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Abstract. It is proved that all bounded John disks are local bilipschitz images of

quasidisks. This makes it easy to prove many necessary conditions for John disks.

It is generally acknowledged that John disks are ‘‘one sided quasidisks’’

[12], [17]. One common interpretation of this is that John disks have a lot

of the same geometric properties as quasidisks, but with Euclidean distances

replaced by internal distances. The internal (length) distance between z and w

in some domain D is defined as

lDðz;wÞ ¼ infflðaÞ: a rectifiable arc from z to w in Dg;ð1Þ

where lðaÞ is the length of a. See e.g. Näkki and Väisälä [17], Kim and

Langmeyer [16], Broch [5, 6, 7]. This distance is not able to tell the di¤erence

between Pacman (a quasidisk) and a disk minus a slit (the prototype John

domain). Here we prove the following result.

Theorem 1. A bounded, simply connected domain D in R2 is a c-John disk

if and only if there exists a K-quasidisk W and an L-bilipschitz homeomorphism

F : ðW; lWÞ ! ðD; lDÞ. The constants involved depend only on each other.

Equivalently, F is locally L-bilipschitz in the Euclidean metrics.

Let us recall that a domain D is a c-John domain if any two points z and w

in it may be joined by a rectifiable arc b in D such that

minflðbðz; zÞÞ; lðbðz;wÞÞga c distðz; qDÞ for every z A b:

Here bðx; yÞ denotes the subarc of b from x to y. A simply connected planar

John domain is called a John disk. Also remember that a K-quasidisk is

the image of the unit disk D under some global K-quasiconformal map

f : R2 ! R2. In this paper we will assume all quasidisks to be bounded.

In addition to Theorem 1 we will prove a result about locally Euclildean

metrics in John disks (Theorem 2) and present some applications of Theorem 1

(Corollaries 1–3).

2000 Mathematics Subject Classification. Primary 30C62, Secondary 30C20.

Key words and phrases. John disk, John domain, internal distances, bilipschitz map, quasidisk.



Euclidean disks are denoted by Bðz; rÞ. Denote by ðD; dÞ the metric space

consisting of the domain (set) D with the metric d. Let h : ½0;yÞ ! ½0;yÞ be a

homeomorphism with hð0Þ ¼ 0. Then a homeomorphism f : X ! Y between

metric spaces ðX ; dX Þ and ðY ; dY Þ is h-quasisymmetric if

dY ð f ðxÞ; f ðyÞÞ
dY ð f ðxÞ; f ðzÞÞ

a h
dX ðx; yÞ
dX ðx; zÞ

� �
for all x; y; z A X :

If L is a fixed constant, the homeomorphism f is said to be L-bilipschitz if

L�1dX ðx; yÞa dY ð f ðxÞ; f ðyÞÞaLdX ðx; yÞ for all x; y A X :

A map f is locally L-bilipschitz if every x A X has a neighbourhood in which f

is L-bilipschitz.

We first collect some results necessary for the proof of Theorem 1. The

following is a local version of an observation made by S. Rohde in [19].

The proof is essentially the same as in [19], Lemma 2.1. Let Jf denote the

Jacobian of a quasiconformal map f , defined almost everywhere.

Lemma 1 ([19], Lemma 2.1). Suppose that D and D 0 are simply connected

domains in R2, and that we have orientation preserving quasiconformal maps

g : D ! D and f : D ! D 0 satisfying L�1Jf ðzÞa JgðzÞaLJf ðzÞ a.e. in D.

Then F ¼ f � g�1 : D ! D 0 is locally L 0-bilipschitz for some constant L 0 or,

equivalently, L 0-bilipschitz with respect to internal distances.

With every positive continuous function % on D, called a density [3], we

can associate a metric space D% ¼ ðD; d%Þ, where the metric d% is defined by

d%ðz;wÞ ¼ inf
a

ð
a

%ðzÞjdzj:ð2Þ

The infimum is taken over all rectifiable curves a joining z and w in D. When

f is conformal in D, we write %f ðzÞ ¼ j f 0ðzÞj. The following elementary

observation is useful.

Lemma 2. If f : D ! D is a conformal map, then d% f
ðz;wÞ ¼

lDð f ðzÞ; f ðwÞÞ.

