Oscillation criteria for nonlinear differential systems with general deviating arguments of mixed type

Pavol MARUSIAK

(Received January 30, 1989)

1. Introduction

In this paper we consider the nonlinear differential system with deviating arguments of the form

$$
(S_{\lambda}) \qquad y'_{i}(t) = p_{i}(t)y_{i+1}(h_{i+1}(t)), \qquad i = 1, 2, ..., n-1,
$$

$$
y'_{n} = (-1)^{\lambda} \sum_{m=1}^{N} a_{m}(t)f_{m}(y_{1}(g_{m}(t))), \qquad t \ge 0, \qquad n \ge 2, \qquad \lambda \in \{1, 2\},
$$

under the following standing assumptions:

- $i(A_1)$ $p_i: [0, \infty) \rightarrow [0, \infty), (i = 1, 2, \ldots, n-1)$ are continuous functions and $\int_0^\infty p_i(t)dt = \infty, i = 1, 2, ..., n-1;$
 FP₁ **FP** Jo
- (A_2) $a_m: [0, \infty) \rightarrow [0, \infty)$, $(m = 1, 2, ..., N)$ are continuous functions and are not identically zero on any infinite subinterval of $[0, \infty)$;
- (A_3) $h_i: [0, \infty) \rightarrow R$, $(i = 2, 3, ..., n)$ are continuously differentiable functions with $h'_{i}(t) > 0$ on $[0, \infty)$, and $\lim_{t\to\infty} h_{i}(t) = \infty$ for $i = 2, 3, \ldots$, *n;*
- (A_4) $g_m: [0, \infty) \rightarrow R$ $(m = 1, 2, ..., N)$ are continuous functions and $\lim_{t \to \infty} g_m(t) = \infty$ for $m = 1, 2, ..., N;$
- (A_5) $f_m: R \to R$ $(m = 1, 2, ..., N)$ are continuous functions and $uf_m(u) > 0$ for $u \neq 0, m = 1, 2, ..., N$.

By a proper solution of the system (S_{λ}) we mean a solution $y = (y_1, y_2, \ldots, y_n)$ y_n) $\in C^1[[T_y, \infty), R]$ which satisfies (S_λ) for all sufficiently large t, and $\sup \left\{ \sum_{i=1}^n |y_i(t)|; t \geq T \right\} > 0$ for any $T \geq T_y$ *.* We make the standing hypothesis

that the system (S_{λ}) does possess proper solutions.

A proper solution of (S_1) is called oscillatory if each of its component has arbitrarily large zeros. A proper solution of (S_{λ}) is called nonoscillatory (weakly nonoscillatory) on $[T_v, \infty)$ if each of its component (at least one component) is eventually of constant sign on $[T, \infty) \subset [T_y, \infty)$.

In this paper we shall study oscillatory properties of solutions of differential systems (S_{λ}) with deviating arguments of mixed type, which are in general essentially different from those of ordinary $(h_i(t) \equiv t, i = 2, 3, ..., n, g_m(t) \equiv t$, $m = 1, 2, \ldots, N$ and retarded differential systems. The first results on oscillation of certain differential systems generated by deviating argument have been obtained in the papers [3, 5].

In this paper we extend the results from the paper $[1]$ to the system (S_1) . Here we give conditions under which all proper solutions of (S_1) are oscillatory.

Throught the paper we will use the following notations:

- (H_1) $H_2(t) = h_2(t)$, $H_i(t) = h_i(H_{i-1}(t))$, $i = 3, 4, ..., n$; $H_i^{-1}(t)$ is inverse function to $H_i(t)$, $i = 2, 3, ..., n$.
- (B_2) $\gamma_i(t) = \sup \{s \ge 0; h_i(t) \le t\}$ for $t \ge 0, i = 2, 3, ..., n$, $\gamma(t) = \max \{ \gamma_2(t), ..., \gamma_t\}$ $\gamma_n(t)$ for $t \geq t_0$.
- (t_{k}) $t_{k-1} = \max\{t_{k}, \gamma_{k}(t_{k})\}, s_{k} = \max\{s_{k-1}, h_{k}(s_{k-1})\}, k = 2, 3, ..., n.$
- (B₄) Let $g_m(t)$, $(m = 1, 2, ..., N)$ be fixed. We define the subsets \mathcal{A}_m and \mathcal{R}_m of $[0, \infty)$ as follows: $\mathscr{A}_m = \{t \in [0, \infty); g_m(t) > t\}, \mathscr{R}_m = \{t \in [0, \infty); g_m(t) < t\}.$

