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Abstract. We develop the theory of log homotopy exact sequences associated to

proper log smooth morphisms and morphisms whose characteristic sheaves are locally

constant with stalks isomorphic to the monoid of natural numbers. In the process of

developing this theory, we also show the existence of a logarithmic version of the Stein

factorization and develop the theory of algebraization of log formal schemes.

1. Introduction

In the study of the geometry of log schemes, the following objects often

appear:

( i ) a proper log smooth fibration over a log regular base log scheme,

(ii) a morphism (of log schemes) whose characteristic sheaf is locally

constant with stalk isomorphic to N.

In this paper, the behavior of the log fundamental group for such an object is

studied; in particular, it is shown that the homotopy sequence associated to

such a morphism is exact.

This paper is organized as follows.

In Section 2, we prove the existence of a logarithmic version of the Stein

factorization under some hypotheses (cf. Definition 3, Theorem 1, also Remark

3). In [5], Exposé X, Corollaire 1.4, the exactness of the homotopy sequence

associated to a proper separable morphism is proven. In this proof, the

existence of the Stein factorization plays an essential role. Therefore, to prove

a logarithmic analogue of the exactness of the homotopy sequence, we consider

the existence of a logarithmic analogue of the Stein factorization.

In Section 3, we prove a logarithmic analogue of [5], Exposé X, Corollaire

1.4, i.e., the exactness of the log homotopy sequence by means of the existence

of the log Stein factorization (cf. Theorem 2). Moreover, a logarithmic

analogue of the fact that the fundamental group of the product of schemes

is naturally isomorphic to the product of the fundamental groups of these

schemes (cf. [5], Exposé X, Corollaire 1.7) is proven (cf. Proposition 3).
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In Section 4, we define the notion of a log structure on a formal scheme

and establish a theory of algebraizations of log formal schemes. One can

develop a theory of algebraizations of log formal schemes (cf. Theorem 3) in

a similar fashion to the classical theory of algebraizations of formal schemes

(for example, the theory considered in [2], § 5). This algebraization theory of

formal log schemes implies a logarithmic analogue of the fact that the

fundamental group of a proper smooth scheme over a ‘‘complete base’’ is

naturally isomorphic to the fundamental group of the closed fiber (cf. [5],

Exposé X, Théorème 2.1, also [16], Théorème 2.2, (a)) (cf. Corollary 1). This

result is used in the next section.

In Section 5, we define the notion of a morphism of type Nln and consider

fundamental properties of such a morphism. Roughly speaking, a morphism of

log schemes is of type Nln if the relative characteristic sheaf is locally constant

with stalk isomorphic to Nln. The main result of this section is the fact that

at the level of anabelioids (i.e., Galois categories) (determined by ket cover-

ings), certain morphisms of type Nln can be regarded as ‘‘G�nm -fibrations’’ (cf.

Theorem 5). Moreover, as in [11], Lemma 4.4, we give a su‰cient condition

for the homomorphism from the log fundamental group of the fiber of the ‘‘G�nm -

fibration’’ determined by such a morphism of type Nln to the log fundamental

group of the total space of the ‘‘G�nm -fibration’’ to be injective (cf. Proposition 4).

In Appendix A, we prove analogues for the étale site of the results given in

[9] for the Zariski site, since such analogues will be necessary in the present

paper.

Finally, in Appendix B, we prove the well-known fact that the category of

ket coverings of a connected fs log scheme is a Galois category; this implies,

in particular, the existence of log fundamental groups (cf. Theorem B.1, also

Theorem B.2). The log fundamental group has already been constructed by

several people (e.g., [1]; [6], 4.6; [15], 3.3; [16], 1.2). Since, however, at the

time of writing, a proof of this fact was not available in published form, and,

moreover, various facts used in the proof of this fact are necessary elsewhere in

this paper, we decided to give a proof of this fact. Moreover, although other

authors approach the problem of showing this fact by considering the category

of locally constant sheaves on the Kummer log étale site, we take a more direct

approach to this problem which allows us to avoid the use of locally constant

sheaves on the Kummer log étale site.

Notations and Terminologies

Sets:

We shall assume that the underlying topological space of a connected

scheme is not empty. In particular, if a morphism is geometrically connected,

then it is surjective.
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Numbers:

We shall denote by N the monoid of rational integers nb 0, by Z the ring

of rational integers, by Q the field of rational numbers, by ẐZ (respectively, Zl)

the profinite completion of Z (respectively, pro-l completion of Z for a prime

number l), and by Ql the field of fractions of Zl .

Let S be a set of prime numbers, and n an integer. Then we shall say

that n is a S-integer if the prime divisors of n are in S.

Groups:

Let G be a profinite group, and S a non-empty set of prime numbers.

We shall refer to the quotient

lim � G=H

of G (where the projective limit is over all open normal subgroups HJG such

that the index ½G : H� of H is a S-integer) as the maximal pro-S quotient of

G. We shall denote by GðSÞ the maximal pro-S quotient of G.

Log schemes:

For a log scheme X log, we shall denote by MX (respectively, X ) the sheaf

of monoids that defines the log structure (respectively, the underlying scheme)

of X log. For a morphism f log of log schemes, we shall denote by f the

underlying morphism of schemes.

Let P be a property of schemes [for example, ‘‘quasi-compact’’, ‘‘con-

nected’’, ‘‘normal’’, ‘‘regular’’] (respectively, morphisms of schemes [for exam-

ple, ‘‘proper’’, ‘‘finite’’, ‘‘étale’’, ‘‘smooth’’]). Then we shall say that a log

scheme (respectively, a morphism of log schemes) satisfies P if the underlying

scheme (respectively, the underlying morphism of schemes) satisfies P.

For fs log schemes X log, Y log, and Z log, we shall denote by X log �Y log Z log

the fiber product of X log and Z log over Y log in the category of fs log schemes.

In general, the underlying scheme of X log �Y log Z log is not naturally isomorphic

to X �Y Z. However, since strictness (a morphism f log : X log ! Y log is called

strict if the induced morphism f �MY !MX on X is an isomorphism) is stable

under base-change in the category of arbitrary log schemes, if X log ! Y log is

strict, then the underlying scheme of X log �Y log Z log is naturally isomorphic to

X �Y Z. Note that since the natural morphism from the saturation of a fine

log scheme to the original fine log scheme is finite, properness and finiteness are

stable under fs base-change.

If there exist both schemes and log schemes in a commutative diagram,

then we regard each scheme in the diagram as the log scheme obtained by

equipping the scheme with the trivial log structure.

We shall refer to the largest open subset (possibly empty) of the underlying

scheme of a log scheme on which the log structure is trivial as the interior of

the log scheme.
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We shall refer to a Kummer log étale (respectively, finite Kummer log

étale) morphism of fs log schemes as a ket morphism (respectively, a ket

covering).

Let X log and Y log be log schemes, and f log : X log ! Y log a morphism of

log schemes. Then we shall refer to the quotient of MX by the image of the

morphism f �MY !MX induced by f log as the relative characteristic sheaf

of f log. Moreover, we shall refer to the relative characteristic sheaf of the

morphism X log ! X induced by the natural inclusion O�X ,!MX as the

characteristic sheaf of X log.

2. The log Stein factorization

In this section, we show the existence of a logarithmic version of the Stein

factorization.

Definition 1. Let X log be an fs log scheme, and x! X a geometric

point.

( i ) We shall refer to the strict morphism x log ! X log whose underlying

morphism of schemes is x! X as the strict geometric point over

x! X .

(ii) We shall refer to x
log
1 ! X log as a reduced covering point over the

strict geometric point x log ! X log or, alternatively, over the geometric

point x! X , if it is obtained as a composite

x
log
1 ! x 0 log1 ! x log ! X log;

where x log ! X log is the strict geometric point over x! X ,

x 0 log1 ! x log is a connected ket covering, and x
log
1 ! x 0 log1 is a strict

morphism of fs log schemes for which the underlying morphism

of schemes determines an isomorphism x1 F x 01; red. Note that, in

general, x
log
1 ! x log is not a ket covering. (See Remark 1 below.)

Remark 1. The underlying scheme of the domain of a strict geometric

point x log ! X log is the spectrum of a separably closed field. However, in

general, the underlying scheme of the domain of a connected ket covering

x 0
log

1 ! x log is not the spectrum of a separably closed field. On the other

hand, if we denote by x
log
1 the log scheme obtained by equipping x 01; red with

the log structure induced by the log structure of x 0
log

1 (i.e., the natural

morphism x
log
1 ! X log is a reduced covering point over x log ! X logÞ, then

the following hold.

( i ) The underlying scheme of x log
1 is the spectrum of a separably closed

field (cf. Proposition B.2).

64 Yuichiro Hoshi



( ii ) There is a natural equivalence between the category of ket coverings

of x
log
1 and the category of ket coverings of x 0

log

1 (cf. Proposition

B.6). In particular, p1ðx 0
log

1 ÞF p1ðx log
1 Þ. (Concerning the log fun-

damental group, see Theorem B.1.)

(iii) The natural morphism x
log
1 ! x 0

log

1 is a homeomorphism on the

underlying topological spaces and remains so after any base-change

in the category of fs log schemes over x 0
log

1 . Indeed, this follows

from the fact that this morphism is strict, together with the fact that

the underlying morphism of schemes is a universal homeomorphism.

The following technical lemma follows immediately from Proposition B.6.

Lemma 1. Let X log be an fs log scheme whose underlying scheme X is the

spectrum of a strictly henselian local ring. Then for a strict geometric point

x log ! X log for which the image of the underlying morphism of schemes is the

closed point of X , and any reduced covering point x
log
1 ! X log over x log ! X log,

there exists a ket covering Y log ! X log and a strict geometric point y log ! Y log

such that y log ! Y log ! X log factors as a composite y log ! x
log
1 ! X log, where

the morphism y log ! x
log
1 is a reduced covering point over the strict geometric

point x
log
1 ! x

log
1 given by the identity morphism of x

log
1 .

Lemma 2. Let X log be an fs log scheme equipped with the trivial log

structure, Y log an fs log scheme, and f log : Y log ! X log a proper log smooth

morphism. Then the morphism X 0 ! X that appears in the Stein factorization

Y ! X 0 ! X of f is finite étale.

Proof. By [5], Exposé X, Proposition 1.2, it is enough to show that f is

proper and separable. The properness of f is assumed in the statement of

Lemma 2. Since the log structure of X log is trivial, f log is integral (cf. [8],

Proposition 4.1). Since an integral log smooth morphism is flat (cf. [8],

Theorem 4.5), f is flat. For the rest of the proof of the separability of f ,

by base-changing, we may assume that X ¼ Spec k, where k is a field whose

characteristic we denote by p. Then étale locally on Y , there exist an fs

monoid P whose associated group Pgp is p-torsion-free if p is not zero, and an

étale morphism Y ! Spec k½P� over k (cf. [8], Theorem 3.5). On the other

hand, k½P�nk KJ k½Pgp�nk K , and k½Pgp�nk K ¼ K ½Pgp� is reduced for any

extension field K of k by the assumption on Pgp; thus, k½P�nk K , hence also

Y nk K , is reduced. Therefore, f is separable.

Lemma 3. Let X log be a log regular log scheme (cf. Definition A.1),

UX JX the interior of X log, Y log an fs log scheme, and f log : Y log ! X log a

proper log smooth morphism. If we denote by Y �X UX ! V ! UX the Stein

factorization of f jY�XUX
, then the following hold.
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( i ) V ! UX is finite étale.

(ii) The normalization of X in V is tamely ramified over the generic points

of XnUX.

Proof. Since log smoothness and properness are stable under base-

change, assertion (i) follows from Lemma 2. For assertion (ii), since nor-

malization and the operation of taking Stein factorization commute with étale

localization, we may assume that X is the spectrum of a strictly henselian

discrete valuation ring R, and the log structure of X log is defined by the closed

point of X (cf. Proposition A.6). Moreover, for assertion (ii), we may assume

that V is connected. Let us write k for the residue field of R, g : X 0 ! X for

the normalization of X in V , and R 0 ¼def GðX 0;OX 0 Þ. Note that since V ! UX

is finite étale, X 0 ! X is finite; in particular, R 0 is a strictly henselian discrete

valuation ring. Let X 0 log be the log scheme obtained by equipping X 0 with

the log structure defined by the closed point of X 0, and k 0 the residue field

of R 0.

First, I claim that f log : Y log ! X log factors through the morphism

g log : X 0 log ! X log. Indeed, since Y log is log regular (cf. Proposition A.5),

Y is normal (cf. Proposition A.3). Thus, if we denote by Y ! Z ! X the

Stein factorization of f , then Z is normal; in particular, the morphism Z ! X

factors through X 0 ! X . Therefore, it follows that the morphism f factors

as the composite Y !f
0

X 0 ! X . Moreover, since Y log is log regular, and the

interior of Y log is included in f 0�1ðUX 0 Þ ð¼ f �1ðUX Þ), where UX 0 is the interior

of X 0 log, it follows from Proposition A.6 that the morphism f 0 extends to a

morphism of log schemes, i.e., the morphism f log factors as the composite

Y log ��!f 0 log X 0 log ��! X log.

Next, I claim that the field extension kJ k 0 induced by g is separable, i.e.,

the morphism k ! k 0 is an isomorphism. Indeed, this follows from Lemma 4

below, together with the first claim.

Let e be the ramification index of the finite flat extension R! R 0. Fi-

nally, I claim that e is prime to the characteristic of k. Indeed, assume that

e ¼ 0 in k. Then the k-algebra R 0nR k is isomorphic to k½t�=ðteÞ, where t is

an indeterminate, and by the definitions, the R 0nR k-module W1
X 0 log=X nR k

is isomorphic to the quotient of k½t�=ðteÞdtl k½t�=ðteÞ by the k½t�=ðteÞ-
submodule generated by ðntn�1 dt;�ntnÞ, where n A N, i.e., the R 0nR k-module

W1
X 0 log=X nR k is a free R 0nR k-module of rank 1 with basis consisting of an

element ‘‘dt=t ¼ ð0; 1Þ’’. In a similar vein, the k-module W1
X log=X nR k is

isomorphic to k. Moreover, the morphism of R 0nR k-modules

f : k½t�=ðteÞF ðW1
X log=X nR kÞnk ðR 0nR kÞ ! W1

X 0 log=X nR kF k½t�=ðteÞdt=t
induced by g log maps 1 A k½t�=ðteÞ to e � dt=tþ u�1 du ¼ u�1 du, where u A
ðk½t�=ðteÞÞ� is a unit of k½t�=ðteÞ; thus, the image of the morphism fnR 0nRk

k
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vanishes. On the other hand, since the morphism f log is log smooth, it follows

from [8], Proposition 3.12, that the natural morphism f �W1
X log=X ! W1

Y log=X is

injective, and its image is locally a direct summand of W1
Y log=X . Therefore,

since f log factors through g log by the first claim, it follows that the morphism

fnR 0nRk
k is also injective. Thus, we obtain a contradiction. This completes

the proof of Lemma 3.

Lemma 4. Let X log be an fs log scheme whose underlying scheme is the

spectrum of a field k, Y log an fs log scheme, and f log : Y log ! X log a log smooth

morphism. Then the subset SY=X JY of Y consisting of closed points y such

that the field extension kJ kðyÞ is separable is dense in Y.

Proof. To prove Lemma 4, by base-changing, we may assume that k

is separably closed. First, observe that it is enough to show that for any

geometric point y! Y of Y , there exists an étale neighborhood U ! Y of

y! Y such that SU=X JU is dense in U .

Let y! Y be a geometric point of Y , and P! k a clean chart of X log

(cf. Definition B.1, (ii)). Then it follows from [8], Theorem 3.5, that there

exists a chart

P ���! Q???y
???y

k ���! A

of U log ! X log, where U ¼def Spec A! Y is an étale neighborhood of the

geometric point y! Y , U log is the log scheme obtained by equipping U with

the log structure induced by the log structure of Y log, and Q an fs monoid,

such that the morphism knZ½P�Z½Q� ! A induced by the above diagram

is étale; in particular, U ! Spec knZ½P�Z½Q� is open. Thus, to prove the

assertion, we may assume that Y log is the log scheme obtained by equip-

ping Spec knZ½P�Z½Q� with the log structure determined by the chart Q!
knZ½P� Z½Q�.

Let k0 be the prime field which is included in k. Then since the chart

P! k is clean, this chart factors as P!a k0 J k. Let X log
0 (respectively, Y log

0 )

be the log scheme obtained by equipping X0 ¼
def

Spec k0 (respectively, Y0 ¼
def

Spec k0 nZ½P�Z½Q�) with the log structure determined by the chart P!a k0
(respectively, Q! k0 nZ½P�Z½Q�). Then we have a cartesian diagram

Y log ���! Y
log
0???y
???y

X log ���! X
log
0 :
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Let Spec kðy0Þ ! Y0 be the natural morphism determined by a closed point

y0 A Y0 of Y0. Then since the field k0 is perfect, the morphism Spec kðy0Þ�Y0

Y F Spec kðy0Þ �X0
X �!pr2 X is étale. (Note that since y0 A Y0 is a closed

point, the composite Spec kðy0Þ ! Y0 ! X0 is finite.) Thus, the image of

Spec kðy0Þ �Y0
Y ! Y is included in SY=X JY . Therefore, the assertion fol-

lows from the fact that the subset of Y0 consisting of the closed points is dense

in Y0, together with the openness of the morphism Y ! Y0 (cf. [3], Corollaire

2.4.10).

Definition 2. Let X log and Y log be fs log schemes. Then we shall say

that a morphism f log : Y log ! X log is log geometrically connected if for any

reduced covering point x log
1 ! x log over any strict geometric point x log ! X log,

the fiber product Y log �X log x
log
1 is connected.

Note that it follows from Remark 1, (iii), that this condition is equivalent

to the condition that for any connected ket covering x 0
log ! x log of a strict

geometric point x log ! X log, Y log �X log x 0
log

is connected.

Remark 2. In log geometry, there exists the notion of a log geometric

point. In fact, one can regard a log geometric point as a limit of ket coverings

over a strict geometric point. Thus, one natural way to define log geometric

connectedness is by the condition that every base-change via a log geometric

point is connected. However, in general, a log geometric point is not a fine

log scheme. Hence we can not perform such a base-change in the category of

fs log schemes.

Theorem 1. Let X log be a log regular log scheme, Y log an fs log scheme,

and f log : Y log ! X log a proper log smooth morphism. If we denote by Y !f
0

X 0 !g X the Stein factorization of f , then X 0 admits a log structure that satisfies

the following conditions.

( i ) There exists a ket covering X 0 log ! X log whose underlying morphism of

schemes is g.

(ii) Y log ! X 0 log is log geometrically connected.

