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ABSTRACT. We study the stationary problem of a reaction-diffusion system with a small
parameter ¢, which approximates the cross-diffusion competition system proposed to
study spatial segregation problem between two competing species. The convergence
between two systems as ¢ | 0 is discussed from analytical and complementarily nu-
merical point of views.

1. Introduction

Multiple species are directly or indirectly interacting with one another
within ecological systems. As an example, it is well known that they compete
to feed common resource. A macroscopic continuous model describing the
competitive interaction of two ecological species is

u, = dydu+ (r1 — aju — byo)u,

(1.1)

v, = dpyAdv + (ry — byu — apv)v,

where u(z,x) and v(¢,x) are the population densities of two competing species
which move by diffusion, at time ¢ and position x. d, and d, are the diffusion
rates, r;, @; and b; (i =1,2) are the intrinsic growth rates, the intra-specific
competition rates and the inter-specific competition rates of u and v. All of
the parameters are positive constants. The system (1.1) has been intensively
studied from analytical point of views ([1], [9], [10] for instance). Suppose that
the parameters r;, a; and b; (i = 1,2) satisfy the inequalities
a_n b_17 (1.2)
by n @
for which we ecologically say that two species are strongly competing. If (1.1)
is considered in a convex domain with the zero-flux boundary conditions, we

M. Mimura is supported by Grant-in-aid for Scientific Research (S)18104002.
2000 Mathematics Subject Classification. 35J55, 35K55, 35K57, 92D25.
Key words and phrases. cross-diffusion system, reaction-diffusion system, stationary problem.



316 Hirofumi IzuHARA and Masayasu MIMURA

know that any non-negative solution (u,v) generically converges to either
(2—‘1 ,0) or (0, %), that is, the competitive exclusion principle occurs between the
two species # and v ([1]). This result could be intuitively understood because
strong competition holds between u and v. However, it is observed in natural
fields that strongly competing species possibly coexist. Several explanations
have been proposed for such coexistence. One of them is the repulsive effect
between two competing species. In order to explain it theoretically, Shige-
sada et al. ([2]) proposed the following competition system with nonlinear

diffusion:

u, = A((d, + oqv)u) + (r — aju — byv)u,

(1.3)
v, = A((dy + aau)v) + (r2 — bau — ayv)v,

where o) and a, stand for the population pressure effects from one species to
the other. It is obvious that (1.3) reduces to (1.1) when oy =a, = 0. (1.3) is
called a cross-diffusion competition system. Since the first equation of (1.3) is
rewritten as

u, =V ((dy + oqv)Vu) + 0, V(uVv) + (r) — aju — b1v)u, (1.4)

one can see that the second term of the right hand side in (1.4) indicates the
direct movement of u in the sense that u moves towards lower density of v when
oy > 0. This implies that v has the repulsive effect on u. For (1.3) with (1.2)
it is numerically shown that even if the domain is convex, there exist stable
non-constant equilibrium solutions exhibiting spatially segregating coexistence
when either o; or o is suitably large at least. This result indicates that the
cross-diffusion mechanism (1.4) causes the possibility of coexistence of strongly
competing species. For analytical studies on (1.3), we refer to [6], [8], [11], for
instance.

Recently, lida, Mimura and Ninomiya ([3]) have addressed the following
question: Is there any reaction-diffusion system which approximates the cross-
diffusion system (1.3)? In order to answer this question, they considered a
simplified system of (1.3) with o; = o >0 and a, =0 in a bounded domain
QeRY (N >1), that is

u, = A((dy + ov)u) + (r1 — aju — byv)u,

t>0,xeQ (L.5)
v; = dpdv + (ry — byu — apv)v,
with the boundary and initial conditions
0 0
%0 >0 xedQ (1.6)

o oy
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and

u(0, x) = ui(x) =0

0(0,%) = () 3 0 xeQ, (1.7)

where v is the outer normal vector on 92 which is the smooth boundary of Q.
They proposed the following three component reaction-diffusion system with a
sufficiently small parameter ¢ for (Uyg, Up, V):

Uy =dydUy+ (n —ar(Ug+ Up) — b1 V) Uy
() Up — (V) U),
Up = (dy + Mo)AUg + (ry — a1 (Uyg + Ug) — b1 V) Up (1.8)
LUy - 1)U,
Vi=d, AV + (r; — by(Ugs + Up) — ax V)V,

where M in (1.8) is a constant satisfying M > max{;—i, |lv(0, -)||L~L<Q)}, and thus

0 <ov(t,x) <M for solution (u,v) of (1.5)—(1.6). The boundary and initial

conditions are respectively given by
ouy dUg oV

W_W_E_O’ t>0, xe 0. (1.9)

and

U4(0,x) = (1 - ”"’;"‘;"))uw(x),

Vini(X xeQ, 1.10
Ug(0,x) = ]\/(I )uini(x)7 (1.10)

V(0,x) = vimi(x),

For Uy and Up in (1.8), we note that these convert each other with the rates
Lie(V) and L (V) where k(V') is a monotone decreasing function and (V) is a
monotone increasing function satisfying

Vv h(V)

M k(V)+h(V) (L11)

and that if ¢ is sufficiently small, Uy and Up convert instantly. Then, the
following theorem is known.
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THEOREM | (M. Iida, M. Mimura and H. Ninomiya [3]). Let (u,v) =
(u(t,x),v(t,x)) be the solution of (1.5)—(1.7). Suppose that (u,v) is sufficiently
smooth and uniformly bounded on [0, T] x Q for some positive number T. Let
(Uy, U, V) = (Uy(t, x;€), Up(t, x;€), V(t,x;8)) be the solution of (1.8)—(1.10)
depending on a positive parameter &, where smooth functions h and k satisfy
(1.11) and

k(s) >0,  h(s)>0,  k(s)+h(s) >0

for se[0,M]. Suppose that there exist positive numbers My and & such
that

|U4(8,x;8)| + |Up(t, x58)| + |V (2, x;8)| < My

for (t,x)€[0,T] x Q and ¢e (0,e9]. Then there is a positive constant C =
C(u,v,e0, My, T) independently of ¢ such that

sup ||Ua(t,-3€) + Up(t,-18) — u(t, )| 20y < Ce,
tel0,T)

sup [[V(z,58) = v(t, )| 2() < Ce
tel0,7)

hold for ¢ € (0, &).

