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ABSTRACT. We give new representations of solutions for the periodic linear difference
equation of the type x(n+ 1) = B(n)x(n) + b(n), where complex nonsingular matrices
B(n) and vectors b(n) are p-periodic. These are based on the Floquet multipliers and
the Floquet exponents, respectively. By using these representations, asymptotic be-
havior of solutions is characterized by initial values. In particular, we can characterize
necessary and sufficient conditions that the equation has a bounded solution (or a p-
periodic solution), and the Massera type theorem by initial values.

1. Introduction

Let C be the set of all complex numbers. Set N={l,2,...} and
No =NU{0}. In the present paper we consider the periodic linear difference
equation of the form

x(n+ 1) = B(n)x(n) 4+ b(n), x(0) =weC?, (neNy), (1)

where p x p complex matrices B(n) and b(n) € C”, ne Ny, satisfy the con-
ditions B(n) = B(n+p) and b(n) = b(n+p), (p=2,peN).

We know the variation of constants formula as a representation of
solutions for the equation (1), cf. [1]. However, this representation is not
proper to obtain asymptotic behavior of solutions to the equation (1).

More recently, T. Naito and J. S. Shin [7] gave new representations
and asymptotic behavior of solutions to the linear difference equation of the
form
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x(n+1) = Bx(n) + b, x(0) = w. (2)

Refer to [3, 7] for the case where B =e¢™. In particular, by using these
representations, the necessary and sufficient conditions that the equation (2)
has a bounded solution (or a p-periodic solution) are characterized by initial
values.

In [8], a representation and asymptotic behavior of solutions for the case
where B(n) = B in the equation (1) are investigated in the same direction as
above.

The purpose of this paper is to extend the result obtained in [8] to the
general equation (1). In the paper, we give two representations of solutions
for the equation (1), which are based on the Floquet multipliers and the
Floquet exponents, respectively. Using these representations, by initial values
we characterize asymptotic properties of solutions to the equation (1). In
particular, we obtain the necessary and sufficient conditions that the equation
(1) has a bounded solution (or a p-periodic solution). Moreover, the Massera
type theorem for the equation (1) is characterized by initial values. Finally, we
illustrate our results through an example. We emphasize that our approach
employed in this paper and in a series of our articles [3, 7, 8] is more valid and
effective for the study of the subject in this paper, rather than the one utilizing
the Jordan form.

2. Preliminaries

In this section, we state some notations and known results for a general
matrix H. Let E be the p x p unite matrix. For a p x p complex matrix H
we denote by o(H) the set of all eigenvalues of H, and by /Ay (y) the index of
nea(H). Let Gy(n)=N((H —;7E)h”<'7>) be the generalized eigenspace cor-
responding to # € o(H) and Q,(H) : C” — Gg(n) the projection corresponding
to the direct sum decomposition

C’= > ®Guln).

nea(H)
These projections have the following properties:

Q’?(H)CPZGH(ﬂ)v HQ'?(H):Q'?(H)Ha QV(H)QW(H)ZO (v;é;//)7

Oy (H)=Qy(H), E= ) 0Q,H).

We make use of the factorial numbers (n), such that
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1, (k=0),
(n)k:{n(n—l)(n—Z)...(n—k+1), (k=1,2,...,n),
0, (k=n+1n+2...).

Clearly,

% - <Z)’ (n), =n! and (n), =0 (k > n).

The following result is a fundamental one in the studying the qualitative
theory of linear difference equations, which is well known.

Lemma 1. If 0 ¢ o(H), then

hr (n)—1
H' = > (]— “(H - nE)Q,(H), n=0,12,.... (3)

nea(H) j=0

Let neo(H). If n#0, then

hH('?) 1(
H"Q,(H — "7 (H —nE)’ Qn( ).
Jj=0 !
If n=0, then
" _Jo (n = hu(0))
0 ~{ gy 02 i) 1),
For a function a(z) = (z—1)"" (z # 1), we have
a®(z) = jzkk a(z) = (=D Kz — 1)~ (4)

For every e o(H) (n # 1), two matrices Z,(H,m) and Z,(H) are given
as follows:

and

Put
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Su(H)y=>_H* (n>1), So(H)=0.

