Automorphism groups of vector groups over a field of positive characteristic

Takefumi Tanaka and Hitoshi Kaneta

(Received January 13, 2008)
(Revised June 16, 2008)

Abstract

We define elementary automorphisms of the n-dimentional vector group over an algebraically closed field of positive characteristic and show that they generate the automorphism group of the vector group. We also give a necessary and sufficient computational condition for a d-tuple of p-polynomials to be a component of an n-tuple of p-polynomials defining an automorphism of the vector group.

1. Introduction

Let k be a field and p its characteristic. Let \bar{k} denote an algebraic closure of k. We consider the direct product \bar{k}^{n} of the additive group \bar{k} to be an algebraic group, which is denoted by \mathbf{G}_{a}^{n}. We call \mathbf{G}_{a}^{n} an n-dimensional vector group. Let End \mathbf{G}_{a}^{n} and Aut \mathbf{G}_{a}^{n} denote the k-endomorphism ring and the k-automorphism group of the algebraic group \mathbf{G}_{a}^{n} respectively. For every ring R, let $\mathrm{M}_{n}(R)$ be the ring of $n \times n$ matrices with components in R.

For $1 \leq i \leq n$, let $\lambda_{i}=\left(\lambda_{i 1}, \ldots, \lambda_{i n}\right)$ be a homomorphism from \mathbf{G}_{a} to \mathbf{G}_{a}^{n}, where $\lambda_{i i}=1 \in \operatorname{End} \mathbf{G}_{a}$ and $\lambda_{i j}=0 \in \operatorname{End} \mathbf{G}_{a}$ for $j \neq i$. Let $\pi_{i}: \mathbf{G}_{a}^{n} \rightarrow \mathbf{G}_{a}$ be the projections. Then $\sum_{i=1}^{n} \lambda_{i} \circ \pi_{i}$ is the identity on \mathbf{G}_{a}^{n}. Let ϕ be a homomorphism from \mathbf{G}_{a}^{n} to \mathbf{G}_{a}^{d}. Then we may write $\phi=\left(\pi_{1} \circ \phi, \ldots, \pi_{d} \circ \phi\right)$, and we have

$$
\begin{equation*}
\pi_{i} \circ \phi=\pi_{i} \circ \phi \circ\left(\sum_{j=1}^{n} \lambda_{j} \circ \pi_{j}\right)=\sum_{j=1}^{n}\left(\pi_{i} \circ \phi \circ \lambda_{j}\right) \circ \pi_{j} \tag{1}
\end{equation*}
$$

for every $1 \leq i \leq d$. Let $\phi_{i j}=\pi_{i} \circ \phi \circ \lambda_{j}$ for every $1 \leq i \leq d$ and $1 \leq j \leq n$. If $n=d$, then a mapping $\phi \mapsto\left(\phi_{i j}\right)$ is a ring isomorphism from $\operatorname{End} \mathbf{G}_{a}^{n}$ onto $\mathrm{M}_{n}\left(\right.$ End $\left.\mathbf{G}_{a}\right)$.

Suppose that $p=0$. Then every k-endomorphism of \mathbf{G}_{a} is given by a linear polynomial [2, Proposition 12.2], so that End \mathbf{G}_{a} is isomorphic to k. Denote by $\mathrm{GL}_{n}(k)$ the unit group $\mathrm{M}_{n}(k)^{*}$ of the ring $\mathrm{M}_{n}(k)$. Then we have

End $\mathbf{G}_{a}^{n}=\mathrm{M}_{n}(k)$ and $\operatorname{Aut} \mathbf{G}_{a}^{n}=\mathrm{GL}_{n}(k)$. Suppose $p>0$. We call a polynomial of the form

$$
\begin{equation*}
\sum_{i=1}^{n} \sum_{r \geq 0} c_{i r} T_{i}^{p^{r}} \tag{2}
\end{equation*}
$$

with $c_{i r} \in k$ a p-polynomial in n variables. Every k-endomorphism of \mathbf{G}_{a} is given by a p-polynomial in one variable [2, Proposition 12.2] (in the case where k is algebraically closed, [1, VII, §20.3, Lemma A]). Hence every homomorphism $\psi: \mathbf{G}_{a}^{n} \rightarrow \mathbf{G}_{a}^{d}$ is given by a d-tuple $\left(f_{1}, \ldots, f_{d}\right)$ of p-polynomials in n variables, namely $\psi(x)=\left(f_{1}(x), \ldots, f_{d}(x)\right)$ for any $x \in \mathbf{G}_{a}^{n}$. In particular, Aut \mathbf{G}_{a} is isomorphic to $\mathrm{GL}_{1}(k)$. However Aut \mathbf{G}_{a}^{n} with $n \geq 2$ is larger than $\mathrm{GL}_{n}(k)$.

From now on, we assume that k is an algebraically closed field of characteristic $p>0$. In this paper, first, we give a subgroup of Aut \mathbf{G}_{a}^{n} such that the subgroup and $\mathrm{GL}_{n}(k)$ generate $\operatorname{Aut} \mathbf{G}_{a}^{n}$ (Theorem 1). Second, we say that a d-tuple $\psi_{1}=\left(f_{1}, \ldots, f_{d}\right)$ of p-polynomials is a component of an automorphism of \mathbf{G}_{a}^{n} if there exists an $(n-d)$-tuple $\psi_{2}=\left(f_{d+1}, \ldots, f_{n}\right)$ of p polynomials such that $\left(\psi_{1}, \psi_{2}\right)=\left(f_{1}, \ldots, f_{d}, f_{d+1}, \ldots, f_{n}\right)$ is an automorphism of \mathbf{G}_{a}^{n}. We give a necessary and sufficient condition for a d-tuple of p polynomials to be a component of an automorphism of \mathbf{G}_{a}^{n} (Theorem 2).