This theorem can be ecologically interpreted as follows: One of the
species V' moves randomly with the diffusion rate d,, and U, and Uz move
with the diffusion rate d, and d, + M«, respectively, where these exchange each
other instantly, depending on the density of the species V. If the exchange
rates k(V) and A(V) satisfy (1.11), then, the cross-diffusion effect of (1.4)
appears on u(= Uy + Up). Thus (1.8) is called a reaction-diffusion approx-
imation to the cross-diffusion system (1.5).

Here we note that this convergence theorem does not give any informa-
tion on asymptotic behavior of solutions for large time because it holds for
a finite time interval [0, 7]. This motivates us to consider the convergence
problem between the stationary problems of (1.5)—(1.6) and (1.8)—(1.9), re-
spectively:

0=A4((d, + ov)u) + (r1 —aju — byv)u,

xeQ, (1.12)
0 =d,4v + (r, — byu — ayv)v,
with the boundary conditions
u__  xeoo, (1.13)

o
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and

0=d,4U, + (rl —al(UA + UB) b VU,

+%(k(V)UB—/1(V)UA)’

0:(dL,+MO{)AUB+(V17a1(UA+UB)7b1V)UB XeQ, (1.14)
1
= (k(V)Up = h(V)Ua),
0=d, AV + (r, —by(Uy + Ug) —ax V)V,

with the boundary conditions

%:%:%—?:0, X € 09Q. (1.15)
We now address the question “Do (non-negative) solutions (U4 (x; &) + Up(x;¢),
V(x;¢)) of (1.14) and (1.15) converge to the corresponding ones (u(x),v(x)) of
(1.12) and (1.13) as ¢ tends to zero?”

In Section 2, we numerically consider this problem from the viewpoints of
global structures of the equilibrium solutions and in Section 3, we show that it
holds if solutions of (1.12) and (1.13) are non-degenerate.

2. Numerical results

Here we simply consider the 1-dimensional problem of (1.12) and (1.13) in

the interval (0,1). The first case is where r; = 5.0, r, = 2.0, a; = 3.0, a, = 3.0,

by = 1.0 and b, = 1.0 (weak competition). We note that when « = 0, a stable
13 1

equilibrium solution is (%,1) only for any values of d, and d, ([1]). Using «

as a free parameter, we take the spatially constant equilibrium (,%) as the
trivial branch solution. It is stable for small «, while as o increases, it is
destabilized so that there appear spatially non-constant equilibrium solutions
exhibiting spatial segregation between two species ([8] for instance). By using
a bifurcation software which is called AUTO ([7]), the structure of equilibrium
solutions can be drawn for globally varied o«. When d, =d, = 0.005, it
surprisingly exhibits rather complex diagram of bifurcation branches which
connect each other, as in Fig. 1. On the other hand, fixing « = 3.0, we take

d =d, =d, as a free parameter. The global structure of equilibrium solutions
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Fig. 1. Global structure of equilibrium solutions with a free parameter o, the vertical and hori-
zontal axis imply the value of v(0) and the free parameter o respectively. Solid (resp. dot) curves
indicate stable (resp. unstable) branches where d, = d, = 0.005. e implies a limitting point.
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Fig. 2. Global structure of equilibrium solutions with a free parameter d = d, = d,, the vertical
and horizontal axis imply the value of v(0) and the free parameter d respectively. @ implies a
limitting point.

with a parameter d is drawn in Fig. 2. For large d, (%,%) is stable but as d
decreases, it is destablized and there appear primarily stable spatially non-
constant equilibrium solutions. The second case is where r; = 2.0, r, = 5.0,
a1 =1.0, ap =1.0, by =0.5, b, = 3.0 (strong competition). When a« =0, the
constant equilibrium solutions are (2,0), (0,5) and (1,2), where the first two
solutions are stable and the last one is unstable. In this case we know that any
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Fig. 3. Global structure of equilibrium solutions with a free parameter d = d, = d,, the vertical
and horizontal axis imply the value of v(0) and the free parameter d respectively. M implies a
Hopf bifurcation point. @ implies a limitting point.

positive solution generically tends to either (2,0) or (0,5) for any values of
d, and d, ([1]). This implies the occurrence of competitive exclusion principle.
Here we take o = 3.0 and d = d, = d, as a free parameter. When d increases,
a sub-critical bifurcation primarily occurs so that unstable spatially non-
constant equilibrium solutions appear and there occurs a Hopf bifurcation
on these branches so that these solutions become stable, as in Fig. 3. This
result indicates that the cross-diffusion enhances the possibility of coexistence
of two competing species even if the competitive interaction is strong. Next,
we consider the following problem: How are the structures of equilibrium
solutions (Uy(x;¢), Up(x;¢), V(x;¢)) of the approximating problem (1.14) and
(1.15)? and do these global structures converge to the ones of (u(x),v(x)) of
(1.12) and (1.13) as ¢ tends to zero? Figs. 4(a), 4(b) and 4(c) show global
structures of equilibrium solutions of (1.14) and (1.15) for different values of ¢
where we put k(V)=1—1; and h(V)=4; which satisfy (1.11) and the
parameters are the same ones in Fig. 1 thus we choose M =1. When
¢ = 0.01, the global structure is rather simple, as in Fig. 4(a). As & decreases,
it becames complex and when ¢ = 0.0001, the equilibrium solution structure
of Fig. 4(c) surprisingly resembles the one in Fig. 1. Figs. 5 and 6 show the
global structures with a free parameter d for different values of ¢. These re-
sults clearly indicate that for a sufficiently small positive &, the three compo-
nent reaction-diffusion system (1.8) seems a nice approximation to the cross-
diffusion system (1.5) from not only the evolutional problem but also the
stationary problem viewpoints.
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Fig. 4(a), 4(b) and 4(c). Global structure with a free parameter o, the vertical and horizontal axis
imply the value of v(0) and the free parameter o respectively. @ implies a limitting point. We put
k(V)=1-+ and h(V) =4 and M =1.
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Global structure with a free parameter d = d, = d,, the vertical and

horizontal axis imply the value of v(0) and the free parameter d respectively. @ implies a limitting

point. We put k(V)=1— and h(V)