Proof. Let UX JX be the interior of X log. If we denote by Y �X

UX ! V ! UX the Stein factorization of Y �X UX ! UX , then by Lemma 3,

V ! UX is finite étale, and the normalization Z of X in V is tamely ramified

over the generic points of XnUX . Hence Z admits a log structure that

determines a ket covering Z log ! X log by the log purity theorem in [10].

(Concerning the log purity theorem, see Remark B.2.) Now Y log is log regular,

hence normal (cf. Proposition A.3); thus, X 0 is normal. Therefore, X 0 ! X

factors through Z. Since both X 0 �X UX and Z �X UX are naturally iso-

morphic to V , we have X 0FZ. This completes the proof of assertion (i).
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For assertion (ii), since the operation of taking Stein factorization

commutes with étale base-change, by base-changing, we may assume that

both X and X 0 are the spectra of strictly henselian local rings. Moreover,

by Lemma 1, it is enough to show that for any connected ket covering

X
log
1 ! X log and any strict geometric point x log ! X 0 log �X log X

log
1 for which

the image of the underlying morphism of schemes is a closed point,

Y log �X 0 log x
log is connected.

Let us denote by Y
log
1 the fiber product Y log �X log X

log
1 . Since log

smoothness and properness are stable under base-change, Y
log
1 ! X

log
1 is log

smooth and proper. By assertion (i), if we denote by Y1 ! X 01 ! X1 the Stein

factorization of Y1 ! X1, then X 01 admits a log structure such that the result-

ing morphism X
0 log
1 ! X

log
1 is a ket covering. Thus, we have the following

commutative diagram:

Y
log
1 ���! X

0 log
1 ���! X

log
1???y

???y
???y

Y log ���! X 0 log ���! X log:

Now I claim that the right-hand square in the above commutative diagram

is cartesian. Note that it follows formally from this claim that the left-hand

square is also cartesian. In particular, it follows from this claim, together with

the connectedness property of the Stein factorization, that Y log �X 0 log x
log ¼

Y
log
1 �

X
0 log
1

x log is connected for any strict geometric point x log ! X
0 log
1 whose

image of the underlying morphism of schemes lies on a closed point of X
0 log
1 .

The claim of the preceding paragraph may be verified as follows. If we

base-change by UX ! X log, then we obtain a commutative diagram

Y
log
1 �X log UX ���! X

0 log
1 �X log UX ���! X

log
1 �X log UX???y

???y
???y

Y log �X log UX ���! X 0 log �X log UX ���! UX :

Since UX ! X log is a strict morphism, and the log structures of UX and

X
log
1 �X log UX are trivial, the underlying scheme of Y

log
1 �X log UX is

Y1 �X UX . Moreover, X
log
1 �X log UX ! UX is finite étale, hence flat. Thus,

the underlying morphism of schemes of Y log
1 �X log UX ! ðX 0 log �X log X

log
1 Þ�X log

UX ! X
log
1 �X log UX is the Stein factorization of the underlying morphism

of schemes of Y
log
1 �X log UX ! X

log
1 �X log UX ; in particular, X

0 log
1 �X log UX F

ðX 0 log �X log X
log
1 Þ �X log UX over UX . Therefore, X

0 log
1 FX 0 log �X log X

log
1 by

Proposition B.7.
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Definition 3. In the notation of Theorem 1, we shall refer to Y log !
X 0 log ! X log as the log Stein factorization of f log. This name is motivated by

condition (ii) in the statement of Theorem 1.

Proposition 1. The operation of taking log Stein factorization commutes

with base-change by a morphism which satisfies the following condition ð*Þ.
ð*Þ The domain is a log regular log scheme, and the restriction to the

interior is flat.

(For example, log smooth morphisms satisfy ð*Þ.)
Proof. Let X log be a log regular log scheme, f log : Y log ! X log a proper

log smooth morphism, and g log : X log
1 ! X log a morphism which satisfies

the condition ð*Þ in the statement of Proposition 1. Let us denote by

f
log
1 : Y log

1 ! X
log
1 the base-change of f log by g log, and by Y log ! X 0 log !

X log (respectively, Y
log
1 ! X

0 log
1 ! X

log
1 ) the log Stein factorization of f log

(respectively, f
log
1 ). Thus, we obtain the following commutative diagram:

Y
log
1 ���! X

0 log
1 ���! X

log
1???y

???y
???yg log

Y log ���! X 0 log ���! X log:

If we denote by X
log
2 the fiber product X

log
1 �X log X 0 log, then the above

commutative diagram determines a morphism X
0 log
1 ! X

log
2 . Our claim is

that this morphism is an isomorphism.

Let U1 JX1 be the interior of X
log
1 . Since the log structure of U1 is

trivial, U1 ! X log is strict. Therefore, the underlying scheme of Y log
1 �

X
log
1

U1

is Y �X U1, and the factorization induced on the underlying schemes by the

factorization Y
log
1 �

X
log
1

U1 ! X
0 log
1 �

X
log
1

U1 ! U1 is the Stein factorization

of the underlying morphism of Y
log
1 �

X
log
1

U1 ! U1. On the other hand, it

follows from the flatness of U1 ! X that the factorization induced on the

underlying schemes by the factorization Y
log
1 �

X
log
1

U1 ! X
log
2 �

X
log
1

U1 ! U1 is

also the Stein factorization of the underlying morphism Y
log
1 �

X
log
1

U1 ! U1.

Thus, we obtain X
0 log
1 �

X
log
1

U1 FX
log
2 �

X
log
1

U1. Now X
0 log
1 ! X

log
1 and

X
log
2 ! X

log
1 are ket coverings; thus, by Proposition B.7, X

0 log
1 FX

log
2 .

Remark 3. In this section, we only consider the log Stein factorization in

the case where the base log scheme is log regular. However, if a morphism

f log : Y log ! X log of fs log schemes admits a cartesian diagram

Y log ���!f log

X log???y
???y

Y
log
1 ���!

f
log
1

X
log
1 ;
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where
� X

log
1 is a log regular log scheme,

� f
log
1 : Y log

1 ! X
log
1 is a proper log smooth morphism, and

� the right-hand vertical arrow X log ! X
log
1 is strict,

then the factorization Y log ! X
0 log
1 �

X
log
1

X log ! X log obtained by base-

changing the log Stein factorization Y
log
1 ! X

0 log
1 ! X

log
1 of f

log
1 via

X log ! X
log
1 satisfies the following.

� Y log ! X
0 log
1 �

X
log
1

X log is log geometrically connected.
� X

0 log
1 �

X
log
1

X log ! X log is a ket covering.

3. The log homotopy exact sequence

In this section, we prove a logarithmic analogue of [5], Exposé X,

Corollaire 1.4, i.e., the exactness of the log homotopy sequence.

Proposition 2. Let X log be a connected log regular log scheme, Y log an

fs log scheme, and f log : Y log ! X log a proper log smooth morphism. Then the

following conditions are equivalent.

( i ) f�OY FOX .

( ii ) If we denote the Stein factorization of f by Y ! X 0 ! X, then the

morphism X 0 ! X is an isomorphism (i.e., f is geometrically con-

nected).

(iii) If we denote the log Stein factorization of f log by Y log ! X 0 log !
X log, then the morphism X 0 log ! X log is an isomorphism (i.e., f log is

log geometrically connected).

(iv) Y is connected, and f log induces a surjection p1ðY logÞ ! p1ðX logÞ.
(Concerning the log fundamental group, see Theorem B.1.)

Moreover, the above four conditions imply the following condition.

( v ) Y is connected, and f induces a surjection p1ðYÞ ! p1ðXÞ.

Proof. The equivalence of the first three conditions is immediate from

the constructions of the Stein and log Stein factorizations.

Assume the first three conditions. Then since f is surjective (by condition

(i)), geometrically connected (by condition (ii)), and proper, it follows that

Y is connected. Now let X
log
1 ! X log be a connected ket covering, and

f
log
1 : Y log

1 ! X
log
1 the base-change Y log �X log X

log
1 ! X

log
1 . Then f1 is also

surjective and proper. Moreover, it follows from Proposition 1 that f1 is

geometrically connected. Thus, Y1 is connected. This completes the proof

that the first three conditions imply condition (iv).

Next, we show that condition (iv) implies condition (iii). Assume that

f log induces a surjection p1ðY logÞ ! p1ðX logÞ. If we denote by Y log !
X 0 log ! X log the log Stein factorization of f log, then since Y is connected,
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and Y ! X 0 is surjective, X 0 is connected. Moreover, it follows from The-

orem 1, (i), that X 0 log ! X log is a ket covering. By condition (iv), Y log�X log

X 0 log ! Y log is also a connected ket covering. However, this covering has a

section, hence Y log �X log X 0 log FY log. Thus, by applying the general theory

of Galois categories to KétðX 0 logÞ and KétðY logÞ, we obtain X 0 log FX log.

(Concerning KétðX logÞ, see Definition B.4, (i), also Theorem B.1.)

Finally, we show that condition (iv) implies condition (v). It is immediate

that the morphism X log ! X determined by the morphism of sheaves of

monoids O�X ,!MX induces a surjection p1ðX logÞ ! p1ðX Þ. Thus, condition

(v) follows from condition (iv), the fact that p1ðX logÞ ! p1ðXÞ is surjective, and
the existence of the commutative diagram

p1ðY logÞ ���! p1ðX logÞ???y
???y

p1ðY Þ ���! p1ðXÞ:

Remark 4. In the statement of Proposition 2, condition (v) does not

imply condition (iv). Indeed, let R be a strictly henselian discrete valuation

ring, K the field of fractions of R, L a tamely ramified extension of K , and

RL the integral closure of R in L. If we denote by ðSpec RÞ log (respectively,

ðSpec RLÞ log) the log scheme obtained by equipping Spec R (respectively,

Spec RL) with the log structure defined by the closed point, then the

natural morphism ðSpec RLÞ log ! ðSpec RÞ log satisfies condition (v) (since

p1ðSpec RÞ ¼ 1), but p1ððSpec RLÞ logÞ ! p1ððSpec RÞ logÞ is not surjective unless

K ¼ L (since ðSpec RLÞ log ! ðSpec RÞ log is a connected ket covering).

Next, we show the exactness of the log homotopy sequence.

Theorem 2. Let X log be a connected log regular log scheme, Y log a

connected fs log scheme, and f log : Y log ! X log a proper log smooth morphism.

Moreover, we assume one of conditions (i), (ii), (iii), and (iv) in Proposition 2.

Then, for any strict geometric point x log ! X log, the following sequence is exact:

lim � p1ðY log �X log x
log
l Þ ���!s p1ðY logÞ ���!p1ð f logÞ

p1ðX logÞ ���! 1:

Here, the projective limit is over all reduced covering points x
log
l ! x log, and s

is induced by the natural projections Y log �X log x
log
l ! Y log.

Proof. Note that by condition (iii) in Proposition 2 and the connected-

ness property of the log Stein factorization, Y log �X log x
log
l is connected for any

reduced covering point x
log
l ! x log over x log.

Next, observe that the surjectivity of p1ð f logÞ follows from condition (iv)

in Proposition 2. Moreover, the assertion that p1ð f logÞ � s ¼ 1 is verified as
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follows. To prove this fact, it is enough to show that for any ket covering

X 0 log ! X log, there exists a reduced covering point x
log
l ! X log over the strict

geometric point x log ! X log such that the ket covering

ðY log �X log x
log
l Þ �X log X 0 log ! Y log �X log x

log
l

is trivial. On the other hand, it follows immediately from Proposition B.2 that

there exists a reduced covering point x log
l ! X log over the strict geometric point

x log ! X log such that

X 0 log �X log x
log
l F x

log
l t � � � t x

log
l :

This completes the proof of the fact that p1ð f logÞ � s ¼ 1.

Hence it is enough to show that the kernel of p1ð f logÞ is generated by the

image of s. By the general theory of profinite groups, it is enough to show

that for an open subgroup G of p1ðY logÞ, if G contains the image of s,

then G contains the kernel of p1ð f logÞ. Let Y
log
1 ! Y log be the connected

ket covering corresponding to G. Then since G contains the image of s,

there exists a reduced covering point x
log
l ! x log such that Y

log
1 �X log x

log
l !

Y log �X log x
log
l has a (ket) section. Since Y

log
1 ! Y log is finite and log étale, it

follows that Y
log
1 ! X log is proper and log smooth. Let Y

log
1 ! X

log
1 ! X log

be the log Stein factorization of this morphism, and Y
log
2 the fiber product

Y log �X log X
log
1 . Thus, we have a commutative diagram

Y
log
1 ���! Y

log
2 ���! X

log
1����

???y
???y

Y
log
1 ���! Y log ���!

f log
X log;

where the right-hand square is cartesian. Now it is enough to prove that

Y
log
1 ! Y

log
2 is an isomorphism. To prove this, it is enough to show the

following.

( i ) Y
log
2 is connected.

( ii ) Y
log
1 ! Y

log
2 is a ket covering.

(iii) Y
log
1 ! Y

log
2 has rank one at some point. (We shall say that a ket

covering Y log ! X log of an fs log scheme has rank one at some point

if there exists a log geometric point of X log such that, for the fiber

functor F of KétðX logÞ defined by the log geometric point [cf.

Definition B.4, (ii)], the cardinality of FðY logÞ is one.)

The first assertion follows from condition (iv) in Proposition 2, and the

second assertion follows from the fact that Y
log
1 ! Y log and Y

log
2 ! Y log are
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ket coverings and Proposition B.4. Hence, in the rest of the proof, we show

the third assertion.

By replacing the reduced covering point x
log
l ! x log by the composite

x
log

l 0
! x

log
l ! x log, where x

log

l 0
! x

log
l is a reduced covering point, if necessary,

we may assume that X
log
1 �X log x

log
l splits as a disjoint union of copies of

x
log
l . If we base-change the above commutative diagram by x

log
l ! X log, then

we obtain the following commutative diagram

Y
log
1 �X log x

log
l �! ðY log �X log x

log
l Þ t � � � t ðY

log �X log x
log
l Þ

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{n

�! x
log
l t � � � t x

log
l

zfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflffl{n

����
???y

???y
Y

log
1 �X log x

log
l �! Y log �X log x

log
l �! x

log
l ;

where the right-hand square is cartesian. By the general theory of Galois

categories, it is enough to show that

Y
log
1 �X log x

log
l ! Y

log
2 �X log x

log
l ð¼ ðY

log �X log x
log
l Þ t � � � t ðY

log �X log x
log
l Þ

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{n

Þ

has rank one at some point.

Now Y
log
1 �X log x

log
l ! Y log �X log x

log
l has a (ket) section; thus, one of the

connected components of Y log
1 �X log x

log
l is isomorphic to Y log �X log x

log
l . Since

Y
log
1 ! Y

log
2 is a surjective ket covering,

Y
log
1 �X log x

log
l ! ðY

log �X log x
log
l Þ t � � � t ðY

log �X log x
log
l Þ

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{n

is surjective (cf. [12], Proposition 2.2.2). On the other hand, the number of

connected components of Y
log
1 �X log x

log
l is n by the connectedness property

of the log Stein factorization Y
log
1 ! X

log
1 ! X log. Thus, Y

log
1 �X log x

log
l !

Y
log
2 �X log x

log
l induces a bijection between the set of connected components of

Y
log
1 �X log x

log
l and that of Y

log
2 �X log x

log
l . Since one of the connected com-

ponents of Y
log
1 �X log x

log
l is isomorphic to Y log �X log x

log
l , Y

log
1 �X log x

log
l !

Y
log
2 �X log x

log
l is an isomorphism on at least one connected component of

Y
log
1 �X log x

log
l , which is isomorphic to Y log �X log x

log
l . This completes the

proof of the third assertion.

Proposition 3. Let k be a field, X log a log smooth proper log geomet-

rically connected fs log scheme over k, and Y log a connected log regular log

scheme over k with the interior UY . Let p
log
1 : X log �k Y

log ! X log (respec-

tively, p
log
2 : X log �k Y

log ! Y log) be the 1st (respectively, 2nd) projection.

Then the following hold.
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( i ) X log �k Y
log is connected.

(ii) If UY ðk sepÞ0q (for example, k is perfect, and Y is locally of finite

type over k), then the natural morphism

p1ðX log �k Y
logÞ ! p1ðX logÞ �Galðk sep=kÞ p1ðY logÞ

determined by p
log
1 and p

log
2 is an isomorphism.

Proof. First, we prove assertion (i). Since Spec k has the trivial log

structure, the underlying scheme of X log �k Y
log is naturally isomorphic to

X �k Y , which is connected. Assertion (i) follows from this fact.

Next, we prove assertion (ii). By the assumption, there exists a k sep-

rational point of UY . Thus, by Theorem 2, we obtain the following exact

sequence:

p1ðX log nk k
sepÞ ���! p1ðX log �k Y

logÞ ���!p1ðp log
2
Þ
p1ðY logÞ ���! 1:

Therefore, we obtain a commutative diagram

p1ðX log nk k
sepÞ ���! p1ðX log �k Y

logÞ ���!p1ð p log
2
Þ

p1ðY logÞ ���! 1

o

???y
???y

����
1 ���! p1ðX log nk k

sepÞ ���! p1ðX logÞ �Galðk sep=kÞ p1ðY logÞ ���! p1ðY logÞ ���! 1����
???y

???y
1 ���! p1ðX log nk k

sepÞ ���! p1ðX logÞ ���! Galðk sep=kÞ ���! 1;

where all horizontal sequences are exact. Then it follows from the injectivity

of the left-hand bottom horizontal arrow p1ðX log nk k
sepÞ ! p1ðX logÞ that the

left-hand top horizontal arrow p1ðX log nk k
sepÞ ! p1ðX log �k Y

logÞ is injective.

Thus, assertion (ii) follows from the ‘‘Five lemma’’.

4. Log formal schemes and the algebraization

In this section, we define the notion of a log structure on a formal scheme

and establish a theory of algebraizations of log formal schemes. First, we

define the notion of a log structure on a locally noetherian formal scheme.

Definition 4. Let X and Y be locally noetherian formal schemes.

( i ) Let MX be a sheaf of topological monoids on the étale site of

X. (Concerning the étale site of a locally noetherian formal scheme,

see [4], 6.1.) We shall refer to a continuous homomorphism of

sheaves of topological monoids MX ! OX (where we regard OX as a

sheaf of topological monoids via the monoid structure determined by
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the multiplicative structure on the sheaf of topological rings OX) as a

pre-log structure on X.