2. Generators of the automorphism group

Let $\sigma: k \rightarrow k$ be a ring homomorphism. Let $B^{(i)}=\left(\sigma^{i}\left(b_{s t}\right)\right)$ for $B=$ $\left(b_{s t}\right) \in \mathrm{M}_{n}(k)$, where σ^{i} means the iteration of σ with itself i times and σ^{0} is the identity. The set of formal power series $\sum_{i \geq 0} A_{i} \sigma^{i}$ is a ring under the additon and multiplication defined as follows:

$$
\begin{align*}
\sum_{i=0}^{\infty} A_{i} \sigma^{i}+\sum_{i=0}^{\infty} B_{i} \sigma^{i} & =\sum_{i=0}^{\infty}\left(A_{i}+B_{i}\right) \sigma^{i}, \tag{3}\\
\sum_{i=0}^{\infty} A_{i} \sigma^{i} \sum_{j=0}^{\infty} B_{j} \sigma^{j} & =\sum_{m=0}^{\infty}\left(\sum_{i+j=m} A_{i} B_{j}^{(i)}\right) \sigma^{m} . \tag{4}
\end{align*}
$$

Let $\mathbf{M}_{n}(k)[[\sigma]]$ denote this ring. It is immediate that $A=\sum_{i=0}^{\infty} A_{i} \sigma^{i}$ belongs to the unit group $\mathrm{M}_{n}(k)[[\sigma]]^{*}$ if and only if $A_{0} \in \mathrm{GL}_{n}(k)$. Let $\mathrm{M}_{n}(k)[\sigma]$ be a subset of $\mathrm{M}_{n}(k)[[\sigma]]$ that consists of formal power series $\sum_{i \geq 0} A_{i} \sigma^{i}$ such that $A_{i}=0$ for all but finite i. Then $\mathrm{M}_{n}(k)[\sigma]$ is a subring of $\mathrm{M}_{n}(k)[[\sigma]]$. We consider the case where σ is the Frobenius map F, namely $F(t)=t^{p}$ for $t \in k$. There exists a ring isomorphism Φ from End \mathbf{G}_{a}^{n} onto $\mathrm{M}_{n}(k)[F]$ sending
an n-tuple $\left(f_{1}, \ldots, f_{n}\right)$ of p-polynomials $f_{i}(T)=\sum a_{i j r} T_{j}^{p^{r}}$ in n variables to $\sum_{r} A_{r} F^{r}$, where A_{r} is a matrix in $\mathrm{M}_{n}(k)$ whose $i j$-component is $a_{i j r}$ for every $r \geq 0$. The inverse Φ^{-1} of Φ is given as follows:

$$
\begin{align*}
& \Phi^{-1}(A)\left(x_{1}, \ldots, x_{n}\right)=\left(x_{1}, \ldots, x_{n}\right)^{t} A \quad \text { for } A \in \mathrm{M}_{n}(k), \tag{5}\\
& \Phi^{-1}(F)\left(x_{1}, \ldots, x_{n}\right)=\left(F\left(x_{1}\right), \ldots, F\left(x_{n}\right)\right), \tag{6}
\end{align*}
$$

where ${ }^{t} A$ is the transpose of A. Hence we can identify the ring End \mathbf{G}_{a}^{n} with the subring $\mathrm{M}_{n}(k)[F]$ of $\mathrm{M}_{n}(k)[[F]]$. Thus

$$
\begin{equation*}
\text { Aut } \mathbf{G}_{a}^{n}=\left\{A \in \mathbf{M}_{n}(k)[[F]]^{*} \mid A, A^{-1} \in \mathbf{M}_{n}(k)[F]\right\} . \tag{7}
\end{equation*}
$$

Let S_{n} be the symmetric group of degree n. For $\tau \in S_{n}$, let $\rho(\tau)=$ $\left(\delta_{i \tau(j)}\right) \in \mathrm{GL}_{n}(k)$, where δ is the Kronecker delta. Then $\rho: S_{n} \rightarrow \mathrm{GL}_{n}(k)$ is an injective homomorphism. Let $\hat{\tau}=\Phi^{-1}(\rho(\tau))$. Then, for $\left(x_{1}, \ldots, x_{n}\right) \in \mathbf{G}_{a}^{n}$,

$$
\begin{equation*}
\hat{\tau}\left(x_{1}, \ldots, x_{n}\right)=\left(x_{\tau^{-1}(1)}, \ldots, x_{\tau^{-1}(n)}\right) . \tag{8}
\end{equation*}
$$

Hence $\hat{\tau}$ is regarded as an n-tuple $\left(T_{\tau^{-1}(1)}, \ldots, T_{\tau^{-1}(n)}\right)$ of p-polynomials in n variables.

