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Abstract. Oscillation theorems for the damped elliptic di¤erential equation of second

order

XN
i; j¼1

Di½aijðxÞDjy� þ
XN
i¼1

biðxÞDiyþ cðx; yÞ ¼ 0

are obtained. The results are extensions of averaging techniques due to Coles and

Kamenev, and include earlier known results in literature.

1. Introduction

In the qualitative theory of nonlinear partial di¤erential equations (PDE),

one of the important problems is to determine whether or not solutions of the

equation under consideration are oscillatory. We are here concerned with the

oscillatory properties of solutions of the damped elliptic di¤erential equation of

second order

XN
i; j¼1

Di½aijðxÞDjy� þ
XN
i¼1

biðxÞDiyþ cðx; yÞ ¼ 0 ð1:1Þ

in Wðr0ÞJRN , where x ¼ ðx1; . . . ; xNÞ A RN , Diy ¼ qy=qxi for all i, kxk ¼PN
i¼1

x2
i

� �1=2
, and Wðr0Þ ¼ fx A RN : kxkb r0g for some constant r0 > 0.

Throughout this paper we assume that the following conditions hold.

(A1) A ¼ ðaijðxÞÞ is a real symmetric positive definite matrix function with

aij A C1þn
loc ðWðr0Þ;RÞ for all i, j, and n A ð0; 1Þ;

(A2) bi A Cn
locðWðr0Þ;RÞ for all i;

(A3) c A Cn
locðWðr0Þ � R;RÞ with cðx;�yÞ ¼ �cðx; yÞ for all x A RN , y A R;
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(A4) Suppose that there exist functions p A Cn
locðWðr0Þ;RÞ and f A CðR;RÞU

C1ðR� f0g;RÞ with yf ðyÞ > 0 and f 0ðyÞb e > 0 whenever y0 0 such

that

cðx; yÞb pðxÞ f ðyÞ for all x A Wðr0Þ; y > 0:

In what follows, a solution of Eq. (1.1) is a function of the class

C2þn
loc ðWðr0Þ;RÞ, which satisfies Eq. (1.1) everywhere on Wðr0Þ. We consider

only nontrivial solution of Eq. (1.1) which is defined for all large kxk (see [2]).

The oscillation is considered in the usual sense, i.e., a solution yðxÞ of Eq. (1.1)
is said to be oscillatory if it has zero on WðaÞ for every ab r0. Equation (1.1)

is said to be oscillatory if every solution (if any exists) is oscillatory. Con-

versely, Equation (1.1) is nonoscillatory if there exists a solution which is not

oscillatory.

In the absence of damping, namely, biðxÞ � 0 for all i, there have been

many papers devoted to this case of Eq. (1.1) (see, for example, [7, 9, 11, 12,

15, 16, 17] and the references therein) such as the semilinear elliptic di¤erential

equation

XN
i; j¼1

Di½aijðxÞDjy� þ pðxÞ f ðyÞ ¼ 0; ð1:2Þ

and the more general case

XN
i; j¼1

Di½aijðxÞDjy� þ cðx; yÞ ¼ 0: ð1:3Þ

Some of these known oscillation criteria (for instance, [7, 12, 15, 17]) are,

roughly speaking, derived from either the criteria due to Wintner [10] or

Kamenev [3] for the 1-dimensional second order linear ordinary di¤erential

equation (ODE)

y 00ðtÞ þ pðtÞyðtÞ ¼ 0; p A Cð½t0;yÞ;RÞ; ð1:4Þ

which respectively state that Eq. (1.4) is oscillatory if

lim
t!y

ð t
t0

pðsÞds ¼ y;

or,

lim sup
t!y

1

tm

ð t
t0

ðt� sÞmpðsÞds ¼ y for some m > 1:

In [1], Coles introduced the idea of weighted average to obtain an

oscillation criterion for Eq. (1.4) which extended an earlier result of Wintner
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[10]. Coles’work was subsequently extended by Macki and Wong [5] through

the use of an averaging pair. In a di¤erent direction, Phiols [8] introduced the

concept of general means and obtained further extensions of Kamenev’s type

criteria for Eq. (1.4). Recently, Kong [4] established the called interval criteria

for Eq. (1.4), which use only the information above the function pðtÞ on a

sequence of intervals approaching y.