A morphism ðX;MX ! OXÞ ! ðY;MY ! OYÞ of locally no-

etherian formal schemes equipped with pre-log structures is defined

to be a pair ðf; hÞ of a morphism of locally noetherian formal

schemes f : X! Y and a continuous homomorphism h : f�1MY !
MX such that the following diagram commutes:

f�1MY ���!h MX???y
???y

f�1OY ���!
via f

OX:

( ii ) We shall refer to a pre-log structure a : MX ! OX on X as a log

structure on X if the homomorphism a induces an isomorphism

a�1ðO�XÞ !
@

O�X.

We shall refer to a locally noetherian formal scheme equipped

with a log structure as a log locally noetherian formal scheme. A

morphism of log locally noetherian formal schemes is defined as a

morphism of locally noetherian formal schemes equipped with pre-

log structures.

For simplicity, we shall use the notation X log to denote a log

locally noetherian formal scheme whose underlying formal scheme

is X. Then we shall denote by MX the sheaf of monoids that

determines the log structure of X log. Note that by a similar way

to the way in which we regard the category of locally noetherian

schemes as a full subcategory of the category of locally noetherian

formal schemes (by regarding a scheme S as the formal scheme

obtained by the completion of S along the closed subset S of S),

we regard the category of locally noetherian schemes equipped with

log structures as a full subcategory of the category of log locally

noetherian formal schemes.

( iii ) Let a : M 0
X ! OX be a pre-log structure on X. We shall refer to the

log structure determined by the push-out in the category of sheaves

of topological monoids on the étale site of X of

a�1ðO�XÞ ���!via a
O�X???y

M 0
X

as the log structure associated to the pre-log structure a : M 0
X ! OX.
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( iv ) Let f : X! Y be a morphism of formal schemes, and MY a log

structure on Y. We shall refer to the log structure associated to the

pre-log structure f�1MY ! f�1OY ! OX as the pull-back of the log

structure MY, or, alternatively, the log structure on X induced by f.

Let X log be a log scheme, and F JX a closed subspace of the

underlying topological space of X . Then we shall refer to the log

formal scheme X̂X log obtained by equipping the completion X̂X of X

along F with the pull-back of the log structure of X log as the log

completion of X log along F .

( v ) Let X log be a log locally noetherian formal scheme. Then we shall

say that X log is an fs log locally noetherian formal scheme if étale

locally on X, there exists a discrete fs monoid P and a homomor-

phism PX ! OX (where PX is the constant sheaf on the étale site of

X determined by P) such that the log structure of X log is isomorphic

to the log structure associated to the homomorphism PX ! OX.

( vi ) Let X log be an fs log locally noetherian formal scheme, P a

topological monoid (respectively, a discrete fs monoid), and PX

the constant sheaf on the étale site of X determined by P. Let

PX ! OX be a continuous homomorphism such that the log structure

of X log is isomorphic to the log structure associated to this homo-

morphism. Then we shall refer to this morphism PX ! OX as a

chart (respectively, an fs chart) of X log. By the definition of an fs

log locally noetherian formal scheme, an fs chart always exists étale

locally on X log.

Let x! X be a geometric point of X (i.e., x ¼ Spec k for some

separably closed field k). We shall say that an fs chart PX ! OX

is clean at x! X if the composite P!MX;x ! ðMX=O
�
XÞx is an

isomorphism. It follows immediately from a similar argument to

the argument used to prove the existence of a clean chart for an fs

log scheme (cf. Definition B.1, (ii)) that a clean chart of X log always

exists over an étale neighborhood of any given geometric point of X.

(vii) Let X log and Y log be fs log locally noetherian formal schemes, and

f log : X log ! Y log a morphism of log locally noetherian formal

schemes. Let PX ! OX be an fs chart of X log, QY ! OY an fs

chart of Y log, and Q! P a morphism of monoids such that the

diagram

f�1QY ¼ QX ���! PX???y
???y

f�1OY ���! OX
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commutes. Then we shall refer to the collection of data consisting

of PX ! OX, QY ! OY, and Q! P as an fs chart of the morphism

f log. Moreover, in the above data, for a geometric point x! X, if

PX ! OX (respectively, QY ! OY) is a clean chart at x! X (respec-

tively, at the geometric point of Y determined by the geometric

point x! X), then we shall refer to such a chart as a clean chart of

the morphism f log at x! X.

Lemma 5. Let A be an adic noetherian ring, I an ideal of definition of A,

and f : X ! Spec A a proper morphism. If a subspace F of the underlying

topological space of X contains the underlying topological space of X nA ðA=IÞ
and is stable under generization, then F coincides with the underlying topological

space of X.

Proof. Assume that F does not coincide with the underlying topological

space of X (and that X is non-empty). Then there exists an element x of

XnF . Since F is stable under generization, for any element a of F , there exists

an open neighborhood Ua of a in X such that x does not belong to Ua. Thus,

the open set U ¼def 6
a AF Ua of the underlying topological space of X contains

the underlying topological space of X nA ðA=IÞ, and x does not belong to

U . It thus follows from the properness of f that f ðXnUÞ is a non-empty

closed subset of the underlying topological space of Spec A and does not

intersect the underlying topological space of SpecðA=IÞ. However, since A

is an adic noetherian ring, SpecðA=IÞ contains all closed points of Spec A.

Thus, there exists no such set; hence we obtain a contradiction.

Lemma 6. Let
A ���! A 0???y

???y
B ���! B 0

be a commutative diagram of commutative rings with unity. Suppose that the

following conditions hold.

( i ) The morphism A! B is faithfully flat.

( ii ) The morphisms A! A 0 and B! B 0 are injective. [Let us regard A

(respectively, B) as a subring of A 0 (respectively, B 0).]

(iii) The natural morphism BnA A 0 ! B 0 is injective.

Then the natural morphism from A to the set-theoretic fiber product of

A 0???y
B ���! B 0

is surjective.
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Proof. By condition (iii), it is enough to show the assertion in the case

where B 0 ¼ BnA A 0. Thus, assume that B 0 ¼ BnA A 0. Let a 0 A A 0 and b A B

be elements such that the images in B 0 coincide. Now let us denote by f the

morphism of A-modules

AlA! A 0

ða1; a2Þ 7! a1 þ a 0 � a2;

and by I the image of f. Then we obtain inclusions AJ I JA 0 (cf. condition

(ii)). On the other hand, the fact that the images of a 0 A A 0 and b A B in

B 0 coincide implies that the image of idB nA f : BlB! B 0 is BJB 0, i.e.,

B ¼ BnA I . Thus,

0 ¼ ðBnA IÞ=B ¼ BnA ðI=AÞ:

Since A! B is faithfully flat (cf. condition (i)), I=A ¼ 0, i.e., a 0 A A. This

completes the proof of Lemma 6.

Lemma 7. Let R be a henselian excellent reduced local ring, R̂R the

completion of R with respect to its maximal ideal m of R, and R! R̂R the

natural morphism. Then if a Kummer morphism P! Q of fs monoids (cf.

Definition B.3) fits into a commutative diagram

P ���!aP R???y
???y

Q ���!
aQ

R̂R

of monoids, then the morphism aQ : Q! R̂R factors through R.

Proof. Let q be an element of Q. Our claim is that the image aQðqÞ of
q via aQ is in R. Let p1; . . . ; pr JR be the associated primes of R. Then by

the fact that R is reduced, the natural morphism R! R=p1 l � � �lR=pr is

injective. We denote by Ki the field of fractions of R=pi. Now since R is

excellent, R=pi is excellent. Therefore, by [3], Corollaire 18.9.2, the completiondðR=piÞðR=piÞðFR=pi nR R̂RÞ of R=pi with respect to its maximal ideal is an integral

domain. We denote by K̂Ki the field of fractions of dðR=piÞðR=piÞ. Thus, we obtain

a commutative diagram

R ���! R=p1 l � � �lR=pr ���! K1 l � � �lKr???y
???y

???y
R̂R ���! dðR=p1ÞðR=p1Þl � � �l dðR=prÞðR=prÞ ���! K̂K1 l � � �l K̂Kr;

where all morphisms are injective.

79Log homotopy sequence



Now the assumption on P! Q implies that aQðqÞn A R. Therefore, the

image of aQðqÞn in K̂Ki is in Ki. On the other hand, by the excellentness of

R=pi and [3], Corollaire 18.9.3, Ki is algebraically closed in K̂Ki; it thus follows

that the image of aQðqÞ in K̂Ki is in Ki. Thus, by Lemma 6, aQðqÞ A R. This

completes the proof of Lemma 7.

Definition 5. Let f log : X log ! Y log be a morphism of fs log locally

noetherian formal schemes.

( i ) We shall refer to f log : X log ! Y log as a strictly Kummer morphism if

for any geometric point x! X of X, there exists a positive integer

n which is invertible in OX;x such that the morphism of monoids

ðMY=O
�
YÞfðxÞ ! ðMX=O

�
XÞx induced by f log is injective, and, moreover,

the image of this morphism contains n � ðMX=O
�
XÞx, where the geo-

metric point fðxÞ ! Y is the geometric point determined by the

composite x! X!f Y.

(ii) We shall refer to f log : X log ! Y log as an exact morphism if for any

geometric point x! X of X, the morphism of monoids ðMY=O
�
YÞfðxÞ

! ðMX=O
�
XÞx induced by f log is exact, i.e., for a A ðMY=O

�
YÞ

gp
fðxÞ, if

the image of a in ððMX=O
�
XÞxÞ

gp satisfies that a A ðMX=O
�
XÞx J

ððMX=O
�
XÞxÞ

gp, then a A ðMY=O
�
YÞfðxÞ.

Lemma 8. Let X log and Y log be fs log locally noetherian formal schemes,

and f log : X log ! Y log a strictly Kummer morphism. Then strict étale locally on

X log and on Y log, the morphism f log admits a clean chart.

Proof. It follows immediately from definition that any Kummer mor-

phisms of fs monoids are exact. Thus, the assertion follows from a similar

argument to the argument used in the proof of [7], Corollary 2.3, together with

the fact that the order of the stalk, which is a finite group, of the relative

characteristic sheaf of f log at any geometric point x! X of X is invertible in

OX;x (cf. also [7], Lemma 2.2).

The main result in this section is the following theorem.

Theorem 3. Let A be an adic noetherian ring, and I an ideal of definition

of A. Let S log be an fs log scheme whose underlying scheme S is the spectrum

of A, X log a noetherian excellent fs log scheme, X log ! S log a morphism that

is separated and of finite type, and X̂X log (respectively, ŜS log) the log comple-

tion of X log (respectively, S log) along X=I ¼def X nA ðA=IÞ (respectively, S=I ¼
def

SpecðA=IÞ). Let CX log be the category of reduced fs log schemes that are finite

and strictly Kummer over X log and proper over S log, and CX̂X log the category of

reduced fs log formal schemes that are finite and strictly Kummer over X̂X log and

proper over ŜS log.
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Then the functor determined by the operation of taking the log completion

along the fiber over S=I induces a natural equivalence between the category CX log

and the category CX̂X log .

Proof. Note that if Y log ! X log is an object of the category CX log , then

the excellentness of X implies that the completion ŶY of Y along Y nA ðA=IÞ
is reduced. Therefore, the functor is well-defined. Moreover, it follows from

definition that any morphisms in CX log and CX̂X log are strictly Kummer.

First, we prove that the functor is fully faithful. Let Y
log
1 ! X log and

Y
log
2 ! X log be objects of the category CX log .

Let f log; g log : Y log
1 ! Y

log
2 be morphisms in the category CX log such that

f̂f log ¼ ĝg log, where f̂f log; ĝg log : ŶY log
1 ! ŶY

log
2 are the morphisms induced by f log

and g log, respectively. Then since f̂f log ¼ ĝg log, we obtain f̂f ¼ ĝg. Thus, by [2],

Théorème 5.4.1, we obtain f ¼ g. To see that f log ¼ g log, we take a geometric

point y1 ! Y1 of Y1 whose image lies on Y1=I ¼def Y1 nA ðA=IÞ. Then it

follows from the assumption that f̂f log ¼ ĝg log and a similar argument to the

argument used in the proof of Proposition B.9 (note that OY1;y1 ! ÔOY1;y1

is faithfully flat, where ÔOY1;y1 is the completion of OY1;y1 with respect to

IOY1;y1 ) that the homomorphism MY2;y2 !MY1;y1 induced by f log (where

we denote by y2 ! Y2 the geometric point determined by the composite

y1 �! Y1 �!f¼g Y2) coincides with the homomorphism MY2;y2 !MY1;y1 induced

by g log. Therefore, f log coincides with g log on an étale neighborhood of

the geometric point y1 ! Y1. Moreover, by Lemma 5, this implies that f log

coincides with g log on Y
log
1 . This completes the proof that the functor in

question is faithful.

Next, let f log : ŶY log
1 ! ŶY

log
2 be a morphism in the category CX̂X log . By [2],

Théorème 5.4.1, there exists a unique morphism f : Y1 ! Y2 such that f̂f

coincides with the underlying morphism f of formal schemes of f log. Note that

it follows from the proof of the faithfulness of the functor in question that it is

enough to show that an extension of f to a morphism of log schemes exists

étale locally on Y
log
1 . Moreover, by Lemma 5, it is enough to show that for

any geometric point of Y1 whose image lies on Y1=I , there exists such an

extension of f on an étale neighborhood of the geometric point. To see this,

let y1 ! Y1 be a geometric point whose image lies on Y1=I , y2 ! Y2 the

geometric point determined by the composite y1 ! Y1 !
f
Y2, and

P2 ���! P1???y
???y

OY2;y2 ���! ðOY1;y1 ���! Þ ~OOY1;y1
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a clean chart of the natural morphism ðSpf ~OOY1;y1Þ
log ! Y

log
2 at y1 ! Spf ~OOY1;y1 ,

where ~OOY1;y1 is the completion of OY1;y1 with respect to its maximal ideal, and

ðSpf ~OOY1;y1Þ
log is the log formal scheme obtained by equipping Spf ~OOY1;y1 with

the log structure induced by the log structure of ŶY
log
1 . (Indeed, by Lemma

8, the morphism ðSpf ~OOY1;y1Þ
log ! Y

log
2 admits a clean chart.) Then since

P2 ! P1 is Kummer, by Lemma 7, the morphism P1 ! ~OOY1;y1 factors through

OY1;y1 ; moreover, the resulting morphism P1 ! OY1;y1 is a chart at y1 ! Y1 of

the log structure of Y
log
1 . In particular, the diagram

P2 ���! P1???y
???y

OY2;y2 ���! OY1;y1

is a chart of a morphism from an étale neighborhood of y1 ! Y
log
1 to Y

log
2 for

which the morphism ŶY
log
1 ! ŶY

log
2 determined by this morphism coincides with

f log. This completes the proof that the functor in question is full.

Finally, we prove that the functor is essentially surjective. Let Y log! X̂X log

be an object of CX̂X log . By [2], Théorème 5.4.1 and Proposition 5.4.4, there

exists a unique noetherian scheme Y that is finite over X , and proper over S

such that the completion ŶY of Y along Y=I ¼def Y nA ðA=IÞ is isomorphic to

Y. (Note that then the reducedness of Y implies that Y is reduced.) Now it

follows from the proof of the full faithfulness of the functor in question that it

is enough to show that an fs log structure of the desired type exists étale locally

on Y . Moreover, by Lemma 5, it is enough to show that for any geometric

point of Y for which the image lies on Y=I , there exists such an fs log structure

on an étale neighborhood of the geometric point.

By replacing X log by the log scheme obtained by equipping Y with the log

structure induced by the log structure of X log via the morphism Y ! X , we

may assume that the morphism Y ! X is the identity morphism of X ; thus, we

may assume that the underlying morphism of formal schemes of ŶY log ! X̂X log is

the identity morphism of X̂X . Let x! X be a geometric point of X whose

image lies on X=I . Then we obtain a diagram

Spf ~OOX ;x ���! Spec OX ;x???y
???y

X̂X ���! X ;

where ~OOX ;x is the completion of OX ;x with respect to its maximal ideal. Now

we obtain a clean chart of the morphism ðSpf ~OOX ;xÞ log ! X log (where the log

structure of ðSpf ~OOX ;xÞ log is induced by the log structure of ŶY log)
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P ���! Q???y
???y

OX ;x ���! ~OOX ;x:

Thus, by Lemma 7, the chart Q! ~OOX ;x factors through OX ;x. It thus follows

that the log structure of ŶY log can be descended to an étale neighborhood of

the geometric point x! X .

By applying Theorem 3, we obtain the following corollary. Note that the

corollary generalizes [16], Théorème 2.2, (a). (In [16], Théorème 2.2, (a), the

underlying scheme of the base log scheme is assumed to be the spectrum of a

complete discrete valuation ring.)

Corollary 1. Let S log be an fs log scheme whose underlying scheme S

is the spectrum of a noetherian complete local ring A whose maximal ideal

(respectively, residue field) we denote by m (respectively, kÞ, X log a log regular

log scheme, and X log ! S log a proper morphism. Then the strict closed im-

mersion X
log
0 ¼def X log �S log s log ! X log induces a natural equivalence of the

category of ket coverings over X log and the category of ket coverings over

X
log
0 , where s log is the log scheme obtained by equipping Spec k with the log

structure induced by the log structure of S log via the closed immersion s! S

induced by the natural projection A! A=mF k. In particular, if X log is

connected, then X
log
0 is also connected, and p1ðX log

0 Þ !
@

p1ðX logÞ.

Proof. We may assume that X log is connected. Moreover, since the

assertion is independent of the log structure of S log, we may assume that the

log structure of S log is trivial.

First, we prove that the functor is fully faithful. Let Y log ! X log be a

connected ket covering. Then if we denote by Y ! S 0 ! S the Stein factoriza-

tion of the underlying morphism of the composite Y log ! X log ! S, then the

connectedness of Y and the surjectivity of Y ! S 0 implies that S 0 is con-

nected. Since S is the spectrum of the complete ring and S 0 ! S is finite, it

thus follows that Y �S s, hence also Y log �S s, is connected. Therefore, by the

general theory of Galois categories, the functor in question is fully faithful.

