |i] =1 satisfy
Ly oV =Av. Then we have the following:

(1) suppv <Xy and v|yy) =0.

(2) If vls) =0, then V|5, =0.
(3) If the condition (X®) holds, then there exists a vector (y;) in C™ such

that v =73 . vev(4, k).

PROOF OF PROPOSITION 5.3.  As before, we write ¥ = %3, for simplicity.
Note that (Zs(fxs,))xs,, = ¥B,./ holds for each k,k' e T and f e C(27}).

(1) If keT, and k'eT satisfy k'<k, then k’eT,. Therefore,
L (9xs)xs2) = (L59As0) = 2" 95 for any n>1. Suppose g #0 on
2(2). Then we have |lgxsoll, >0. It follows from Proposition 5.2 that
1/n

9xz(2
Ly B 12(2)
||9X2(2)Hao w

as n — oo, where Ag = maxier, ik. This contradicts the fact Ay < 4. Thus
g=0 on X(2).

(2) We write Ty as {ki,ka, ..., k;} with k; <ky <--- <k, Itis easy to
see that k < k; yields ke ToU Th U{ky,ka,... k;} for each i. Therefore we
have

o0

h= i = < (L Dxs Il — 2o
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Axs, = (Ls9)rs, = > Lo 9= L9+ Z L9
ke ToUTzU{k] ]xz,..“,k,'} ke T(]

by (1) for each i. Note that 4, < |4 = A by the definition of 7). We have

Iz, = Z (Al — fgklkl)flh%,{klg and (5.4)
keTy
gXEk[ = (;J - gBkk <Z "?Bkk g+ Z gB ) (55)
keTy

for each i = 2,3,...,s. Assume that g =0 on 2(0). Then % g =0 for any
keTyand ke T. We have g=0 on 2y, i =1,2,...,s, inductively and thus
g=0 on X(1).

(3) Let ke Ty. We see that there is no element k' € Ty such that k # k'
and k' < k. Therefore the relation k' <k implies k'€ T>U{k}. We have
Lip(91s,) = Agxs, by (1). If g#0 on X, then there exist an integer
0<j<pr and a number f; € C such that 1= /p, ; and gys, = Brho(4, k)
by Theorem 4.1 for the operator ¥p,. As a result, we see that g has the
form g =}, 7, Biho(4,k) on X(0) for some vector (f;) in C™. We notice
that the equations (5.4) and (5.5) yield the form g =3}, 1 Bi/h(4,k) on
2(1). Thus we have g =) ;7 Bih(4 k).

ProoF OF ProposiTioN 5.4. (1) First, we show suppvc2,. For
any we X\X5, B(w,w,1) =0 for some n>0. Then v(j[wo...m.1]") =
(g Lyfw...opr4) = 0. Thus, supp v < 25

Next, we show vy = 0. If k" e T satisfies k < k' for some k € T, then
K'e Ty Therefore 2'v(f1s) = (L3 (F2s0) = (s 8 (fsr))) for any
feC(Z}) and n=1. Suppose v(fyx)) #0 for some f e C(Z*) Let B;
be a d x d matrix with entries 0 or 1 such that B,(ij) = B(jj) if i, j€ S; and
By (i) = 0 otherwise. Then we notice that ys) %5 (fxs1)) = %5,/ for any
n>1.1If Zgl =, then ¥ =0 for any n > d. Therefore we may assume

4 # (. Putting B= B in Proposition 5.2, we have

W O (OIS Y
W) S<|<f;m>| 1" =/

as n— oo, where [v[ is the total variation of the measure v and 1, =
maxier, 4. This contradicts the fact 2 > 4;. Thus, v| s =
(2) We write T» as {li,h,....;} with [y >bh>--->1[. Since [; </

means /€ ToUT U{/,h... I} for any i, we see

i—1

i(g)(zli) = Z gBug +ZV og)B// 331/ 9)
leTy j=1
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for any ge C(2}) and i=1,2,...,t. For fe C(Z}), it follows from this
equation that

W) = S Loy (A~ Z5,)"'f)  and (5.6)

leTy
i1
V(J[XE/,.) = Z V(gB/,-/(’U - gB/,»/[)ilf) + ZV(JBI,// (AI - gB/,/[)ilf) (5'7)
leTy j=1
for each i=2,3,... ¢, by putting g = (Al — ,,Q’B,i,,_)*lf. Note that if v[y =0
then v(Zp,,9) = 0 for any i and g € C(Z7). Assume that V|s) = 0. Then we
have V|Z =0 for i=1,2,...,1 inductively. Thus v|yq must be 0.