2. Main results

The following three theorems are the main results of this paper.

THEOREM 1. Let $n \geq 3$, $n + \lambda$ be odd and the assumptions (A_1) – (A_5) hold. *Let*

$$
(A_6) \t H_i(t) \le t, i = 2, 3, ..., n-1, H_n(t) \ge t \t for t \ge t_0 > 0.
$$

Suppose that there are integers j, k and $r, 1 \leq j, k, r \leq N$ *and some positive numbers* K_0 , k_0 *such that the following conditions are satisfied:*

$$
(C_1) \qquad \int_{\mathscr{A}_j} a_j(s) \int_{H_n^{-1}(s)}^{g_j(H_n^{-1}(s))} p_1(t) \int_{h_n^{-1}(s)}^{H_{n-1}(t)} p_{n-1}(x_{n-1}) \int_{h_{n-1}^{-1}(x_{n-1})}^{H_{n-2}(t)} p_{n-2}(x_{n-2}) \dots
$$

$$
\times \int_{h_3^{-1}(x_3)}^{H_2(t)} p_2(x_2) dx_2 \dots dx_{n-2} dx_{n-1} dt ds = \infty,
$$

$$
(C_2) \qquad \int_{\mathscr{A}_k} a_k(s) \int_{H_n^{-1}(s)}^{g_k(H_n^{-1}(s))} p_1(t) \int_{t_{n-1}}^{h_n^{-1}(s)} p_{n-1}(x_{n-1}) \dots \int_{t_{l-1}}^{h_l^{-1}(x_l)} p_{l-1}(x_{l-1})
$$

$$
\times \int_{h_{l-1}^{-1}(x_{l-1})}^{H_{l-2}(t)} p_{l-2}(x_{l-2}) \int_{h_3^{-1}(x_3)}^{H_2(t)} p_2(x_2) dx_2 \dots dx_{l-2} dx_{l-1} \dots dx_{n-1} dt ds = \infty
$$

for any $l: 3 \le l \le n-1$ *,* $n+l+\lambda$ *is odd,*

$$
(C_3) \qquad \int_{\mathscr{A}_r} a_r(s) \int_{t_0}^{H_n^{-1}(s)} p_1(t) \int_{H_{n-1}(s)}^{h_n^{-1}(s)} p_{n-1}(x_{n-1}) \int_{H_{n-2}(s)}^{h_{n-1}^{-1}(x_{n-1})} p_{n-2}(x_{n-2}) \cdots
$$

$$
\times \int_{H_2(t)}^{h_3^{-1}(x_3)} p_2(x_2) dx_2 \ldots dx_{n-2} dx_{n-1} dt ds = \infty.
$$

 (A_7) $g_m(t)$, $m = j$, k , r , are nondecreasing functions for $t \ge t_0$; $f_m(x)$, $m = j$, k , r , *are increasing functions for* $|x| \ge K_0$ *, in addition f_r(x) is increasing for* $|x| \leq k_0$ *, and*

(C₄)
$$
\int_{K_0}^{\infty} \frac{dx}{f_m(x)} < \infty , \qquad \int_{-K_0}^{-\infty} \frac{dx}{f_m(x)} < \infty , \qquad m = j, k, r ,
$$

(C₅)
$$
\int_{0}^{k_0} \frac{dx}{f_r(x)} < \infty , \qquad \int_{0}^{-k_0} \frac{dx}{f_r(x)} < \infty .
$$

o *fr(x)* **Jo** *Then all proper solutions of* (S_1) *with n* + λ *odd are oscillatory.*

THEOREM 2. Let $n \geq 3$, $n + \lambda$ be even and the assumptions (A_1) – (A_6) hold. *Suppose that there are integers j, k, r:* $1 \leq j$ *, k, r* $\leq N$ *and some positive numbers* K_0 , k_0 such that (C_1) , (C_2) , (A_7) , (C_4) and (C_5) hold.