Lemma 1. Let

$$
\begin{equation*}
A=A_{0}-\sum_{i=1}^{m} A_{i} F^{i} \tag{9}
\end{equation*}
$$

be an endomorphism of \mathbf{G}_{a}^{n}, where $A_{0} \in \mathrm{GL}_{n}(k)$ is a diagonal matrix and $A_{i} \in \mathrm{M}_{n}(k)$ for $1 \leq i \leq m$. If A_{i} is nilpotent and upper (resp. lower) triangular for every $i \geq 1$, then $A \in \operatorname{Aut} \mathbf{G}_{a}^{n}$ and

$$
\begin{equation*}
A^{-1}=A_{0}^{-1}+\sum_{j=1}^{m n} B_{j} F^{j} \tag{10}
\end{equation*}
$$

for some upper (resp. lower) triangular nilpotent matrices B_{j}.
Proof. Let

$$
\tau=\left(\begin{array}{cccc}
1 & 2 & \cdots & n \tag{11}\\
n & n-1 & \cdots & 1
\end{array}\right) \in S_{n} .
$$

Suppose that A_{i} is nilpotent and lower triangular for every $i \geq 1$. Then

$$
\begin{equation*}
\hat{\tau}^{-1} A \hat{\tau}=\rho(\tau)^{-1} A_{0} \rho(\tau)-\sum_{i=1}^{m} \rho(\tau)^{-1} A_{i} \rho(\tau) F^{i} . \tag{12}
\end{equation*}
$$

Besides, $\rho(\tau)^{-1} A_{0} \rho(\tau)$ is diagonal, and all $\rho(\tau)^{-1} A_{i} \rho(\tau)$ are upper triangular and nilpotent. Hence we may assume that A_{i} is upper triangular and nilpotent for every $i \geq 1$. Since $A_{0} \in \mathrm{GL}_{n}(k)$, we have $A \in \mathrm{M}_{n}(k)[[F]]^{*}$. Let

$$
\begin{equation*}
B=A^{-1}=\sum_{j=0}^{\infty} B_{j} F^{j} \tag{13}
\end{equation*}
$$

It suffices to show that there exists an integer $j_{0}>0$ such that $B_{j}=O$ for any $j>j_{0}$. Let $B_{j}=0$ for $j<0$. Then the condition $A B=E_{n}$ implies

$$
\begin{align*}
B_{0} & =A_{0}^{-1} \tag{14}\\
A_{0} B_{j} & =A_{1} B_{j-1}^{(1)}+\cdots+A_{m} B_{j-m}^{(m)} \quad \text { for } j \geq 1 \tag{15}
\end{align*}
$$

We can show that B_{j} is nilpotent and upper triangular for every $i \geq 1$ by induction, and that $B_{l m+1}, \ldots, B_{(l+1) m}$ are the sums of at most m products of at least $l+1$ upper triangular nilpotent matrices by induction on l. Thus $B_{j}=O$ if $j>m n$.

Let

$$
\begin{align*}
& P_{u}^{n}=\left\{\sum_{i=0}^{m} A_{i} F^{i} \left\lvert\, \begin{array}{l}
0 \leq m<\infty, A_{0} \in \mathrm{GL}_{n}(k) \text { is daagonal and } \\
A_{1}, \ldots, A_{m} \text { are nilpotent and upper triangular }
\end{array}\right.\right\}, \tag{16}\\
& P_{l}^{n}=\left\{\sum_{i=0}^{m} A_{i} F^{i} \left\lvert\, \begin{array}{l}
0 \leq m<\infty, A_{0} \in \mathrm{GL}_{n}(k) \text { is diagonal and } \\
A_{1}, \ldots, A_{m} \text { are nilpotent and lower triangular }
\end{array}\right.\right\}, \tag{17}
\end{align*}
$$

where F^{0} is the identity. From Lemma 1 and the argument in its proof, we obtain the following result:

Corollary 1. P_{u}^{n} and P_{l}^{n} are subgroups of Aut \mathbf{G}_{a}^{n}. Furthermore, if $\tau \in S_{n}$ is given by (11), then $P_{u}^{n}=\hat{\tau}^{-1} P_{l}^{n} \hat{\tau}$.

Definition 1. When $n \geq 2$, we call $A \in \mathrm{GL}_{n}(k) \cup P_{l}^{n}$ an elementary automorphism of the vector group \mathbf{G}_{a}^{n}.

We recall the discussion in $[1, \S 20.4]$. Let f be a non-zero p-polynomial of the form $\sum_{i=1}^{n} \sum_{r \geq 0} c_{i r} T_{i}^{p^{r}}$, which is regarded as a homomorphism from \mathbf{G}_{a}^{n} to \mathbf{G}_{a}. We define the pricipal part $\mathscr{P}(f), \mathrm{Nv} f$ and $\operatorname{Deg} f$ of the polynomial f as follows. Let $f_{i}\left(T_{i}\right)=\sum_{r \geq 0} c_{i r} T_{i}^{p^{\prime}}$ for $1 \leq i \leq n$. For each $1 \leq i \leq n$ such that $f_{i} \neq 0$, let $r(i)$ be the integer that satisfies $p^{r(i)}=\operatorname{deg} f_{i}$ and $c(i)$ the leading coefficient of f_{i}. For each $1 \leq i \leq n$ such that $f_{i}=0$, let $r(i)=0$ and $c(i)=0$. Then let

$$
\begin{align*}
\mathscr{P}(f) & =\sum_{i=1}^{n} c(i) T_{i}^{p^{(i)}}, \tag{18}\\
\mathrm{Nv}(f) & =\#\left\{i \mid f_{i} \neq 0\right\}, \tag{19}\\
\text { and } \quad \operatorname{Deg}(f) & =\sum_{i=1}^{n} r(i) . \tag{20}
\end{align*}
$$

