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1. Introduction

In this paper we consider the nonlinear differential system with deviating
arguments of the form

(Sx) yl(t) = Pi(t)yi+1(hi+1(t)), i = 1, 2, . . . . , n - 1 ,

y'n = ( - 1)A t <>m(t)fm(yi{0m(t))), t > 0 , n > 2 , X e {1, 2} ,
m = l

under the following standing assumptions:
i'- [0, oo) -• [0, oo), (i = 1, 2, , n — 1) are continuous functions and

Pi(t)dt = oo, i = 1, 2, , n — 1;
Jo

(A2) #m: [0, oo) -• [0, oo), (m = 1, 2 , . . . , N) are continuous functions and
are not identically zero on any infinite subinterval of [0, oo);

(A3) ht: [0, oo) -»R, (i = 2, 3 , . . . , n) are continuously differentiable func-
tions with h[{t) > 0 on [0, oo), and lim^^ ht(t) = oo for i = 2, 3, . . . . ,
n;

(A4) gm: [0, oo) -> R (m = 1, 2 , . . . , N) are continuous functions and
lim,^, gjt) = oo for m = 1, 2, . . . . , N;

(A5) fm: R -+ R (m = 1, 2 , . . . , N) are continuous functions and w/m(w) > 0
for w^O, m = 1, 2, . . . . , JV.

By a proper solution of the system (5A) we mean a solution y = (yl9 y2,...,

? °°)> ^ ] which satisfies (SA) for all sufficiently large t, and

f
Jo

SUP ^Z?=i l^iWI; f > T> > 0 for any T > Ty. We make the standing hypothesis

that the system (Sx) does possess proper solutions.
A proper solution of (5A) is called oscillatory if each of its component

has arbitrarily large zeros. A proper solution of (SA) is called nonoscillatory
(weakly nonoscillatory) on [7^, oo) if each of its component (at least one
component) is eventually of constant sign on [T, oo) c [Ty, oo).

In this paper we shall study oscillatory properties of solutions of differen-
tial systems (Sx) with deviating arguments of mixed type, which are in general
essentially different from those of ordinary (h^t) = t, i = 2, 3 , . . . , n, gm(t) = t,
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m = 1, 2 , . . . , Af) and retarded differential systems. The first results on oscilla-
tion of certain differential systems generated by deviating argument have been
obtained in the papers [3, 5].

In this paper we extend the results from the paper [1] to the system (SA).
Here we give conditions under which all proper solutions of (Sx) are oscillatory.

Throught the paper we will use the following notations:

(BJ H2(t) = h2(t), Ht(t) = *,(#,-!(*)), i = 3, 4, . . . , n; Hf1 W is inverse function
toiff(r), i = 2, 3, . . . ,n .

(B2) 7;(0 = sup {s > 0; ht(t) < t} for t > 0, i = 2, 3, . . . , n, y(r) = max {y2{t\ . . . ,
yM(0} for ; > t0.

(B3) tk^ = max{rk, yk(^)}, 5k = max {sh-l9 hk(sk^)}, k = 2, 3, . . . , n.
(B4) Let gfm(f), (m = 1, 2 , . . . , N) be fixed. We define the subsets stfm and fflm of

[0, oo) as follows: s/m = {te [0, oo); ̂ ( t ) > r } , ®m = {t€ [0, oo); ^m(r)<f}.

2. Main results

The following three theorems are the main results of this paper.

THEOREM 1. Let n > 3, n + X be odd and the assumptions (A1)-(A5) hold.
Let

(A6) Hi{t)<tJ = 2,^...,n-\,Hn{t)>t for t>to>0.

Suppose that there are integers j9 k and r, 1 < j , k, r < N and some positive

numbers KOi k0 such that the following conditions are satisfied:

(Cx) £ aj(S) y n ' Pl(t) r^1^ Pn-^n-l) \HJ~2it) Pn-2(Xn-2).. •

x P2U2) dx2...dxn-2 dxn_x dt ds = 00 ,

(C2) ak(S) k n
 Pl(t) Pn-l(Xn-l)'- Pl-l(*l-l)

/•Hz_2(r) rH2(t)
x P/-2(xi-2) p2(x2) dx2...dxl-2dxl-1...dxn-1 dt ds =

for any I: 3 < / < n — 1, n + I + X is odd,

r r*?v r^w r^i(*»-i)
(C3) ar(s) Pl(r) PH-i^-i) Pw-2(x*-2)--

J ^ r Jfo Jfln-i(s) Jfln-2(s)

x p2(x2)dx2...dxn_2dxn-1 dt ds = co .
JH2(t)

oo
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(A7) gm(t), m =j, k, r, are nondecreasing functions for t > t0; fm(x), m=j, k, r,
are increasing functions for \x\ > Ko, in addition fr(x) is increasing for
\x\ < k0, and

dx

Jo < c o .
o fr(x) Jo

Then all proper solutions of (SA) with n + k odd are oscillatory.

