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Abstract. We show that there exist infinitely many non-invertible, hyperbolic knots

that admit toroidal Dehn surgery of hitting number four. The resulting toroidal

manifold contains a unique incompressible torus meeting the core of the attached solid

torus in four points, but no incompressible torus meeting it less than four points.

1. Introduction

For a hyperbolic knot in the 3-sphere S3, at most finitely many Dehn

surgeries yield non-hyperbolic 3-manifolds by Thurston’s hyperbolic Dehn

surgery theorem. Such Dehn surgeries are called exceptional Dehn surgeries.

A typical one is Dehn surgery creating an incompressible torus, called toroidal

Dehn surgery. By Gordon-Luecke [7, 8], the surgery slope of toroidal Dehn

surgery is integral or half-integral, and the latter happens only for Eudave-

Muñoz knots [3]. Thus the study of integral toroidal Dehn surgery is the next

challenging task.

We now introduce the notion of hitting number for toroidal Dehn surgery.

Let K be a hyperbolic knot in S3. Suppose that the resulting 3-manifold by

r-Dehn surgery, denoted by KðrÞ, is toroidal. For an incompressible torus T

contained in KðrÞ, let jK � VT j denote the number of points in K � VT , where

K � is the core of the attached solid torus of KðrÞ. For a pair ðK ; rÞ, we call

minfjK � VT j : T is an incompressible torus in KðrÞg

the hitting number of ðK ; rÞ. Since K is hyperbolic, a hitting number is

positive. This is a natural measure of the complexity of toroidal Dehn

surgery. We should mention that the only possible odd hitting number is one.
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For, if ðK ; rÞ has odd hitting number, then KðrÞ contains a non-separating

torus, so r ¼ 0 by homological reason. Thus the 0-surgered manifold Kð0Þ
contains a non-separating torus, which implies that K has genus one by Gabai

[5]. Then a minimal genus Seifert surface extends to an incompressible torus.

This means that the hitting number is one. Also, Osoinach [16] showed that

hitting number can be arbitrarily large. His construction was studied more

precisely in [19], where we showed that any even integer can be realized as

hitting number.

Recall that a knot K is invertible if there exists an orientation-preserving

homeomorphism h : S3 ! S3 such that its restriction hjK is an orientation-

reversing homeomorphism of K onto itself. Furthermore, if h is chosen to be

an involution whose fixed point set is an unknotted circle C such that C meets

K in two points, then K is said to be strongly-invertible. We remark that an

invertible hyperbolic knot is strongly-invertible ([10]).

For most toroidal Dehn surgeries, including half-integral ones, their hitting

numbers are at most two. This led to a natural question, as in [11] for

example, asking whether it is always the case. However, Eudave-Muñoz [4]

first gave an infinite family of hyperbolic knots, each of which admits toroidal

Dehn surgery of hitting number four. We note that his knots are strongly-

invertible, and that the simplest one seems to have genus 37. In [18], we gave

a new infinite family of hyperbolic knots admitting toroidal Dehn surgery of

hitting number four. The simplest one has genus 9, but all knots are still

strongly-invertible.

Any genus one hyperbolic knot admits toroidal Dehn surgery of hitting

number one as explained before, so the existence of such toroidal Dehn surgery

does not imply the invertibility, in general. It seems unknown that the

existence of toroidal Dehn surgery of hitting number two implies the inver-

tibility. The knots constructed in [19], which realize hitting number greater

than two, seem to be non-invertible, as suggested by a computer experiment via

SnapPea [22], but we could not prove it.

The purpose of this paper is to give the first infinite family of non-

invertible hyperbolic knots, each of which admits toroidal Dehn surgery of

hitting number four. Our starting point is the following fact. As stated in

[23], 1-surgery on the ð�3; 3; 7Þ-pretzel knot is toroidal, and it has hitting

number four in our language. This pretzel knot is known to be non-invertible

(see [1, section 12D]).

Let K be the ð�3; 3; 7Þ-pretzel knot. Consider an unknotted circle C as

shown in Figure 1. For an integer n, let Kn be the knot obtained from K by

twisting n times along C. (For convenience, set K ¼ K0.) That is, Kn is the

image of K under �1=n-surgery along C. Since C is unknotted, the ambient

space remains the 3-sphere.
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Theorem 1. The knots Kn defined as above satisfy the following properties.

(1) Kn is a non-invertible hyperbolic knot.