It is clear that f is a linear polynomial if $\operatorname{Deg}(f)=0$. Assume that $\operatorname{Nv}(f) \geq 2$ and $\operatorname{Deg}(f)>0$. First, we consider the case where

$$
\begin{equation*}
r(1) \geq \cdots \geq r(n) . \tag{21}
\end{equation*}
$$

Then, by assumption, there exist $1 \leq m<m^{\prime} \leq n$ such that $c(m) \neq 0$ and $c\left(m^{\prime}\right) \neq 0$. Since k is algebraically closed, we can choose an element $a \in k^{n}$ such that $\mathscr{P}(f)(a)=0$ with $a_{1}=\cdots=a_{m-1}=0$ and $a_{m} \neq 0$, and define the p polynomials g_{j} as follows:

$$
\begin{align*}
g_{i}(T) & =T_{i} \quad \text { for } i<m, \tag{22}\\
g_{m}(T) & =a_{m} T_{m}, \tag{23}\\
\text { and } \quad g_{j}(T) & =T_{j}+a_{j} T_{m}^{p^{r(m)-r(j)} \quad \text { for } j>m .}
\end{align*}
$$

Then $\phi(x)=\left(g_{1}(x), \ldots, g_{n}(x)\right)$ is an elementary automorphism of \mathbf{G}_{a}^{n}. Define $r^{\prime}(i)$ and $c^{\prime}(i)$ for $f \circ \phi$ in the same manner as $r(i)$ and $c(i)$ for f, so that

$$
\begin{equation*}
\mathscr{P}(f \circ \phi)=\sum_{j=1}^{n} c^{\prime}(j) T_{j}^{p^{r^{\prime}(j)}} . \tag{25}
\end{equation*}
$$

Then the degree of the polynomial $f \circ \phi(T)=\sum_{j} f_{j}\left(g_{j}(T)\right)$ in T_{m} is at most $p^{r(m)}$ and the coefficient of $T_{m}^{p^{r(m)}}$ is $\mathscr{P}(f)(a)=0$, that is,

$$
\begin{equation*}
\mathscr{P}(f \circ \phi)=c^{\prime}(m) T_{m}^{p^{p^{\prime}(m)}}+\sum_{j \neq m} c(j) T_{j}^{p^{r(j)}} \tag{26}
\end{equation*}
$$

with $r^{\prime}(m)<r(m)$. Therefore

$$
\begin{align*}
\operatorname{Nv}(f \circ \phi) & \leq \operatorname{Nv}(f), \tag{27}\\
\text { and } \quad \operatorname{Deg}(f \circ \phi) & <\operatorname{Deg}(f) . \tag{28}
\end{align*}
$$

In the case where the inequality (21) does not hold, let $\tau \in S_{n}$ be the permutation such that $r(\tau(1)) \geq \cdots \geq r(\tau(n))$. Then, there exists an elementary automorphism ϕ^{\prime} of \mathbf{G}_{a}^{n} such that

$$
\begin{align*}
\operatorname{Nv}\left(f \circ \hat{\tau} \circ \phi^{\prime}\right) & \leq \operatorname{Nv}(f \circ \hat{\tau})=\operatorname{Nv} f, \tag{29}\\
\text { and } \quad \operatorname{Deg}\left(f \circ \hat{\tau} \circ \phi^{\prime}\right) & <\operatorname{Deg}(f \circ \hat{\tau})=\operatorname{Deg} f . \tag{30}
\end{align*}
$$

Lemma 2. Let $f\left(T_{1}, \ldots, T_{n}\right)$ be a non-zero p-polynomial in n variables with $n \geq 2$. For every $1 \leq v \leq n$, there exist a finite number of elementary automorphisms $\phi_{1}, \ldots, \phi_{l}$ such that $f \circ \phi_{1} \circ \cdots \circ \phi_{l}$ is a p-polynomial in T_{v}. If the polynomial f is irreducible additionally, then there exists an elementary automorphism ϕ_{l+1} such that $f \circ \phi_{1} \circ \cdots \circ \phi_{l} \circ \phi_{l+1}(T)=T_{v}$.

Proof. Unless $\mathrm{Nv}(f)=1$ or $\operatorname{Deg}(f)=0$, we can find a permutation $\tau \in S_{n}$ and an elementary automorphism ϕ^{\prime} of \mathbf{G}_{a}^{n} described above such that $\operatorname{Nv}(f \circ \phi) \leq \operatorname{Nv}(f)$ and $\operatorname{Deg}(f \circ \phi)<\operatorname{Deg}(f)$, where $\phi=\hat{\tau} \circ \phi^{\prime}$ is a composite of two elementary automorphisms. Thus there exist a finite number of automorphisms $\phi_{1}, \ldots, \phi_{l-1}$ of \mathbf{G}_{a}^{n} such that $f^{\prime}=f \circ \phi_{1} \circ \cdots \circ \phi_{l-1}$ satisfies either $\operatorname{Nv}\left(f^{\prime}\right)=1$ or $\operatorname{Deg}\left(f^{\prime}\right)=0$. If $\operatorname{Nv}\left(f^{\prime}\right)=1$ and f^{\prime} is a polynomial in T_{j}, let ϕ_{l} be the transposition $(j, v) \in S_{n}$ or the identity mapping according as $j \neq v$ or $j=v$. If $\operatorname{Deg}\left(f^{\prime}\right)=0$ and hence $f^{\prime}=\sum_{i=1}^{n} b_{i} T_{i}$, then let $\phi_{l}(x)=$ $\left(\sum_{j} a_{1 j} x_{j}, \ldots, \sum_{j} a_{n j} x_{j}\right)$, where $\left(a_{i j}\right) \in \mathrm{GL}_{n}(k)$ is a matrix satisfying $\sum_{i} b_{i} a_{i j}=$ $\delta_{j v}$. Then $f \circ \phi_{1} \circ \cdots \circ \phi_{l}$ is a p-polynomial in T_{v}.