Next, we prove that the functor is essentially surjective. Let Y
log
0 ! X

log
0

be a connected ket covering. Then it follows from [17], Théorème 0.1 that

there exists a unique connected ket covering Y log
n ! X log

n ¼def X log �S Sn such

that Y log
n �Sn

sFY
log
0 , where Sn ¼def SpecðA=mnþ1Þ. We shall denote by Y

the noetherian formal scheme obtained by the system fYngn. Now I claim

that Y admits an fs log structure, and there exists a natural isomorphism

Y log �S Sn FY log
n , where Y log is the resulting log formal scheme. Indeed, this
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claim is verified as follows. Let x! X be a geometric point whose image lies

on X0, and ðSpec R! X ;P! RÞ a clean chart at the geometric point x! X

such that for any connected component Z
log
0 J SpecðR=mRÞ log �

X
log
0

Y
log
0

(where SpecðR=mRÞ log is the log scheme obtained by equipping SpecðR=mRÞ with
the log structure induced by the log structure of X log), the ket covering

obtained as the composite

Z
log
0 ,! SpecðR=mRÞ log �

X
log
0

Y
log
0 ! SpecðR=mRÞ log

admits a chart

P ���! Q???y
???y

R=mR ���! OZ0
;

and, moreover, this chart induces an isomorphism ðR=mRÞnZ½P�Z½Q� !
@

OZ0

(cf. Proposition B.2). Then it follows from [17], Théorème 0.1, together with

the fact that the ket coverings over SpecðR=mRÞ log obtained by the ket

coverings

SpecððR=mnRÞnZ½P�Z½Q�Þ log ! SpecðR=mnRÞ log

and

Z log
n ,! SpecðR=mnRÞ log �

X
log
n

Y log
n ! SpecðR=mnRÞ log

(where

Z log
n J SpecðR=mnRÞ log �

X
log
n

Y log
n

is the connected component of SpecðR=mnRÞ log �
X

log
n

Y log
n corresponding to the

connected component Z
log
0 J SpecðR=mRÞ log �

X
log
0

Y
log
0 ) are isomorphic that

SpecððR=mnRÞnZ½P� Z½Q�Þ log is isomorphic to Z log
n ; in particular, the log

scheme Z log
n admits a chart Q! OZn

for any n. Thus, we obtain a morphism

Q! R̂RnOX
OY (where R̂R is the completion of R with respect to mRJR, and

X is the m-adic completion of X ), i.e., we obtain an fs log structure on an

étale neighborhood ðSpf R̂RÞnX Y! Y of Y such that ðSpf R̂RnX YÞ log �S Sn

is isomorphic to ðSpec RÞ log �X log Y log
n . Since these log structures on étale

neighborhoods of Y descend to a log structure of Y by the construction, we

obtain a log structure of Y of the desired type. This completes the proof of

the above claim.

We denote by X log the log completion of X log along X0. Now it follows

from the properness of X ! S and the fact that A is complete that X is
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excellent. Now since Y
log
0 ! X

log
0 is strictly Kummer, Y log ! X log is also

strictly Kummer; moreover, since Yn ! Xn is finite, Y! X is also finite. On

the other hand, the reducedness of Y log is verified as follows. Let y! Y be

a geometric point of Y, and x! X the geometric point of X determined by

y! Y. Then by the construction of the log structure of Y log, there exists a

clean chart ðSpec R! X ;P! RÞ at the geometric point x! X such that the

restriction of the morphism ðSpf R̂RÞ log �X log Y log ! ðSpf R̂RÞ log to the connected

component in which the image of y! Y lies is isomorphic to the morphism

which is of the form

SpfðR̂RnZ½P�Z½Q�Þ log ! ðSpf R̂RÞ log;

where SpfðR̂RnZ½P� Z½Q�Þ log (respectively, ðSpf R̂RÞ log) is the log formal scheme

obtained by equipping SpfðR̂RnZ½P� Z½Q�Þ (respectively, Spf R̂R) with the log

structure induced by Q! R̂RnZ½P� Z½Q� (respectively, P! R̂R), and P! Q is

a Kummer morphism of fs monoids such that n �QJ ImðP! QÞ for some

integer n invertible in R, and, moreover, the chart Q! R̂RnZ½P� Z½Q� is clean

at y! Y (cf. the proof of the above claim). Let ~RR be the completion of the

strict henselization of R at the geometric point of X determined by x! X

with respect to its maximal ideal, and ðSpec ~RRÞ log the log scheme obtained by

equipping Spec ~RR with the log structure induced by the morphism P! ~RR.

Then since X log is log regular, it follows from the definition of log regularity

that ðSpec ~RRÞ log is log regular at the geometric point of Spec ~RR determined by

x! X; thus, it follows from Proposition A.4 that ðSpec ~RRÞ log is log regular.

Therefore, since the natural morphism Specð ~RRnZ½P� Z½Q�Þ log ! ðSpec ~RRÞ log
is a ket covering by Proposition B.2, it follows from Proposition A.5

that Specð ~RRnZ½P� Z½Q�Þ log is also log regular. Thus, by Proposition A.3,

Specð ~RRnZ½P� Z½Q�Þ is normal; in particular, Y is normal, hence reduced.

Therefore, by Theorem 3, there exists a unique finite strictly Kummer fs

log scheme Y log over X log whose log completion along Y �S s is naturally

isomorphic to Y log. The assertion that the morphism Y log ! X log is a ket

covering is verified as follows. Since the property of being a ket covering

is strict étale local on X log, it follows from Lemma 9 below that it is enough

to show that the base-change of Y log ! X log via the natural morphism

ðSpec ~OOX ;xÞ log ! X log is a ket covering, where x! X is the geometric point

determined by a geometric point y! Y whose image lies on Y0, ~OOX ;x is the

completion of OX ;x with respect to its maximal ideal mX ;x, and ðSpec ~OOX ;xÞ log
is the log scheme obtained by equipping Spec ~OOX ;x with the log structure

induced by the log structure of X log. On the other hand, it follows from

the proof of the above claim that there exist compatible charts with respect

to n
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P ���! Q???y
???y

OX ;x=m
nOX ;x ���! OY ;y=m

nOY ;y

(where P! Q is a morphism of clean monoids such that n �QJ ImðP! QÞ
for some integer n invertible in OX ;x) which induce compatible isomorphisms

with respect to n

SpecðOY ;y=m
nOY ;yÞ log F SpecððOX ;x=m

nOX ;xÞnZ½P�Z½Q�Þ log ;

in particular, we obtain compatible isomorphisms with respect to n

SpecðOY ;y=m
n
X ;xOY ;yÞ log F SpecððOX ;x=m

n
X ;xÞnZ½P�Z½Q�Þ log:

By taking the inductive limits, we obtain an isomorphism

SpecðOY ;y nOX ; x

~OOX ;xÞ log F Specð ~OOX ;x nZ½P� Z½Q�Þ log:

Therefore, it follows from Proposition B.2 that Y log ! X log is a ket covering.

This completes the proof of Corollary 1.

Lemma 9. Let X log be an fs log scheme whose underlying scheme is the

spectrum of a strictly henselian local ring A, X̂X log the log scheme obtained by

equipping the spectrum of the completion ÂA of A with respect to its maximal

ideal with the log structure induced by the log structure of X log, Y log an fs log

scheme, and Y log ! X log a finite strictly Kummer morphism. Then if ŶY log ¼def

Y log �X log X̂X log ! X̂X log is a ket covering, then the morphism Y log ! X log is a ket

covering.

Proof. It is immediate that we may assume that Y is connected; thus,

assume that Y is connected. Let B ¼ GðY ;OY Þ, and

P ���! Q???y
???y

A ���! B

a clean chart of the morphism Y log ! X log (cf. Lemma 8). Then we obtain a

morphism Y log ! SpecðAnZ½P� Z½Q�Þ log over X log, where SpecðAnZ½P�Z½Q�Þ log
is the log scheme obtained by equipping SpecðAnZ½P� Z½Q�Þ with the log

structure induced by the natural morphism Q! AnZ½P�Z½Q�. Now by

the assumption on the morphism ŶY log ! X̂X log, together with the proof of

Proposition B.2, the morphism ŶY log ! SpecðÂAnZ½P�Z½Q�Þ log is an isomor-
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phism; thus, it follows from the faithful flatness of A! ÂA that Y log !
SpecðAnZ½P� Z½Q�Þ log is an isomorphism. Therefore, the assertion follows

from Proposition B.2.

5. Morphisms of type Nln

In this section, we define the notion of a morphism of type Nln and

consider fundamental properties of such a morphism.

Definition 6. Let X log and Y log be fs log schemes, f log : Y log ! X log a

morphism of log schemes and n a natural number. Then we shall refer to

f log : Y log ! X log as a morphism of type Nln if étale locally on X , f log is a

morphism obtained as a base-change of the natural morphism ðSpec ZÞ log !
Spec Z, where ðSpec ZÞ log is the log scheme obtained by equipping Spec Z with

the log structure induced by the chart

Nln ! Z

ðm1; . . . ;mnÞ 7! 0m1þ���þmn :

Remark 5. A typical example of a morphism of type N is as follows.

Let X be a regular scheme, and DJX an irreducible divisor of X such that

the closed immersion D ,! X is regular immersion (of codimension 1). We

denote by X log the log scheme obtained by equipping X with the log structure

associated to the divisor D, and by D log the log scheme obtained by equipping

D with the log structure induced by the log structure of X log via D ,! X .

Then the morphism D log ! D induced by the natural inclusion O�D ,!MD is

of type N.

Remark 6. In this section, we often use the notation X log ! X log to

denote a morphism of type Nln. Moreover, we often identify the underlying

scheme of X log with X via the underlying morphism of schemes of the

morphism of type Nln.

Remark 7. Let f log : X log ! X log be a morphism of type Nln, x! X a

geometric point, and a : P! OX a clean chart of X log at the geometric point

x! X . Then by the definition of morphisms of type Nln, there exists a chart

of f log which is of the form

P ���! Q ¼def PlNln

a

???y
???y

OX ���!
f �¼id

OX ;
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where the top horizontal arrow is the morphism given by mapping p to

ðp; 0; . . . ; 0Þ, and the right-hand vertical arrow is the morphism given by

mapping ðp;m1; . . . ;mnÞ to aðpÞ � 0m1þ���þmn .

Now it is immediate that there exists a splitting Q!@ Pl ðQ=PÞ; more-

over, it is canonical. Indeed, this is verified as follows. The quotient Q=P of

Q by P is isomorphic to Nln non-canonically. We denote by ei the element of

Q=P that corresponds to ð0; . . . ; 1
i-th

; . . . ; 0Þ under the non-canonical isomor-

phism Q=PFNln. Then, by the existence of the isomorphism Q!@ PlNln,

there exists a unique element eeiei of Q such that;
� eeiei modulo P is ei,
� eeiei is an irreducible element of Q, i.e., if q1 þ q2 ¼ eeiei (where qi A Q), then

q1 ¼ 0 or q2 ¼ 0.

Thus, the section

Q=P! Q

ei 7! eeiei
of the natural projection Q!Q=P induces a canonical splitting QFPl ðQ=PÞ.
Moreover, the image of eeiei via the morphism Q! OX which appears in the

above chart is 0.

Lemma 10. A morphism of type Nln is stable under base-change in the

category of fs log schemes.

Proof. This follows immediately from the definition of morphisms of

type Nln.

Definition 7. Let X be a scheme, and M1 ! OX and M2 ! OX fs log

structures on X . Let X
log
1 (respectively, X log

2 ) be the log scheme obtained by

equipping X with the log structure M1 ! OX (respectively, M2 ! OX Þ. Then

the natural morphism X
log
1 �X X

log
2 ! X induces an isomorphism between the

underlying schemes of X
log
1 �X X

log
2 and X . We shall denote by M1 þM2 !

OX the log structure of X
log
1 �X X

log
2 on X . Note that by the definition, the

log structure M1 þM2 on X is the direct sum of M1 and M2 in the category

of fs log structures on X .

Remark 8.

( i ) In the notation of Definition 7, for any geometric point x! X , there

exist an étale neighborhood U ! X of x! X , fs monoids P1 and

P2, and morphisms of monoids a1 : P1 ! OU and a2 : P2 ! OU such

that a1 : P1 ! OU (respectively, a2 : P2 ! OU ) is an fs chart of M1

(respectively, M2) at x! X . Then there exists an fs chart of the log

structure M1 þM2 ! OX at x! X that is of the form
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P1 lP2 ! OU

ðp1; p2Þ 7! a1ðp1Þ � a2ðp2Þ:

In particular, ðM1 þM2Þ=O�X F ðM1=O
�
X Þl ðM2=O

�
X Þ.

( ii ) In the notation of Definition 7, for any morphism of schemes

f : Y ! X , f �ðM1 þM2Þ ¼ f �ðM1Þ þ f �ðM2Þ (where f � denotes

the pull-back of log structures, not of sheaves).

(iii) Let X be a regular scheme, and D ¼
Pn

i¼1 Di JX a divisor with

normal crossings. If we denote by MðDÞ (respectively, MðDiÞ) the

log structure of X defined by the divisor with normal crossings D

(respectively, Di), then MðDÞ ¼
Pn

i¼1 MðDiÞ.
(iv) Clearly, ðM1 þM2Þ þM3 ¼M1 þ ðM2 þM3Þ.

Remark 9. Let X log be an fs log scheme, and f log : X log ! X log a

morphism of type Nln. Then we have a diagram

O�X ���! MX ���! MX=O
�
X����

???y
???y

O�X ���! MX ���! MX=O
�
X???y

???y
MX=MX ���!@ Cf log ;

where Cf log is the quotient of MX=O
�
X by the subsheaf MX=O

�
X . Then, by the

definition of a morphism of type Nln, Cf log is locally constant, and the stalk at

any geometric point of X is non-canonically isomorphic to Nln. (Indeed, this

follows from the existence of the chart in Remark 7.) Moreover, by Remark

7, the sheaf MX=O
�
X admits a canonical splitting ðMX=O

�
X ÞlCf log .

Now the group Aut ðNlnÞ is isomorphic to the symmetric group on n

letters, hence, in particular, is finite. (Indeed, this follows from the fact

that any automorphism of Nln preserves the irreducible elements of Nln,

together with the fact that the irreducible elements of Nln are the ei’s [where

ei ¼ ð0; . . . ; 0; 1
i-th

; 0; . . . ; 0Þ].) Since Cf log is locally constant, and the stalk at

any geometric point of X is isomorphic to Nln, it thus follows that there exists

a finite étale covering X 0 ! X such that the pull-back of Cf log to X 0 is

constant. (Indeed, this follows from the fact that since the sheaf of sets of

isomorphisms between Cf log and Nln
X on the étale site of X is locally constant,

and has finite stalks, there exists a finite étale covering X 0 ! X such that the

restriction of the sheaf to X 0 is constant.) Moreover, since Aut ðNÞ is trivial,

if n ¼ 1, then Cf log is always constant.
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On the other hand, in the diagram

0 0???y
???y

0 ���! O�X ���! M
gp
X ���! M

gp
X =O�X ���! 0����

???y
???y

0 ���! O�X ���! M
gp
X ���! M

gp
X =O�X ���! 0???y
???y

M
gp
X =Mgp

X ���!@ C
gp
f log???y
???y

0 0;

all vertical and horizontal sequences are exact. Now the sheaf Cgp
f log is locally

constant, and the stalk at any geometric point is non-canonically isomorphic

to Zln
X . By Remark 7, the sheaf M

gp
X =O�X admits a canonical splitting

ðMgp
X =O�X ÞlC

gp
f log .

Definition 8. Let X log be a connected fs log scheme.

( i ) Let f log : X log ! X log be a morphism of type Nln. Then we shall

refer to f log as a morphism of constant type Nln if Cf log (in the

notation of Remark 9) is constant. Let f log be a morphism of

constant type Nln. Then we shall refer to an isomorphism

t : Nln
X !@ Cf log as a trivialization of f log. Note that, by the portion

of Remark 9 concerning the case ‘‘n ¼ 1’’, any morphism of type N

is of constant type N; moreover, such a morphism has a canonical

trivialization.

( ii ) For pairs ð f log
i ; tiÞ ði ¼ 1; 2Þ, where f

log
i : X log

i ! X log is a morphism

of constant type Nln and ti is a trivialization of f
log
i , we shall say

that ð f log
1 ; t1Þ is equivalent to ð f log

2 ; t2Þ if there exists an isomorphism

of fs log schemes g log : X log
1 ! X

log
2 over X log such that the trivial-

ization of f
log
1 induced by the isomorphism ðg logÞ� : MX2

!@ MX1
and

t2 coincides with t1.

(iii) We shall denote by MX log the set of pairs ð f log; tÞ, where f log is a

morphism of constant type Nln to X log and t is a trivialization of

f log modulo the equivalence defined in (ii).

(iv) We shall denote by i the morphism MX log ! PicðXÞln defined as

follows.
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Let ð f log : X log ! X log; tÞ be an element of MX log . Then the

middle horizontal sequence in the second diagram in Remark 9

determines a connecting morphism

H0
�eetðX ;M

gp
X =O�X Þ ! H1

�eetðX ;O�X Þ:

Now since one has a canonical splitting M
gp
X =O�X F ðMgp

X =O�X Þl
C

gp
f log and a natural isomorphism H1

�eetðX ;O�X ÞFPicðX Þ, we obtain a

morphism

H0
�eetðX ;M

gp
X =O�X ÞlH0

�eetðX ;C
gp
f logÞ ! PicðXÞ:

For the element ei ¼ ð0; . . . ; 1
i-th

; . . . ; 0Þ of H0
�eetðZ

ln
X Þ ¼ Zln, let us

denote by Li the image of ei via the composite

H0
�eetðX ;Zln

X Þ ���!
via t gp

@
H0

�eetðX ;C
gp
f logÞ

���! H0
�eetðX ;Mgp

X =O�X ÞlH0
�eetðX ;Cgp

f logÞ ���! PicðXÞ;

where the second arrow is x 7! ð0; xÞ, and the third arrow is as

above. Then we shall write ið f log; tÞ ¼ ðL1; . . . ;LnÞ.
( v ) We shall denote by k the morphism PicðXÞln !MX log defined as

follows.

Let ðL1; . . . ;LnÞ be an element of PicðX Þln. We denote by Vi

the geometric line bundle defined by the invertible sheaf L
nð�1Þ
i (i.e.,

the spectrum of the symmetric algebra of Li over X ), by pi : Vi ! X

the natural morphism, by si : X ! Vi the 0-section of pi, by p : V ¼def

V1 �X � � � �X Vn ! X the natural morphism, and by s : X ! V the

section ðs1; . . . ; snÞ of p. Let V log be the log scheme obtained by

equipping V with the log structure MV ¼ p�MX þMðD1Þ þ � � � þ
MðDnÞ (cf. Definition 7), where Di is the divisor on V defined by the

following cartesian diagram

Di ���! V???y
???ypri

X ���!si Vi;

and MðDiÞ is a log structure defined by the divisor Di. (See

Remark 10 below.) Then we obtain a natural morphism of log

schemes p log : V log ! X log whose underlying morphism of schemes is

p. If we denote by X log the log scheme obtained by equipping X

with the log structure s�MV , then it is immediate that the composite
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f log : X log �!s log V log �!p log

X log is of type Nln, where s log is the strict

morphism whose underlying morphism of schemes is s. On the

other hand, since

MX ¼ s�ðp�MX þMðD1Þ þ � � �MðDnÞÞ

¼MX þ s�MðD1Þ þ � � � þ s�MðDnÞ;

it follows that

Cf log F ðs�MðD1Þ=O�X Þl � � �l ðs�MðDnÞ=O�X Þ

(cf. Remark 8, (i)). Now, by the portion of Remark 9 concerning

the case ‘‘n ¼ 1’’, s�MðDiÞ=O�X is constant, i.e., there exists a

canonical isomorphism ti : NX !
@

s�MðDiÞ=O�X . Thus, Cf log is con-

stant. Let us define a trivialization t of f log ¼ p log � s log by

Nln
X !t ðs�MðD1Þ=O�X Þl � � �l ðs�MðDnÞ=O�X Þ

ðm1; . . . ;mnÞ 7! ðt1ðm1Þ; . . . ; tnðmnÞÞ:

Then we shall write kðL1; . . . ;LnÞ ¼ ðp log � s log; tÞ.