Write B%ða; rÞ ¼ fz A D : d%ða; zÞ < rg for a ball in the metric d%. Define a

Borel measure associated with % by m%ðEÞ ¼
Ð
EVD j%ðzÞj2dm (where m is two

dimensional Lebesgue measure) for every Borel set EHR2. Then following

[4] and [3] we say that % is a doubling conformal density if there are constants

A1, A2 and A3 such that the following conditions hold:

( i ) A�1
1 %ðwÞa %ðzÞaA1%ðwÞ for all z;w A Bðz; ð1� jzjÞ=2Þ, z A D;

( ii ) m%ðB%ða; rÞÞaA2r
2, and

(iii) m%ðBðz; 2rÞÞaA3m%ðBðz; rÞÞ, with z A D, r > 0.
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We will use the following version of Theorem 1.15 in [3], which relates

doubling conformal densities to globally defined quasiconformal maps.

Lemma 3 ([3], Theorem 1.15). A positive continuous function % on D is

a doubling conformal density if and only if there exists a quasiconformal map

g : R2 ! R2 and a constant Ab 1 such that A�1%ðzÞa JgðzÞ1=2 aA%ðzÞ for

almost every z A D.

Lemma 4. Suppose that DHR2 is a bounded, simply connected domain,

and let f : D ! D be a conformal map. Then %f ðzÞ ¼ j f 0ðzÞj is a doubling

conformal density on D if and only if D is a John disk.

Proof. By Lemma 2 the map f : ðD; d%f
Þ ! ðD; lDÞ is an isometry.

Then f : D ! ðD; lDÞ is h-quasisymmetric if and only if id : D ! ðD; d%f
Þ is h-

quasisymmetric. Thus by Proposition 2.11 in [3] %f ðzÞ ¼ j f 0ðzÞj is doubling

if and only if f : D ! ðD; lDÞ is quasisymmetric. By Section 7 in [17] (see

also Väisälä [21]) this happens if and only if D is a John disk. r

Proof of Theorem 1. For the necessity, let D be a c-John disk and let

f : D ! D be a conformal map. By Lemma 4 %f ðzÞ ¼ j f 0ðzÞj is a doubling

conformal density in D. By Lemma 3 there are constants A and K , depending

only on %f (hence only on c), and a K-quasiconformal map g : R2 ! R2 such

that

A�1%f ðzÞa JgðzÞ1=2 aA%f ðzÞ a:e:

Let W ¼ gðDÞ. Then by definition W is a K-quasidisk. Because f is con-

formal, %f ðzÞ ¼ j f 0ðzÞj ¼ J
1=2
f and we have that

A�2Jf ðzÞa JgðzÞaA2Jf ðzÞ a:e:

By Lemma 1 the map F ¼ f � g�1 is locally L-bilipschitz for some L ¼ LðcÞ.
Since F is a homeomorphism, and thus in particular injective, we have

that

L�1lWðz1; z2Þa lDðFðz1Þ;F ðz2ÞÞaLlWðz1; z2Þ:

The su‰ciency is not hard to prove from first principles: it is easy to see

that a local bilipschitz image of a John domain is another John domain. One

can also appeal to the fact that quasidisks are John disks, and to Theorem 3.6

in [17], which says that the John condition is preserved under maps that are

quasisymmetric with respect to internal distances. r

Remark 1. In general we cannot use the unit disk as the quasidisk W in

Theorem 1 because then D must be a so-called internal chord-arc domain, and

thus in particular must have rectifiable boundary. See Väisälä [20, 21]. Also
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note that, in general, the bilipschitz constant cannot be too close to 1, since

then D would have to be a quasidisk [8].

It is well known that in a John disk the internal diameter distance dD,

defined by using diameters instead of lengths in (1), is equivalent to the lD
metric [14]. We will show next that any locally Euclidean metric that is

quasisymmetrically equivalent to lD is in fact equivalent to it.

By a locally Euclidean metric in a domain DHRn we will mean a metric

d on D such that for every z in D there is a ball BHD in which we have

dðz;wÞ ¼ jz� wj. For all locally Euclidean metrics d we clearly have that

da lD. Both lD and dD are locally Euclidean. Two metrics d1 and d2 on

D are quasisymmetrically equivalent if the map id : ðD; d1Þ ! ðD; d2Þ is quasi-

symmetric. The metrics d1 and d2 are equivalent if id : ðD; d1Þ ! ðD; d2Þ is

bilipschitz.

Theorem 2. Let DHR2 be a c-John disk. Let d be a metric in D such

that d is locally Euclidean and dðz;wÞb jz� wj. If d is quasisymmetrically

equivalent to lD, then d is equivalent to lD.

Proof. Recall that in a John disk one may always use hyperbolic

segments g as the curves in the definition [12], [17]. Remember also the

Gehring-Hayman theorem that says that if g½z;w� is the hyperbolic geodesic

joining z and w in D, then

lðg½z;w�ÞaKlDðz;wÞð3Þ

for a universal constant K , the Gehring-Hayman constant. See e.g. Pommer-

enke [18], Theorem 4.20 or [4], Theorem 3.1.