In 1980, using the N-dimensional vector Riccati transformation, the

pioneering work of Noussair and Swanson [7] investigated the oscillation of

Eq. (1.3), and established Wintner’s type criteria for Eq. (1.3) (see [7], Theorem

4). Recently, Xu [12] obtained Phiols-type theorems for Eq. (1.2), and Zhuang

et al [17] extended Kong’s results to Eq. (1.2).

However, compared to the undamped equations (1.2) and (1.3), the study

of oscillation of the damped equation (1.1) has received considerably less

attention in the literature. The partial reasons seem that the Riccati trans-

formation, which plays a key role in the proof of the results for (1.2) and (1.3),

is N-dimensional vector function, which prevent simple extension of the existing

work for ODE. On the other hand, it is very di‰cult for us to find a suitable

transformation, which like the Strum-Liouville transformation for ODE, to

reduce Eq. (1.1) into the undamped equation.

In fact, we note that in many areas of their actually application, models

describing these problems are a¤ected by such factors as damping term [cf, [2]].

Therefore it is necessary, either theoretically or practically, to study a type of

equation in more general sense–damped elliptic di¤erential equations. But, as

far as we know Eq. (1.1) has never been the subject of systematic investigations

by the averaging techniques [5, 8] expect for paper [6, 14]. Very recently,

under the assumption when the damped functions bi for all i, are di¤er-

entiable, Xu [13] and Xu et al [14] extended the Wintner and Philos theorems

to Eq. (1.1). Such extensions can also be found in Mařı́k [6] for the linear

equation

syþ
XN
i¼1

biðxÞDi yþ pðxÞy ¼ 0: ð1:5Þ

It is therefore natural to ask whether the Wintner and Kamenev theorems

can be extended to Eq. (1.1) when the damped functions bi for all i are not

necessarily di¤erentiable. The purpose of this paper is to answer this question

in the a‰rmative. In fact, by the approach in use of the averaging pair

technique introduced by Macki and Wong [5], we will obtain Wintner’s type

theorem for Eq. (1.1). Further, using the integral averaging technique devel-

oped by Philos [8], we give some Kamenev’s type, and more generally, Philos

and Kong’s type criteria for Eq. (1.1). By choosing appropriate functions, we
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shall present several easily verifiable oscillation criteria. In particular, three

examples are given to illustrate the significance of our main results. It is worth

emphasizing that the obtained theorems here are new even for Eqs. (1.2) and

(1.3) and improve the main results in [7, 12, 13, 14, 17].

2. Preliminary results

In order to discuss our main results, we need the following definitions and

lemmas.

Definition 2.1. A pair of functions ðs; aÞ is called an averaging pair if

( i ) s A Cð½r0;yÞ; ½0;yÞÞ and aðrÞ > 0, a is absolutely continuous on every

compact subinterval of ½r0;yÞ;
(ii) for some g A ½0; 1Þ,

lim
r!y

ð r
r0

sðsÞ
ð s
r0

sðuÞdu
� �g ð s

r0

aðuÞs2ðuÞdu
� ��1

ds ¼ y:

Note that conditions in Definition 2.1 imply that
Ðy
r0
sðsÞds ¼ y (see

[5]).

Definition 2.2. Let D ¼ fðr; sÞ : rb sb r0g and D0 ¼ fðr; sÞ : r > sb r0g.
We say that a function H ¼ Hðr; sÞ A C1ðD;RÞ belongs to a function class H,

defined by H A H, if there exist functions h1; h2 A CðD0;RÞ satisfying the fol-

lowing conditions:

(H1) Hðr; rÞ ¼ 0 for rb r0, Hðr; sÞ > 0 on D0;

(H2) qH
qr

¼ h1ðr; sÞHðr; sÞ and qH
qs

¼ �h2ðr; sÞHðr; sÞ.

Lemma 2.1. For two n-dimensional vectors u; v A RN and a positive con-

stant a. Then the following inequality

akuk2 þ hu; vib
a

2
kuk2 � 1

2a
kvk2 ð2:1Þ

holds, where h ; i denotes the usual scalar product in RN .

The proof of Lemma 2.1 is easy and can be omitted.

Lemma 2.2. Let y ¼ yðxÞ be a nonoscillatory solution of Eq. (1.1), and

f A C1ðWðr0Þ;RþÞ. Then N-dimensional vector function wðxÞ defined by

wðxÞ ¼ 1

f ðyÞ ðA‘yÞðxÞ ð2:2Þ

satisfies the following partial Riccati inequality
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divðfðxÞwðxÞÞa�fðxÞpðxÞ � efðxÞ
2lmaxðxÞ

kwðxÞk2

þ lmaxðxÞ
2efðxÞ kfðxÞbðxÞA�1 � ‘fðxÞk2; ð2:3Þ

where lmaxðxÞ denotes the largest eigenvalue of the matrix A and ‘fðxÞ ¼
ðD1fðxÞ; . . . ;DNfðxÞÞ.