=+ and M =1.
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Fig. 6(a), 6(b) and 6(c). Global structure with a free parameter d =d, = d,, the vertical and
horizontal axis imply the value of v(0) and the free parameter d respectively. M implies a Hopf

bifurcation point. e implies a limitting point. We put k(V) =1—1 and /(V) =4 and M =7.
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3. Analytical results

The above numerical results motivate us to discuss the convergence
problem between the stationary problems (1.12) with (1.13) and (1.14) with
(1.15). We introduce the following function spaces to treat this problem:

0
WP (Q) ::{ue W’f-!’(g);aiv‘zo on xeag},

X =Wy (@),
Y = (L7 ()%,
where p >n and k> 2. We obtain the following result:

THEOREM 2. Let (uo(x),vo(x)) be a sufficiently smooth positive solution of
(1.12) and (1.13) such that the linearized operator of (1.12) around (uo(x), vo(x))
is bijective from (W (Q))? into (L?(Q))%.  For example, ug(x), vo(x) € W57 (Q)
is at least required. Suppose that the functions k(s) and h(s) are smooth on
(0, M] and there exists a positive constant 3 > 0 satisfying

k(s)+h(s)=p>0 on [0, M].

Then, there exist positive constants & and C such that for any ¢ (0,&)] the
problem (1.14) and (1.15) has a unique e-family of equilibrium solutions
(Ua(x;¢), Ug(x;¢), V(x;€)) that satisfy

||UA(78) + UB(.’S) - uo(')HWZ,/J(Q) S CS,
||V(38) - UO(')HwZ,p(Q) < Ce.

In order to prove this theorem, we consider an equivalent problem by
using several transformations. With U = Uy + Ug and W = U, (1.14) and
(1.15) are rewritten as

OZA(duU—I-OCMW)-i-(}’] —a]U—blV)U
OZdUAV#*(Vz*sz*an)V xeQ,

0 =e&{(d, +aM)AW + (r —alU—blV)W}+Q(V)<A1/[UV— W>

v _ov_ow
T oy Oy O

X €09,
(3.1)
where Q(V) =k(V)+ h(V). Next, by using



326 Hirofumi IzuHARA and Masayasu MIMURA

a:@+§om (3.2)

u

we transform (1.12) to obtain

- d,u d,u
O—du"“(“ —alm—blv) dy + ow
d,u xe
— _ utt ’ 3.3
0=d,Av+ (rz b, A azv)u (3.3)
ou  ov
=5 =% x e 0Q.

By using the transformation

oM

U=U a

which is a counterpart of (3.2) for (1.12), ( becomes

3.1)
OzduAU+(r1—a1(l7—d )—bl )( )
OZdUAV—i-(Vz—bz(U OZW )—G2V>V

:s{(du+ocM)AW+ (m —a (U—“M W) b, V> W} YEL 35

dy
1 - aM
+Q(V)<M(U— g W)V—W)
a0 _av _ow o
9y v v Y E o

Putting e =0 and rewriting (U, V, W) as (i, v9,wp) in (3.5), we can
reduce the third equation in (3.5) to

and see that

fl() — Wy =

du du + avg -

Then (i, v9) formally becomes a solution of (3.3). We now consider the con-
vergence problem between (3.3) and (3.5) because the transformations (3.2) and
(3.4) are one-to-one. We show the following theorem:
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THEOREM 3. Let (iio(x),v0(x)) be a sufficiently smooth positive solution of
(3.3) such that the linearized operator of (3.3) around (#ip(x),vo(x)) is bijective
from (WP(Q))? into (LP(Q))%.  For example, iiy(x),vo(x) € WgP(Q) is at
least required. Suppose that the functions k(s) and h(s) are smooth on (0, M]
and there exists a positive constant f > 0 satisfying

O(s) =k(s) +h(s) = >0 on [0, M]. (3.6)

Then, there exist positive constants & and C such that for any ¢ € (0, &) the pro-
blem (3.5) has a unique e-family of equilibrium solutions (U(x;¢), V(x;¢), W(x;¢€))
that satisfy

1T (-12) — it ()l o) < Ce,
|| V(;S) - UO(')”WZJ)(Q) S Cg, (3.7)

||W(78) - WO(')HwZ,/z(Q) < CS,

dy il vy

where wy = W .

We prove Theorem 3 along several steps. First we construct an e-family
of solutions of the problem (3.5) in the following form:

U(x;e) = Us(x) + o1 (x;8),
Vixie) = Vi(x) + gy(x;8), (3.8)
W(x;e) = W3(x) + g3(x;¢),
where
Uzg(x) 2
Vi) | =D &"| valx)
wix)) = )

The reason why we take an approximate solution into account up to second
order of ¢ lies in (3.16). If we consider the order up to &° or &! only, then we
can not choose a and ¢ satisfying (3.16).

As outline of proof of Theorem 3, in subsection 3.1, we will obtain an
approximate solution (Uj(x), V#(x), W$(x)) and in subsection 3.2, we prove
the existence and convergence of the correction term (g, (x;¢), p,(x;¢), p3(x;¢€)).
For this purpose, substituting (U(x;e), V(x;e), W(x;e)) into (3.5), neglecting
(p1(x58), 05(x;€), 03(x;¢)) and equating like powers of ¢, we obtain the fol-
lowing hierarchies of the problems:

Order &
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M M
OZduAﬂo—F ry —a ﬂo—a Wo —b]l)() il()—oc—WO y
d, dy
M
0=d,Advy + <V2 — by <1:l() —adW()) —azvo>vo, xXeQ,
v (3.9)
1 M
0= Q(l)o) <M (110 — (xdu W0> vy — W()),
0= o _ 0t _ Qv xe Q.
dv v ov
Order &'
i 0
Lyl vy | =- 0 ; xeQ,
wi (du + OCM)AW() + (1’1 —ay (Z/NIO - %M}O) — blvo) wo
(3.10)
617!1 B 601 . 0W1 .
5_\1_81)_6v_07 x €09,
where
A —b](fto —%WO) —%(7‘1 —2a1(ﬁ0 —%11/0) —b]l)o)
Ly := —bavg B bz%vo ,
Uo% (flo — %M/O) Q](‘;O) —(1 +dlul)o) Q(Uo)
M
A=d,A+r —2a <110 - (Zd W()) — byvg,
M
B=dA+r,— b, (fto — (Xd W()) — 2a50y.
Order &%
i (—ay (u —%Wl)—blvl)(ﬂl _%Wl)
Lol va | =— (=ba (1 — 4L wy) — azor) vy ) xeQ, (3.11)
w3 W,
6u2_81)2_6wz_0 xe o,

v v

where
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M
Wy = (d, + oM)Aw; + <r1 —a ([{0 — ocd wo) — blvo)wl
u

- aM 1 /. oaM
+ (—al (ul T wl) — blvl>wo +M (u1 - Wl>l}1 O(vo)

n 1 /. oM n 1 /. oM 0’ (v0)s
— - ’ — | ———w Jup—w .
v\ 1o d, Wo Jor 5 4, " 1 0)01

The remainder of (3.5) is expressed as a boundary value problem for

D ="(p),0,03):
F(®,e) =L@+ N(D,e) + R(e) =0, xeQ,
{ @=0 X €0Q,

=Y

(3.12)

where L, is a linear operator defined by

A, —by (U5 =2 W5)  Lis
L, = —byV§ B, b2 Vs |,
—ea Wi +LVi0(V3) L3, C,

in which 4,, B,, C,, Lj3 and L3, are given by

oM
d,

aM

d,

Ag—duAJrrl—Zal(Uf— Wf)—blVf,

BgzdvA—Frz—bz(Uf— Wf) —2a, V5,

aM

nge{(du—l—ocM)A—i—rl—al(f]f—Zd W;)—b1V§}—(l+d1V5)Q(V;),

~ oM oM
L13 = —(}’1 —2al(U2£—dW26> —bleg>d,

£ 1 rre
Ly = _8b1 WZ' +M (U2 —

oM

Hws) o

[

1 7 aM [ & [ &

N(®,¢) is given by

where
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aM oM
Ni(D,¢) = <a1 <¢’1 d—%) - bl(”z) (901 4 (/’3>7

aM
Ny(D,e) = (—b2 (fﬂl —d—%) - az(ﬂz) P2,

aM o* e
N3(D,¢) = g(—a1 ((01 —d—%) - blﬁ”z)% + (1 T Vz)Q(Vz)‘ﬂs

1 (-, oM . .
"'(M(Uz‘*‘(ﬂl— p (W2'+(P3))(Vz'+(ﬂ2)

(Wi %)) OVi + )

1 rre aM £ & & & 1 & &
- <M (Uz'_ d, Wz)Vz'_ WZ)Q(VZ)_MVZQ(VZ)(/)I

1 [~ M
- (7 (-5 we ) ety
1 [/~ M
(g (o= 20w ) v - we) 00 o

R(e) depending only on ¢ is represented by

R1 (8)
R(e) = | Rale) |,
R3 (8)

where

- oM - aM
Ri(e) = & (—a1 (uz — a Wz) — b102> <u1 - a w1>
M M
+& (—al (ftl + &ty — ocd (w1 + 8W2)> —bi(v1 + 802)) (ftz — O(d

Rz(&‘) = 83 <b2 <L~12 — Oij,w W2> — 021)2> U1

N - oM
+& <—b2 (ul + &ty — y (w1 + 6W2)> —ar(v) + 602))02,
u

R3(8) = 83{(61” + OCM)AWZ + (—a1 (ﬁz — OC;I W2) — blvg) wo

u

- 5 oM
+ <—a1 <u1 + ety — 7 (wy + ewz)) — by (v + avz))wl
u
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+ <r1 —a (fff M Wf) — b Vf)”’z}
dy
1 rre aM & & & £
+ (ﬁ (Uz' T Wz) Vy = Wz)Q(Vz)
. 1 i aM +(a aM 0(vo)
—el— ———wy | — wo |lvr | —w v
M 1 du 1 0 0 du 0 1 1 0
— & (Al/[ <(ﬁ0 — 022:1 wo> v + <511 - OZ,:I W1> vo> - w1> Q' (vo)vy
o 1 . aM . aM
—&| — Uy — wo |2 + | Uy — w1 | U1
M dy du
M
+ (zlz - (xd W2> vo> — w2> O(vo)-

3.1. Construction of an approximate solution. (3.9) is equivalent to (3.3) since
the third equation in (3.9) gives wy = (di% due to Q(vg) > 0. Therefore, it
suffices to prove that

Ly: W' (@) x Wyl (@) x Wi'(Q) — L (2) x L (2) x W"(®)

is invertible. By regularity result we know that Lj'(Wkr(Q) x Wkr(Q) x
WETEP(Q)) = (WP (Q) x WP (Q) x WETP(Q)) for k=1,2. Then the
solutions (#1,v;,w;) and (ép,vs, W) are obtained immediately, so that an
approximate solution (U{, Vi, W§) of (3.5) is constructed. To prove the
invertibility of Ly, we consider the linearlized operator ¥ around (i, v) of
(3.3), which is given by

q _ d, iy PR dutty _—duiip_
P = by d,+owy + ( ! N Gt blvo) (dy+owy)?
: 3 duto /
2 duav B

where

d, 1 d

A =d,A -2 ———b !
u +(71 aj o+ v 1vo> d + oo’

d2iig

B =dA+ry—by— 0
? 2(dL,Jrocvo)2

— 26121)0.