(3) Assume that the COIldlthIl (2®) is satisfied. We easily see that for
any /e Ty and f e C(27), the equation Av(fyy,) = v(Zp,(fxs,)) holds. By
virtue of Proposition 4.8(2), we have v[y = yw(4,/) for some y,€ C. Thus
Vz) = e, 7v0(4,1) is satisfied. We notice that (5.6) and (5.7) imply
Vz@) = e, 7v1(4,1). Hence we have v= 3%, 5 »v(41).

6. Proof of main results
This section is devoted to the proof of our main results.

ProOF OF THEOREM 3.2. First we show that (i) implies (ii). Put

g="3" h(i,k),

keTO

where each /(4,k) is defined in Section 5. The condition (X@) implies that
g is an eigenfunction corresponding to the eigenvalue 4 of the operator Zz .
In particular, we see that g is a nonnegative function whose support is
2(0)UX(1). We define a d xd matrix B; with entries 0 or 1 by B(ij) =
B(ij) if i,j € SoUS| and B;(ij) = 0 otherwise. Put B, = B— B;. Then %,
has the form %, = g, , + L3, ». We see that BiB, = O from the definition
of S5. We have the inequality

LR = Loy + L5,0)" 1 =D L} Lk
k=0

n

<> (IZ LI Z i) e

k=0

for any n > 1. It follows from Proposition 5.2 that

.1 n ~
V}erolc . log|| %, 11, = log 4,
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where /TO = maXier, ik < J. Thus for any ¢ >0 satjsfying /{0 < e~¢), there
exists a constant cg > 1 such that || 1|, <co(e ?2)" for any n>1. On
the other hand, for any n>1 and w e X(0)UX(1), we have

Ly J(0) =Ly xsousn) (@) = L5 xzouzn (@)

1 1 - -
<——— L g(w) = ——A"g(w) < 10",
inf sz g~ >f (@) inf x0)uz1) 9 (@) < e

where c¢io = ||g|., /infxous) g Consequently, the inequality (6.1) implies
that

1% 1., < chcmz OCto_gn

for any n > 1. Hence the condition (ii) is fulfilled.

Next, we show that (ii) implies (iii). Suppose that there exists an
eigenvalue 4;, of the operator %5, € £ (Fp(Z})) that is not semisimple. Then
the nilpotent ./, corresponding to A; is not a zero operator. Choose any
feFo(Zﬂ such that 4j f #0. Put 0 <n <d such that ./;” = O and

' £ 0 for each J. The decomposition (3.1) of L, € L(Fyp(Z7)) yields

the form

»Q

—1
L5y =) </1"97) + Z( >z_;’—';1_//) + 2" (6.2)

J

| |
<)

for n >d. We obtain

~ q — ~ . s q71 . ~7 .
RIS Z( )wnmjm ~N 1Al - L,
Jj=0

j=0 i=1
~ q_l ~
> nd NSl = D NP Nl = 2|12 || — o0
=0

as n — oo. Therefore the condition (ii) does not hold. Thus (ii) yields (iii).

The implication (iii) = (iv) is trivial.

Finally, we show that (iv) implies (i). Assume that (X®) does not hold.
Then there exist k, k' € Ty with k # k' such that Ji=lp=7land k <k'. We
show that the generalized eigenspace and the eigenspace do not coincide for
the eigenvalue . For this purpose, we construct a function /1 € Fy(2}) such
that

(I — %, )h#0 and (Al — L ,)*h =0. (6.3)
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Let e¢g € T be a maximal element of the set
{k € T : there exists k' € Ty such that Ay = 4y = A,k <k’ and k # k'}

in the sense that there is no element k& of the set above such that ¢y < & and
ey # k. Put

To.0 = {k e To\{eo} : Jx = and e < k},
TO,] = {k € TO\({@O} U Toﬁo) teg < k},
To» ={keTy:ey <k does not hold}.

Then T is decomposed into the subsets {ep}, 0.0, T0.1, To,2. Note that if
k € Ty, then Jx < 4 and there exists k' e Tyo such that e < k < k/. We write
To,1 as {ei,ez,...,e,} with e < ey <---<e,, and T as {ki,kz,..., k;} with
ki <ky<--- <k

We will construct such he Fy(X}) as the composition of the function
hy on X} defined as follows:

(a) h=01if ke T()72UT2.