THEOREM 2. Let n > 3, n + k be even and the assumptions (A1)-(A6) hold.
Suppose that there are integers j9 fe, r: 1 <j9 k, r < N and some positive numbers
Ko, k0 such that (CJ, (C2), (A7), (C4) and (C5) hold.

In addition suppose that

r rH~l(s) rh~l(S) /•/,;i1(xn_1)
(C6) ar{s) Pl(t) Pn-ifa-x) pn-2{xn-2)'-

J®r Jgr(H-l(s)) JHn-iit) JHn-2(t)

x p2(x2) dx2...dxn.2 dxn_! dtds= co .
JH2(t)

Then all proper solutions y = (yl9..., yn) of (SA) with n + k even are either
oscillatory or yi(t), i = 1, 2, . . . , n, monotonically tend to zero as t —• oo.

THEOREM 3. Let the condition Hn(t) > t in (A6) be replaced by Hn(t) = t
on [0, oo). Let additional assumptions of Theorem 2 hold. Then all proper
solutions of (SA) with n + k even are oscillatory.

REMARK 1. Let h2(t) = • • • = hn(t) = t on [0, oo), pt(t) > 0 for i = 1, 2, . . . ,

n — 1, t > 0. Then the system (SA) is equivalent to the n-th order scalar
differential equation

and the conditions (Q), i = 1, 2, 3, 6, imply the following ones:

(Q) 0,(5) Pn-i(xm-X) pn.2(xn-2)...

x p1(x1)dx1...dxn_2dxn-.1 ds= oo ,
J* 2



200 Pavol MARUSIAK

(C 2 ) ak{s) \ P«-i(Vi)- Pi-ifa-i) Pi-2(xi-2) \ Pi-3(xi-3)>~
Js/k Jt0 Jt0 JS JXi-2

x Pi(*i) dxx... dxt-3 dx,_2 dxt-x... dxH-x ds = oo ,
Jx2

(C3) ar(s) Pt-Ax^) n * pn-2(xn-2)...
Js/r Jt0 Jt0

x px{x1)dx1...dxn-2dxn-1ds= oo ,

(Q) I ar(s) I p^^x^J I nlpH-2(xH-2)...

r*2
x p1(xl)dx1...dxn.2dxn^ ds= oo .

The following corollaries are immediate consequences of Theorem 1 and
Theorem 3.

COROLLARY 1. Let n > 3, n + A fee odd and the assumptions (AJ, (A2),

(A4), (A5) /io/d. Suppose that there are integers j , k and r: 1 <j, k, r < N and
some positive numbers Ko, k0 such that the conditions (Q) , (C2), (C3), (A7),
(C4), (C5) are satisfied. Then all proper solutions of (EA) with n + X odd are
oscillatory.

COROLLARY 2. Let n > 3, n + >l fee et;en and t/ie assumptions (AJ, (A2),
(A4), (A5) /10/d. Suppose that there are integers j , k and r: 1 <j, k, r < N and
some positive numbers Ko, k0 such that the conditions (C\), (C2), (C6), (A7), (C4)
and (C5) are satisfied. Then all proper solutions of (EA) with n + A even are
oscillatory.

3. Proofs of theorems

To obtain main results we need the following lemmas.

LEMMA 1 [2] . Let the conditions ( A J ^ A g ) hold and let y = (yl9..., yn)

be a regular nonoscillatory solution of (SA) on the interval [0, 00).

I) Then there exist to>0 and an integer I e {1, 2 , . . . , n} with n + X + /

odd or I = n suc/z f/zar / o r £ > t0

(N,) ttW^WX), i = l , 2 , . . . , / ,

t ) > 0 , i = / + 1 n .
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II) In addition let l i m , ^ y^t) = Lh 0 < Lx < oo. Then

(1) / > 1 , Lt > 0=> l im 1^(01 = oo , i = 1, 2, . . . , / - 1 ;
r-+oo

/ < n , L, < oo => lim yf(£) = 0 , i = / + 1, . . . , n .
f-*oo

LEMMA 2 [ 4 ] . Let tfte conditions ( A J - ^ ) fco/d. Let ̂  = (yl9..., yn) be
fl regular solution of (SA) swc/i that yk(t) ̂ 0 on [£0, oo) for some k e {1, 2 , . . . , n).