The following lemma can be found in [7].

LemMA 2 [7]. Let nea(H) and n e Ny.
1) If n#1, then

Sn(H)Qn(H) = HHZ'?(H>Q'7(H) - Zn(H)Qn(H>-
In particular, if 1 # 1, n #0, then the right side is written as

hH(’?) l(l/l) B
Su(H " (H = nE)"Z,(H)Qy(H) — Z,(H) Qy(H).
k=0
2) If n=1, then
i (1)—1

simen =y (1 )ur-pyom.

i=0

3. Floquet representations of solutions of periodic linear difference equations

In this section, two representations of solutions for the equation (1) are
given by using the Floquet multipliers and the Floquet exponents, respec-
tively.

3.1. Periodic map. First, we consider the periodic linear homogeneous dif-
ference equation of the form

x(n+1) = B(n)x(n). (5)

Throughout this paper we assume that for all n e Ny, B(n) is nonsingular.
Put

—1)Bn—-2)...B(m n>m
T s { B 0Be=2)..-Blm) (n> m)

i=m

Then the fundamental matrix X (n) (n € Nj) and the fundamental solution
U(n,m), n > m, of the equation (5) are given as

xX(m =[] 86) ©)



Representations of solutions 139

and

n—1
U(n,m) = X(m)X~" (m) = [ ] B(G), ()
respectively. Clearly, U(n,0) = X(n). If n<m, then U(n,m) is defined
by

m—

| -1
U(n,m) = U Y(m,n) = <'_ B(i)) .

LemMa 3 [1]. The fundamental solution U(n,m) (m,n € Ny) of the equa-
tion (5) has the following properties:
1) U(n,n) =E.
) U, r)U(r,m) = U(n,m).
) Umn+p,m+p)=Un,m).
) U'(m+p,m) = U(m+np,m).
5) Ulm+np,r) = U"(m+p,m)U(m,r) = U(m,r)U"(r +p,r).

B W N

For the fundamental matrix X (n) of the equation (5) there are a non-
singular matrix P(n) with period p and a matrix M such that

X(n)=Pn)M". (8)

Since U(n,m) = X (n)X~'(m), we have U(n,m)= P(n)M"~"P~'(m). More-
over, since P(n) is p-periodic, P~'(n) is also p-periodic; clearly, P(p)=
P0)=E, P"'(p) =P (0)=E and X(p) = M".

Next, we define the well known periodic map V(n) (neNy) by V(n) =
U(n+ p,n). Then it is easy to check the following properties:

V(n+p)=Vn), V(n)U(n,m) = U(n,m)V(m),
and
V(n)=Pm)V()P ' (n), V()= M’

In particular, 77(0) is called a periodic matrix or a monodromy matrix for the
equation (5). Clearly, we have

X(m+ kp) = VFE(m)X (m) = X (m)V*(0) (m, k € Np). 9)

Let vea(V(0)). We set O, = 0,(V(0)), Q,(n) = Q,(V(n)) and h(v) =
hy)(v). Then we have

Qu(n+p)=0un),  Qm)U(n,m) = U(n,m)Q,(m).
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LemMa 4. Let veo(V(0)). The periodic map V(n), n e Ny, has the fol-
lowing spectral properties:

) o(V(n) =a(V(0)) and 0¢ a(V(0)).

2) hye(v) = hym(v) and

U(nam)GV(m)(v) = GV(n)(V)'
In particular,

X(n)Gy0)(v) = Gy (v).

dim GV(n)(V) = dim GV(m)(V)'

3.2. A Floquet representation of solutions (I). Every n e Ny is expressed by
n=k(n)p+mn), k(n)= Lﬂ)}, 0 <m(n) < p—1, where for a € R the symbol
[a] stands for the maximum integer which is not greater than a. Hereafter,
throughout this paper we will use this expression for n € Nj.