Remark 10. For a positive Cartier divisor D on a scheme X , we denote

by MðDÞ the log structure on X that is defined as follows.

Let us denote by GD A H1
�eetðX ;GmÞ the Gm-torsor sheaf on (the étale site of )

X that is determined by �D, and by G i
D A H1

�eetðX ;GmÞ the Gm-torsor sheaf on

X that is obtained by applying a ‘‘change of structure of group’’ to GD via the

morphism

Gm ! Gm

f 7! f i:

Write MðDÞ0 ¼
F

i AN G i
D. Then the natural morphisms G i

D � G
j
D ! G

iþj
D de-

termine a natural structure of sheaf of monoids on MðDÞ0. Moreover, the

composite GD ,! OX ð�DÞ ,! OX (the first inclusion arises from the fact that

the invertible sheaf determined by the Gm-torsor sheaf GD is naturally

isomorphic to OX ð�DÞ) induces a homomorphism MðDÞ0 ! OX of sheaves

of monoids. Then we define the log structure MðDÞ as the log structure

associated to the above pre-log structure MðDÞ0 ! OX .

Note that if X is regular, and D is a smooth divisor, then this log structure

MðDÞ coincides with the log structure defined in [8], 1.5, (1).

Remark 11. Let X log be a connected fs log scheme, f log : X log ! X log

a morphism of constant type Nln, and t : Nln
X !@ Cf log a trivialization. We

write ið f log; tÞ ¼ ðL1; . . . ;LnÞ. If we denote by Gi the subsheaf of MX defined

by the following cartesian diagram
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Gi ���! 0l fei;Xg???y
???y

MX ���! ðMX=O
�
X ’Þ ðMX=O

�
X ÞlCf log

(where fei;Xg is the subsheaf of Nln
X whose sections correspond to ei ¼

ð0; . . . ; 1
i-th

; . . . ; 0Þ A Nln !
t
@

Cf log ), then Gi is a Gm-torsor sheaf on X . More-

over, it is a tautology that the invertible sheaf determined by the Gm-torsor

sheaf Gi is naturally isomorphic to Li.

Lemma 11. Let X log be a connected fs log scheme, f log : X log ! X log a

morphism of type Nln. Then the following hold.

( i ) There exists a unique morphism g log : X log ! X of type Nln and a

unique morphism X log ! X log such that the resulting morphism X log !
X log �X X log is an isomorphism, i.e., MX ¼MX þMX .

(ii) Assume, moreover, that f log is of constant type. Then the morphism

g log : X log ! X (obtained in assertion (i)) is also of constant type.

Let t be a trivialization of g log. Then there exist morphisms

g
log
i : Xi

log ! X of type N ð1a ia nÞ, whose canonical trivialization

(see Definition 8, (i)) we denote by ti, such that the following hold.

(1) The morphism X log ! X factors through g
log
i : Xi

log ! X, and the

resulting morphism

X log ! X1
log �X � � � �X Xn

log

is an isomorphism, i.e., MX ¼MX þ
Pn

i¼1 MXi
.

(2) The composite

Nln �����!
t1l���ltn

@
C
g
log
1

l � � �lC
g
log
n

�����!
viað1Þ

@
Cg log

coincides with t.

(3) iðg log; tÞ ¼ ðiðg log
1 ; t1Þ; . . . ; iðg log

n ; tnÞÞ.

Proof. First, we prove assertion (i). By Remark 9, we have a canonical

section Cf log !MX=O
�
X . We define the sheaf of monoids MX by the following

cartesian diagram:

MX ���! Cf log???y
???y

MX ���! MX=O
�
X :

Then since the inclusion O�X ,!MX factors through MX , the composite

MX !MX ! OX (where the second morphism MX ! OX is the log structure
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of X log) is a log structure on X ; moreover, the injection MX !MX induces

the morphism X log ! X log (where X log is the log scheme obtained by equip-

ping X with the log structure MX ! OX ). On the other hand, it follows from

the fact that the stalk of Cf log at any geometric point of X is isomorphic to

Nln, together with the fact that the image of eeiei via the morphism Q! OV is

0 in the notation of Remark 7 that the morphism X log ! X induced by the

natural inclusion O�X ,!MX is of type Nln. Now, by construction and the

fact that f log is of type Nln, the resulting morphism X log ! X log �X X log is

an isomorphism.

Next, we prove assertion (ii). Let us denote by Mi the subsheaf of MX

defined by the following cartesian diagram

Mi ���! 0lNX???y
???y

MX ���! ðMX=O
�
X ��!@ ðMX=O

�
X ÞlCg log  ��

idlt
@ ÞðMX=O

�
X ÞlNln

X ;

where the right-hand vertical arrow is

0lNX ! ðMX=O
�
X ÞlNln

X

ð0;mX Þ 7! ð0;m � ei;X Þ:

Then the composite Mi !MX ! OX is a log structure. Moreover, if we de-

note by Xi
log the log scheme obtained by equipping X with the log structure

Mi ! OX and by g
log
i : Xi

log ! X the morphism determined by the inclusion

O�X ,!Mi, then g
log
i satisfies conditions (1), (2), and (3) in the statement of

Lemma 11, (ii).

Theorem 4. Let X log be a connected fs log scheme. Then i is a bijection.

The inverse of i is k.

Proof. By Lemma 11, (i), the morphism MX !MX log induced by the

morphism X log ! X (determined by the natural inclusion O�X ,!MX ) is a

bijection. Therefore, we may assume that the log structure of X log is trivial.

Moreover, by Lemma 11, (ii), we may assume n ¼ 1.

First, we prove that k � i is the identity morphism. Let f log : X log ! X

be a morphism of type N. If we denote by G the Gm-torsor sheaf defined in

Remark 11, then it is a tautology that the restriction to X of the Gm-torsor

sheaf on V that corresponds to the invertible sheaf OV ð�XÞ (where we regard

X as a Cartier divisor on V via the 0-section X ! V ) is naturally isomorphic

to the Gm-torsor sheaf that corresponds to the conormal sheaf of X in

V ð¼ ið f logÞÞ, i.e., G. Therefore, the pull-back to X of the log structure on

V associated to the divisor X (cf. Remark 10) is naturally isomorphic to MX .
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Next, we prove that i � k is the identity morphism. Let L be an

invertible sheaf on X . If we denote by G the Gm-torsor sheaf that corresponds

to L, then it is a tautology that the restriction to X of the Gm-torsor sheaf

that corresponds to the invertible sheaf OV ð�X Þ (where we regard X as a

Cartier divisor on V via the 0-section X ! V ) is naturally isomorphic to the

Gm-torsor sheaf that corresponds to the conormal sheaf of X in V ð¼LÞ, i.e.,
G. Thus, the assertion follows.

Remark 12. In the notation of Remark 5, the invertible sheaf on D

which corresponds to the morphism D log ! D of type N is the conormal sheaf

CD=X of D in X by the definition of i.

Definition 9. Let X log be a connected fs log scheme, f log : X log ! X log

a morphism of constant type Nln, t : Nln
X !@ Cf log a trivialization of f log,

and ið f log; tÞ ¼ ðL1; . . .LnÞ. We shall denote by pi : Pi ! X the P1-bundle

associated to the locally free sheaf Li lOX , by s0i : X ! Pi (respectively,

syi : X ! Pi) the section of pi induced by the projection Li lOX ! OX

(respectively, Li lOX !Li) (see Remark 13 below), by p : P ¼def P1 �X � � � �X

Pn ! X the natural morphism, and by s0 : X ! P the section ðs01 ; . . . ; s0nÞ of

p. We shall denote by P log the log scheme obtained by equipping P with the

log structure MP ¼
def

p�MX þMðD0
1Þ þ � � � þMðD0

nÞ þMðDy
1 Þ þ � � � þMðDy

n Þ,
where D0

i (respectively, Dy
i ) is the divisor on P defined by the following

cartesian diagram

D0
i ���! P???y

???y
X ���!s0i Pi

ðrespectively;
Dy

i ���! P???y
???y

X ���!syi PiÞ;

and MðD0
i Þ (respectively, MðDy

i )) is the log structure defined by the divisor

D0
i (respectively, Dy

i ). Then we obtain a natural morphism of log schemes

p log : P log ! X log whose underlying morphism of schemes is p; moreover, by

Theorem 4, the log scheme obtained by equipping X with the log structure

ðs0Þ�MP is isomorphic to X log, and the composite X log ��!ðs0Þ log P log ��!p log

X log

is f log, where ðs0Þ log is the strict morphism whose underlying morphism of

schemes is s0. We shall refer to p log : P log ! X log as the log G�nm -torsor

associated to ð f log; tÞ or, alternatively, to ðL1; . . .LnÞ. Note that p log is pro-

jective and log smooth.

Remark 13. Let E be a locally free sheaf of rank n on a scheme X ,

V ! X the geometric vector bundle associated to E, and P! X (respectively,

P 0 ! X ) the Pn-bundle (respectively, the Pn�1-bundle) associated to the locally
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free sheaf E4lOX (respectively, E4) (where E4¼HomðE;OX Þ), and P 0 ,! P

the closed immersion over X determined by the projection E4lOX ! E4.

Then V is naturally isomorphic to the complement of P 0 in P.

Indeed, it follows immediately from construction that PnP 0 ! X is a

vector bundle of rank n over X . Moreover, for an open subscheme U ,! X of

X , a section of ðPnP 0ÞjU ! U corresponds to the isomorphism class of the

following data.
� An invertible sheaf L on U .
� A surjection p : E4jU lOU !L such that the composite OU ,!

E4jU lOU !
p
L does not vanish on U . (We denote by s A GðU ;LÞ

the section of L determined by the above composite OU ,! E4jU l
OU !

p
L.)

It is immediate that then OU !
s
L is an isomorphism, and if we denote by

fUðsÞ the section of GðU ;EjUÞ determined by the composite E4jU ,! E4jU l
OU �!p L �!s�1 OU for the above data, then the assignment

ðL; p : E4jU lOU !LÞ 7! fUðsÞ

determines a bijection between the set of sections of ðPnP 0ÞjU ! U and

GðU ;EjUÞ; therefore, PnP 0 ! X is naturally isomorphic to V ! X . More-

over, by the above correspondence, 0 A GðX ;EÞ corresponds to the pair

ðOX ;E
4lOX �!pr2 OX Þ.

The main result of this section is the following theorem.

Theorem 5. Let X log be a locally noetherian connected fs log scheme,

f log : X log ! X log a morphism of constant type Nln, t : Nln
X !@ Cf log a trivial-

ization of f log, and p log : P log ! X log the log G�nm -torsor associated to ð f log; tÞ.
Then ðs0Þ log : X log ! P log induces a natural equivalence between the Galois

category of ket coverings of P log and the Galois category of ket coverings of

X log, i.e., p1ððs0Þ logÞ is an isomorphism.

Proof. (Step 1) If X is the spectrum of a field k, and the log structure

of X log is trivial, then p1ððs0Þ logÞ is an isomorphism.

Since the horizontal sequences in the diagram

1 ���! p1ðX log nk k
sepÞ ���! p1ðX logÞ ���! Galðk sep=kÞ ���! 1???y

???y
����

1 ���! p1ðP log nk k
sepÞ ���! p1ðP logÞ ���! Galðk sep=kÞ ���! 1

are exact, by base-changing, we may assume that k is separably closed. More-

over, by Proposition 3, together with Proposition B.5, we may assume n ¼ 1.

Then it follows from Lemma 12, (ii), below that p1ððs0Þ logÞ is an isomorphism.
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(Step 2) If X is the spectrum of a strictly henselian local ring A whose residue

field is k, and the log structure of X log is trivial, then p1ððs0Þ logÞ is injective.

Let us write x ¼def Spec kJX for the closed subscheme of X determined

by the natural surjection A! k. Then we have a commutative diagram

x log ¼def X log �X x ���! P
log
x ¼def P log �X x ���! x???y

???y
???y

X log ���!
ðs0Þ log

P log ���! X :

Now it follows immediately from the proof of Lemma 12 that any ket cover-

ing of P
log
x extends to a ket covering of P log; thus, p1ðP log

x Þ ! p1ðP logÞ is

an injection. Therefore, the assertion follows from the fact that p1ðx logÞ !
p1ðX logÞ and p1ðx logÞ ! p1ðP log

x Þ are isomorphisms (cf. Proposition B.6 and

Step 1).

(Step 3) If X is the spectrum of a separably closed field k, then p1ððs0Þ logÞ is
surjective.

We denote by a : M ! k a clean chart of X log. We write R ¼def k½½M��,
and S ¼def Spec R. Let S log be the log scheme obtained by equipping S with the

log structure associated to the chart given by the natural morphism M ! R.

Then, by Proposition A.2, S log is log regular. Write ðS log ! S log; tSÞ ¼
def

kðOS; . . . ;OSÞ, and denote by P
log
S ! S log the log G�nm -torsor associated to

ðOS; . . . ;OSÞ, and by ðs0Þ logS the closed immersion S log ! P
log
S . We denote

by K the field of fractions of R, and by Spec K ! S log the strict morphism

whose underlying morphism corresponds to the natural inclusion R ,! K .

Then we obtain a commutative diagram

X log ���!ðs0Þ log
P log???y
???y

S log ���!
ðs0Þ log

S

P
log
Sx???
x???

ðSpec KÞ log ¼def S log �S log Spec K ���!ðs0Þ log
K

P
log
K ¼def P log

S �S log Spec K ;

where the two squares are cartesian.

Now, in the above diagram, the following hold.

( i ) p1ððSpec KÞ logÞ ! p1ðP log
K Þ is an isomorphism. (This follows from

Step 1.)
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( ii ) p1ðP log
K Þ ! p1ðP log

S Þ is surjective. (This follows from the fact that if

we denote by hPS
the generic point of PS [note that since S log is log

regular, P log
S is also log regular], then p1ðhPS

Þ ! p1ðP log
S Þ is surjective,

together with the fact that hPS
! P

log
S factors through P

log
K .)

(iii) p1ðS logÞ ! p1ðP log
S Þ is surjective. (This follows from (i) and (ii).)

(iv) p1ðX logÞ ! p1ðS logÞ is an isomorphism. (This follows from Propo-

sition B.6.)

( v ) p1ðP logÞ ! p1ðP log
S Þ is an isomorphism. (This follows from Corol-

lary 1 to Theorem 3.)

Therefore, by (iii), (iv), and (v), p1ððs0Þ logÞ is surjective.

(Step 4) If X is the spectrum of a strictly henselian local ring A whose residue

field is k, then p1ððs0Þ logÞ is an isomorphism.

We denote by x ¼def Spec kJX the closed subscheme of X determined by

the natural surjection A! k, and by x log the log scheme obtained by equipping

x with the log structure induced by the log structure of X log. First, we prove

that p1ððs0Þ logÞ is surjective. Let Q log ! P log be a connected ket covering of

P log. If we denote by Q! X 0 ! X the Stein factorization of the composite

Q! P! X , then since Q is connected, and Q! X 0 is surjective, we obtain

that X 0 is connected. Now since X is the spectrum of a strictly henselian local

ring, and X 0 is finite over X , X 0 �X x, hence also Q�X x, is connected. Thus,

by base-changing by x log ! X log, we may assume that X is the spectrum of a

separably closed field. Then the surjectivity in question follows from Step 3.

Next, we prove that p1ððs0Þ logÞ is injective. Now it follows from Lemma

11 that there exists a morphism X log ! X of constant type Nln with trivial-

ization t 0 such that the pair obtained as the base-change of ðX log ! X ; t 0Þ
via the natural morphism X log ! X is isomorphic to ðX log ! X log; tÞ. Let

P
log
1 ! X be the log G�nm -torsor associated to the pair ðX log ! X ; t 0Þ, and

ðs01Þ
log : X log ! P

log
1 the morphism ‘‘ðs0Þ log’’ for the log G�nm -torsor P

log
1 ! X .

Thus, we obtain a commutative diagram

1 ���! Kerða1Þ ���! p1ðX logÞ ���!a1 p1ðX logÞ ���! 1???y p1ððs0Þ logÞ

???y
???yp1ððs01 Þ

logÞ

Kerða2Þ ���! p1ðP logÞ ���!a2 p1ðP log
1 Þ???y

???y
???y

1 ���! Kerða3Þ ���! p1ðX logÞ ���!
a3

p1ðXÞ ���! 1:

It follows from Proposition B.5 that the top sequence is exact; moreover, it

follows from Step 2 that p1ððs01Þ
logÞ is injective. On the other hand it follows
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immediately from Proposition B.5 that the composite Kerða1Þ ! Kerða2Þ !
Kerða3Þ is an isomorphism; in particular, Kerða1Þ ! Kerða2Þ is injective. Now

the assertion that p1ððs0Þ logÞ is injective follows from the injectivity of

p1ððs01Þ
logÞ and Kerða1Þ ! Kerða2Þ.

(Step 5) The general case.

We show that the functor KétðP logÞ ! KétðX logÞ induced by the mor-

phism ðs0Þ log : X log ! P log is an equivalence. First, we prove that the functor

is fully faithful. It is immediate that the functor is faithful (indeed, this follows

from the existence of a log geometric point of P log that factors through

X log and the general theory of Galois categories). Thus, it is enough to show

that the functor is full. Let Q
log
1 ! P log and Q

log
2 ! P log be ket coverings

over P log, and g log : Y log
1 ¼def Q log

1 �P log X log ! Y
log
2 ¼def Q log

2 �P log X log. Then,

by Step 4, there exists a strict étale surjection X 0 log ! X log such that

the morphism g 0 log : Y 0 log1 ¼def Y log
1 �X log X 0 log ! Y

0 log
2 ¼def Y log

2 �X log X 0 log over

X 0 log ¼def X log �X log X 0 log obtained as the base-change of g log by X 0 log ! X log

extends to a morphism ~gg 0 log : Q 0 log1 ¼def Q log
1 �X log X 0 log ! Q

0 log
2 ¼def Q log

2 �X log X 0 log

over P 0 log ¼def P log �X log X 0 log. (Indeed, by Step 4, for any geometric point

of X , there exists an étale neighborhood U ! X of the geometric point such

that if we denote by U log ! X log the strict morphism whose underlying

morphism of schemes is the morphism U ! X , then the base-change of

g log by U log ! X log extends to a morphism Q
log
1 �X log U log ! Q

log
2 �X log U log.