Proof. A direct computation shows that

div wðxÞa�pðxÞ � f 0ðyÞðwTA�1wÞðxÞ � hbðxÞA�1;wTðxÞi: ð2:4Þ

Note that

ðwTA�1wÞðxÞb kwðxÞk2

lmaxðxÞ
:

Then (2.4) implies that

div wðxÞa�pðxÞ � e

lmaxðxÞ
kwðxÞk2 � hbðxÞA�1;wT ðxÞi: ð2:5Þ

Multiplying (2.5) by fðxÞ, we get

divðfðxÞwðxÞÞa�fðxÞpðxÞ � efðxÞ
lmaxðxÞ

kwðxÞk2

� hfðxÞbðxÞA�1 � ‘fðxÞ;wT ðxÞi: ð2:6Þ

By Lemma 2.1, we have

efðxÞ
lmaxðxÞ

kwðxÞk2 þ hfðxÞbðxÞA�1 � ‘fðxÞ;wTðxÞi

b
efðxÞ

2lmaxðxÞ
kwðxÞk2 � lmaxðxÞ

2efðxÞ kfðxÞbðxÞA�1 � ‘fðxÞk2: ð2:7Þ

Combining (2.6) and (2.7), we obtain (2.3). r

For notational simplicity, let

lfðrÞ ¼
ð
Sr

fðxÞlmaxðxÞds;

rðrÞ ¼ exp �e

ð r hðsÞ
lfðsÞ

ds

� �
;

gðrÞ ¼ 2

e
rðrÞlfðrÞ;
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pfðxÞ ¼ fðxÞpðxÞ � lmaxðxÞ
2efðxÞ kfðxÞbðxÞA�1 � ‘fðxÞk2;

PðrÞ ¼ rðrÞ
ð
Sr

pfðxÞdS þ e

2

h2ðrÞ
lfðrÞ

� h 0ðrÞ
� �

;

where f A C1ðWðr0Þ;RþÞ and h A C1ð½r0;yÞ;RÞ are given functions, Sr ¼
fx A RN : jxj ¼ rg, dS denotes the spherical integral element in RN .

Lemma 2.3. Assume that y ¼ yðxÞ is a solution of Eq. (1.1) with yðxÞ0 0

for all jxjb t, tb r0. For f A C1ðWðr0Þ;RþÞ and h A C1ð½r0;yÞ;RÞ, let ZðrÞ
be defined by

ZðrÞ ¼ rðrÞ
ð
Sr

hfðxÞwðxÞ; nðxÞidS þ hðrÞ
� �

; rb t: ð2:8Þ

Then ZðrÞ satisfies the Riccati inequality

Z 0ðrÞa�PðrÞ � 1

gðrÞZ
2ðrÞ; rb t; ð2:9Þ

where nðxÞ ¼ x=r, r ¼ kxk0 0, denotes the outward unit normal to Sr.

Proof. By means of the Green formula in (2.8), and noting that (2.3),

we obtain

Z 0ðrÞ ¼ r 0ðrÞ
rðrÞ ZðrÞ þ rðrÞ

ð
Sr

divðfðxÞwðxÞÞdS þ h 0ðrÞ
� �

a
r 0ðrÞ
rðrÞ ZðrÞ � rðrÞ e

2

ð
Sr

kfðxÞwðxÞk2

lmaxðxÞfðxÞ
dS þ

ð
Sr

pfðxÞdS � h 0ðrÞ
( )

: ð2:10Þ

An application of the Cauchy-Schwarz inequality givesð
Sr

hfðxÞWðxÞ; nðxÞidS
� �2

a

ð
Sr

fðxÞlmaxðxÞdS
� � ð

Sr

kfðxÞWðxÞk2

fðxÞlmaxðxÞ
dS

 !
;

and equivalently, ð
Sr

kfðxÞWðxÞk2

fðxÞlmaxðxÞ
dSb

1

lfðrÞ
ZðrÞ
rðrÞ � hðrÞ

� �2
;

which, together with (2.10), implies that (2.9) holds. r

Lemma 2.4. Assume that y ¼ yðxÞ is a solution of Eq. (1.1) with yðxÞ > 0

for jxj A ½c; bÞH ½r0;yÞ. Further, for f A C1ðWðr0Þ;RþÞ, h A C1ð½r0;yÞ;RÞ and

k A C1ð½r0;yÞ;RþÞ, let ZðrÞ be defined as (2.8) on ½c; bÞ. Then for H A H,
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Yb
c ðPÞaHðb; cÞkðcÞZðcÞ þ 1