(2) Kn has genus one, tunnel number two, cyclic period two.

(3) 1-surgery on Kn is toroidal Dehn surgery of hitting number four.

(4) If m0 n, then Km and Kn are not equivalent.

In general, it is a hard task to show that a knot is non-invertible. We will

accomplish this by analyzing the mapping class group of the resulting toroidal

manifold, which is a graph manifold.

Our construction is inspired by [12], where non-invertible hyperbolic knots

that admit exceptional Dehn surgeries yielding Seifert fibered spaces are con-

structed by twisting the ð�3; 3; 5Þ-pretzel knot along an unknotted circle.

In this paper, two knots are said to be equivalent if there exists an ambient

isotopy of S3 sending one knot to the other. Also, a Seifert fibered space over

the disk with two exceptional fibers of indices p, q is denoted by D2ðp; qÞ.

2. Toroidal Dehn surgery

In this section, we prove that 1-surgery on Kn yields a toroidal manifold

which contains the unique separating incompressible torus by using the Mon-

tesinos trick ([13]).

Lemma 1. For any n, 1-surgery on Kn yields a toroidal manifold. More

precisely, it is a graph manifold which contains the unique separating incom-

pressible torus splitting it into two Seifert fibered spaces over the disk with two

exceptional fibers. Their regular fibers meet in one point on the torus. The

core of the attached solid torus of Knð1Þ meets the torus in four points minimally.

Proof. Since the linking number between K and C are zero, 1-surgery on

Kn is equivalent to 1-surgery on K and �1=n-surgery on C. As shown in

Figure 2, there is an orientation-preserving involution f : S3 ! S3 such that

f ðKÞ ¼ K and f ðCÞ ¼ C with an axis A.

Fig. 1. The ð�3; 3; 7Þ-pretzel knot K and C
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Take the quotient of S3 by f . Let K , C, A denote the image of K , C and

A, respectively. We note that the factor knot K is unknotted in S3=f GS3,

and that C is an arc whose endpoints lie on A (see Figure 2).

Now, 1-surgery on K corresponds to 1=2-surgery on K , and �1=n-surgery

on C corresponds to the tangle surgery which replaces the 1=0-tangle with the

1=n-tangle. The right one of Figure 2 is deformed to Figure 3. To keep track

of the framing on C, C is accompanied by a band whose center is C. Then

ð�2Þ-twisting along K changes A to A 0 as shown in Figure 4. Finally, perform

the tangle surgery along the arc C to yield a knot A 00.

Then we can see that there exists a Conway sphere S which meets A 00 in

four points (Figure 4). Both sides of S are Montesinos tangles. Hence the

Fig. 2. The involution f for K UC

Fig. 3

Fig. 4
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double branched covering space of S3 branched over A 00, which is Knð1Þ, is a

toroidal manifold, where the lift T of S gives a separating incompressible torus.

More precisely, it is a (non-Seifert) graph manifold which is the union of two

Seifert fibered spaces D2ð2; 3Þ and D2ð2; j14nþ 3jÞ. Their Seifert fibers inter-

sect once on T as seen from Figure 4. It is well known that such a manifold

contains the unique incompressible torus.

As shown in Figure 4, the circle K� lifts to the core of the attached solid

torus in Knð1Þ. Thus the core meets the unique incompressible torus T in four

times. The minimality follows from the fact that in each side of the Conway

sphere S, K� lies on a disk decomposing the Montesinos tangles into two

rational tangles [4, Example 1.4].

3. Symmetry

Lemma 2. Kn has cyclic period two.

Proof. The argument is the same as the proof of [12, Claim 2.1]. There

is an involution f : S3 ! S3 such that f ðKÞ ¼ K and f ðCÞ ¼ C, as used in

the proof of Lemma 1 (Figure 2). Then f jS 3�IntNðCÞ naturally extends to an

involution ~ff of Cð�1=nÞGS3 with an axis ~CC such that ~ff ðKnÞ ¼ Kn and
~CC VKn ¼ q. This shows that Kn has cyclic period two.

For a pair of manifolds ðM;NÞ (possibly, N ¼ q), let Di¤ðM;NÞ be the

group of pairwise di¤eomorphisms of ðM;NÞ, and Di¤ �ðM;NÞ the subgroup

of Di¤ðM;NÞ consisting di¤eomorphisms preserving the orientation of M.