First, we give a representation of the solution x(n;w) of the equation (5)
with x(0) =w. From the relation (9) the fundamental solution U(n,0) of
the equation (5) is expressed as U(n,0) = X (m(n))V*"(0). Thus the solution
x(n; Oyw) of the equation (5) satisfying the initial condition Q,x(0) = Q,w,
vea(V(0)), is expressed as

x(n; Qyw) = U(n,0)0,w = X (m(n))V*" (0)0,w.

Clearly, O,(n)x(n;w) = x(n; Qy,w). By Lemma 1 we have

BT (k(n)), , ,
O,(n)x(n;w) = X (m(n)) Z ( (_'))" VEO=I(1(0) — vE) Q,w. (10)

= )

Next, we consider the periodic linear inhomogeneous difference equation
(1). We denote by x(n;w,b(:)) the solution of the equation (1).
For every ke Ny and vea(V(0)), we set

>~

—1

Sk(b(-)) = Uk, i+ 1)) (1<k<p),  So(b())=0

Seo(b()) = ) Ulk,i+ DO+ 1)b(i) (1 <k<p),  So.(b()) =0.
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LEMMA 5. The solution x(n) := x(n;w,b(-)) of the equation (1) is expressed

x(n) = X(m)w + X (m(n)) Sk (V(0))S,(b(-)) + S (b(-))- (11)
and
xX(k(n)p) = VU (0)w + Sy (V(0))S,(b(-)). (12)
PrOOF. Set k = k(n), m =m(n). By easy calculations, we have
x(n) =Xm)V*(0)w+ X (m iiV Nb(i —1) +ZUWllb(1—1)
j=1 i=1 i=1
Since
k p k—1 . p—1
> > v Db(i—1)=>_"V/(0)>_ Ulp,i+1)b(i)
=1 =1 =0 i=0

= Si(V(0))S,(b(-)),
we can obtain (I11). (12) is obvious. []

From Lemma 5 the component Q,(n)x(n;w,b(-)) of solution x(n;w,b(-))
is given by

Qu(n)x(m;w, b(-))
= X(n)Qww + X (m(1))Si(m) (V(0))S,,4(b(-)) + Sy, v(b(-))- (13)
Clearly, the solution x(n;w,b()) of the equation (1) is expressed as
x(n;w, b(- Z O, (n)x(n; w, b(-)).
vea(V(0))

For each v e g(V(0)), we define Z,(V(0),b(-)), y,(w,b(:)) and o(w,b(-)) as
follows:

Z,(V(0),6()) = Z,(V(0)S,, (b)) (v#1),
7,(0,6()) = 7,00,6(); V(0) = Qw + Z,(V(0),6()) (v 1),
3(w,b(-)) = 3(w,b(); V(0)) = (V(0) = E)Qiw+S,1(b())  (v=1).

We are now to give a representation of the component Q,(n)x(n;w,b(-))
of the solution x(n; w, b(-)) to the equation (1). The representation of solutions
is based on the Floquet multipliers.

—~
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THEOREM 1. Let vea(V(0)). The component Q,(n)x(n;w,b(-)) of the
solution x(n;w,b(-)) to the equation (1) is expressed as follows:
1) If v#1, then

O, (n)x(n;w, b(+))
= X (n)y,(w,b(-)) = X(m(n))Z,(V(0),b(-)) + S, »(b(-))  (14)
<1

h(v )
Z LRI (0) = vE) p, (w, b()
J=
X(m(m) Zu(V(0),5()) + Sy o(b()) (15)

and
Ou(k(m)p)x(k(m)ps w,b()) = VEO(0)y,(w, b(-) = Z,(V(0),5()).  (16)
2) If v=1, then

Qu(m)x(m;w, b(-)) = X(m(n)) )

J
+ X (m ())Q1W+S m(n) (b()) (17)

and

ProOF. Set N = V(0) — vE and k = k(n).
Let v# 1. By Lemma 2 we have

Sk(V(0))Sp,u(b(-)) = Sk(V(0)) @S, (b())
= VH0)Z,(V(0))S,.4(b()) = Zu(V(0)) Sy, (B()).
Hence we get
VE(0)Quw + Sk(V(0)S,(Qub(-))
= VE0)(Quw + Zu(V(0))S,.(b())) = Zu(V(0)) Sy, (b())
= VE(0)7,(w,b(-) = Z,(V(0), b()).