4
Yb

c ðgðh2 � k 0k�1Þ2Þ; ð2:11Þ

where Y is an integral operator in terms of Hðr; sÞ and kðsÞ as

Yr
tðbÞ ¼

ð r
t

Hðr; sÞbðsÞkðsÞds; r > tb r0;

for b A Cð½r0;yÞ;RÞ.

Proof. By Lemma 2.3, ZðrÞ satisfies (2.9). Applying the operator Yr
c to

(2.9), and noting that H A H, we obtain

Yr
cðPÞaHðr; cÞkðcÞZðcÞ þYr

cðð�h2 þ k 0k�1ÞZ � g�1Z2Þ

¼ Hðr; cÞkðcÞZðcÞ �Yr
c g�1=2Z þ 1

2
g1=2ðh2 � k 0k�1Þ

� �2 !

þ 1

4
Yr

cðgðh2 � k 0k�1Þ2Þ

aHðr; cÞkðcÞZðcÞ þ 1

4
Yr

cðgðh2 � k 0k�1Þ2Þ:

Letting r ! b� in the above inequality, we obtain (2.11). r

Under a modification of the proof of Lemma 2.4, we have

Lemma 2.5. Assume that y ¼ yðxÞ is a solution of Eq. (1.1) with yðxÞ > 0

for jxj A ða; c�H ½r0;yÞ. Further, for f A C1ðWðr0Þ;RþÞ, h A C1ð½r0;yÞ;RÞ and

k A C1ð½r0;yÞ;RþÞ, let ZðrÞ be defined as (2.8) on ða; c�. Then for H A H,

G c
aðPÞa�Hðc; aÞkðcÞZðcÞ þ 1

4
G c

aðgðh1 þ k 0k�1Þ2Þ; ð2:12Þ

where G is an integral operator in terms of Hðr; sÞ and kðsÞ as

G r
tðbÞ ¼

ð r
t

Hðs; tÞbðsÞkðsÞds; r > tb r0;

for b A Cð½r0;yÞ;RÞ.

3. Oscillation theorems

First of all, we will use the averaging pair technique to establish the

Wintner’s type oscillation criteria for Eq. (1.1).
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Theorem 3.1. Suppose that there exist f A C1ðWðr0Þ;RþÞ, h A
C1ð½r0;yÞ;RÞ, k A C1ð½r0;yÞ;RþÞ and an averaging pair ðs; gÞ such that

lim
r!y

P r
r0

ð r
r0

PðsÞds
� �

¼ y; ð3:1Þ

where P r
r0

is a linear operator in terms of b as

P r
r0
ðbðrÞÞ ¼

ð r
r0

sðsÞds
� ��1ð r

r0

sðsÞbðsÞds; r > r0;

for b A Cð½r0;yÞ;RÞ. Then Eq. (1.1) is oscillatory.

Proof. Suppose to the contrary that there exists an nonoscillatory solu-

tion yðxÞ of Eq. (1.1). Without loss of generality we may assume that

yðxÞ0 0 for jxjb r0. Define ZðrÞ on ½r0;yÞ by (2.8). Then, by Lemma

2.3, ZðrÞ satisfies (2.9). Integrating both side of (2.9) from r0 to r, we

obtain

ZðrÞ þ
ð r
r0

PðsÞdsþ
ð r
r0

Z2ðsÞ
gðsÞ dsaZðr0Þ: ð3:2Þ

Applying the operator P r
r0

to (3.2), we have

P r
r0
ðZðrÞÞ þP r

r0

ð r
r0

Z2ðsÞ
gðsÞ ds

� �
aZðr0Þ �P r

r0

ð r
r0

PðsÞds
� �

: ð3:3Þ

From (3.1), the right-hand side of (3.3) tends to �y, hence, there exists r1 > r0
such that for rb r1,