Then there exists a tx> t0 such that each component yt of y is on [tl9 oo)
different from zero, monotone and the limit l i m , ^ y^t) = Lt exists (finite or
infinite).

LEMMA 3. Let the conditions ( A J - f A j ) hold. Let y = (yl9..., yn) be a
regular solution of (SA) on [ t 0 , oo). Then there exist a tx>t0 and an integer
I e {1, 2 , . . . , n} with n + / + X odd or I = n, such that

rsi r*l+l rSn-2

(2,) \yt(t)\ >\ Pi(xt) \ PJ + I(X, + 1 ) . . . Pn-lfrn-l)

Jt Jhl+l(x) Jhn-a(xn-3)

x Pn-i(^-1)1^(^(^-1))I dxn-i dxn-2... dxl+1 dxt

for tx<t< st;
rt rhi+l(Xi)

(3|) \yt(t)\ > ftW

ffci-i(Xi-2)

f o r t > t l - l 9 i = 1 , 2 , . . . , / - 1.

PROOF. Integrating the /c-th equation of (SA), fe = /, / + 1, . . . , « — 1, from
t to sk(t < sk) and using (Nj), we get

Putting (4n_x) into (4n_2) and it into (4n_3), using nearby (B3), then repeating
this method n — I — 3 times, we have (2j).

Integrating the fc-th equation of (SA), k = 1, 2, . . . , /, from tk to t and using
(N,), we get

(5k)
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Putting ( 5 ^ ) into (5Z_2) and it into (5j_3), using nearby (B3), then
repeating this method / — k — 3 times, we get (3£).

PROOF OF THEOREM 1. Suppose that (SA) has a weakly nonoscillatory
regular solution y = (yl9..., yn). Then by Lemma 2 y is nonoscillatory. With-
out loss of generality we may suppose that y^gjij)) > 0 for m = 1, 2, . . . , AT,
t > t0 > 0. Then the n-th equation of (SA) implies that (-l)xy'H(t) > 0 for t > To

and it is not identically zero on any infinite interval of [Fo, oo). Then by
Lemma 1 and Lemma 3 there exist a tx > To and an even integer /: 2 < / < n, or
/ = n such that (N,), (1), (2), (3f) hold for t > tx. Let To > tx be so large that
gm(t) > rx for r > To, 1 < m < N.

1. Let / = n. Replacing r with /i2(r) and / with n in (32), we get

(6) yi(hl{t))> P2(X2) Pafe)-" Pn-l(*n-l)
Jt2 Jt3 Jtn-i

x \yn(h(Xn-i))\ dxn.1...dx3 dx2 for t > y(tn^).

Integrating the n-th equation of (SA) from tn (>T0) to hn(t) and using
(Nf), (A2), (A5), we have

rhn(t)

~ Jtn
 J J X J

Putting the last inequality into (6), we obtain

f M 0 Chn-dXn-2) Chn(Xn-X)

(7) ^2(^2(0)> P2(*2)--- Pn-l(*n-l)
Jt2 Jtn-i Jtn

x fl/(xn)^(3;1(^(xII))) rfxw dxn^ ...dx2.

Interchanging the order of integration in (7), we get

fffn<0 CHn-,(t) r*H2(t)
> ajMfjfaigjix,))) P.-i^.J...(8) y2(h2(t))>\ ajMfjiy^gjfa))) Pn-i(xH-i)--- \ p2(x2)dx2...

x dxn^ dxn for t > y(tn).

Take any T > tn and let 7J- = sup rn< f< r max {gj(t)91}. Multiplying (8) by
Pi(t)/fj(yi(t)) and then integrating from tn to 7J, using the first equation of (SA)
and the monotonicity of fp yl9 gj and (A6), we have
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rff2(f)
x p2{x2)dx2...dxn.1dxndt

rHn(Tj) [Tj f(vJa(x))) CHn~i{t

- "^ . Pl(t) f i l m .
x ^

;

rHn-i(t) rH2(t)

Since / = n > 3, lim^^ yx(t) = oo, we may choose tn so large that y^t) > Ko

for t > tn. Because the functions fj9 yl9 Q^ are nondecreasing on [t0, oo),
fj(yi(dj(HnHxn))))/fj(yi(t)) > 1 for u = H~l(xn) < t < 0J(M), U e s/j.