Thus, if we denote by X 0 log the disjoint union of such U log’s, then

X 0 log ! X log satisfies the above condition.) Let us denote by q
log
1 (respec-

tively, q
log
2 ) the 1st (respectively, 2nd) projection P 0 log �P log P 0 log ! P 0 log. Now

it follows immediately from the fact that the functor KétðP 0 log �P log P 0 logÞ !
KétðX 0 log �X log X 0 logÞ induced by the morphism ðs0Þ log is faithful that the

following diagram commutes

q
log �
1 Q

0 log
1 ����!q

log �
1

~gg 0 log

q
log �
1 Q

0 log
2???y

???y
q
log �
2 Q

0 log
1 ����!q

log �
2

~gg 0 log

q
log �
2 Q

0 log
2 ;

where q
log �
i denotes the pull-back of each object over P 0 log to an object over

P 0 log �P log P 0 log via q
log
i , and the vertical arrows are the isomorphisms that

arise from the fact that Q
0 log
i ! P 0 log is induced by Q

log
i ! P log. Thus, by

Proposition B.8, ~gg 0 log extends to a morphism ~gg log : Q log
1 ! Q

log
2 . Since the

base-change of ~gg log by X 0 log ! P log is g 0 log, we conclude that ~gg log is an

extension of g log.
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Next, we prove that the functor is essentially surjective. Let Y log ! X log

be a ket covering over X log. Then, by Step 4, there exists a strict étale

surjection X 0 log ! X log such that the ket covering Y 0 log ¼def Y log �X log X 0 log !
X 0 log ¼def X log �X log X 0 log extends to a ket covering Q 0 log ! P 0 log ¼def P log�X log

X 0 log. Let us denote by q
log
1 (respectively, q

log
2 ) the 1st (respectively, 2nd)

projection P 0 log �P log P 0 log ! P 0 log. Now it follows from the fact that the

functor in question is full that the isomorphism over X 0 log (that arises from

the fact that Y 0 log ! X 0 log is induced by Y log ! X log) extends to an iso-

morphism q
log �
1 Q 0 log !@ q

log �
2 Q 0 log; moreover, the fact that the functor in

question is faithful implies that this isomorphism q
log �
1 Q 0 log !@ q

log �
2 Q 0 log sat-

isfies the cocycle condition for being a descent datum. Thus, by Proposition

B.8, the ket covering Q 0 log ! P 0 log extends to a ket covering Q log ! P log.

Moreover, it follows from the construction of Q log that Q log �P log X log is

naturally isomorphic to Y log over X log.

Lemma 12. Let k be a separably closed field, whose (not necessarily

positive) characteristic we denote by p, ðP1
kÞ

log
the log scheme obtained by

equipping the projective line P1
k with the log structure associated to the divisor

f0;ygJP1
k, U JP1

k the interior of ðP1
kÞ

log
(so U ¼ Gm), and ðSpec kÞ log !

ðP1
kÞ

log
the strict morphism for which the image of the underlying morphism

of schemes is f0gJP1
k. Then the following hold.

( i ) The morphism p1ðUÞ ! p1ððP1
kÞ

logÞ is an isomorphism.

(ii) The morphism p1ððSpec kÞ logÞ ! p1ððP1
kÞ

logÞ is an isomorphism.

Proof. First, we prove assertion (i). If we denote by h the generic point

of P1
k , then it follows from the fact that the natural morphism h! ðP1

kÞ
log

induces a surjection p1ðhÞ ! p1ððP1
kÞ

logÞ, together with the fact that the na-

tural morphism h! ðP1
kÞ

log factors through U , that p1ðUÞ ! p1ððP1
kÞ

logÞ is

surjective. Moreover, since any connected finite étale covering over U is of

the form

U ¼ Gm ! Gm ¼ U

f 7! f n

for some positive integer n that is prime to p, it is easily seen that any finite

étale covering over U extends to a ket covering over ðP1
kÞ

log; thus, p1ðUÞ !
p1ððP1

kÞ
logÞ is injective. Therefore, p1ðUÞ ! p1ððP1

kÞ
logÞ is an isomorphism.

Next, we prove assertion (ii). We denote by ðA1
kÞ

log ! ðP1
kÞ

log the strict

morphism whose underlying morphism of schemes is the natural open immer-

sion A1
k ,! P1

k (where we regard A1
k as P1

knfyg). By assertion (i), the

restriction to ðA1
kÞ

log of any connected ket covering over ðP1
kÞ

log is of the

form ðA1
kÞ

log ! ðA1
kÞ

log whose underlying morphism of schemes is the mor-

phism determined by the morphism
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k½t� ! k½t�
t 7! tn

for some positive integer n that is prime to p. It thus follows immediately

from this fact and Proposition B.2 that p1ððSpec kÞ logÞ ! p1ððP1
kÞ

logÞ is an

isomorphism.

The following corollary follows immediately from Theorems 2 and 5.

Corollary 2. Let X log be a connected log regular log scheme, and

f log : X log ! X log a morphism of constant type Nln. Then for any strict geo-

metric point x log ! X log of X log, the following sequence is exact:

lim � p1ðX log �X log x
log
l Þ ���!s p1ðX logÞ ���!p1ð f logÞ

p1ðX logÞ ���! 1:

Here the projective limit is over all reduced covering points x
log
l ! x log, and s

is induced by the natural projections X log �X log x
log
l ! X log. In particular, by

means of a natural isomorphism

lim � p1ðX log �X log x
log
l Þ !

@
ẐZð p

0Þð1Þln

obtained in Remark 14 below, we obtain the following exact sequence

ẐZðp
0Þð1Þln ���! p1ðX logÞ ���!p1ð f logÞ

p1ðX logÞ ���! 1;

where p is the characteristic of the residue field of the image of the underlying

morphism of schemes of the strict geometric point x log ! X log, and ẐZðp
0Þð1Þ is

the pro-prime to p quotient of ẐZð1Þ.

Remark 14. Let k be a separably closed field, whose (not necessarily

positive) characteristic we denote by p, and S log an fs log scheme whose

underlying scheme S is the spectrum of k. Let f log : S log ! S log be a

morphism of constant type Nln, and t a trivialization of f log.

Let P! k, Q! k be respective clean charts of S log, S log given in Remark

7. Then it follows from Proposition B.5 that the log fundamental group

p1ðS logÞ (respectively, p1ðS logÞ) is naturally isomorphic to HomðPgp; ẐZðp
0Þð1ÞÞ

(respectively, HomðQgp; ẐZðp
0Þð1ÞÞ), where ẐZðp

0Þð1Þ is the maximal pro-prime to

p quotient of ẐZð1Þ. Moreover, the morphism p1ðS logÞ ! p1ðS logÞ induced by

f log is the morphism

HomðQgp; ẐZðp
0Þð1ÞÞ ! HomðPgp; ẐZðp

0Þð1ÞÞ

induced by P! Q in Remark 7. In particular, the kernel of p1ðS logÞ !
p1ðS logÞ is naturally isomorphic to HomðQgp=Pgp; ẐZðp

0Þð1ÞÞ. Now the trivial-

ization t induces a natural isomorphism Zln !@ Qgp=Pgp. Therefore, we

obtain a natural isomorphism
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ðlim � p1ðS log �S log S
log
l ÞÞ !

@
Kerðp1ðS logÞ ! p1ðS logÞÞ !@ ẐZðp

0Þð1Þln;

where the projective limit is over all reduced covering points S
log
l ! S log.

Proposition 4. Let X log be a connected log regular log scheme over a field

k, whose (not necessarily positive) characteristic we denote by p, UX JX the

interior of X log, and L1; . . . ;Ln invertible sheaves on X. Let p log : P log ! X log

be the log G�nm -torsor associated to ðL1; . . . ;LnÞ. If the condition ð*Þ below

is satisfied, then, in the following exact sequence obtained in Corollary 2 to

Theorem 5

ðẐZð p 0Þð1Þln ’Þ lim � p1ðP log �X log x
log
l Þ ���!s p1ðP logÞ ���!p1ðp logÞ

p1ðX logÞ ���! 1;

the first morphism is injective.

ð*Þ For any integer i such that 1a ia n and any positive integer N that is

prime to p, there exists a covering V ! UX tamely ramified along XnUX and

an invertible sheaf N such that NnN !@ LijV .

Proof. First, observe that it is enough to prove the assertion in the case

where the image of the underlying morphism of schemes of the strict geo-

metric point x log ! X log lies on UX . Indeed, this follows from the fact that a

surjective endomorphism of ẐZðp
0Þð1Þln is an automorphism. Assume that the

image of the underlying morphism of schemes of the strict geometric point

x log ! X log lies on UX .

If we denote by P
log
i ! X log the log Gm-torsor associated to Li ð1a ia nÞ,

then there exists a natural isomorphism P log !@ P
log
1 �X log � � � �X log P log

n over

X log. Thus, if the assertion in the case where n ¼ 1 is verified, then the

composite

p1ðP log
i �X log xÞ ����! Yn

n¼1
p1ðP log

n �X log xÞ  ����
Q n

n¼1 prn
@

p1ðP log �X log xÞ

����! p1ðP logÞ ����!p1ðprjÞ
p1ðP log

j Þ

is injective (respectively, zero) if i ¼ j (respectively, if i0 j). Therefore, to

complete the proof of Proposition 4, we may assume that n ¼ 1. Write

L ¼def L1. Let N be a positive integer that is prime to p. Note that it is

enough to show that the N-th (cyclic) ket covering over P log �X log x (cf. Lemma

12) lifts to a ket covering Q log ! P log over P log to complete the proof of

Proposition 4.

We denote by Q
log
V ! V the log Gm-torsor associated to N (in the

condition ð*Þ), and by QV ! P�X V the morphism determined by the fol-

lowing composite:
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N!NnN !@ LjV
f 7! fnN :

Then it follows from the definition of a log Gm-torsor associated to an

invertible sheaf that the morphism QV ! P�X V extends to a morphism of

log schemes Q
log
V ! P log �X log V ; thus, we obtain the following commutative

diagram

Q
log
V �P log UP ���! UP???y

???y
Q

log
V ���! P log �X log V ���! P log �X log UX ���! P log???y

???y
???y

V ���! UX ���! X log;

where UP is the interior of P log, and the three squares are cartesian. It fol-

lows immediately from the construction of Q
log
V that the log structure of

Q
log
V �P log UP is trivial, and that the top horizontal arrow Q

log
V �P log UP ¼

QV �P UP ! UP is finite étale.

Now I claim that the normalization Q of UP in QV �P UP is tamely

ramified over P along PnUP. Indeed, this claim may be verified as follows.

Every point a of PnUP with dim OP;a ¼ 1 is either

( i ) the generic point of a (reduced) divisor on P determined by s0 or sy

(see Definition 9), or

(ii) the generic point of a (reduced) divisor on P which is the pull-back of

a reduced divisor on X whose generic point x is a point of XnUX

with dim OX ;x ¼ 1.

Thus, it is easily verified that the claim holds. Therefore, by the log purity

theorem (cf. Remark B.2), the covering extends to a ket covering Q log ! P log.

Moreover, by the construction of the morphism QV ! P�X V , the restriction

of the ket covering Q log �X log x! P log �X log x to any of the connected compo-

nents of Q log �X log x is the N-th (cyclic) covering over P log �X log x.

Definition 10. In the notation of Proposition 4, we shall refer to the

extension of p1ðX logÞ by ẐZðp
0Þð1Þln

1 ���! lim � p1ðP log �X log x
log
l Þ ���! p1ðP logÞ ���!p1ðp logÞ

p1ðX logÞ ���! 1

as the extension of p1ðX logÞ by ẐZðp
0Þð1Þln

associated to ðL1; . . . ;LnÞ. More

generally, let S be a set of prime numbers which does not contain p, and N

the kernel of the composite of the natural isomorphism
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lim � p1ðP log �X log x
log
l Þ !

@
ẐZðp

0Þð1Þln

and the surjection ẐZðp
0Þð1Þln ! ẐZðSÞð1Þln induced by the natural projection

ẐZðp
0Þð1Þ ! ẐZðSÞð1Þ. Then we shall refer to the extension of p1ðX logÞ by

ẐZðSÞð1Þln

1 ����! lim � p1ðP log �X log x
log
l Þ=N ����! p1ðP logÞ=N �����!via p1ðp logÞ

p1ðX logÞ ����! 1

naturally obtained from the extension of p1ðX logÞ by ẐZðp
0Þð1Þln associated

to ðL1; . . . ;LnÞ as the extension of p1ðX logÞ by ẐZðSÞð1Þln
associated to

ðL1; . . . ;LnÞ.

Remark 15. If we denote by Sðp1ðUX ÞÞ (respectively, ðUX Þ�eet) the clas-

sifying site of p1ðUX Þ (i.e., the site defined by considering the category of finite

sets equipped with a continuous action of p1ðUX Þ [and coverings given by

surjections of such sets]) (respectively, the étale site of UX ), then the natural

morphism of sites

ðUX Þ�eet !Sðp1ðUX ÞÞ

induces a natural morphism

Hnðp1ðUX Þ; ẐZðp
0Þð1ÞÞ ! Hn

�eetðUX ; ẐZ
ðp 0Þð1ÞÞ:

If the morphism H2ðp1ðUX Þ; ẐZðp
0Þð1ÞÞ ! H2

�eetðUX ; ẐZ
ðp 0Þð1ÞÞ is an isomorphism,

then, by a similar argument to the argument used in the proof of [11],

Lemma 4.3, any invertible sheaf on X satisfies the condition ð*Þ in Proposition

3. Moreover, if the morphism

H2ðp1ðX logÞ; ẐZðp 0Þð1ÞÞ ! H2ðp1ðUX Þ; ẐZðp
0Þð1ÞÞ

induced by the natural surjection p1ðUX Þ ! p1ðX logÞ is an isomorphism, then,

by a similar argument to the argument used in the proof of [11], Lemma 4.4,

the extension of p1ðX logÞ associated to L is isomorphic to the extension of

p1ðX logÞ by ẐZðp
0Þð1Þ determined by the (étale-theoretic) first Chern class (cf.

[11], Definition 4.1) of the invertible sheaf L via the isomorphisms

H2ðp1ðX logÞ; ẐZðp 0Þð1ÞÞ !@ H2ðp1ðUX Þ; ẐZðp
0Þð1ÞÞ !@ H2

�eetðUX ; ẐZ
ð p 0Þð1ÞÞ:

(Now, by means of the natural bijection in [13], Theorem 1.2.5, we identify

the set of equivalence classes of extensions of p1ðX logÞ by ẐZðp
0Þð1Þ with

H2ðp1ðX logÞ; ẐZðp 0Þð1ÞÞ.) Moreover, then the extension of p1ðX logÞ associated

to ðL1; . . . ;LnÞ is isomorphic to the fiber product of the extensions of p1ðX logÞ
by ẐZðp

0Þð1Þ determined by the (étale-theoretic) first Chern classes of the

invertible sheaves Li ð1a ia nÞ.
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Appendix A. Étale analogues of the results in [9]

In this section, we prove étale analogues of the results in [9].

Definition A.1 (cf. [9], Definition 2.1). Let X log be a locally noetherian

fs log scheme.

( i ) Let x! X be a geometric point of X , and IX ;x JOX ;x the ideal of

OX ;x generated by the image of MX ;xnO�X ;x. Then we shall say that

X log is log regular at x! X if the following hold.

(1) OX ;x=IX ;x is a regular local ring.

(2) dimðOX ;xÞ ¼ dimðOX ;x=IX ;xÞ þ rankZðMgp
X ;x=O

�
X ;xÞ.

(ii) We shall say that X log is log regular if for any x A X , there exists

a geometric point x! X for which the image of the underlying

morphism of schemes is x A X such that X log is log regular at x! X .

Proposition A.1. Let X log, U log be locally noetherian fs log schemes,

U log ! X log a strict étale morphism, and x! U a geometric point of U. Then

X log is log regular at the geometric point obtained as the composite x! U ! X

if and only if U log is log regular at x! U.

Proof. This follows from the definition of log regularity.

Proposition A.2 (cf. [9], Theorem 3.2, (1)). Let X log be a locally

noetherian fs log scheme, x! X a geometric point of X, and P!MX a clean

chart of X log at x! X (cf. Definition B.1, (ii)). Assume that OX ;x=IX ;x is a

regular local ring, and the natural surjection OX ;x ! kðxÞ admits a section. Let

t1; . . . ; tr A OX ;x be elements whose images in OX ;x=IX ;x form a regular system

of parameters of the regular local ring OX ;x=IX ;x. Then X log is log regular at

x! X if and only if the surjection

kðxÞ½½P��½½T1; . . . ;Tr�� ! ÔOX ;x

given by Ti 7! ti ði ¼ 1; . . . ; rÞ is an isomorphism.

Proof. This follows from a similar argument to the argument used in the

proof of [9], Theorem 3.2, (1).

Proposition A.3 (cf. [9], Theorem 4.1). A log regular log scheme is

Cohen-Macaulay and normal.

Proof. This follows from Proposition A.1; [9], Theorem 4.1, and [14],

Lemma 2.3.

Proposition A.4 (cf. [9], Proposition 7.1). Let X log be a locally noetherian

fs log scheme, and x; y! X geometric points of X such that the image of x! X
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is contained in the closure of the image of y! X. Then if X log is log regular

at x! X, then X log is log regular at y! X.

Proof. This follows from Proposition A.1; [9], Proposition 7.1, and [14],

Lemma 2.3.

Proposition A.5 (cf. [9], Theorem 8.2). Let X log, Y log be fs log schemes,

and f log : Y log ! X log a log smooth morphism. Then if X log is log regular,

then Y log is also log regular.

Proof. This follows from Proposition A.1; [9], Theorem 8.2; [8], Prop-

osition 3.8, and [14], Lemma 2.3.

Proposition A.6 (cf. [9], Theorem 11.6). Let X log be a log regular log

scheme, and UX JX log the interior of X log. Then the log structure of X log is

isomorphic to the log structure which is of the form

OX V ðUX ,! XÞ�O�UX
,! OX :

Proof. This follows from [14], Proposition 2.6.