Using this relation and Lemma 5, we can obtain the representation (14). The
representations (15) and (16) are obvious, because of m(n) =0, X(0) = E and
Lemma 1.
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Let v=1. Using Lemma 1 and Lemma 2 again, we have

VE0)Quw + Sk (V(0))S,.1(b(-))

:hiﬁ; ( )N’Qlerh%l( >NjSp,l(b('))

J=

WL A MOl A
= Z (jJrl)N-/“Qlw—i— Z (]_+ 1)N/S/,‘l(b(-)) + Ow
j=0 j=0

1)-1 K '
i Z (HI)N](NQI‘V+SP71<b<->>>+Q1w

= (] j‘_ . )Nfé(w,b(-)) + 0w,

from which the representation (17) is obtained. Therefore the proof of the
theorem is complete. []

COROLLARY 1. Let b(n) =b in the equation (1). Let vea(V(0)). The
component Q,(n)x(n;w,b) of solution x(n;w,b) of the equation (1) is expressed
as follows:

) If v#1, then

O, (n)x(n;w,b) = X (n)y,(w,b) — X (m(n))Z,(V(0),b) + Sm(n),v(b)-

2) If v=1, then

WO (). A
Q1 (n)x(n; w,b) = X(m(n)) > %(V(O)—E)"é(w,b)

7=0
+ X(m(n))Qlw + Sm(n), 1 (b)

We consider the case where B(n) =B (n=0,1,...) in the equation (1).
Then

from which we have

0,(n) = 0, = 0,(B") for n e Ny.

Set o,(B) ={uecao(B)|v=u"} for vea(B’) and Q,= Q,(B). Since the
relation Gp,(v) =3, 5 @Gp(p) holds, it follows that for ueo,(B) the
relation 0,0, = O, holds. Thus we obtain
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p—1

Z,(V(0),b()) = Zu(B") 3_ B 0ub(i),
i=0
from which it follows that for u € g,(B)
OuZ,(B,b(")) = Z,(B")S,(B, Q,b(:)); (18)

where

(B, 0,b( ZB" o), (1<k<p), So(B,Qb(-)=0

k
Define a function ¢(z) and numbers { } as follows:
m .
J
1

zP —1

c(z) = a(z’) = (27 #1),

and for k,m,jeN

K C ()
{m},""’ 2. e

oep(k,mk) i=
k 0 (k+#0) )
) A e A
; =
where p(k,m,n) stands for the set of all finite sequences o := (o, 002, ...,0%),

1)
o; €No, (i=1,2,...,k), such that the conditions
o +op+ o =m, o +200 + -+ ko =n

are satisfied.
Set

1
Bke# k' Tk (B :uE) (Iu 7& O)

LemMA 6 [8]. Let peo,(B) such that w+#0. If 0 <k <h(u)—1, then
1 . h(u)—1 i
W(Bp — VE) Qll = IZ]; {k }/}Bi,ﬂQﬂ'
If h(u) <k, then (B” —vE)*Q, = 0.

Then we have that for each uea(B), (¢’ =1)
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0u(w,b(-); B) := Q,0(w,b(-); B”)
= (B’ —E)Quw+ S,(B, 0ub())

h(p)—1
= Z (p)[Bi,,uQ;tW"" Sp(Ba Q,ub()) (19)
=1
For each p e o(B) such that u” # 1, we set
h(p)—1 1 .
F¢ () (B = E)' (1 #0),
2By ={
w8 (h(w=D/pl
— B” (u=0).
i=0

LemMa 7 [8]. Let peao,(B) and v=up’ #1. Then
ZV(B/))Q,U = ZB(B)Q#'
Using this lemma, (18) is reduced to
Zu(B,b()) 1= QuZ,(B’,b(-)) = Z,)(B)S,(B, Qub()).
Thus for e a,(B), (u” #1) we get

7u(w,b(:); B) := Quy, (w, b(-); V(0)) = Quw + Z,u(B, b(-)). (20)

Thus we have the following result.