P r
r0
ðZðrÞÞ þP r

r0

ð r
r0

Z2ðsÞ
gðsÞ ds

� �
< 0;

so that, ð r
r0

sðsÞZðsÞds
����

����b
ð r
r0

sðsÞ
ð s
r0

Z2ðuÞ
gðuÞ duds :¼ TðrÞ: ð3:4Þ

Then, for rb r1 > r0, we have

TðrÞ �
ð r
r1

sðsÞ
ð s
r0

Z2ðuÞ
gðuÞ dudsb

ð r1
r0

Z2ðsÞ
gðsÞ ds

� � ð r
r1

sðsÞds
� �

: ð3:5Þ

From the Schwarz inequality, it follows that

T 2ðrÞa
ð r
r0

sðsÞZðsÞds
� �2

a

ð r
r0

gðsÞs2ðsÞds
� � ð r

r0

Z2ðsÞ
gðsÞ ds

� �
: ð3:6Þ
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Noting that (3.4), (3.5) and (3.6), we obtainð r1
r0

Z2ðsÞ
gðsÞ ds

� �g ð r
r0

sðsÞds
� �g

aT 2ðrÞT g�2ðrÞ

a

ð r
r0

gðsÞs2ðsÞds
� � ð r

r0

Z2ðsÞ
gðsÞ ds

� �
T g�2ðrÞ

¼ 1

sðrÞ

ð r
r0

gðsÞs2ðsÞds
� �

T g�2ðrÞT 0ðrÞ;

that is, ð r1
r0

Z2ðsÞ
gðsÞ ds

� �g
sðrÞ

ð r
r0

sðsÞds
� �g ð r

r0

gðsÞs2ðsÞds
� ��1

aT g�2ðrÞT 0ðrÞ:

Integrating the above inequality from r1 to r, we get

ð r1
r0

Z2ðsÞ
gðsÞ ds

� �gð r
r1

sðsÞ
ð s
r0

sðuÞdu
� �g ð s

r0

gðuÞs2ðuÞdu
� ��1

ds

a
1

1� g

1

T 1�gðr1Þ
< y;

which contradicts the fact that ðs; gÞ is an averaging pair. r

Next, by using the averaging technique, we will establish Kamenev’s type

oscillation theorem. The following theorems 3.2–3.3 present two criteria for

Eq. (1.1) which are the analogue of Philos and Kong’s criteria for Eq. (1.4).

Theorem 3.2. Suppose that there exist H A H which the partial deriva-

tive qHðr; sÞ=qs is nonpositive and continuous on D0, f A C1ðWðr0Þ;RþÞ, h A
C1ð½r0;yÞ;RÞ and k A C1ð½r0;yÞ;RþÞ such that

lim sup
r!y

1

Hðr; r0Þ
Yr

r0
P� 1

4
gðh2 � k 0k�1Þ2

� �
¼ y: ð3:7Þ

Then Eq. (1.1) is oscillatory.

Proof. Assume that Eq. (1.1) is not oscillatory. Then Eq. (1.1) has a

solution yðxÞ0 0 for jxj A ½r1;yÞ where r1 > r0. Let ZðrÞ be defined by (2.8).

It follows from Lemma 2.4 that

Yr
r1

P� 1

4
gðh2 � k 0k�1Þ2

� �
aHðr; r1Þkðr1ÞZðr1ÞaHðr; r0Þkðr1ÞjZðr1Þj;

which further yields that
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Yr
r0

P� 1

4
gðh2 � k 0k�1Þ2

� �
¼ ðYr1

r0
þYr

r1
Þ P� 1

4
gðh2 � k 0k�1Þ2

� �

aHðr; r0Þ
ð r1
r0

kðsÞjPðsÞjdsþ kðr1ÞjZðr1Þj
� �

:

Dividing both sides of the above inequality by Hðr; r0Þ and taking limsup as

r ! y, we obtain a contradiction to (3.7). r

Theorem 3.3. Suppose that for each T b r0, there exist H A H, f A
C1ðWðr0Þ;RþÞ, h A C1ð½r0;yÞ;RÞ, k A C1ð½r0;yÞ;RþÞ and a; b; c A Rþ with

T a a < c < b such that

1

Hðc; aÞG
c
a P� 1

4
gðh1 þ k 0k�1Þ2

� �
þ 1

Hðb; cÞY
b
c P� 1

4
gðh2 � k 0k�1Þ2

� �
> 0:

ð3:8Þ
Then Eq. (1.1) is oscillatory.