If f is irreducible, then $f \circ \phi_{1} \circ \cdots \circ \phi_{l}$ is an irreducible p-polynomial in T_{v}. Since an irreducible p-polynomial in one variable is linear, we have

$$
\begin{equation*}
f \circ \phi_{1} \circ \cdots \circ \phi_{l}(T)=a T_{v} \tag{31}
\end{equation*}
$$

for some $a \in k^{*}$. Hence let

$$
\begin{equation*}
\phi_{l+1}(T)=\left(T_{1}, \ldots, T_{v-1}, a^{-1} T_{v}, T_{v+1}, \ldots, T_{n}\right) . \tag{32}
\end{equation*}
$$

The following two Lemmas will be used later:
Lemma 3. If $\phi(x)=\left(f_{1}(x), \ldots, f_{n}(x)\right) \in$ Aut \mathbf{G}_{a}^{n}, then f_{i} is irreducible for every i.

Proof. The map sending $f \in k\left[T_{1}, \ldots, T_{n}\right]$ to $f \circ \phi \in k\left[T_{1}, \ldots, T_{n}\right]$ is an isomorphism of k-algebras whose inverse is $f \mapsto f \circ \phi^{-1}$. Now

$$
\begin{equation*}
\phi \circ \phi^{-1}(T)=\left(f_{1} \circ \phi^{-1}(T), \ldots, f_{n} \circ \phi^{-1}(T)\right)=\left(T_{1}, \ldots, T_{n}\right) . \tag{33}
\end{equation*}
$$

Hence f_{i} is irreducible for every i.
Lemma 4. Let X_{1} and X_{2} be objects of a category \mathscr{C} and $f: X_{2} \rightarrow X_{2}$ a morphism. Suppose that there exists the product $X_{1} \times X_{2}$ such that the projection $\operatorname{pr}_{2}: X_{1} \times X_{2} \rightarrow X_{2}$ is an epimorphism. Then, f is an isomorphism if
and only if $\left(\operatorname{id}_{X_{1}} \circ \operatorname{pr}_{1}, f \circ \operatorname{pr}_{2}\right)$ with components $\operatorname{id}_{X_{1}} \circ \operatorname{pr}_{1}$ and $f \circ \operatorname{pr}_{2}$ is an isomorphism, in which case $\left(\mathrm{id}_{X_{1}} \circ \mathrm{pr}_{1}, f \circ \mathrm{pr}_{2}\right)^{-1}=\left(\mathrm{id}_{X_{1}} \circ \mathrm{pr}_{1}, f^{-1} \circ \mathrm{pr}_{2}\right)$.

Proof. Hom-sets $\operatorname{hom}\left(X_{i}, X_{i}\right)$ and $\operatorname{hom}\left(X_{1} \times X_{2}, X_{1} \times X_{2}\right)$ are monoids with respect to their compositions. We will show that $\gamma: \operatorname{hom}\left(X_{2}, X_{2}\right) \rightarrow$ $\operatorname{hom}\left(X_{1} \times X_{2}, X_{1} \times X_{2}\right)$ that sends f to $\left(\mathrm{id}_{X_{1}} \circ \mathrm{pr}_{1}, f \circ \mathrm{pr}_{2}\right)$ is an injective monoid homomorphism. Since

$$
\begin{equation*}
\left(\mathrm{id}_{X_{1}} \circ \mathrm{pr}_{1}, f \circ \mathrm{pr}_{2}\right) \circ\left(\mathrm{id}_{X_{1}} \circ \mathrm{pr}_{1}, g \circ \mathrm{pr}_{2}\right)=\left(\mathrm{id}_{X_{1}} \circ \mathrm{pr}_{1}, f \circ g \circ \mathrm{pr}_{2}\right), \tag{34}
\end{equation*}
$$

γ is a monoid homomorphism. Since pr_{2} is an epimorphism, $f \mapsto f \circ \mathrm{pr}_{2}$ is an injective mapping from $\operatorname{hom}\left(X_{2}, X_{2}\right)$ to $\operatorname{hom}\left(X_{1} \times X_{2}, X_{2}\right)$. Moreover $f^{\prime} \mapsto\left(\mathrm{id}_{X_{1}} \circ \mathrm{pr}_{1}, f^{\prime}\right)$ is an injective mapping from $\operatorname{hom}\left(X_{1} \times X_{2}, X_{2}\right)$ to $\operatorname{hom}\left(X_{1} \times X_{2}, X_{1} \times X_{2}\right)$. Hence γ is injective.

For $T=\left(T_{1}, \ldots, T_{n}\right), x=\left(x_{1}, \ldots, x_{n}\right) \in k^{n}$ and $1 \leq i \leq n$, we write $T^{(i)}$ and $x^{(i)}$ for $\left(T_{i}, \ldots, T_{n}\right)$ and $\left(x_{i}, \ldots, x_{n}\right)$ respectively.