From (9) we then have

CTjy[(t)dt f C9j(H-Hxn)) rn^it) rH2(t)
(10) y)K \ > dj(xn) px{t) Pn-l(Xn-l)-~

Jtn / / h W ) Js/jn[tniT] JH-l(xn) Jh~l(xn) J/taW

x p2(x2)dx2...dxn_idtdxn .

Letting T -> oo in (10) and using (C4), we get
C r9j(H~l(xn)) fHn-iit) fH2(t)

aj(xn)\ Pl(t)\ p..l(xu.1)...\

x /?2(x2) dx2... dxn^1 dt dxn < oo ,

which contradicts (Cx).
2. Let 3 < / < n and k: 1 < k < N be fixed. Integrating the n-th equation

of (SA) from hn(t) to sn (sn > hn(t)\ using (A2), (A5) and (N,), we have

Combining the last inequality with (2,), with t replaced by ht(t\ we get

fSl f^n-1 fan
(ll) yi{hAt))> PI(X,). . . pw-i(xM-i)

Jfcl(0 Jhn-l(^n-2) JM*n-l)

dx,,-!... dxt ,
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where sk = max {sh-l9 Ms*-i)}> fc = / + 1, . . . , n, sw is sufficiently large. Putting

(11) into (32), in which we replace t with h2(t\ we have

Ch2(t) rhl-l(xl-2) rSl

(12) y2(h2(t))> P2(x2)... PI-I(*I-I) Pi(*i)'--
Jt2 Jti-i Jhiixi-i)

X P»-l(*i.-l) **(*)/*( J>1 (#*(*)))

x dx dx, ,^. . . dxj dx^-i... dx2 .

Interchanging the order of an integration in (12) we get

(13) y2{h2(t))7>\ ak(xH)fk(yi(gk(xH))) I Pn-dx^)... \ Pi-fa-i)
Jtn Jtn-l Jtl-1

/"fli-2(0 |*H2(r)
X p,-2(x,-2)... /72(X2)

Jfcr-i(*i-i) J*!1^)

x dx2...dxt_2 dxt-t...dxn-x dxn ,

where 7^ = tt-l9 Tk = M^k-iX k = / , . . . , w - 1.
Take any T > Fw and let Tk = sup rn< r< r (max {gfk(O, *}). Multiplying (13)

by Pi(t)/fk(ydt))> then integrating from Fn to Tk, using the first equation of (SA)
and the monotonicity of gk9 yi9 fk and (A6), we have

Pt-dXl-l) Pl-2(Xl-2)~-
JU-x Jltf-iC^i-i) JfcJ1

«„_! dXn dt

w fkivM

p2(x2)dx2...dxl..2dxl-1...dxn-ldtdxn.

Since / > 3, l im^^ yx(t) = 00, we can take Tn so large that y^t) > Ko for
t > 7n. Because the functions /k(}>i(0)> 9iAt) a r e nondecreasing on \7n9 00), it
is easy to see that A(^1(^(//w-1(xJ)))//fc(yi(0) > 1 for M = H;\xn) < t < gr(u)9

u e s/k. The inequality (14) implies



Differential systems with deviating arguments 205

a5) \T<WM*I r . ( ,M^ )iirrpiwrWp"- i ( ; e"- i )-"
X Pi-ifo-i) ^ P,_2(X,_2)... ^ p2(x2)

Letting T-> oo in (15) and using (C4) we get a contradiction to (C2).
3. Let / = 2 and r: 1 < r < N be fixed. Integrating the n-th equation of

(SA) over \hn{t\ sj, using (A2), (A5) and (N2), we have

\yn(hn(t))\ > ar(x)fr(y!(gfr(x))) ^x .

Putting the last inequality into (22) and replacing t with h2(t), we have

(16)
*2(0

xdxdxn-1...dx29 t>y(T0)= T3 .

Interchanging the order of integration in (16), we get

r*n rh~\xn) rhsHxi)
(17) y2(h2(t))> ar{xn)fr{yi{gr{xn))) p^x^)... p2(x2)

jHn(t) JHn-i(0 JH2(t)

x dx2... dxn^ dxn ,

where sn = hn(hn^(...(/i3(s2))•••))•
Take any T > T3 and let Tr = supT3<f<r max (gfr(r), t}. Multiplying (17)

by Pi(t)/fr(yi(t)), then integrating from T3 to Tr9 using the first equation of (SA)
and the monotonicity of gr9 yl9 fr and (A6), we get

rTry'i(t)dt CT- pAi) CH»m Ch-l(Xn)