Proof. (3.8) implies that both (2.11) and (2.12) do not hold for the given

c, and hence every solution of Eq. (1.1) must have a zero either for jxj A ða; c�
or jxj A ðc; b�. By virtue of the fact that T is arbitrary, we see that every

solution of Eq. (1.1) is oscillatory. r

Remark 3.1. For Eqs. (1.1) and (1.3). Let fðxÞ ¼ 1, g ¼ 0 and sðrÞ ¼
1=gðrÞ in Theorem 3.1. Then Theorem 3.1 improves Theorem 4 in [7] and

Theorem 3.1 in [13]. For Eq. (1.5), let g ¼ 0, Theorem 3.1 extends Theorem

3.7 in [6].

Remark 3.2. For Eqs. (1.1) and (1.2). Let fðxÞ ¼ 1, Theorem 3.2 gen-

eralizes Theorem 2.1 in [12] and Theorem 3.1 in [14].

Remark 3.3. For Eq. (1.2). Let fðxÞ ¼ 1, Theorem 3.3 covers Theorem

2 in [17].

Remark 3.4. Theorems 3.1–3.3 will be specialized to a perturbed linear

equation

XN
i; j¼1

Di½aijðxÞDjy� þ
XN
i¼1

biðxÞDiyþ cðxÞyþ
Xm
i¼1

ciðxÞ fiðyÞ ¼ 0; ð3:9Þ

where c; ci A CðWðr0Þ;RÞ, fi A C1ð½r0;yÞ;RþÞ with f 0
i ðyÞb 0 for y > 0 and all

i. Define

pðxÞ ¼ minfcðxÞ; c1ðxÞ; . . . ; cmðxÞg and f ðyÞ ¼ yþ
Xm
i

fiðyÞ:
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Then,

cðxÞyþ
Xm
i¼1

ciðxÞ fiðyÞb pðxÞ f ðyÞ;

and hence Theorems 3.1–3.3 can be applied.

4. Corollaries and examples

The theorems given in section 3 are presented in form of a high degree of

generality. It is possible to obtain new criteria for Eq. (1.1) with the appro-

priate choices of the functions f, h, k and H. In this section, we will give

some interesting corollaries. Finally, we provide three examples to illustrate

the significance of our main results.

Corollary 4.1. Suppose that there exists f A C1ðWðr0Þ;RþÞ such that

lfðrÞ ¼ rd and

lim
r!y

1

r

ð r
r0

ð s
r0

P0ðuÞduds ¼ y; ð4:1Þ

where d A R and P0ðrÞ ¼
Ð
Sr
pfðxÞdS=rd. Then Eq. (1.1) is oscillatory.

Proof. Let hðrÞ ¼ drd�1=e and sðrÞ ¼ 1. An easy computation shows

that

rðrÞ ¼ 1

rd
; gðrÞ ¼ 2

e
; rðrÞ eh2ðrÞ

2lfðrÞ
� h 0ðrÞ

� �
¼ dð2� dÞ

r2
:

Then, for g A ½0; 1Þ,

lim
r!y

ð r
r0

sðsÞ
ð s
r0

sðuÞdu
� �g ð s

r0

gðuÞs2ðuÞdu
� ��1

ds

¼ e

2
lim
r!y

ð r
r0

ds

ðs� r0Þ1�g
¼ y;

and, by (4.1),

lim
r!y

P r
r0

ð r
r0

PðsÞds
� �

¼ lim
r!y

1

r

ð r
r0

ð s
r0

P0ðuÞduds�
dð2� dÞ

r0

� �
¼ y:

It follows from Theorem 3.1 that Eq. (1.1) is oscillatory. r

As an immediate consequence of Theorem 3.2, we get the following

corollary.
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Corollary 4.2. Let the assumptions of Theorem 3.2 hold except (3.7) is

replaced by

lim sup
r!y

1

Hðr; r0Þ
Yr

r0
ðPÞ ¼ y; ð4:2Þ

and

lim sup
r!y

1

Hðr; r0Þ
Yr

r0
ðgðh2 � k 0k�1Þ2Þ < y: ð4:3Þ

Then Eq. (1.1) is oscillatory.

Corollary 4.3. Suppose that there exists f A C1ðWðr0Þ;RþÞ such that

lim inf
r!y

LðrÞP1ðrÞ >
1

2e
; ð4:4Þ

where

LðrÞ ¼
ð r
r0

ds

lfðsÞ
and P1ðrÞ ¼

ð
WðrÞ

pfðxÞdx:

Then Eq. (1.1) is oscillatory.