LemMA 1. Assume that & : (W' (Q))* — (LP(Q))? is invertible. Then
Lo: WyPP(Q) x WTP(Q) x WATP(Q) — WhP(Q) x WhP(Q) x W7 (Q)
is invertible for k =0 and bijective for k =1,2.
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ProoF. We first prove that for any hy,h, € LP(Q) and hs € W,%,‘p(Q)

¢ h
Lif& [ =] h (3.13)
&3 h3

has a unique solution ¢&;,&,¢& € Wi,"” (). Since the third equation is
DMO (Uo)él +% (17!0 — MW}Q) Q(Uo)fz — (1 +ivo) Q(Uo)é'j = hs, 63 1s described by

dy dy

o, dl=5) n
= o 2_ .
3 L+ 20 ! L+ 2 (1+ Zv) Q(wo)

Substituting this into the first two equations in (3.13), we obtain

hy — (r1 = 2ai (0 — - wo) — bivg) 22— 3
$<51> :< ( ( d, ) )(dﬁ-‘ v0) Q(v0) ) (3.14)

bzc{MUo
< hy + (dy+09) Q(v9) hs

Now, since . is invertible and the right hand side belongs to (L?(2))?, (3.14)
has a unique solution (&,&,) for any hy,hy € LP(Q), h3 e W,f,’p(Q). More-
1 L (g — 24y,
over, since &; is obtained by &; = lf;:mf] + ﬁ d_’w Vg — (1+ﬁ:03)Q(vn)’ we
know that Lo: WeP(Q) x WaP(Q) x Wel(Q) — LP(Q) x LP(Q) x W (Q)
is invertible. By the regularity of the operator ¥, we know that
LN (Whkr(Q)) = (WEP(Q) N Wk2r(Q))? for k =1,2. Therefore we also
find that Lo: W27 (Q) x We™P(Q) x WEP(Q) — WEP(Q) x WkP(Q) x
WATP(Q) is bijective for k = 1,2. O

By using Lemma 1, we find that (&;,v;,w;) and (@, v2, wy) are uniquely
obtained.

3.2. Convergence problem. In this subsection, we prove that the correction
term @ = T(p,, 9,, p3) of (3.12) exists. In order to do it, we need the following
two lemmas:

LemMmA 2. The operator L, : X — Y is invertible, and the norm of inverse
operator is estimated as

G

-1
12y < =

The proof will be shown later.

Lemma 3. (i) Define a domain D by D={PeX;|P|y <e}. There
exists a positive constant C, for F : D — Y such that

IDoF(®,6) — Do F(D.¢)|x_y < C||@ — Bl
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(i) There exists a positive constant Cs such that
|F(0,¢)||ly <& Cs.
ProoF. (i) Let us define DpN(D,¢) by

N11( ) Nu(®) Ni(P)
DgN(@,¢) = | Nau(®) Nxn(P) Nxn(@) |,
N;I(QD) N3 (D) Niz(D)

where

oM oM
N (@) = —2a <€01 7 (P3> — b1y, Nipp(®) = —b (901 - d%)’

aM aM
Ni3 (@) = — 7 (-2611 <fﬂ1 - (/)3) _bl(02>7 Ny (@) = —brpy,

u

oM oaM
Ny (@) = —b <¢1 4 (P3) — 2ayp,, N23(¢) = bzd—(ﬂz’

1 ‘ o
N3 (@) = —earp5 + — (Vz +¢2)Q(V;+¢2)_MV2Q(V2)7
1 oM P
N3 (D) = —eb1p3 + — (Uz +o - a0 (Ws + %)) oV +¢,)
1 rre aM & &
+ {M <U2'+¢1 —d—u(Wz +¢3)>(V2 + ;)
SCRYSIIGRTS
1 7 .
- (ﬂ(UZ —d—qu>Q(Vz)
1 rre aM & & & &
+ (H <U2 _d—uW2> vy — Wz))Ql(Vz),
aM
N33(P) = 8(—‘11 ((/71 —27 ¢3> - bl(”z)

- (d%w;w) n I)Q(V5+¢z)+ (1 +%V§)Q(V§)~

)

We write

(Do F (D, &) — DoF(B, )¢y
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for £ € X, where

19111200 < (N1 (@) = Nit())Ei [ 0

+[|(Ni2(@) = Nio(D))&a I + [[(Ni3(P) = Nia (D)3l 04
1921l o(2) < | (N21 (@) = Nat(@))<1 | .

+ [[(N22(@) = Noo(@)) &1 + [[(N23 (@) = N3 (D))&3 1.0
1931l o) < I(N31 (@) = N31(@))<1 | s

+ [[(N32(®) — N3z (D))l 10 + [[(N33(D) — N33(D)) &3

Lr

Using Hoélder’s inequality and Sobolev’s imbedding theorem, we obtain

[(N11(@) — N11(D)E ||

<2aillo; — o1l 2 1€l 120
oM - -
+2a1— = [los = @3l 161l + Bulloy = oall 2 l1€ ] 2
u

< C(ller = allw2o [ Enll w2

él || WZ-P)-

Since [|(N12(®) — Nia(P))&l,, and [[(N13(P) — Ni3(D))s|
inequalities to the above, we obtain

+ o2 = Gallwar [ Ellwr + llos = @3l

,» Dossess similar

lg1ll o) < Cll® = Bl ll€]lx,

and similarly
921l (@) < CIP = Bl [IE]x-

For ||g3||Lp(_Q>, we obtain

[(N31(@) — N31(D))é || .

_ 1 .
< ear]|os = @3llw [ Ell 2 + 57 (02 = 02) OV + 02)C0I s

1 . . ~
o7 1V +02)(Q0V3 +905) = O(Vy +¢2))ill s

< Clearllps = @sllwslEillwar + 102 = Dol €l 2r)-
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Here we used  [[O(VS+¢)) — O(V5+ @)l < Clloy — @2llyp2,  and
10(V5 + @)l - < Co. 3 3

Since [|(N32(®) — N32(®P))&|l,» and [|(N33(P) — N33 (D))E5]
similarly, we obtain

.» are treated

19311200y < Cll@ = @] lI<]| x-
Therefore, we have
(Do F(P, &) — DoF(D,8))E|ly < Co||P — B[]l
and then
1DoF (@) = DoF(D.6)| y_y < Caf|® — |-

(i) is obvious because R(e) consists of only &* or more. O

The above-mentioned lemmas can show that a function of @ satisfying
F(b,e)=L®+ N(P,e)+R(e) =0

is obtained as a limit of {®,} constructed by the following successive
approximation:

{F((Dn,g)—&-Lg(d)nH—d),,):O, n=0,1,2,... (3.15)
@) = 0.
To show this, we require the following lemma:

LemMA 4. Define a closed sphere B, as B, = {®|||P||y <a}. Then, for
a sufficiently small a, @, satisfies

@, e B, (n=0,1,2,...).
ProOF. Let &, € B,. We rewrite (3.15) as
By = Dy — L' F(Dy, )

= L YLD, — F(®Pp,¢) + F(0,6)} — L, F(0,¢)

1
= LSI{L£¢I’I - J D(pF(t@n,S)@n d[} — L;lF(()’S)
0

1
=L J (L, — Do F(t®,,¢))®, dt — L' F(0,¢).
0
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Therefore,

1
[Prsillx < ||L§llyax{J0 1L — Do F (1D, )|y y | Pul xdlt + ||F(0,8)||y}

<L My x (Coll@ally + IE (0.2 y)-

By choosing a and ¢ so as to satisfy

- 1 B a
GIL y—xa < 5. 1L y—xllFO. 9y < 3, (3.16)
we find
1Ly (Gl + [P0, ) < 12el o caa_
e y—x\&211%nllx ) v)= "5, ) .

Consequently, if &, € B,, then &,,, € B, Since ®y=0€B,, ®,€ B, for
neN. O]

ProoF (Theorem 3). We now show the existence and convergence of
{®,} as follows

1

N S {Ls(én — D, ) — J DoF(1®,,)®, di
0

1
+J DoF(t®,_1,e)D,_ dt}
0

— L [JI{LS — Do F(t®,,8)}(®, — B,y )dt
0

1
- | (DoFu,0) - Dot (0,1, )} 0, dz}
0

and then
1Dt — Dully < L Ny x Co{llPully + 1 Pu il HI i — Pt -

By choosing @ so as to satisfy G| L;'|la < %, we find
1
[@0e1 = @ully < 5119, = Bt

Consequently, by Banach’s fixed point theorem, @ = &(¢) which satisfies
F(®d,¢) =0 exists uniquely if a and ¢ are chosen sufficiently small. Finally,

since [|@(e)||ly <a < 356, [|[P(e)lly — 0 as e —0.
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We thus know that a solution of the problem (3.5) approximates the
solution of the problem (3.3) for a sufficiently small e&. Namely, there exists

a unique solution (U(x;e), V(x;e), W(x;¢)) of (3.5) which is given by the
following form:

=

=t

&
I

fo(x) + e (x) + &2 (x) + 9y (x; ),
V(x;e) = vo(x) + ev1(x) + ev2(x) + ¢ (x; ),
W (x;e) = wo(x) + ewi (x) + &2wa(x) + 3(x;€),

satisfying
sliIE() || U(-;g) - ﬁo('>HW2”’(Q) = 0’

SET() ” V(7 8) - UO()H wrr(@) = 0,

i 12) = w0l 200y =0 -

3.3. Proof of Lemma 2. In this subsection, we will prove Lemma 2. In
order to do it, we use some transformations. We transform the linear operator

1
L.| ¢, | by using

?3
_ 1 1 /. oM o
93 =000+ 47 (uo—d—u‘vo)(ﬂz—(l"‘d_u”O)(P& (3.17)

Then, it is transformed into

Ag 112 (7'1 —2&11(02E —%W;) _bl st) M

dy+avg
T d, Vi ~ aMV}i
L. = _ ) _ 2
¢ 2 d,+avg B;; b2 dy+-ovy ’
eL3 eL3 C, +¢els3

where

) -t d
A, = dod + (r1 —2a1<U;—°‘d—W§) — by V;) i

_ oaM | baaV3 (i —%3F wo)
Bo=dA+r— by UF =25 Wi ) = 2a,V u
== (05 =0 WE) v+ TR

~ d, .
C. = —e(d, +oaM)4 (du o ) +0(773),
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< ~ aM - aM O‘(ﬁo —MWO)
L =-b; (Uzp T W;) - (rl —2a (U; T W;) — b V;) I Lo Jr(;lvo ,

Fooo_ & du(vl +802) & d,vo
Ly =—-a Wy + , +ocvo)MQ(V2) + (dy,+aM)4 @+ ao0) M
- aM . d,vo
_ & 2_ WL‘, _ & ey
+ <}’1 ap (U2 a4 2> b Vz) (du—l—OCUo)M’

= 1 /. _ oM
L32—b1WZE+H<M1+8M2— du

U] + &V - oM e
— a Owoot(u() - d, WO))Q(V2>

1 1 rre aM & [ & 1 ~ aM &
—|—E<M(Uz—d—uW2>V2_ WZ_M(HO_ du M}0>UO+WO>Q/(V2)

du (ﬁo — %Wo) )

(dy + awo)M

(w1 + ewp)

+ (du+acM)A<

aM

~ . aM X X du(iio *d_WO)
— ¢ _0 wel — L [ R
+<}"1 al(UZ du 2> blVZ) (du+O(U0>M )

~ ~ o du &
Ly = —(Vl —ai (Uf - Zd— Wf) —b Vf) —————+ (01 + &v2) or3).

o
d, + owg dy + ovg

We express the 2 x 2 block at the upper left in L, as follows:

7 4, - Lo P teP
e 1= _bzzl—[;zzo B‘; = + e,

Here, we note that % is the linear operator of (3.3) around (#,v) and &

denote
7 (3:’11 3?12)
D Lo

dy
(wy + swz)) —by(v1 + 302)) d T oy

where

N M
L= <—2a1 <ﬂ1 + &ilp —ad

u

~ - - oaM
P = —b (ul + &y — d—(wl + 8wz))

duaﬁo
(d,+ ocvo)2 ’

M
_ (—2(11 <l~ll + &ty — ad (WI + «S‘Wz)) — b](vl + 802))
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Doy = —by

v + &),
ditan )

~ - - M
P = —by <u1 + eupy — (Wl + 8W2)> — 202(1]1 + 81)2)

u

bz&((fto — % Wo)

G oy ).