Appendix B. Existence of log fundamental groups

In this section, we prove the well-known fact that the category of ket

coverings of a connected fs log scheme is a Galois category; this implies, in

particular, the existence of log fundamental groups. The assertion that the

category of ket coverings is Galois essentially follows from the assertion in the

case where the underlying scheme of the base log scheme is the spectrum of

a strictly henselian local ring (cf. Proposition B.5), together with the descent

theory for strict étale surjections (cf. Proposition B.8).

Definition B.1.

( i ) Let P be a monoid. We shall say that P is clean if P is an fs monoid

and P� ¼ f0g (where P� is the set of invertible elements of P).

(ii) Let X log be an fs log scheme, x! X a geometric point of X , and

P! OX an fs chart of X log. Then we shall say that the chart

P! OX is clean at x! X if the composite P!MX ;x ! ðMX=O
�
X Þx

is an isomorphism. Note that a clean chart of X log always exists

over an étale neighborhood of any given geometric point of X . (See

the discussion following [10], Definition 1.3.)

Definition B.2. Let P be a torsion-free fs monoid. We shall denote by

ð1=nÞP the monoid fp A Pgp nZ Q j np A ImðP ,! Pgp nZ QÞg. Note that the

natural inclusion P ,! Pgp nZ Q factors through ð1=nÞP. Thus, we always
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assume that ð1=nÞP is a P-monoid via the natural inclusion P ,! ð1=nÞP.
Moreover, the morphism

ð1=nÞP! ð1=nÞP
p 7! np

factors through P ðJ ð1=nÞPÞ. On the other hand, the resulting morphism

ð1=nÞP! P is an isomorphism. We shall denote by ð1=nÞP the inverse iso-

morphism P! ð1=nÞP.

Definition B.3. Let f : P! Q be a morphism of monoids. Then we

shall say that f is Kummer if f is injective, and there exists a positive integer

n such that n �QJ Imð f Þ.

Proposition B.1.

( i ) Let P, Q be clean monoids. Then for any Kummer morphism

f : P! Q, there exists a positive integer n such that the natural

inclusion P ,! ð1=nÞP uniquely factors as a composite P!f Q!g

ð1=nÞP, and, moreover, g is Kummer such that n � ð1=nÞPJ ImðgÞ.
(ii) Let P be a clean monoid, n a natural number, and GJ ðð1=nÞPÞgp=Pgp

a subgroup of ðð1=nÞPÞgp=Pgp. Then the submonoid QJ ð1=nÞP ob-

tained by pulling back the subgroup GJ ðð1=nÞPÞgp=Pgp via the

natural morphism ð1=nÞP! ðð1=nÞPÞgp=Pgp is fs.

Proof. First, we prove assertion (i). Since f is Kummer, there exists a

positive integer n such that n �QJ Imð f Þ. Thus, it follows from the injec-

tivity of f that for any q A Q, there exists a unique element pq A P such that

nq ¼ f ðpqÞ. Now define g : Q! ð1=nÞP by q 7! ð1=nÞPðpqÞ. It is immediate

that g is a homomorphism of monoids and g � f ðpÞ ¼ p for any p A P.

Moreover, for any ð1=nÞPðpÞ A ð1=nÞP, nðð1=nÞPðpÞÞ ¼ p ¼ g � f ðpÞ; hence

nðð1=nÞPðpÞÞ A ImðgÞ. It remains to show that g is injective. If gðqÞ ¼ gðq 0Þ,
then nq ¼ nq 0. Since Q is integral and torsion-free, q ¼ q 0; thus, g is injective.

Next, we prove assertion (ii). Since Q is a submonoid of ð1=nÞP, Q is

integral; moreover, since P is finitely generated, and G is a finite group, Q

is finitely generated. Thus, it remains to show that Q is saturated. To prove

the saturatedness of Q, it follows from the saturatedness of ð1=nÞP that it is

enough to show that the natural inclusion Q ,! ðð1=nÞPÞVQgp (in ðð1=nÞPÞgp)
is surjective. On the other hand, the surjectivity of the inclusion Q ,!
ðð1=nÞPÞVQgp follows from the construction of Q, together with the fact

that the natural morphism Q! G factors through Q ,! Qgp.

Proposition B.2. Let X log be an fs log scheme whose underlying scheme

X is the spectrum of a strictly henselian local ring A. Let us fix a global
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clean chart P! OX . Then any connected ket covering of X log is of the form

ðX nZ½P� Z½Q�Þ log ! X log, where P! Q is a Kummer morphism of fs monoids

such that n �QJ ImðP! QÞ for some integer n invertible on X, and the

log structure of ðX nZ½P�Z½Q�Þ log is induced by the natural morphism Q!
AnZ½P�Z½Q�. Conversely, if a morphism of log schemes Y log ! X log has this

form, then it is a ket covering.

Proof. The last assertion is immediate from the definition of ket cover-

ing. Let Y log ! X log be a connected ket covering. Then since Y ! X is

finite, Y is a‰ne. Let us write Y ¼ Spec B. Since A! B is finite, and Y is

connected, B is a strictly henselian local ring. By [8], Theorem 3.5, there exists

an fs chart Q! B of Y log and a chart

P ���! Q???y
???y

A ���! B

of Y log ! X log such that the following conditions hold.

( i ) P! Q is injective, and the cokernel of Pgp ! Qgp is finite and of

order n invertible in A.

( ii ) Spec B! SpecðAnZ½P�Z½Q�Þ is étale.

(iii) P! Q=ðQ! BÞ�1ðB�Þ is Kummer.

Since Z½P� ! Z½Q� is finite, AnZ½P�Z½Q� is a strictly henselian local ring.

Thus, since the morphism AnZ½P�Z½Q� ! B is finite and étale, this morphism

is an isomorphism. Moreover, since it is immediate that the chart Q!
AnZ½P�Z½Q�FB is clean (i.e., ðQ! BÞ�1ðB�Þ ¼ f0g), it follows from con-

ditions (i) and (iii) that P! Q is Kummer and satisfies n �QJ ImðP! QÞ.

Proposition B.3. A ket covering is an open and closed map. In partic-

ular, a non-empty ket covering over a connected fs log scheme is a surjection.

Proof. This follows from Proposition B.2 and [6], Proposition 3.2.

Proposition B.4. Let X log, Y log, and Z log be fs log schemes, and

f log : X log ! Y log and g log : Y log ! Z log morphisms. Then if g log and

g log � f log are ket coverings, then so is f log.

Proof. The finiteness of f is classical; moreover, the log étaleness of f log

is formally showed as in the non-log case. On the other hand, the Kummer-

ness of f log follows from the definition of the Kummerness.

Definition B.4. Let X log be an fs log scheme, and ~xx log ! X log a log

geometric point of X log.
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( i ) We shall denote by K�eetðX logÞ the category of ket coverings of X log

and morphisms over X log. Note that it follows from Proposition B.4

that any morphisms in the category KétðX logÞ are ket coverings.

(ii) We shall denote by F~xx log the functor defined by

K�eetðX logÞ ! ðThe category of finite setsÞ
Y log ! X log 7! HomX logð~xx log;Y logÞ:

(Note that it follows from Proposition B.2 that the set

HomX logð~xx log;Y logÞ is finite.)

Proposition B.5. Let X log be an fs log scheme whose underlying scheme X

is the spectrum of a strictly henselian local ring A whose residue field we denote

by k, p the characteristic of k, a : P! A a (global) clean chart of X log,

~PP ¼def lim�! ð1=nÞP;

where the inductive limit is over all natural numbers n prime to p, ~xx log a log

scheme obtained by equipping ~xx ¼def Spec k with the log structure induced by the

morphism ~PP! k given by mapping a A ~PPnf0g to 0 A k, and ~xx log ! X log the log

geometric point obtained by the natural morphisms A! k and P! ~PP. Then

the functor F~xx log induces an equivalence between the category K�eetðX logÞ and the

category of finite sets equipped with continuous actions of the profinite group

p ¼def Homð ~PPgp=Pgp;A�ÞF lim � Homððð1=nÞPÞgp=Pgp;A�ÞFHomðPgp; ẐZð1ÞðkÞÞ;

where the projective limit is over all natural numbers n prime to p. In par-

ticular, the pair ðK�eetðX logÞ;F~xx logÞ forms a Galois category with a fundamental

functor.

Proof. First, we verify that p acts on the finite set F~xx logðY logÞ for a ket

covering Y log ! X log. Let Y log
1 be a connected component of Y log. Then it

follows from Proposition B.2 that Y
log
1 is of the form SpecðAnZ½P�Z½Q�Þ log,

where P! Q is a Kummer morphism of fs monoids which satisfies the

condition in the statement of Proposition B.2. Now it is easily verified that

the group AutX logðY log
1 Þ is naturally isomorphic to HomðQgp=Pgp;A�Þ. Since

AutX logðY log
1 Þ naturally acts on F~xx logðY log

1 Þ, and the inclusion Q ,! ~PP obtained

by Proposition B.1, (i), induces a continuous morphism p!HomðQgp=Pgp;A�Þ,
we obtain an action of p on F~xx logðY log

1 Þ; in particular, we obtain an action of

p on F~xx logðY logÞ.
Next, we prove the full faithfulness of the functor in question. Let

Y
log
i ! X log be a connected ket covering of X log (where i ¼ 1; 2). Then it

follows from Proposition B.2 that Y
log
i is of the form SpecðAnZ½P� Z½Qi�Þ log,

where P! Qi is a Kummer morphism of fs monoids which satisfies the
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condition in the statement of Proposition B.2. Our claim is that the natural

morphism

HomX logðY log
1 ;Y log

2 Þ ! HompðF~xx logðY log
1 Þ;F~xx logðY log

2 ÞÞ

is bijective. Now it is immediate that if Q2 UQ1 (in ~PP), then the both sides

are empty; thus, we may assume that Q2 JQ1. Then it is easily verified that

the both sides are HomðQgp
2 =Pgp;A�Þ-torsors. Thus, it follows that the above

morphism is bijective.

Finally, we prove the essential surjectivity of the functor in question. Let

S be a finite set equipped with a continuous action of p. By taking a

‘‘connected component’’ of S (i.e., the orbit of an element of S), we may

assume that the action on S is transitive. Let s0 A S, and Stabðs0ÞJ p the

stabilizer of s0. Then since p is abelian, the subgroup Stabðs0ÞJ p is

normal; moreover, the morphism p! S given by mapping g to gðs0Þ deter-

mines a bijection p=Stabðs0Þ !
@

S of ðp=Stabðs0ÞÞ-torsors. Let QJ ~PP be the

submonoid obtained by pulling back the subgroup Homðp=Stabðs0Þ;A�ÞJ
Homðp;A�ÞF ~PPgp=Pgp via ~PP! ~PPgp=Pgp. Then it follows from the continuity

of the action of p on S that there exists a natural number n which is prime

to p such that QJ ð1=nÞP ðJ ~PPÞ. Moreover, by the construction of Q,

together with Proposition B.1, (ii), the monoid Q is an fs monoid; on the

other hand, since QJ ð1=nÞP, the natural morphism P! Q satisfies the con-

dition in the statement of Proposition B.2. Therefore, by Proposition B.2,

Y log ¼def SpecðAnZ½P�Z½Q�Þ log ! X log is a ket covering. Moreover, again by

the construction of Q, F~xx logðY logÞ is isomorphic to S. This completes the proof

of the essential surjectivity of the functor in question.

Remark B.1. The assertion proven in Proposition B.5 (i.e., the assertion

that the category K�eetðX logÞ is a Galois category for an fs log scheme X log

whose underlying scheme X is the spectrum of a strictly henselian local ring)

can be also proven by means of the log purity theorem (cf. Proposition B.7

below). Indeed, it follows from Proposition B.6 below that we may assume

that X is the spectrum of a separably closed field k. Let P! k be a clean

chart of X log, and X̂X log the log scheme obtained by equipping Spec k½½P�� with
the log structure induced by the natural morphism P! k½½P��. Then since

X̂X log is log regular (cf. Propositions A.2 and A.4), again by Proposition B.6

below, by replacing X log by X̂X log, we may assume that X log is log regular.

Then it follows from Proposition B.7 below that K�eetðX logÞ is naturally

equivalent to the category of coverings of the interior U of X log tamely

ramified along D ¼def XnU ; in particular, K�eetðX logÞ is a Galois category.

The following two propositions (i.e., Propositions B.6 and B.7) and one

remark (i.e., Remark B.2) are not logically necessary for the proof of the
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assertion that the category of ket coverings is Galois, but these were used in

the argument of Remark B.1.

Proposition B.6. Let X log be an fs log scheme whose underlying scheme

is the spectrum of a strictly henselian local ring A, whose residue field we denote

by k, and x log ! X log the strict morphism whose underlying morphism of schemes

is the morphism obtained by the natural surjection A! k. Then x log ! X log

induces an equivalence between the category of ket coverings of X log and the

category of ket coverings of x log.

Proof. It follows immediately from Proposition B.2 that the functor in

question is essentially surjective and full. Moreover, by considering the graphs

of morphisms, the faithfulness of the functor in question follows from Prop-

osition B.3. (Note that any morphisms in ‘‘K�eetð�Þ’’ are ket coverings by

Proposition B.4.)

Proposition B.7. Let X log be a log regular log scheme, and UX JX the

interior of X log. Then the morphism UX ! X log induces an equivalence of the

category of ket coverings of X log and the category of coverings of UX tamely

ramified along DX ¼ XnUX.

Proof. Note that the assertion that the morphism UX ,! X log induces a

functor from the category of ket coverings of X log to the category of coverings

of UX tamely ramified along DX follows immediately from the definition of

ket coveringness. Moreover, the essential surjectivity of this functor follows

immediately from the log purity theorem in [10] (cf. also Remark B.2 below).

Finally, we show that this functor is fully faithful. Let Y
log
i ! X log be

ket coverings (where i ¼ 1; 2), and UYi
the interior of Y

log
i . Then since it

is immediate that the natural strict open immersion UYi
,! Y

log
i induces an

isomorphism UYi
!@ Y

log
i �X log UX , our claim is that the natural morphism

HomX logðY log
1 ;Y log

2 Þ !
f
HomUX

ðY log
1 �X log UX ;Y

log
2 �X log UX Þ

¼ HomUX
ðUY1

;UY2
Þ

is bijective. To show the injectivity of f, let f log; g log : Y log
1 ! Y

log
2 be mor-

phisms of ket coverings over X log such that f logjUY1
¼ g logjUY1

: UY1
! UY2

.

Now since X log is log regular, and Y
log
i ! X log is log étale, Y log

i is log regular

(cf. Proposition A.5); therefore, UYi
JYi is a dense open subset of Yi (cf.

Proposition A.3). Thus, f logjUY1
¼ g logjUY1

implies f ¼ g. Moreover, since

Y
log
i is log regular, the log structure of Y log

i is OYi
V ðUYi

,! YiÞ�O�UYi
,! OYi

(cf.

Proposition A.6); therefore, a morphism of log schemes from Y
log
1 to Y

log
2 is
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determined by the underlying morphism of schemes. In other words, f ¼ g

implies f log ¼ g log; we thus conclude that f is injective. Next, we prove the

surjectivity of f. Let fU : UY1
! UY2

be a morphism over UX . Since the

normalization of X in UYi
is isomorphic to Yi, the morphism fU extends to

a morphism f : Y1 ! Y2. By a similar argument to the argument used to

prove the injectivity of f, a morphism of log schemes from Y
log
1 to Y

log
2 is given

by the underlying morphism of schemes. Therefore, f : Y1 ! Y2 extends to

a morphism f log : Y log
1 ! Y

log
2 of log schemes. We thus conclude that f is

surjective.

Remark B.2. In [10], Theorem 3.3, it is only stated that

Let X log be a log regular log scheme, and UX JX the interior of

X log. Let V ! UX be a finite étale morphism which is tamely ramified

over the generic points of XnUX. Let Y be the normalization of X in V,

and Y log the log scheme obtained by equipping Y with the log structure

OY V ðV ,! YÞ�O�V ! OY . Then the following hold.
� Y log is log regular.
� The finite étale morphism V ! UX extends uniquely to a log étale

morphism Y log ! X log.

However, in fact, this log étale morphism Y log ! X log is Kummer by the

proof of the log purity theorem in loc. cit. (More precisely, in the notation of

loc. cit., the inclusions PJPY J ð1=nÞP imply this fact.) Moreover, since

V ! UX is finite étale, it follows that the normalization Y ! X is finite, i.e.,

Y log ! X log is a ket covering.

We return to the proof of the assertion that the category of ket coverings is

Galois.

Proposition B.8. Let X log be an fs log scheme, and f log : Y log ! X log a

strict étale surjection. Then f log induces a natural equivalence between the

category of ket coverings of X log and the category of ket coverings of Y log

equipped with descent data with respect to f log.

Proof. This follows immediately from the fact that the property of being

a ket covering is étale local, together with [17], Proposition 4.4.

Proposition B.9. Let X log and Y log be fine log schemes, and

f log; g log : X log ! Y log morphisms of log schemes such that f ¼ g. Then if

there exist a fine log scheme X 0 log, a morphism h log : X 0 log ! X log, and a

geometric point x 0 ! X 0 (we denote the image by x 0 A X 0) such that the

following conditions hold, then f log coincides with g log on an étale neighborhood

of the geometric point x! X determined by the geometric point x 0 ! X 0.
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( i ) h is flat at x 0 A X 0.

( ii ) The homomorphism ðMX=O
�
X Þx ! ðMX 0=O

�
X 0 Þx 0 induced by h log is

injective.

(iii) f log � h log coincides with g log � h log on an étale neighborhood of

x 0 ! X 0.

Proof. We denote by y! Y the geometric point determined by the

composite x �! X �!f¼g Y . Then the fact that the log structures are fine

implies that it is enough to show that the homomorphism MY ;y !MX ;x

induced by f log coincides with the homomorphism MY ;y !MX ;x induced by

g log. Now, in the diagram induced by h log

O�X ;x ���! MX ;x ���! ðMX=O
�
X Þx???y

???y
???y

O�X 0;x 0 ���! MX 0;x 0 ���! ðMX 0=O
�
X 0 Þx 0 ;

since the left-hand vertical arrow is injective (by assumption (i)), and the right-

hand vertical arrow is injective (by assumption (ii)), we conclude that the

homomorphism MX ;x !MX 0;x 0 is injective. Therefore, by assumption (iii), the

homomorphism MY ;y !MX ;x induced by f log coincides with the homomor-

phism MY ;y !MX ;x induced by g log.

Proposition B.10. A strict étale surjection is a strict epimorphism in the

category of fine log schemes.