Lemma 3. Kn is not strongly-invertible.

Proof. It su‰ces to show for n0 0, because K ¼ K0 is known to be

non-invertible (see [1]). Suppose that Kn is strongly-invertible for contra-

diction. Then there is a finite subgroup G of Di¤ �ðS3;KnÞ generated by an

involution f realizing the cyclic period two and a strong inversion g. As in

[15, 6.1], G is isomorphic to the dihedral group of order four. For simplicity,

put M ¼ Knð1Þ. Then, the action of G on S3 induces an action of G ðGGÞ on
M, where G is generated by the extensions of f and g.

Recall that M contains the unique separating incompressible torus T up to

isotopy, which splits M into two Seifert fibered spaces M1 and M2 by Lemma

1. For any n0 0, M1 and M2 are not di¤eomorphic. Thus any di¤eo-

morphism of M can be isotoped so that it preserves Mi for i ¼ 1; 2. Let D be

the subgroup of p0 Di¤ðM1;TÞ � p0 Di¤ðM2;TÞ consisting of all elements

ð½ f1�; ½ f2�Þ such that f1jT is isotopic to f2jT . Then we have the following exact

sequence [17, Lemma 1.2]

1 ! D ! p0 Di¤ðMÞ ! D ! 1;
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for DG p1ðTÞ=ðZðp1ðM1ÞÞ þ Zðp1ðM2ÞÞÞ, where Zðp1ðMiÞÞ denotes the center

of p1ðMiÞ.
Since Mi is a Seifert fibered space over the disk with two exceptional

fibers, which is not D2ð2; 2Þ, its fibration is unique, and any regular fiber lies in

the center of p1ðMiÞ. By Lemma 1, the regular fibers of M1 and M2 meet

once on T . Hence DG f1g, so that p0 Di¤ðMÞGD. On the other hand,

p0 Di¤ðMiÞGZ2 ([9, Proposition 25.3]), which is generated by an involution of

the orbit surface (disk) fixing the exceptional points. Thus DGZ2, giving

p0 Di¤ðMÞGZ2.

However, M is Haken, so aspherical. Since M is not Seifert fibered,

p1ðMÞ has trivial center by [20]. Then Borel’s theorem (cf. [2]) implies that

there is a monomorphism from G to Outðp1ðMÞÞ, which is isomorphic to

p0 Di¤ðMÞ by [21]. This contradicts the fact that G is the dihedral group of

order four. r

4. Other properties

Lemma 4. Kn has genus one.

Proof. The unknotted circle C lies on the standard genus one Seifert

surface F of K , which is obtained as a checkerboard surface. By pushing C

o¤ from F , we can see that F remains a genus one Seifert surface of Kn for any

n. Since Kn admits toroidal surgery by Lemma 1, Kn is non-trivial. Thus Kn

has genus one. r

Lemma 5. Kn is hyperbolic.

Proof. Since 0-surgery on the trefoil is the only toroidal Dehn surgery

for torus knots ([14]), Kn is not a torus knot.

Suppose that Kn is a satellite knot. Then the knot exterior contains an

essential torus F , which bounds a solid torus V in S3 containing Kn. After

1-surgery on Kn, F is compressible, because it is disjoint from the core of

the attached solid torus in Knð1Þ. Since Knð1Þ is a homology sphere, F still

bounds a solid torus after the surgery [6]. This implies that Kn is either a 0- or

1-bridge braid in V . In particular, its winding number in V is at least two.

Thus Kn has genus at least two by [1, Proposition 2.10], contradicting Lemma

4. r

Lemma 6. Kn has tunnel number two.

Proof. The argument is the same as the proof of [12, Claim 2.5]. Con-

sider a genus two handlebody H which is obtained by thickening the obvious

genus one Seifert surface of K . Its boundary gives a genus two Heegaard
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splitting of S3. Since C is a core of H, H remains a genus two handlebody by

surgery on C. Thus Kn lies on a genus two Heegaard surface of S3. This

implies that the tunnel number of Kn is at most two. However, a tunnel

number one knot is strongly-invertible. By Lemma 3, Kn has tunnel number

two.

Lemma 7. If m0 n, then Km and Kn are not equivalent.

Proof. This follows from the fact that Kmð1Þ and Knð1Þ are not

di¤eomorphic.

Proof of Theorem 1. This follows from Lemmas proved in Sections 2, 3

and 4.
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