So, if ¢ is sufficiently small, then &% is regarded as a perturbation. Since the
operator . is assumed to be invertible, we can show that .%, is also invertible,
if ¢ 1s sufficiently small.

LemmA 5. The operator %, : (W, 21’(9))2—> (LP(Q))* is invertible and
satisfies

—1
”“% H(Lp(Q))ZH(Wf’J’(Q))Z < (4.

In addition, ¥, : (WZ?,"IJ(.(Q))2 — (W2P(Q))* is invertible and satisfies

1
w2r(Q 2 < Cs.
1< Ml . < Cs

()
Proor. We find that & : ( N’ (Q))2 — (L?(R))* is a bounded linear
operator by applying Hoélder’s inequality and Sobolev’s embedding theorem

H$<f2> L1 Q < CH( >H Wor(Q
( < < V‘ ( ))

k7 (W;\‘,’p (Q))* — (W22(Q))* is also a bounded linear operator in a similar

Way
é ( "['( ))2 é ( ]\1, ( ))2

Now, as we assume that % is invertible, there exist positive constants
M; >0 and M, > 0 such that

1
(R (LP(Q) = (W' (2)) <M

-1
Hg ||(WZ.[7(Q))2_,(W;=[’(Q))2 < M.

We choose ¢ sufficiently small to satisfy the following inequalities:

||$_16.g||<w/‘$.p)2ﬂ(wi.p>2 < SHQ_I ||<L,,)2H<W§;p)z||j||(W_/)zH<L[,)z

<eM,C<

NI'—‘
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||$_18,,g7“(w/‘3_p>2*>(w4p » < 8”3 1“ (W22 (VV;/'F)Z||jH(W:'YF>ZH(WZYF>Z

1
S 8M2C, S 5

By Banach’s perturbation theorem ([4]I-§4.4 P.31), we find that ¥, = ¥ + ¢ <&
are invertible and

||$ 1“ (Lr)? W2P)2
(Wt 3

Hg 8$|| 2,7 (sz"p)z

1 W 1y

< 2||$*1H(L 22 < Gy,

P)2—>(I/VN

”37 ” (war)? (u/;v‘;ﬁ)z
1 - Hg SQH(Wé.p)zH(VV;.p)z

|z 1|| (20 () <

<?2| &~ IH (W22 ()2 < Cs,

respectively. ]
We write
[ h
Le Z) = h2 ( 3.18 )
3 hs

for any hy,hy,hy € LP(Q). Then, by Lemma 5, (p;,¢,) can be solved as
follows:

o1\ P h +$ (r1 —2a1(U2 ) by V2)d+o¢bg¢3
o,) "¢ \ bzaMV; ~

d,+owo ?s

—. (f“> + ("fl(“?)). (3.19)
) 92(93)
Substituting this into the third equation of (3.18), we obtain

dy . o ~ _
—&(dy +oaM)4 (m%) + O(V5) 93 + eKps = hs, (3.20)

where
il3 =h3 — [6i31}~11 + 8i32/j12},

K@; = L316,(@3) + L2265 (@) + Las s
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Thus, if we could prove that there exists uniquely @5 € W,f,‘p () for any
hy € L?(Q), then we know that L, is invertible. Taking ¢éK as a perturbation
in (3.20), we consider the main part —8(du+ocM)A(dujf;vO )+ 0(VE). We
write it as Tg; = —&(dy, + oM )4 ( dy @3) + O(V5)@p;, and moreover by =

P N . ; dy+owy
U
T 93 write 1t as

d, + oy

Ty = —e(d, + oaM) My + 7

o(ry)y.

By using (3.6) and Theorem 2.4.2.7 in [5], one finds that T becomes a bijection
map from W]%,’p (2) to L?(Q). Therefore, T becomes also a bijection map
from W]%,’p (2) to LP(Q2). Consequently T is a Fredholm operator with index
0. If the operator K is compact, then Fredholm stability theorem indicates
that the operator T + &K : Wy’(Q) — L?(Q) is a Fredholm operator with
index 0.

LemMa 6. K is a bounded linear operator: LP(Q)— L?(Q) and a

bounded linear operator: Wy'(Q) — W2P(Q). Futhermore, K is a compact
operator:  We?(Q) — LP(Q), and

||K¢3HL1'(.Q) < C6H¢3||L[!<Q)7
1K@l w2n) < C7||¢3||W§-”(Q)v
||K¢3HL1'(Q) =< C8H¢3||WA2,‘”(Q)‘

ProoF. By (3.19) and Lemma 5, we find

03] .
“(ne))

SC4<

< Cy

(Lr(@)?

~ oM oM
’(l’] —2a1<U£—d—W;) —b1V£>m

; \ ||¢3|Lp)
L'K.

< Cyllsll o ()-

1931l2»
LTC

byoa MV
d, + owg

By similar argument to the above, we also find
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< Cs

z < Z;Ezz; > H<W2-ﬂ<g))2

rre oM e P aM ~
< (-2 (03 -2 we) - 0ve) 2]l
u u Ww2r
PxMVS )
du+OCU() Ww?2p ¢3 W

< Csllgsllwno)-
Thus, we know
16183 w2y < Calldall e,
16265 w20y < Calldall e,
191(83) 1 ir (@) < Csll@sllwana);
H(/32(¢3)HW3~P(Q) = C5/||¢3||W2-1’(Q)'

By using them, we obtain the following inequalities for some positive constants
Cs and C7:

1Ko

L@ = ||Z31¢1((53)||Lp(9) + HZ‘32¢2(¢3)||L1’(9) + || L3305 Lr(Q)
< Clig1 (@)l 2o o) + ClE2(83) 200y + Cll@sllo (o)

< Gsllos|

Lr(Q)

1K@3llw2ne) < IL316, (@)l w2r(o) + HZ‘32¢2(¢3)HW2~!’(!2) + ||i33§53||w2~p<9)
=< C||¢1(¢3)|\Wé-ﬂ<g) + C\Wz(@z)uww(g) + CliLssll yr ) 1931l w2 ()
< Gllgsllwona)-

Therefore, we find that K is a bounded linear oparator: L7(Q) — L?(Q)
and W2P(Q) — W?P(Q). Since the injection of W??(Q) into LP(Q) is
compact, K is a compact operator: Wf,"” (Q2) — L?(Q2). Consequently, we
obtain

1Ko

(@) < CIE@s[lwno) < Gsll@slly2r ) O
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Therefore, the Fredholm stability theorem shows that 7 + eK : Wy’ (Q) —
L?(Q) is a Fredholm operator with index 0. Thus, it suffices to show that
T + ¢K is injection.