(b) he, = ho(Z, e), which is a nonnegative eigenfunction corresponding to

the eigs:nvalue J of the operator 33‘,000,(,, supported on X,.
(€) he = (A — 33‘,’,‘,”(,,)_1(2;;5 Zp,...ohe;) for each i=1,2,... r, induc-

tively.
. .
(d) I, = Zj:1(ﬂ - gBk,k,,w) ](Zke{eq}UT(]7(1UT0_1U{k1 ,,,,, ki) gBkkf«,(Phk) for
each i =1,2,... s, inductively.

It remains to define A for ke Tpo. Let ke Tyo. By Theorem 4.1 for the
operator Lg,, o, Lo,.0 € L(Fp(Z)) has the spectral decomposition

< B, — ié@B}ck + 6k

such that %, is the projection onto the eigenspace corresponding to 2 of

the operator %, , and & satisfies &,%p, = Pp, 6= 0. We put Iy =

(A — &) g with g, = (I — P ) (X0 ZB..ohe;).  The function fy satisfies
(I — L. )i = (M — E)hi = gi.

We set h =D _;h. )
It is easy to check that for each ke ToU{eo} U Ty 1U T2, (Al — Lpy)h =
(Al — JB,¢)2h =0 on Xy. For each ke Ty and we Xy, we have

(il - $B>¢)h(w) = (/{I - gBkkaV’)h(w) - (ng - "kakﬁ(ﬂ)h(w)

= ge(@) = > L phe (@) = =P, (Z fo/k,wheJ ().
j=0

Jj=0
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Note that the last term is non-zero since each function /., is nonnegative and
ey < k holds. Therefore this equation implies that (/11 — %B.o)h #0. On the
other hand, we have (A/ —,?B_w)zh(a)) =0. It is not hard to see that for
keT, (A — .,?B,(/,)zh =0 on X;. Thus h satisfies (6.3). Consequently, 1 is
not semisimple. We see that (iv) implies (i).

ProoOF oF THEOREM 3.3. We use the notation /i(4, k) and v(4, k) in Section
5. Choose any 4 € C which is an eigenvalue of the operator %3, € £(C(27))
] (C(Z'})) the projection onto the eigen-
space corresponding to the eigenvalue 4. By Proposition 5.3(3), the eigen-
space is spanned by {h(,k) : k € To(2)}, where To(4) = {k € Ty : h(2,k) # 0}.
Therefore for any f e C(X}), there exist numbers . (f) € C with g (h(4,k)) =1
such that 2f =3 1) w(f)h(4,k). We see that each g is a linear func-
tional and thus it is a complex Borel measure on X}. By a similar argu-
ment, we have %y . = Ay By virtue of Proposition 5.4(3), 1y = y,v(4,k)
holds for some y, € C by supp g, N 2(0) = 2. Furthermore, 1 = u, (h(A,k)) =
7ev(4,k)(h(A, k)) = y. Consequently we have the desired form Z£(f)=
Skeryiy (S dv(Zi k))h(%;, k) for each j=0,1,....¢—1 and fe C(Z]).

PROOF OF PROPOSITION 3.4. Assume that %3 ,g = Ag for some g€ C(X7})
with ¢ # 0 and /e C with || = 1. Then g =0 on X(2) by Proposition 5.3(1).
We write Ty as {my,my,...,m,} with m;y <my <---<m,. Put k=m. We
see that k' < k yields k' € T,U{k}. Therefore, we have

Lpuo9xs,) = (L9 A5, = 291,

on Zj. Since By is irreducible and Zk = holds, if g #0 on X then
P = jP% for the period pj of the matrix By. Thus either A7 = P or g=20
on 2.

Let k = m; for some i > 1. Then k' < k yields k' € T, U{m,my, ..., m;}.
Ifg=0on 2, Ux, U---UX, ,, then

gB/ck.,(ﬁ(gXZk) = ig%z,c

holds on Xj. 1If Jx < A, then gxs, must be 0 by the above equation. If
e =4, then either A = AP or g =0 on X} by the above argument. Induc-
tively, we have that either A”* = A for some ke T, with At =4 or g =0
on X(0). By Proposition 5.3(2), if g =0 on X(0) then g =0 on 2(1) and
thus ¢ = 0. This contradicts the fact g 0. Hence A”* = A% holds for some
ke T, with Jx = 1.
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7. Examples

In this section, we give some typical examples which illustrate our
results. Let A and B be 6 x 6 matrices with entries 0 or 1 as follows.