ThTW)-\ TTwk «r(xn)fr(yMxn))) \ P . - I (X.-I ) -
Jr3 /riyiW) Jr3 jAyd*)) jHn(t) Jfln-i(0

x p2(x2)rfx2...dxM_1dxndt
Jfl2(0

s/rn[Hn(T3),Hn(Tr)]

rh~l(xn) rhiHxs)
p^fo-i)... p2(x2)dx2...dxn_1dtdxn.

i) Let lim^^ yx(0 = oo. Then proceeding analogously as in the corre-
sponding part of the case 2, we obtain a contradiction to (C3).
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ii) Let ^nt^a0y1(t) = y10. If T-»oo, then from (18) in view of (C5)
we have

/• rH'Hxn) rh~Hxn) rh3l(x3)

<*r(Xn) Pl(0 Pn-l(xn-l)- - -
Jsfrn[Hn(T3),ao) JT3 JffM-i(0 J H2(t)

Cyi° du
x dx2...dxn.1dtdxn< —— < 00,

J 0 Mu)

which contradicts (C3).
The proof of Theorem 1 is complete.

PROOF OF THEOREM 2. Suppose that (SA) has a weakly nonoscillatory
regular solution y = (yl9..., yn). Then by Lemma 2 y is nonoscillatory. Pro-
ceeding exactly as in the proof of Theorem 1, we find that (N,), (1), (2j), (3f) hold
for t > tx and there exists an odd integer /: 1 < / < n (n + X is even) or I = n.
Let To > tx be so large that gm(t) > t1 for t > To, m = 1, 2 , . . . , N.

1. We suppose that / = n and then 3 < / < n. The proofs in these cases
are the same as in the corresponding parts of the proof of Theorem 1.

2. Now we consider / = 1. Let r, 1 < r < N, be fixed. Replacing t in
(2X) with h2(t) and using (Nx), we obtain

(19) -y2(h2(t)) > I 2
 P2(X2)... I n 2 Pn-l^n-l) I " ' Pn-l(*n-l)

Jh2(t) Jhn-2(xn-3) Jhn-i{xn-2)

x yn(K(Xn-i)) dxn.x dxn_2...dx2, T3 = yfa) < t < s2 .

Integrating the n-th equation of (SA) over [hn(t\ sn], sn = max{sn_1?

K-i(sn-i)} and using (A2), (A5), (Nx), we get

Putting the last inequality into (19) we have

CS2 fSn-1 Csn

(20) -y2(h2(t))>\ p2(x2)...\ A-ito.-,) ar(x)fr(yi(gr(x)))
Jh2(t) Jhn-iiXn-J Jhjx^t)

x dx dxn-x... dx2

> ar(xn)fr(yi(gr(xn))) Pn-i(xm-i)'"
JHn(t) JHn-,(t) jH2(t)

x dx2... dxn-i dxn ,

where sM = hn{hn^{...(A3(s2))...)).
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Take any T > T3 and let Tr = sup r 3<,< rmax {gr(t), t}. Multiplying (20)
by Pi(t)/fr(yi(gr(t))), then integrating from T3 to Tr9 using the first equation of
(SA), the monotonicity of gr9 yl9 fr and (NJ, we get

" 7777m - 777M ^(xJ/^i (</,(
Jr3 Jr\yi\1)) JT3 Jr\yi\1)) jHJt)

rh3l(x3)
x p2(x2)dx2...rfxn_1 dxn

Pw-i(^»-i)... p2(x2)dx2...dxn-1dtdxn.
JHn-l(t) JH2(t)

Since y^r) > 0, y[(t) < 0 for r > tl9 there exists l im^^ yt(t) = ft > 0. Let
= ft > 0. Then

Letting T->oo in (21), using (22) and (C5), we obtain a contradiction
to (C6).

If lim,^^ y^t) = 0, then by Lemma 2 y£(r), i = 1, 2, . . . , w, tend mono-
tonically to zero for t -> oo.

The proof of Theorem 2 is complete.

PROOF OF THEOREM 3. To prove Theorem 3, in addition to the proof of
Theorem 2 we must show that l i m , ^ yx(t) = 0 is impossible.

Let Hn(t) EE L Then fAyAgM)/fAyMH;1«_))) EE 1. If l i n w yx(t) = 0,
we may choose T3 so large that \yl(t)\ < k0 for t > T3.

Letting T -^ oo, from (21) in view of (C5) we get a contradiction to (C6)
H^(t) = t.
The proof of Theorem 3 is complete.
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