Lemma 7. T +¢K: W]%,’p(Q)—>L”(_Q) is bijective and there exists a
positive constant Cy > 0 such that

C
—1 9
(T + ¢K) ||L/:(g)_»u43~/’(g) =T
Proor. Let us consider
dy, + avo .
Ty = —e(dy + M)Ay + o).

u

By multiplying (x) = (Y(x)? +5)(p -2/ 2y(x), > 0 and using integration by
parts and the Lebesgue dominated convergence theorem, we obtain

|
Wlzr@) < BNV Lra

Because of y = @3, we know

d +vvo

d o
ol 0405 ) + ()

030l L0y < €
Lr(Q)

Also, we know

1793 + eKpsll o) = 1 T0s3ll Lr0) — el KP3ll Lo

1 -
> (=) 18l

Therefore, by choosing ¢ sufficiently small, we obtain
931l Lr0) < CITo3 + K3l 11 (0) (3.21)

Consequently, 7 + ¢K : W,%,"” (2) — L?(Q) is injection. By property of Fred-
holm operator, T + ¢K is bijective.

Next, we estimate the inverse operator of 7 +&K. Applying Theorem
2.3.3.2 in [5] to —(d, +aM)V (7% _Vg,), we find for any ¢, € Wy’ (Q),

dy+ovg
) n |¢3|W1Ap<g>>
Lr(Q)

||(03||W2/J < (H d +O{M (
3 ! 3 d, —|—OCU()

+
ol
+

¥ (@ m
e anw (o

; ||¢3||W1.p<g>)
Lr(Q)
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dy -
<]+ ana(fs)|  + ot
dut o Lr(©)
<c H—(d M) (d“ ; ) + 1
- ! dy + ow v Lr(Q) Pallwiri) |-
Using the interporation inequality |[[ully 1,0y < 6|ullp2,q) + & lu| Lr@) We

know

d, _ .
<C’ M)A
165120 (H A ) UWJHWﬂu@J

dy, 1
< O'( |-t amna( )+ Ko 070

Lr(Q)

_ 1 . ~ ~
+ KBl o) + 1OVl e (o)1 93] o) + ||¢3||u<g>>

. i C i
<c <g 1795 + eKgs |l Loy + (Cé to+ 1) ||¢3||Lﬂ<9>>'

Here, applying L? estimate (3.21), we obtain

1931l 200 < —||T¢3 +eKosl o)

Therefore we arrive at

C
-1
(T +eK) "l poioym2re) < . 0

ProoF (Proof of Lemma 2). By the above lemma, we know

. Co ~ 9
1231l 200 < . 1T¢3 + eKosll o) = - 1431 Lo ()

Gy - -
< f(||h3||Lp<g> +ellLathil| o) + el Lhol| o (o))

I/\

(Ilhgllu )+ &CllInl 20 +eCllA2ll 20 )

Here, considering

we know
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Gl =l )

(Lr)?
and therefore,
) Co n hi
ey < — | 1A C C
[83lriey < < <n3mmg>+g () it ‘(h2>(uy>
hy
I
< 2] hy
P
h3

Y

On the other hand, using

1)l
P2/ llowgr@)?

hi = (r — 2a) (U5 — 21 )ble)dﬂm@)
(Lr(@))

hy + i;agl:
hy
<Q<Kh) +ammp>
2/ llwr(@)?
Iy .
< Cy4 + C||h3||Lp (by L? estimate (3.21))
h )l ri)y
h
hy :
<Gy Iy . +C|[| 5
(L7(2))
hs ) |y
hl
<C hy s
hy )|,
we have
¢ h
1 /e C hl
N wrre) = || 2
~ gpz (W P & h
?3/) |y 3/ 0ly
By using these inequalities, we find HL 1||Y_,X < €. Since L, is a operator

that transfromed L, by ¢; =

turns to L, by transforming again by
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B Lo +ﬁ(ﬁo—%wo) | I
¢3—1+dl“vo(ﬂ1 1+dluvo ? 1+dlu00(/73-
Therefore, we obtain
2 1
%) < C/ %) )
?3 ) llx Z X
and then
h
? / ?1 C 1 a 1
7z <C| 2 SCZ ha = L:| o
P/ llx Zy hs % P ) \ly
. . C
Consequently we arrive at [|L!]|,_, < =L. O

4. Concluding remarks

We have concerned with the two-component cross-diffusion competition-
system (1.5) for (u,v) arising in the field of mathematical ecology. It is
numerically revealed that the structure of equilibrium solutions of (1.5) is so
complex when the cross diffusion effects are included, as was shown in Figs. 1
and 2. In this paper, we have considered the convergence problem between
(1.5) and the three component normal diffusion-reaction systems (1.8) with a
small parameter ¢ for (Uy, Ug, V). We have shown the following two results
on the stationary problems (1.12) and (1.14) for the corresponding to (1.5) and
(1.8), (i) As ¢ tends to zero, we numerically showed in Figs. 4-6 that the global
structure of 1 dimensional equilibrium solutions of (1.8) converges to the one of
the cross-diffusion competition system (1.5) when some parameters are globally
varied; (ii) we analytically showed that for any equilibrium solutions (u(x), v(x))
of (1.12), there exists a (unique) solution (Uy(x;e), Up(x;e), V(x;¢)) of (1.14)
satisfying lim,_, 1o(U4(x;¢) + Up(x;¢), V(x;¢)) = (u(x), v(x)) when the linearized
operator of (1.8) around (u(x),v(x)) has no zero eigenvalue. As far as numerical
results, it is surprising that the structures of equilibrium solutions of (1.12) and
(1.14) near bifurcation points are qualitatively similar. Its analytical under-
standing has been unsolved and it is our future work.
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