Definition 2. Let $n \geq 2$ and $1 \leq d \leq n$. For $1 \leq i \leq n$, a d-tuple $\left(f_{1}, \ldots, f_{d}\right)$ of p-polynomials in $k\left[T_{1}, \ldots, T_{n}\right]$ is said to be sweepable in T_{i} if $f_{j} \in k\left[T^{(i)}\right]$ for $1 \leq j \leq d$ and f_{1} is irreducible.

In particular, a d-tuple $\left(f_{1}, \ldots, f_{d}\right)$ of p-polynomials is sweepable in T_{1} if and only if f_{1} is irreducible.

Lemma 5. Let $n \geq 2$ and $1 \leq d \leq n$. Suppose that $f=\left(f_{1}, \ldots, f_{d}\right)$ is sweepable in T_{i} for an integer $1 \leq i<n$. Then there exist a finite number of elementary automorphisms $\phi_{1}, \ldots, \phi_{l}$ of \mathbf{G}_{a}^{n-i+1} and an elementary automorphism η of \mathbf{G}_{a}^{d} such that

$$
\begin{equation*}
\eta \circ f \circ \phi\left(T^{(i)}\right)=\left(T_{i}, h_{2}\left(T^{(i+1)}\right), \ldots, h_{d}\left(T^{(i+1)}\right)\right), \tag{35}
\end{equation*}
$$

where ϕ is the composite $\phi_{1} \circ \cdots \circ \phi_{l}$ and h_{2}, \ldots, h_{d} are p-polynomials.
Proof. An irreducible p-polynomial in one variable is linear. Hence, by Lemmas 2 and 3, there exists $\phi \in \operatorname{Aut} \mathbf{G}_{a}^{n-i+1}$ that is a composite of finite number of elementary automorphisms and that satisfies

$$
\begin{equation*}
f_{1} \circ \phi\left(T^{(i)}\right)=T_{i} . \tag{36}
\end{equation*}
$$

Then, for $j>1$, we may write

$$
\begin{equation*}
f_{j} \circ \phi\left(T^{(i)}\right)=g_{j}\left(T_{i}\right)+h_{j}\left(T^{(i+1)}\right), \tag{37}
\end{equation*}
$$

where $g_{j} \in k\left[T_{i}\right]$ and $h_{j} \in k\left[T^{(i+1)}\right]$ are p-polynomials. Define $\eta \in$ Aut \mathbf{G}_{a}^{d} by

$$
\begin{equation*}
\eta\left(x_{1}, \ldots, x_{d}\right)=\left(x_{1}, x_{2}-g_{2}\left(x_{1}\right), \ldots, x_{d}-g_{d}\left(x_{1}\right)\right) \tag{38}
\end{equation*}
$$

which is desired.

Theorem 1. Let $n \geq 2$. Then Aut \mathbf{G}_{a}^{n} is generated by $\mathrm{GL}_{n}(k) \cup P_{l}^{n}$.
Proof. Let $\phi=\left(f_{1}, \ldots, f_{n}\right) \in \operatorname{Aut} \mathbf{G}_{a}^{n}$, where f_{i} are p-polynomials in n variables. By Lemma 3, the n-tuple $\left(f_{1}, \ldots, f_{n}\right)$ is sweepable in T_{1}. Hence, by Lemma 5, there exist elementary automorphisms $\psi_{1}, \ldots, \psi_{l}, \eta$ of \mathbf{G}_{a}^{n} such that the composite $\xi=\eta \circ \phi \circ \psi$ satisfies

$$
\begin{equation*}
\xi(x)=\left(x_{1}, f_{2}^{\prime}\left(x^{\prime}\right), \ldots, f_{n}^{\prime}\left(x^{\prime}\right)\right) \tag{39}
\end{equation*}
$$

where $\psi=\psi_{1} \circ \cdots \circ \psi_{l}$ and $x^{\prime}=\left(x_{2}, \ldots, x_{n}\right)$. Let $\xi^{\prime}=\left(f_{2}^{\prime}, \ldots, f_{n}^{\prime}\right)$. Then, it follows from Lemma 4 that ξ^{\prime} belongs to Aut \mathbf{G}_{a}^{n-1}.

If $n=2$, then $f_{2}^{\prime}\left(T_{2}\right)=a T_{2}$ with $a \in k^{*}$, since $f_{2}^{\prime} \in \operatorname{Aut} \mathbf{G}_{a}$. Hence $\phi=\eta^{-1} \circ A \circ \psi^{-1}$, where $A\left(x_{1}, x_{2}\right)=\left(x_{1}, a x_{2}\right)$. Now that Theorem 1 holds when $n=2$, we can proceed by induction on n. Assume that Aut \mathbf{G}_{a}^{n-1} is generated by $\mathrm{GL}_{n-1}(k) \cup P_{l}^{n-1}$. Then $\xi^{\prime}=\xi_{1}^{\prime} \circ \cdots \circ \xi_{m}^{\prime}$, where ξ_{i}^{\prime} are elementary automorphisms of \mathbf{G}_{a}^{n-1}. Let $\xi_{i}(x)=\left(x_{1}, \xi_{i}^{\prime}\left(x^{\prime}\right)\right)$. Then ξ_{i} are elementary automorphisms of \mathbf{G}_{a}^{n} and $\xi=\xi_{1} \circ \cdots \circ \xi_{m}$. Since $\xi=\eta \circ \phi \circ \psi, \phi$ is a composite of elementary automorphisms of \mathbf{G}_{a}^{n}.