COROLLARY 2 [8]. Let B(n) = B in the equation (1) and pe€ o(B). The
component Q,x(n) of the solution x(n):= x(n;w,b(-)) of the equation (1) is
expressed as follows:

1) If w9 #1, then

Qux(n) = B"y,(w,b(-); B) = B"" Z,(B,b(-)) + Sy (B, Qub()) (21

h(p)— 1

_p By 00.b(); B) — B" Z,(B.b(")

J=0

+ Sm(n)(Bv Q,ub())
2) If W =1, then

o h<#)71(k(n))‘+l ! i m(n) .
o= (3 GRS ) )i

i=j

+B"" Ouw + Sy (B 0ub(")). (22)
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Proor. Let u” # 1. Operating O, to (14) we have

Qux(n) = B"Quy, (w,b(-)) — B"" QuZ,(B’,b()) + Sy (B, Qub ().

In view of (20), we obtain (21).
Let 4 =1. Operating Q, to (17) we have

h(p)— 1

0,:x(n) = B"™ ”‘ — E)/ 0,0(w,b(-))

J=0
i B QﬂW + Sm(n)(B, Q‘[lb())

The representation (22) follows from (19) and Lemma 6. Therefore the proof
is complete. []

3.3. A Floquet representation of solutions (II). By the relation (8) and the
transformation x(n) = P(n)y(n), the equation (1) is reduced to the equation

yn+1) = My(n) +h(n), — y(0) =w, (23)
where i(n) = P~'(n+1)b(n). Since P~!(n) is p-periodic, /(n) is also p-periodic.
Hence the solution x(n;w,b(-)) of the equation (1) is expressed as

x(mw,b()) = Y Pn)Qu(M)y(n;w, h(")).
nea(M)
Put
Xu(m;w,b(-)) = P(1) Qu(M)y(m; w, h())(= P(n) Qu(M) P~ (m)x(m; w, b()))

Applying Corollary 2, we get the following result, which is based on the
Floquet exponents.

THEOREM 2. Let pre a(M). The component x,(n) of the solution x(n) :=
x(n;w,b(+)) of the equation (1) is expressed as follows:

1) If W’ #1, then

xu(n) = X(n)p,(w,h(-); M) = X (m(n))Z, (M, h(-))

+ P(m(n))Sm(n)(M7 Q,u(M)h())

h(,u) 1
)" M, (W, h(:); M) = P(m(n)) M™ ™ Z, (M, h(-))
Jj=0

+ P(m(n))Sm(n)(Ma Q;t(M)h())
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2) If W =1, then

f}AL#>A4MW@AthyAA
p

h(p)—1 (k(n)) h(#)—l{
J

J+1
xu(n) = (P(n) 2T 2

i=j

+ P(m(n)) M Q,(M)w + P(m(n)) Sy (M, Qu(M)h()).

4. Asymptotic behavior of solutions

In this section, asymptotic behavior of solutions to the equation (1) is
characterized by using representations of solutions obtained in the previous
sections.

Let o(V(0)) = {v1,v2,...,vs}. We can describe asymptotic behavior of the
solution to the equation (1) by an index of growth order (d(vi),d(v2),...,d(vy))
for the initial value w defined as follows:

If v # 1, then d(v) = 0 in the case that y,(w,b(-)) = 0; otherwise, d(v) is a
positive integer such that

(V(0) = vE)™ 1y, (w,b()) # 0, (V(0) = vE)"y,(w,b()) =

If v=1, then d(v) =0 in the case that d(w,b(:)) = 0; otherwise, d(v) is a
positive integer such that

(V(0) = E)*D715(w,b(-)) #£0,  (V(0) = E)!Vs(w,b()) =

Clearly, d(1) < ().
Using Theorem 1, we obtain the following result.