Proof. Let X log, Y log, and Z log be fine log schemes, f log : Y log ! X log a

strict étale surjection, and p
log
1 (respectively, p

log
2 ) the 1st (respectively, 2nd)

projection Y log �X log Y log ! Y log. Note that our claims are

( i ) the morphism HomðX log;Z logÞ ! HomðY log;Z logÞ induced by f log is

injective; and

(ii) if a morphism g log : Y log ! Z log satisfies the equality g log � p log
1 ¼

g log � p log
2 , then g log descends to a morphism X log ! Z log.

Assertion (i) follows immediately from Proposition B.9. Assertion (ii) may be

verified as follows. Since g log � p log
1 ¼ g log � p log

2 , we obtain that g � p1 ¼ g � p2.
Since a surjective étale morphism is a strict epimorphism in the category of

schemes, it thus follows that there exists a morphism ~gg : X ! Z such that

~gg � f ¼ g. Moreover, since MX is a sheaf on the étale site of X , and

Y log ! X log strict étale surjection, it thus follows from the fact that the

morphism ðg � p1Þ�1MZ !M (where M is the sheaf of monoids which

determines the log structure of Y log �X log Y log) coincides with the morphism

ðg � p2Þ�1MZ !M that the morphism g�1MZ !MY descends to a morphism

~gg�1MZ !MX . This completes the proof of assertion (ii).
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Proposition B.11. Let X log be an fs log scheme. Then, for a morphism

f log in the category of ket coverings of X log, f log is a strict epimorphism in the

category of ket coverings of X log if and only if f log is a surjection.

Proof. Let Y
log
1 ! X log, Y

log
2 ! X log, and Z log ! X log be ket coverings,

and f log : Y log
1 ! Y

log
2 a morphism over X log. Now it is immediate that if

f log is not surjective, then f log is not a strict epimorphism. Thus, assume that

f log is surjective. Let p
log
1 (respectively, p

log
2 ) be the 1st (respectively, 2nd)

projection Y
log
1 �

Y
log
2

Y
log
1 ! Y

log
1 . Note that our claims are

( i ) the morphism HomX logðY log
2 ;Z logÞ ! HomX logðY log

1 ;Z logÞ induced by

f log is injective;

(ii) if a morphism g log : Y log
1 ! Z log satisfies the equality g log � p log

1 ¼
g log � p log

2 , then g log extends to a morphism Y
log
2 ! Z log.

First, we prove assertion (i). Let g
log
1 and g

log
2 : Y log

2 ! Z log be mor-

phisms over X log such that g log
1 � f log ¼ g

log
2 � f log. Then, by Proposition B.5,

together with the definition of Galois categories, there exists a strict étale

surjection X 0 log ! X log such that the morphism g
0 log
1 obtained by base-changing

of g
log
1 by X 0 log ! X log coincides with the morphism g

0 log
2 obtained by base-

changing of g
log
2 by X 0 log ! X log. On the other hand, since a strict étale

surjection is a strict epimorphism by Proposition B.10, we conclude that

g
log
1 ¼ g

log
2 . This completes the proof of assertion (i).

Next, we prove assertion (ii). By Proposition B.5, together with the

definition of Galois categories, there exists a strict étale surjection X 0 log ! X log

such that the morphism g 0 log obtained by base-changing of g log by X 0 log ! X log

extends to a morphism eg 0 log : Y 0 log2 ¼def Y log
2 �X log X 0 log ! Z 0 log ¼def Z log�X log

X 0 log. Now if we denote by q
log
1 (respectively, q

log
2 ) the 1st (respectively,

2nd) projection Y
0 log
2 �

Y
log
2

Y
0 log
2 ! Y

0 log
2 , then the composite

Y
0 log
2 �

Y
log
2

Y
0 log
2 �!q

log
1

Y
0 log
2 �!eg 0 log Z 0 log �! Z log

coincides with the composite

Y
0 log
2 �

Y
log
2

Y
0 log
2 �!q

log
2

Y
0 log
2 �!eg 0 log Z 0 log �! Z log:

Therefore, by Proposition B.10, the composite Y
0 log
2 �!eg 0 log Z 0 log �! Z log extends

to a morphism ~gg log : Y log
2 ! Z log. (Note that Y

0 log
2 ! Y

log
2 is a strict étale

surjection.) This completes the proof of assertion (ii).

Definition B.5. Let C be a category with fiber products and finite sums,

A1 and A2 classes of morphisms in C, X an object of C, Y and Q objects of

C over X , G a finite group of automorphisms of Y over X , and f : Y ! Q a

G-equivariant morphism in C over X with respect to the action of G on Y and

the trivial action of G on Q.
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( i ) We shall say that f is a quotient in C via the action of G over X for

A1 which is universal for A2 if for any morphism Z ! X belonging to

A2, any morphism W ! Z belonging to A1, and any G-equivariant

morphism Y �X Z !W over Z with respect to the natural action of

G on Y �X Z and the trivial action of G on W , there exists a unique

morphism Q�X Z !W over Z such that the morphism Y �X Z !
W factors as the composite Y �X Z ! Q�X Z !W .

( ii ) If A2 consists of the identity morphism of X (respectively, all

morphisms in C), then we shall refer to a quotient in C via the

action of G over X for A1 which is universal for A2 as a quotient

(respectively, universal quotient) in C via the action of G over X for

A1. Moreover, if A1 consists of all morphisms in C, and A2 consists

of the identity morphism of X , then we shall refer to a quotient in C

via G over X for A1 which is universal for A2 as a quotient in C via

the action of G.

(iii) We shall say that f is Galois with Galois group G if f is an

epimorphism, and the top horizontal arrow in the commutative

diagram

F
G Y �����!

F
g AGðg; idÞ

Y �Q Y???y
???yp2

Y Y ;

where the right-hand vertical arrow is the 2nd projection, is an

isomorphism.

Remark B.3. Note that it is immediate that if f is Galois with Galois

group G, then the action of G on Y is faithful. Moreover, it is also immediate

that if C is a Galois category, then f is Galois with Galois group G in the

classical sense (i.e., the action of G is faithful, and f is a quotient in C via the

action of G) if and only if f is Galois with Galois group G in the sense of

Definition B.5, (iii).

Proposition B.12. Let X log be a connected fs log scheme, and Y log a ket

covering of X log equipped with an action over X log of a finite group G.

( i ) Let ~xx log ! X log be a log geometric point of X log. Then the action

of G on Y log is faithful if and only if the natural action of G on

F~xx logðY logÞ is faithful.

( ii ) Let Q log ! X log be a ket covering of X log equipped with the trivial

action of G, and f log : Y log ! Q log a G-equivariant morphism over

X log. Assume that the action of G on Y log is faithful. Then f log is
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Galois with Galois group G if and only if f log is a universal quotient

in the category of fs log schemes over X log via the action of G over

X log for ket coverings, i.e., for any morphism Z log ! X log of fs

log schemes, any ket covering W log ! Z log, and any G-equivariant

morphism Y log �X log Z log !W log over Z log with respect to the trivial

action on W log, there exists a unique morphism Q log �X log Z log !
W log over Z log such that the morphism Y log �X log Z log !W log factors

as the composite Y log �X log Z log ! Q log �X log Z log !W log.

(iii) There exists a ket covering Q log ! X log of X log and a morphism

Y log ! Q log over X log such that the morphism Y log ! Q log is a

universal quotient in the category of fs log schemes over X log via the

action of G over X log for ket coverings.

Proof. First, we prove assertion (i). The ‘‘if part’’ of the assertion is

immediate; thus, we prove the ‘‘only if part’’ of the assertion. Let g0 A G.

Then it is enough to show that if the action of g0 on Y log is not trivial, then

the action of g0 on F~xx logðY logÞ is not trivial. By replacing G by the subgroup

of G generated by g0, we may assume that G is generated by g0. Let NJG

be the kernel of the composite G ! AutðY logÞ ! Autðp0ðY logÞÞ, where p0ðY logÞ
is the set of the connected components of Y log. Then it is immediate that if

g0 B N, then the action of g0 on F~xx logðY logÞ is not trivial; thus, we may assume

that g0 A N. Moreover, since the action of g0 on Y log is not trivial, there

exists a connected component of Y log on which the action of g0 is not

trivial. By taking such a connected component, we may assume that Y log is

connected. Let ~yy log ! Y log be a log geometric point of Y log which belongs

to F~xx logðY logÞ. Then it is immediate that there exists a natural G-equivariant

isomorphism F~yy logðY log �X log Y logÞ !@ F~xx logðY logÞ with respect to the action of

G on F~yy logðY log �X log Y logÞ induced by the action of G on the 1st factor of

Y log �X log Y log and the natural action of G on F~xx logðY logÞ. On the other hand,

it follows from Propositions B.3 and B.4 that the top horizontal arrow f log in

the commutative diagram

F
G Y log ���������!f log¼defF

g AGðg; idÞ
Y log �X log Y log???y

???yp2

Y log Y log;

induces an isomorphism Y log �X log Y log F Imðf logÞ t Z log over Y log, where

Imðf logÞJY log �X log Y log is the open and closed log subscheme of

Y log �X log Y log obtained as the image of f log, and Z log ! Y log is a ket cover-
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ing of Y log. Now I claim that f log induces an isomorphism
F

G Y log !@

Imðf logÞ. Note that it follows from this claim that the action of G on

F~xx logðY logÞ  @ F~yy logðY log �X log Y logÞF
F

G F~yy logðY logÞ t F~yy logðZ logÞ is faithful.

The claim of the preceding paragraph may be verified as follows. Let

c log : Y log t Y log ! Y log �X log Y log be the morphism over Y log induced by

ðid; idÞ : Y log ¼ Y log tq! Y log �X log Y log and ðg0; idÞ : Y log ¼q t Y log !
Y log �X log Y log. Then to prove the above claim, it is easily verified that it

is enough to show that the morphism c log induces an isomorphism Y log t
Y log !@ Imðc logÞ. Now it follows from Propositions B.3 and B.4, the surjec-

tivity of Y log t Y log ! Imðc logÞ, together with the connectedness of Y log, that

if the morphism Y log t Y log ! Imðc logÞ induced by c log is not an isomorphism,

then the structure morphism Imðc logÞ ! Y log is an isomorphism. Assume that

the structure morphism Imðc logÞ ! Y log is an isomorphism. Then by Prop-

osition B.2, it is verified that for any geometric point x! X , there exists

an étale neighborhood U ! X of x! X such that the action of g0 on

Y log �X log U log is trivial, where U log is the log scheme obtained by equipping

U with the log structure induced by the log structure of X log; thus, it follows

that the action of g0 on Y log is trivial. Therefore, we obtain a contradiction.

This completes the proof of assertion (i).

Next, we prove assertion (ii). First, assume that f log is a universal

quotient in the category of fs log schemes over X log via the action of G over

X log for ket coverings. Then it follows from Propositions B.5, B.11, and

Remark B.3, together with assertion (i), that there exists a strict étale surjection

U log ! X log such that Y log �X log U log ! Q log �X log U log is Galois with Galois

group G; thus, it follows that f log is also Galois with Galois group G. Next,

assume that f log is Galois with Galois group G. Since Galoisness is stable

under base-change by the definition of Galoisness, together with Proposition

B.11, to prove that f log is a universal quotient in the category of fs log schemes

over X log via the action of G over X log for ket coverings, by base-changing, it

is enough to show that for any ket covering W log ! X log of X log and any G-

equivariant morphism g log : Y log !W log over X log with respect to the action

of G on Y log and the trivial action of G on W log, there exists a unique G-

equivariant morphism h log : Q log !W log over X log such that h log � f log ¼ g log.

Then it follows from Proposition B.5, Remark B.3, together with assertion

(i), that there exist a strict étale surjection U log ! X log and a G-equivariant

morphism ~hh log : Q log �X log U log !W log �X log U log over U log such that ~hh log �
ð f log � idU logÞ ¼ g log � idU log ; moreover, since a morphism which is Galois with

Galois group G is an epimorphism by the definition of Galoisness, such a

morphism ‘‘~hh log’’ is unique. Therefore, it follows from Proposition B.10 that

there exists a unique G-equivariant morphism h log : Q log !W log over X log of

the desired type.
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Finally, we prove assertion (iii). To prove assertion (iii), it is immediate

that we may assume that the action of G on Y log is faithful. Then it follows

from Propositions B.5, B.11, and Remark B.3, together with assertion (i),

that there exists a strict étale surjection U log ! X log and a ket covering

Y log �X log U log ! ~QQ log over U log which is Galois with Galois group G. Then

it follows from assertion (ii) that this ket covering Y log �X log U log ! ~QQ log is a

universal quotient in the category of fs log schemes over U log via the action of

G over U log for ket coverings. Thus, by the definition of universal quotients,

assertion (ii), together with Proposition B.8, there exists a ket covering

Y log ! Q log over X log such that Q log �X log U log is isomorphic to ~QQ log over

U log; in particular, this ket covering Y log ! Q log is Galois with Galois group

G. Therefore, it follows from assertion (ii) that Y log ! Q log is a universal

quotient in the category of fs log schemes over X log via the action of G over

X log for ket coverings.

Theorem B.1. Let X log be a connected fs log scheme, and ~xx log ! X log

a log geometric point of X log. Then the pair (K�eetðX logÞ, F ¼def F~xx log) forms a

Galois category with a fundamental functor.

We must verify that (KétðX logÞ, F ) satisfies the conditions ðG1Þ; . . . ; ðG5Þ,
and ðG6Þ in the definition of Galois categories in [5], Exposé V, 4.

ðG1Þ KétðX logÞ has a final object and there exist fiber products in

KétðX logÞ.

Proof. It is immediate that X log ��!id
X log

X log is a final object of KétðX logÞ.
Next, we prove the existence of fiber products. Since any object Y log of

KétðX logÞ is an fs log scheme, for the existence of fiber products, by Prop-

osition B.4, it is enough to show that finiteness, log étaleness, and Kummerness

are stable under composition and base-change. The assertion for finiteness is

classical; moreover, the assertion for log étaleness and Kummerness follows

immediately from definitions.

ðG2Þ There exist finite sums in KétðX logÞ. Moreover, if f log : Y log !
X log is an object of KétðX logÞ and G is a finite group of automorphisms of

Y log in KétðX logÞ, then there exists a quotient Y log=G of Y log by G in

KétðX logÞ.

Proof. The existence of finite sums (respectively, quotients) follows

immediately from the definition of a ket covering (respectively, Proposition

B.12, (iii)).

ðG3Þ Any morphism f log : Y log
1 ! Y

log
2 in KétðX logÞ admits a factoriza-

tion Y
log
1 �!f 0 log Y 0 log2 �!g log

Y
log
2 , where f 0 log is a strict epimorphism and g log is a

monomorphism. Moreover, then Y
log
2 ¼ Y

0 log
2 t Z log (disjoint union) for some

object Z log of KétðX logÞ.
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Proof. This follows immediately from Propositions B.3 and B.11.

ðG4Þ F is left exact.

Proof. This follows immediately from Proposition B.5, together with the

definition of Galois categories.

ðG5Þ F commutes with the operation of taking a finite sum and the

quotient by an action of a finite group (cf. ðG2Þ). Moreover, if f log is a strict

epimorphism, then F~xx logð f logÞ is surjective.

Proof. The assertion for finite sums is immediate. The assertion for

quotients follows from the fact that a quotient in K�eetðX logÞ is universal (cf.

Proposition B.12, (iii)), together with Proposition B.5 and the definition of

Galois categories. The assertion for strict epimorphisms follows from Prop-

osition B.11 and the definition of a log geometric point.

ðG6Þ If f log is a morphism in KétðX logÞ, then f log is an isomorphism

if and only if F~xx logð f logÞ is an isomorphism.

Proof. The ‘‘only if part’’ of the assertion is immediate; thus, we prove

the ‘‘if part’’ of the assertion. To prove this assertion, it is immediate that it

is enough to show the following assertion.

Let f log : Y log ! X log be a ket covering such that F~xx logðY logÞ is of car-

dinality 1, then f log is an isomorphism.

Moreover, let ~yy log A F~xx logðY logÞ, and Y
log
1 the connected component of Y log in

which the image of the underlying morphism of schemes of ~yy log lies. Then

since surjective ket coverings are strict epimorphisms by Proposition B.11, and

there exists a natural bijection F ~yy logðY log �X log Y
log
1 ð!

p2
Y

log
1 ÞÞ !

@
F~xx logðY logÞ, by

replacing Y log (respectively, X log; respectively, f log) by Y log �X log Y
log
1 (respec-

tively, Y
log
1 ; respectively, the 2nd projection), we may assume that the ket

covering f log in the statement of the above assertion admits a section.

Then it follows from Propositions B.3 and B.4 that the section X log ! Y log

of f log induces an isomorphism Y log !@ X log t Z log, where Z log ! X log is a

ket covering of X log. Thus, we obtain a bijection F~xx logðY logÞFF~xx logðX logÞ t
F~xx logðZ logÞ. On the other hand, since F~xx logðY logÞ and F~xx logðX logÞ are of car-

dinality 1, we obtain that F~xx logðZ logÞ is empty; in particular, Z log is empty by

Propositions B.2 and B.3. This completes the proof of the above assertion.

Theorem B.2. Let X log and Y log be connected fs log schemes, and

f log : X log ! Y log a morphism of log schemes. Then the functor

K�eetðY logÞ ��!ð f logÞ�
K�eetðX logÞ

ðY 0 log ! Y logÞ ��! ðY 0 log �Y log X log ! X logÞ
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induced by f log is exact. In particular, (by [5], Exposé V, Corollaire 6.2) for

any log geometric point ~xx log ! X log of X log, the functor ð f logÞ� induces a

continuous homomorphism

p1ð f logÞ : p1ðX log; ~xx logÞ ! p1ðY log; f logð~xx logÞÞ;

where f logð~xx logÞ ! Y log is the log geometric point obtained as the composite

~xx log �! X log �!f log

Y log.

Proof. Let ~xx log ! X log be a log geometric point of X log. Then, by [5],

Exposé V, Proposition 6.1, it is enough to show that the composite of functors

K�eetðY logÞ ��!ð f logÞ�
K�eetðX logÞ ��!F

~xx log ðthe category of finite setsÞ

is a fundamental functor on K�eetðY logÞ. Now, by the definitions of ð f logÞ�
and F~xx log , for any ket covering Y 0 log ! Y log, F~xx log � ð f logÞ�ðY 0 log ! Y logÞ ¼
Ff logð~xx logÞðY 0 log ! Y logÞ, i.e., F~xx log � ð f logÞ� ¼ Ff logð~xx logÞ. By Theorem B.1, the

functor Ff logð~xx logÞ is a fundamental functor on K�eetðY logÞ. This completes the

proof of Theorem B.2.
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