3. Components of an automorphism

We say that a d-tuple $\psi_{1}=\left(f_{1}, \ldots, f_{d}\right)$ of p-polynomials is a component of an automorphism of \mathbf{G}_{a}^{n} if there exists an $(n-d)$-tuple $\psi_{2}=\left(f_{d+1}, \ldots, f_{n}\right)$ such that $\left(\psi_{1}, \psi_{2}\right)=\left(f_{1}, \ldots, f_{d}, f_{d+1}, \ldots, f_{n}\right)$ is an automorphism of \mathbf{G}_{a}^{n}.

It is false that every homomorphism from \mathbf{G}_{a}^{n} to \mathbf{G}_{a}^{d} is a component of an automorphism of \mathbf{G}_{a}^{n}. We give a necessary and sufficient condition for a d tuple of p-polynomials to be a component of an automorphism of \mathbf{G}_{a}^{n}. Clearly an n-tuple $f=\left(f_{1}, \ldots, f_{n}\right)$ of p-polynomials in n variables is a component of an automorphism of \mathbf{G}_{a}^{n} if and only if $f \in \operatorname{Aut} \mathbf{G}_{a}^{n}$. The following theorem gives a computational criterion for the n-tuple f to belong to Aut \mathbf{G}_{a}^{n} in particular.

Theorem 2. Let $n \geq 2$ be an integer, d an integer with $1 \leq d \leq n$, and $f_{1}, \ldots, f_{d} \in k\left[T_{1}, \ldots, T_{n}\right]$ p-polynomials. A d-tuple $f=\left(f_{1}, \ldots, f_{d}\right)$ is a component of an automorphism of \mathbf{G}_{a}^{n} if and only if there exists a sequence $\left(f^{(1)}, \ldots, f^{(d)}\right)$ of $(d-i+1)$-tuples $f^{(i)}$ of p-polynomials in $k\left[T^{(i)}\right]$ that satisfies the following:
(1) $f^{(1)}=f$
(2) $f^{(i)}$ are sweepable in T_{i} for $1 \leq i \leq d$
(3) There exist $\phi_{i} \in \operatorname{Aut} \mathbf{G}_{a}^{n-i+1}$ and $\eta_{i}^{\prime} \in \operatorname{Aut} \mathbf{G}_{a}^{d-i+1}$ such that

$$
\begin{equation*}
\eta_{i}^{\prime} \circ f^{(i)} \circ \phi_{i}\left(T^{(i)}\right)=\left(T_{i}, f^{(i+1)}\left(T^{(i+1)}\right)\right) \tag{40}
\end{equation*}
$$

for $1 \leq i \leq d$.

In particular, a single $\left(f_{1}\right)$ is a component of an automorphism of \mathbf{G}_{a}^{n} if and only if f_{1} is irreducible.

Proof. We already know that if an n-tuple $\left(f_{1}, \ldots, f_{n}\right)$ of p-polynomials defines an automorphism of \mathbf{G}_{a}^{n}, then each f_{i} is irreducible by Lemma 3.

First, assume that f is a component of an automorphism of \mathbf{G}_{a}^{n}. Let $h_{i}^{(1)}=f_{i}$ for $1 \leq i \leq d$. Then there exist p-polynomials $h_{d+1}^{(1)}, \ldots, h_{n}^{(1)}$ such that $h^{(1)}=\left(h_{1}^{(1)}, \ldots, h_{n}^{(1)}\right) \in$ Aut \mathbf{G}_{a}^{n}. By Lemma 3, $h^{(1)}$ is sweepable in T_{1}. Hence, by Lemma 5, there exists an automorphism $\phi_{1}, \eta_{1} \in \operatorname{Aut} \mathbf{G}_{a}^{n}$ such that

$$
\begin{equation*}
\eta_{1} \circ h^{(1)} \circ \phi_{1}(T)=\left(T_{1}, h_{2}^{(2)}\left(T^{(2)}\right), \ldots, h_{n}^{(2)}\left(T^{(2)}\right)\right) . \tag{41}
\end{equation*}
$$

By Lemma 4, $h^{(2)}\left(T^{(2)}\right)=\left(h_{2}^{(2)}\left(T^{(2)}\right), \ldots, h_{n}^{(2)}\left(T^{(2)}\right)\right)$ belongs to Aut \mathbf{G}_{a}^{n-1}. Repeating the same argument, we see that there exist $\phi_{i}, \eta_{i} \in \operatorname{Aut} \mathbf{G}_{a}^{n-i+1}$ such that

$$
\begin{equation*}
\eta_{i} \circ h^{(i)} \circ \phi_{i}\left(T^{(i)}\right)=\left(T_{i}, h_{i+1}^{(i+1)}\left(T^{(i+1)}\right), \ldots, h_{n}^{(i+1)}\left(T^{(i+1)}\right)\right) \tag{42}
\end{equation*}
$$

for $1 \leq i \leq d$. Write $\eta_{i}=\left(\eta_{i i}, \ldots, \eta_{\text {in }}\right)$ and $h^{(i)}=\left(h_{i}^{(i)}, \ldots, h_{n}^{(i)}\right)$, and let $\eta_{i}^{\prime}=$ $\left(\eta_{i i}, \ldots, \eta_{i d}\right)$ and $\left(h^{\prime}\right)^{(i)}=\left(h_{i}^{(i)}, \ldots, h_{d}^{(i)}\right)$. Then $\left(h^{\prime}\right)^{(i)}\left(T^{(i)}\right)$ is sweepable in T_{i}. Moreover we have $\left(h^{\prime}\right)^{(1)}=f^{(1)}$ and