1 1 1 1 11 I 1T % % * =
1 11 1 11 I 1 % % % =%
4= 1 11 1 11 B 0 00 011 :<BH Blz>
1 1111 1} 0 00 011 O By)’
1 1 1 1 11 001 100
1 1 1 111 001 100
(7.1)
where
0 0 1 1
B“:<1 1) and By — 0 0 1 1
1 1 1 100
1 1.0 0

It is easy to see that the conditions (X2.1), (X£.2) and (X.3) are satisfied. We
write S(1) = {1,2} and S(2) ={3,4,5,6}. Put X} = Uies(k)o[i]~ for each
k=1,2. Choose any ¢e Fy(X} — R). Consider the triplet (Ax,h, V%)=
(B> My, vB,) ER X C(Z7) x M(XZ}) for k=1,2 obtained by putting
B = By in Theorem 4.1. Since the period of By is 2, —12 is an eigenvalue
of the operator %3, , and the corresponding eigenfunction has the form
hyy = Iy X(0) — Iy x(1) up to constant multiplier, where X(0) = [3]U[4] and
X (1) =¢[5]Uy[6]. Similarly, the corresponding eigenvector to the eigenvalue
—J, of the dual~ Ly, o hfts ~‘[he form ¥, | = | X(0) — | x(1) up to constant
multiplier. Put 2 =max{A;,4:}. We consider the following cases.

ExamPLE 7.1 (The case 4; >4). We put ¢(w)=1 if weX, and
p(w) =0 if we 2. Then %5 ,e L(C(Z})) has the decomposition

iy =A([ £ dv(i1) )i 1)+ a1

where h(4,1) = hy + (I — ngz’w)_lgglz’will and v(4,1) = 7. Indeed, we eas-
ily see that Ty = {1} and C = By;. Therefore the condition (X'®) is satisfied.
Since By is aperiodic, the set of eigenvalues of %, with maximal modulus
is {A}. Note that Ty = {2} and T» = & if B # O and that T, = & and
T, = {2} if Bj = 0. Thus Theorem 3.3 yields the assertion.
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ExampLE 7.2 (The case Iy < Zz). We put ¢(w)=0 if welX; and
p(w)=1if weX,. Then %, e £(C(X})) has the decomposition

1
s = S VA [ £ a2 2) Y172 + .
=0

where h(4,2), v(4,2), h(=A,2), and v(—A,2) have the form

h(iv 2) = h2? V(Lz) ="+ (3312&(11 - ’nglh(ﬂ)_l)*‘ij

h(=1,2) = hy.1, V(=2,2) = a1 + (Lo (=4 — L, ) ) 1,

respectively. Indeed, we have Ty, = {2}, 7' = & and 7> = {l}. Note that
By, is irreducible whose period is 2. The assertion is valid from Theorem 3.3.

EXAMPLE 7.3 (The case 4; = 4). We put ¢ = 1. We have the following:
(a) Assume that B = O. Then %5, £(C(2})) has the form

Lsof = Z(Jf dv(4, 1))11(1, 1)
1 i s J5 )
DI ([ 7 as-172 2 )a-1/32) + .

where h(4,k) = and v(A,k)=7¥ for k=12 and h(—2,2)=hy; and
V(—i, 2) = 172 1-

(b) Assume that B, # O. Then the set of eigenvalues of .ffgq,
Z(Fy(27)) with maximal modulus is equal to {4,—A}. In particular, 1 is
not semisimple and —]is simple (consequently semisimple).

Indeed, we note that Ty, ={1,2} and 7, =T, = . First we assume
Bj; = 0. Since the condition (X'®) is satisfied, the assertion (a) follows from
Theorem 3.3. Next we assume Bj, # O. We see that (X®) does not hold.
By Theorem 3.2, 1 is not a semisimple eigenvalue of the operator PLpg€
Z(Fy(Z})). On the other hand, the set of cigenvalues of %3, with maxi-
mal modulus is equal to either {4} or {1,—2} by Proposition 3.4. Since
I, (,,hz 1= 9B, ¢h2 | = —/lhz 1 holds, we see that —J is an eigenvalue of %3 ,.
It remains to show that —A is a simple eigenvalue of the operator Zp,,.
Assume that feFo(Z+) with f;réO satisfies (A — % ,)"f =0 for some
n>1. Note that ngof O?B” o/ on 2y for any k>1. Since —J is
not an eigenvalue of the operator %3, , we have f=0 on X;. Thus
(=Al — L3 ,)"f = (=4 — %3, ,)"f =0. The simplicity of —1 of the oper-
ator Y, , yields n =1. Hence —2 is simple.
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