Take z and w in D. Since D is a John disk we have that

lðg½z; z0�Þ ¼ lðg½w; z0�Þa c distðz0; qDÞ;ð4Þ

where z0 is the mid-point—with respect to Euclidean arc length—of the

hyperbolic geodesic joining z and w in D. By the quasisymmetric equivalence

of d and lD we have that

dðz;wÞ
dðz; z0Þ

a h
lDðz;wÞ
lDðz; z0Þ

� �
a h K

lðg½z;w�Þ
lðg½z; z0�Þ

� �
¼ hð2KÞ ¼ a

where K is the Gehring-Hayman constant. The same argument with
dðz; z0Þ
dðz;wÞ

gives

b�1
a

dðz;wÞ
dðz; z0Þ

a a;ð5Þ

where b ¼ hðK=2Þ.
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If jz� z0j < distðz0; qDÞ, we have dðz; z0Þb jz� z0j ¼ lDðz; z0Þ. Then us-

ing (5) and (3) it follows that

dðz;wÞb dðz; z0Þ
b

b
lDðz; z0Þ

b
b

lðg½z; z0�Þ
Kb

¼ lðg½z;w�Þ
2Kb

b
lDðz;wÞ
2Kb

:

If jz� z0jb distðz0; qDÞ we have by (5) and (4)

dðz;wÞb dðz; z0Þ
b

b
jz� z0j

b
b

distðz0; qDÞ
b

b
lðg½z; z0�Þ

bc
b

lDðz;wÞ
2bc

: r

Remark 2. The assumption that dðz;wÞb jz� wj in the formulation of

Theorem 2 is non-trivial in the sense that a locally Euclidean metric does not

have to be greater than Euclidean distance globally. Let e be any positive

number with e < diam D. Then dðz;wÞ ¼ minfjz� wj; eg does not satisfy the

assumption in Theorem 2, and dðz;wÞb jz� wj does not necessarily hold even

when D is convex. With the assumptions in Theorem 2, however, we will

always have dðz;wÞ ¼ jz� wj in any convex subdomain of D.

Next we give some examples to illustrate the use of Theorem 1 when

proving necessary conditions for John disks.

For the first result, let S denote Rohde’s class of snowflake-like curves,

as constructed in Section 3 of [19]. The classic von Koch snowflake is a

prototype of such a curve. In [19], Theorem 1.1, Rohde proved that every

quasicircle is a Euclidean (global) bilipschitz image of some curve S in

S. Combining Rohde’s result with Theorem 1, we immediately obtain the

following.

Corollary 1. A bounded, simply connected domain DHR2 is a John

disk if and only if there are S A S and a bilipschitz map F : ðW; lWÞ ! ðD; lDÞ,
where W is the bounded component of R2nS.

Thus the collection of domains bounded by some S A S contains all

bounded John disks up to application of a locally bilipschitz map.

Corollary 1 immediately gives information about the Assouad- and Haus-

dor¤ dimensions of the metric space ðqD; lDÞ for a Jordan John domain D. In

this case lD defines a natural metric at the boundary qD because all boundary

points of a John domain are rectifiably accessible. See [17], Remark 6.6 and

[7]. The Assouad- and Hausdor¤ dimensions are invariant under bilipschitz

maps, so that ðqD; lDÞ has the same dimension as the boundary of the cor-

responding curve S in Corollary 1. See [4], Section 7 for more general results.

The next result illustrates well how easy it is to obtain necessary conditions

for John disks using Theorem 1. It is a one sided version of a result due to

Gehring for quasidisks [9], Theorem 2.11.
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Corollary 2 ([7], Theorem 4.7). Let DHR2 be a bounded Jordan c-John

domain. Suppose that f : ðqD; lDÞ ! ðqD 0; lD 0 Þ is an L-bilipschitz map, where

D 0 is a bounded Jordan domain. Then f has an extension ~ff : ðD; lDÞ !
ðD 0; lD 0 Þ which is also bilipschitz.

Gehring’s result says that a Euclidean bilipschitz map of a quasicircle

extends as a bilipschitz map of the circle union its interior domain. Thus

Corollary 2 readily follows by combining this result with Theorem 1. In [7]

there is a version also for unbounded John disks. It would still be interesting

to know whether the converse to Corollary 2 holds or not. (It does in the

bounded quasicircle case [9].)