Proof. By (4.4), there exist two numbers bb r0 and x > 1=ð2eÞ such that

LðrÞP1ðrÞb x; r > b; and lim
r!y

LðrÞ ¼ y:

Let

Hðr; sÞ ¼ ½LðrÞ � LðsÞ�2; hðrÞ ¼ � 1

eLðrÞ ; kðrÞ ¼ 1:

Then,

rðrÞ ¼ LðrÞ and h2ðr; sÞ ¼
2

LðrÞ � LðsÞ
1

lfðsÞ
:

Hence,

Yr
bðPÞ ¼

ð r
b

½LðrÞ � LðsÞ�2LðsÞd �P1ðsÞ þ
1

2e

1

LðsÞ

� �

¼ ½LðrÞ � LðbÞ�2 P1ðbÞLðbÞ �
1

2e

� �

þ
ð r
b

P1ðsÞLðsÞ �
1

2e

� �
L2ðrÞ
LðsÞ þ 3LðsÞ � 4LðrÞ

� �
L 0ðsÞds
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b x� 1

2e

� �ð r
b

L2ðrÞ
LðsÞ þ 3LðsÞ � 4LðrÞ

� �
L 0ðsÞds

¼ x� 1

2e

� �
ln LðrÞ � ln LðbÞ � 5

2

� �
L2ðrÞ þ 4LðbÞLðrÞ � 3

2
L2ðbÞ

� �
;

and

Yr
bðgðh2 � k 0k�1Þ2Þ ¼ 4

e
½L2ðrÞ � L2ðbÞ�:

It follows from Corollary 4.2 that Eq. (1.1) is oscillatory. r

Corollary 4.4. Suppose that there exist f A C1ðWðr0Þ;RþÞ, h A
C1ð½r0;yÞ;RÞ and for some l > 1 such that

lim sup
r!y

G�lðrÞ
ð r
r0

½GðrÞ � GðsÞ� lPðsÞds ¼ y; ð4:5Þ

where GðrÞ ¼
Ð r
r0
1=gðsÞds. Then Eq. (1.1) is oscillatory.

Proof. Let

Hðr; sÞ ¼ ½GðrÞ � GðsÞ� l and kðrÞ ¼ 1:

Then,

h2ðr; sÞ ¼
l

GðrÞ � GðsÞ
1

gðsÞ :

Hence,

Yr
bðgðh2 � k 0k�1Þ2Þ ¼ l 2

ð r
b

½GðrÞ � GðsÞ� l�2
dGðsÞ

¼ l2

l � 1
½GðrÞ � GðbÞ� l�1:

It follows from Corollary 4.2 that Eq. (1.1) is oscillatory. r

By Theorem 3.3, we have following result.

Corollary 4.5. Suppose that for any T b r0, there exist H A H, f A
C1ðWðr0Þ;RþÞ, h A C1ð½r0;yÞ;RÞ and k A C1ð½r0;yÞ;RþÞ such that

lim sup
r!y

G r
T P� 1

4
gðh1 þ k 0k�1Þ2

� �
> 0; ð4:6Þ

and
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lim sup
r!y

Yr
T P� 1

4
gðh2 � k 0k�1Þ2

� �
> 0: ð4:7Þ

Then Eq. (1.1) is oscillatory.

Corollary 4.6. Suppose that for any T b r0, there exist f A
C1ðWðr0Þ;RþÞ, h A C1ð½r0;yÞ;RÞ, and for some l > 1 such that lim

r!y
GðrÞ ¼ y,

and

lim sup
r!y

1

Gl�1ðrÞ

ð r
T

½GðsÞ � GðTÞ� lPðsÞds > l2

l � 1
; ð4:8Þ

and

lim sup
r!y

1

Gl�1ðrÞ

ð r
T

½GðrÞ � GðsÞ� lPðsÞds > l 2

l � 1
: ð4:9Þ

Then Eq. (1.1) is oscillatory.

Proof. Let kðrÞ ¼ 1. Noting that lim
r!y

GðrÞ ¼ y and proceeding as the

proof of Corollary 4.4, we have

lim sup
r!y

1

Gl�1ðrÞ

ð r
T

Hðr;TÞgðsÞh21ðr;TÞds ¼ l2

l � 1
; ð4:10Þ

and

lim sup
r!y

1

Gl�1ðrÞ

ð r
T

Hðr; sÞgðsÞh22ðr; sÞds ¼
l 2

l � 1
: ð4:11Þ

Thus, by (4.8) and (4.10), we get

lim sup
r!y

1

Hðr;TÞG
r
T P� 1

4
gðh1 þ k 0k�1Þ2

� �
> 0;

which infers that (4.6) holds. Similarly, (4.9) and (4.11) implies that (4.7)

holds. Hence, by Corollary 4.5, Eq. (1.1) is oscillatory. r

To illustrate the significance of our main results, we provide the following

examples.