$$
\begin{equation*}
\eta_{i}^{\prime} \circ\left(h^{\prime}\right)^{(i)} \circ \phi_{i}\left(T^{(i)}\right)=\left(T_{i},\left(h^{\prime}\right)^{(i+1)}\left(T^{(i+1)}\right)\right), \tag{43}
\end{equation*}
$$

since $\eta_{i j}$ depend only on x_{i} and x_{j}. Therefore we may take $\left(h^{\prime}\right)^{(i)}$ as $f^{(i)}$.
Conversely, assume there exists $\phi_{i} \in \operatorname{Aut} \mathbf{G}_{a}^{n-i+1}$ such that

$$
\begin{align*}
& f^{(i)} \circ \phi_{i}\left(T^{(i)}\right) \\
& \quad=\left(T_{i}, g_{i+1}^{(i+1)}\left(T_{i}\right)+f_{i+1}^{(i+1)}\left(T^{(i+1)}\right), \ldots, g_{d}^{(i+1)}\left(T_{i}\right)+f_{d}^{(i+1)}\left(T^{(i+1)}\right)\right) . \tag{44}
\end{align*}
$$

Define $\eta_{i}^{\prime} \in \operatorname{Aut} \mathbf{G}_{a}^{d-i+1}$ by

$$
\begin{equation*}
\eta_{i}^{\prime}\left(x_{i}, \ldots, x_{d}\right)=\left(x_{i}, x_{i+1}-g_{i+1}^{(i+1)}\left(x_{i}\right), \ldots, x_{d}-g_{d}^{(i+1)}\left(x_{i}\right)\right) . \tag{45}
\end{equation*}
$$

Then we have $\eta_{i}^{\prime} \circ f^{(i)} \circ \phi_{i}\left(T^{(i)}\right)=\left(T_{i}, f^{(i+1)}\left(T^{(i+1)}\right)\right)$. Define $\eta_{i} \in$ Aut \mathbf{G}_{a}^{d} and $\psi_{i} \in \operatorname{Aut} \mathbf{G}_{a}^{n}$ as follows:

$$
\begin{align*}
& \eta_{i}\left(x_{1}, \ldots, x_{d}\right)=\left(x_{1}, \ldots, x_{i-1}, \eta_{i}^{\prime}\left(x_{i}, \ldots, x_{d}\right)\right), \tag{46}\\
& \psi_{i}\left(x_{1}, \ldots, x_{n}\right)=\left(x_{1}, \ldots, x_{i-1}, \phi_{i}\left(x^{(i)}\right)\right) \tag{47}
\end{align*}
$$

We can show by induction on i that

$$
\begin{equation*}
\eta_{i} \circ \cdots \circ \eta_{1} \circ f^{(1)} \circ \psi_{1} \circ \cdots \circ \psi_{i}(T)=\left(T_{1}, \ldots, T_{i}, f^{(i+1)}\left(T^{(i+1)}\right)\right) . \tag{48}
\end{equation*}
$$

In particular,

$$
\begin{equation*}
\eta_{d} \circ \cdots \circ \eta_{1} \circ f^{(1)} \circ \psi_{1} \circ \cdots \circ \psi_{d}(T)=\left(T_{1}, \ldots, T_{d}\right) . \tag{49}
\end{equation*}
$$

Let $\eta=\eta_{d} \circ \cdots \circ \eta_{1}$, and $\psi=\psi_{1} \circ \cdots \circ \psi_{d}$. Then $\left(\eta \circ f^{(1)} \circ \psi(T), T_{d+1}, \ldots, T_{n}\right)$ defines the identity mapping on \mathbf{G}_{a}^{n}. Let $\xi(x)=\left(\eta^{-1}\left(x_{1}, \ldots, x_{d}\right), x_{d+1}, \ldots, x_{n}\right)$. Then $\xi \in \operatorname{Aut} \mathbf{G}_{a}^{n}$ and $\xi(T)=\left(f^{(1)} \circ \psi(T), T_{d+1}, \ldots, T_{n}\right)$. Hence

$$
\begin{equation*}
\xi \circ \psi^{-1}(T)=\left(f^{(1)}(T), h_{d+1}(T), \ldots, h_{n}(T)\right), \tag{50}
\end{equation*}
$$

where $\psi^{-1}(T)=\left(h_{1}(T), \ldots, h_{n}(T)\right)$. Therefore $f^{(1)}$ is a component of an automorphism of \mathbf{G}_{a}^{n}.

References

[1] J. E. Humphreys: Linear Algebraic Groups, Springer, 1981.
[2] M. Rosen: Number Theory in Function Fields, Springer, 2002.

Takefumi Tanaka
Department of Mathematical Sciences
Graduate School of Engineering
Osaka Prefecture University
Sakai, Osaka 599-8531, Japan
E-mail: takefumi@ms.osakafu-u.ac.jp
Hitoshi Kaneta
Department of Mathematical Sciences
Graduate School of Engineering
Osaka Prefecture University
Sakai, Osaka 599-8531, Japan
E-mail: hkaneta@ms.osakafu-u.ac.jp