THEOREM 3. Let v e a(V(0)), and Q,(n)x(n) be the component of the solu-
tion x(n) := x(n;w,b(-)) of the equation (1).
1) The case where |v| > 1.
(1) If d(v) =0, then Q,(n)x(n) is p-periodic:

Qu(k(n)p)x(k(n)p) = =Z,(V(0),b(-)).
(2) If d(v) =1, then Q,(n)x(n) is unbounded:

yl/ol
0.(n)x(m) = 7 d{ p_ et X (n= [ 2]0) 70 = vy )

(CINES R

2) The case where |v| < 1. Then Q,(n)x(n) is bounded.
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(1) If d(v) =0, then Q,(n)x(n) is p-periodic.

(2) If dv) = 1, then Q,(n)x(n) is bounded.
3) The case where |v| =1, v # 1.

(1) If d(v) =0, then Q,(n)x(n) is p-periodic.

(2) If d(v) =1, then Q,(n)x(n) is bounded:

0u(n)x(m) = vx (= (2] ), 00601) — & (n = 2] ) 2.(710).60)
+ Su—in/plpv (b))
(3) If d(v) > 2, then Qy(n)x(n) is unbounded:

(B,

() — 1)|vd —}p>(V(0) —vE)* 7Y (w,b(-))

“((m)d@l) (n— o).

4)  The case where v =1.
(1) If d(1) =0, then Q\(n)x(n) is p-periodic: Qi(k(n)p)x(k(n)p) =
ow.
(2) If d(1) = 1, then Q\(n)x(n) is unbounded:

Qu(n)x(n) =

%X(n E

01(n)x(m) == it (n = 2] ) (7(0) = vE) "o,

() o=

The following results on the boundedness and the p-periodicity of solutions
for the equation (1) are immediately obtained from Theorem 3.

THEOREM 4. A solution x(n;w,b(-)) of the equation (1) is bounded if and
only if the following conditions hold: For every ve a(V(0)),

D) if |v| > 1, then y,(w,b(:)) =0

2) if =1, v#1, then (V(0)—vE)y,(w,b(-)) =0, and

3) ifv=1, then 6(w,b(:)) =0

THEOREM 5. The following statements are equivalent:
1) A solution x(n;w,b(-)) of the equation (1) is p-periodic.
2) For every vea(V(0)),

(1) y,(w,b(-)) =0, (v+#1), and

(2) o(w,b(-)) =0, (v=1).
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(E = V(0))w = S,(b())-

ProOF. The equivalence of 1) and 2) follows from Theorem 3. Using
(12), we have that x(p;w,b(-)) = x(0;w,b(-)) if and only if (E— V(0))w=
S,(b(-)), which means the equivalence of 1) and 3). [

In particular, we note that for a p-periodic solution x(n;w,b(-)) of the
equation (1) we have

COROLLARY 3. A bounded solution x(n;w,b(-)) of the equation (1) is p-
periodic if and only if y,(w,b(-)) =0 for all ve a(V(0)) such that |v| <1, v # 1.

CoRrROLLARY 4. If'1 ¢ a(V(0)), then the equation (1) has a unique p-periodic
solution.

LemMA 8. The following statements are equivalent: Let 1€ a(V(0)).
1) There is Q1w such that 6(w,b(:)) = 0.

) Spa(b()) € (V(0) — E)Grio)(1).

) S,(b(-)) e R(V(0) — E), the range of V(0)— E.

) There is w satisfying the equation

IR

(E = V(0))w = S,(b())-

ProOF. The equivalence of 2) and 3) follows from Lemma 5.5 in [3].
The equivalence of 1) and 4) is given by Theorem 5. The remainder is
obvious. []

Finally, we characterize the Massera type theorem (cf. [4]) by initial values.
The proof follows from Theorem 4, Theorem 5 and Lemma 8.

THEOREM 6. The following statements are equivalent:

1) The equation (1) has a solution which is bounded.

2) 1ea(V(0)) and there is Q\w such that 5(w,b(-)) =0, or 1¢ a(V(0)).
3) The equation (1) has a p-periodic solution.