Finally, we present a new characterization of John disks in terms of

a bound for hyperbolic distance [6]. There has been some interest in this

lately [22]. Denote hyperbolic distance in a simply connected domain D by

hDðz1; z2Þ, and define a metric j 0D by

j 0Dðz1; z2Þ ¼ log 1þ lDðz1; z2Þ
distðz1; qDÞ

� �
1þ lDðz1; z2Þ

distðz2; qDÞ

� �
:

This is an internal distance version of the classic jD metric [13]. In [16],

Theorem 4.1, Kim and Langmeyer gave the following characterization of

John disks.

Lemma 5 ([16], Theorem 4.1). Let D be a bounded simply connected

domain. Then D is a c-John disk if and only if

hDðz1; z2Þa bj 0Dðz1; z2Þ for all z1; z2 A D:

The constants b and c depend only on each other.

Compare Gehring-Osgood [13], Bonk, Heinonen and Koskela [2] and Kim

[15]. The same bound, with jD instead of j 0D, characterizes quasidisks [10].

Gehring and Hag [11] have also characterized quasidisks in terms of the bound:

hDðz1; z2Þa kaDðz1; z2Þ for all z1; z2 A D;ð6Þ

for hyperbolic distance. Here aD is the Apollonian metric [1], defined by

aDðz1; z2Þ ¼ sup
w1;w2 A qD

log
jz1 � w1j
jz2 � w1j

jz2 � w2j
jz1 � w2j

� �
:ð7Þ

(Generally speaking aD is only a pseudo metric if qD is a proper subset of some

circle.) Let us introduce

a 0
Dðz1; z2Þ ¼ sup

w1;w2 A qrD
log

lDðz1;w1Þ
lDðz2;w1Þ

lDðz2;w2Þ
lDðz1;w2Þ

� �
:
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The supremum here is taken over the rectifiably accessible boundary points

qrD. For a John domain qrD ¼ qD. The following inequalities always hold:

aD a jD; a 0
D a j 0D:ð8Þ

To prove e.g. the right inequality we note that for any two w1;w2 A qD we

have that

lDðz1;wjÞ
lDðz2;wjÞ

a
lDðz1; z2Þ þ lDðz2;wjÞ

lDðz2;wjÞ
¼ lDðz1; z2Þ

lDðz2;wjÞ
þ 1a

lDðz1; z2Þ
distðz2; qDÞ þ 1:

Because w1, w2 were chosen arbitrarily (8) follows by symmetry. Inequality (8)

shows that a 0
D is always a pseudo metric, even if the supremum defining it a

priori could be infinite. We now have the following, which was proved in the

author’s thesis [6], but with a more tedious proof.

Corollary 3. A bounded, simply connected Jordan domain D in R2 is a

c-John disk if and only if there are constants b and d such that

hDðz1; z2Þa ba 0
Dðz1; z2Þ þ d for all z1; z2 A D:ð9Þ

Proof. If (9) holds, then it follows from (8) that hDðz1; z2Þa
bj 0Dðz1; z2Þ þ d. By reasoning as in [10] we may remove the additive constant

(this is written out in detail in [6], Section 6.2), and hence D is a John disk by

Lemma 5.

Conversely, let D be a c-John disk. Let W be the K-quasidisk guaranteed

by Theorem 1 and denote by F the corresponding map. Note that F can

be taken to be L-bilipschitz with respect to both internal and hyperbolic

distances; it is not di‰cult to see that F is bilipschitz with respect to the

quasihyperbolic metric, and the quasihyperbolic metric is equivalent to the

hyperbolic metric. Next let z1; z2 A D and take zj A W such that FðzjÞ ¼ zj .

Take o1 and o2 in qW such that the supremum (7) for aWðz1; z2Þ is achieved.

Let wj ¼ F ðojÞ. Since W is a quasidisk, we know from (6) that there is a

constant k such that hWðz1; z2Þa kaWðz1; z2Þ. Using the above facts, we have

that

hDðz1; z2ÞaLhWðz1; z2Þ

a kLaWðz1; z2Þ

¼ kL log
jz1 � o1j
jz2 � o1j

jz2 � o2j
jz1 � o2j

� �

a kL log L4 lDðz1;w1Þ
lDðz2;w1Þ

lDðz2;w2Þ
lDðz1;w2Þ

� �
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¼ kL log
lDðz1;w1Þ
lDðz2;w1Þ

lDðz2;w2Þ
lDðz1;w2Þ

� �
þ 4kL log L

a kLa 0
Dðz1; z2Þ þ 4kL log L:

Thus we can let b ¼ kL and d ¼ 4kL log L. r

The above proof also shows that whenever D is a bounded John disk,

then a 0
D is in fact a metric, and not just a pseudo metric. Besides, a similar

argument can be used to prove the necessity in Lemma 5.

Remark 3. Unfortunately it is not possible to remove the additive

constant in the above corollary. See the examples in [22].
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