Example 4.1. Consider the equation (1.1) on Wð1Þ with

AðxÞ ¼ diag
1

kxk ; . . . ;
1

kxk

� �
; bi A C nðWð1Þ;RþÞ; i ¼ 1; . . . ;N;

pðxÞ ¼ 1þ u sinkxk
kxk% ; f ðyÞ ¼ yþ y3; ð4:12Þ
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where Nb 2, n A ð0; 1Þ, u A R, 0 < %a 1, e ¼ 1, lmaxðxÞ ¼ 1=kxk and bðxÞ ¼
ðb1ðxÞ; . . . ; bNðxÞÞ might not be di¤erentiable and satisfiesð

WðrÞ
kbðxÞk2dxaMrN�2; ðM > 0Þ:

For Corollary 4.1, let fðxÞ ¼ 1, d ¼ N � 1. A direct calculation gives that

pfðxÞ ¼
1þ u sinkxk

kxk% � 1

2
kxk kbðxÞk2;

then,

P0ðrÞ ¼
oNð1þ u sin rÞ

r%
� 1

2rN�2

ð
Sr

kbðxÞk2dS;

where oN denotes the surface area of the unit sphere in RN , i.e., oN ¼
2pN=2=GðN=2Þ. Thus, for 0 < %a 1,

lim
r!y

1

r

ð r
1

ð s
1

P0ðuÞduds

¼ lim
r!y

oN

r

ð r
1

ð s
1

1þ u sin u

u%
duds� 1

2r

ð r
1

1

tN�2

ð
St

kbðxÞk2dSdt
� �

¼ y:

Hence, by Corollary 4.1, Eq. (4.12) is oscillatory.

Example 4.2. Consider the equation (1.1) on Wð1Þ with

AðxÞ ¼ diag
1

kxk2
;

1

kxk2

 !
; bðxÞ ¼ x1

kxk4
;
x1

kxk4

 !
;

pðxÞ ¼ m

kxk4
; f ðyÞ ¼ yþ y3; ð4:13Þ

where N ¼ 2, m > 1=2, e ¼ 1 and lmaxðxÞ ¼ kxk�2.

For Corollary 4.3, let fðxÞ ¼ kxk. A simple computation yields that

LðrÞ ¼ 1

2p
ðr� 1Þ; P1ðrÞ ¼

2pm

r
:

Then,

lim inf
r!y

LðrÞP1ðrÞ ¼ m:

Hence, by Corollary 4.3, Eq. (4.13) is oscillatory if m > 1=2.

Example 4.3. Consider the equation (1.1) on Wð1Þ with
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AðxÞ ¼ diagð1; 1Þ; bðxÞ ¼ x1

kxk3
;
x2

kxk3

 !
;

pðxÞ ¼ m

jxj2
; f ðyÞ ¼ yþ y5; ð4:14Þ

where N ¼ 2, m > 2, e ¼ 1 and lmaxðxÞ ¼ 1.

For Corollary 4.6, let fðxÞ ¼ 1=kxk, hðrÞ ¼ 0. It is easy to show that

rðrÞ ¼ 1; GðrÞ ¼ 1

4p
ðr� 1Þ; PðrÞ ¼ 2pm

r2
:

Hence, for l > 1,

lim
r!y

1

Gl�1ðrÞ

ð r
T

½GðrÞ � GðTÞ� lPðsÞds

¼ m

2
lim
r!y

1

ðr� 1Þ l�1

ð r
T

ðs� TÞ l

s2
ds ¼ m

2ðl � 1Þ : ð4:15Þ

By using Lemma 3.1 in [4], we haveð r
T

ðr� sÞ l

s2
dsb

ð r
T

ðs� TÞ l

s2
ds: ð4:16Þ

From (4.15) and (4.16), for m > 2, there exists l > 1 such that m=ð2ðl � 1ÞÞ >
l2=ðl � 1Þ. This means that (4.8) and (4.9) hold for same l. Applying

Corollary 4.6, we find that Eq. (4.14) is oscillatory.
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