5. An example

In this section, we will illustrate our results through an example. We deal
with the initial problem to the equation

x(n+ 1) = B(n)x(n) + b(n), x(0)=we C3, (n € Np), (24)
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where
(-1)" 1 0 (—=1)"a
Bmy= 0o (="' o, bm)=|26+0-(-1)"a |,
(_1)n+1 1 (—1)"0
x1(n) Wy
x(n) = | xa(n) |, w=1[ w (a,b,ceC).
x3(n) w3

V(in)=U(n+2,n)=Bn+1)Bn)=| 0 -1 0
0 —1+(-1)"" 1
Since
-1 =2 0
yvioy=1 0 -1 0,
0 -2 1

we have that @y (v) = [vE - V(0)| = (v + 1)*(v—1), that is, o(V(n)) =
a(V(0)) = {—1,1}. We note that 2 = rank(V(0) 4+ E) > rank(V(0) + E)* = 1.

Hence we get Ay (—1) =2, hyq)(l) = 1.
Now, we will calculate Q_;(n) and Q;(n). Since
1 B —%v - %

Dy)(v)  (v+ 1 v

we have

01(m = -3V - 3E) (V) - B)

1 0 0

=10 1 0

0 14l=1)" o

and
0i(m) = 3 (V() + EY’

0 0 0
=10 0 0
0 —I+i=n" 1
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In particular, if n» =0, then we get

100 0 0 0
o,=lo 1 0], o=|0 0 o0
010 0 -1 1

Next, we will calculate two quantities y_;(w,b(-)) and o(w,b(:)). We have
that

and that

S2.-1(b(+)) = U(2,1)Q-1(1)b(0) + U(2,2)Q-1(2)b(1)

-1 1 0 1 0 0 1 00

= 0 1 0 0 1 0fb0)+]0 1 0|b(1)
0 1 1 0 0 0 010
—2a+2b

=1 2a+4b
2a + 4b

Therefore we obtain
P_1(w,b(:)) = Q-iw+ Z_1(V(0),b(-)) = Q1w + Z_1(V(0))S2,-1(b("))

! 1 -1 0 —2a+2b
:Q,lw—i 0 1 0 2a + 4b
0 -1 2 2a + 4b

—2a-b
=Q0_w— a+2b
a+2b

Moreover, we get
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S2.1(b(-)) = U(2,1)21(1)b(0) + U(2,2)01(2)b(1)

-1 1 0 0 0 0 0 0 0
=1 0 1 0 0 0 0fhO)+]10 0 O |b(1)
0 1 1/)\0 0 1 0 -1 1
0
= 0 ,
—2a —2b

from which it follows that

d(w,b(-)) = (V(0) = E)Qiw + S2,1(b(-))
110 0
=201 0|ow+ 0
010 —2a—2b

Finally, we will check the condition 2) in Lemma 8, that is, S»(b(-)) €
(V(0) — E)Gyo)(1). The space Gy(l) of solutions of the equation
(V(0) — E)x =0 is given by

Gy o)(1) = span 0

Thus we see that

0
0 E(V(O)—E)GV(())(I):
—2a—2b

<~ a+b=0.

S O O

If a+b =0, then

o(w,b(:)) =0« Qwespan | 0

Moreover, we have

—2a—-b
y_1w,b() =0<= Q0_iw=| a+2b
a+2b

Applying Theorem 5, we obtain the following result.



Representations of solutions 153

PROPOSITION 1. Assume that a4+ b = 0. Then the following statements are
equivalent:

) x(m;w,b()) is a 2-periodic solution of the equation (24).

2)

0 1
w € span 0 +bh|1
1 1

We will check the condition 2) in Theorem 4, that is,
(V(0)+ E)y_;(w,b(-)) =0. By an easy calculation, we have

—2a—b 1
y_iw,b(:)=0_iw—| a+2b |espang | 0 ,
a+2b 0
from which it follows that
1 —2a—b
O_1w € span 0 +| a+2b
0 a—+2b

Applying Theorem 4, we obtain the following result.

PROPOSITION 2. Assume that a + b = 0. Then the following statements are
equivalent:

1) x(nm;w,b(")) is a bounded solution of the equation (24).

2)

1 0 1

w € span 01,10 +b| 1

0 1 1
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