In addition suppose that

$$
(C_6) \qquad \int_{\mathcal{R}_r} a_r(s) \int_{g_r(H_n^{-1}(s))}^{H_n^{-1}(s)} p_1(t) \int_{H_{n-1}(t)}^{h_n^{-1}(s)} p_{n-1}(x_{n-1}) \int_{H_{n-2}(t)}^{h_{n-1}^{-1}(x_{n-1})} p_{n-2}(x_{n-2}) \cdots
$$

$$
\times \int_{H_2(t)}^{h_3^{-1}(x_3)} p_2(x_2) dx_2 \ldots dx_{n-2} dx_{n-1} dt ds = \infty.
$$

Then all proper solutions $y = (y_1, \ldots, y_n)$ *of* (S_{λ}) *with* $n + \lambda$ *even are either oscillatory or y_i(t), i* = 1, 2, ..., *n*, *monotonically tend to zero as t* $\rightarrow \infty$.

THEOREM 3. Let the condition $H_n(t) \geq t$ in (A_6) be replaced by $H_n(t) \equiv t$ *on* [0, oo). *Let additional assumptions of Theorem 2 hold. Then all proper solutions of* (S_{λ}) *with* $n + \lambda$ *even are oscillatory.*

REMARK 1. Let $h_2(t) \equiv \cdots \equiv h_n(t) \equiv t$ on $[0, \infty)$, $p_i(t) > 0$ for $i = 1, 2, \ldots$, $n-1$, $t \ge 0$. Then the system (S_{λ}) is equivalent to the *n*-th order scalar differential equation

$$
(E_{\lambda}) \left(\frac{1}{p_{n-1}(t)} \cdots \left(\frac{1}{p_2(t)} \left(\frac{1}{p_1(t)} y'(t) \right)' \right)' \cdots \right)' = (-1)^{\lambda} \sum_{m=0}^{N} a_m(t) f_m(y(g_m(t))),
$$

and the conditions (C_i) , $i = 1, 2, 3, 6$, imply the following ones:

(C₁)

$$
\int_{\mathscr{A}_j} a_j(s) \int_s^{g_j(s)} p_{n-1}(x_{n-1}) \int_{x_{n-1}}^{g_j(s)} p_{n-2}(x_{n-2}) \dots
$$

$$
\times \int_{x_2}^{g_j(s)} p_1(x_1) dx_1 \dots dx_{n-2} dx_{n-1} ds = \infty,
$$

$$
(C'_{2}) \int_{\mathscr{A}_{k}} a_{k}(s) \int_{t_{0}}^{s} p_{n-1}(x_{n-1}) \cdots \int_{t_{0}}^{x_{l}} p_{l-1}(x_{l-1}) \int_{s}^{g_{k}(s)} p_{l-2}(x_{l-2}) \int_{x_{l-2}}^{g_{k}(s)} p_{l-3}(x_{l-3}) \cdots
$$

\n
$$
\times \int_{x_{2}}^{g_{k}(s)} p_{1}(x_{1}) dx_{1} \cdots dx_{l-3} dx_{l-2} dx_{l-1} \cdots dx_{n-1} ds = \infty,
$$

\n(C'_{3})
\n
$$
\int_{\mathscr{A}_{r}} a_{r}(s) \int_{t_{0}}^{s} p_{n-1}(x_{n-1}) \int_{t_{0}}^{x_{n-1}} p_{n-2}(x_{n-2}) \cdots
$$

\n
$$
\times \int_{t_{0}}^{x_{2}} p_{1}(x_{1}) dx_{1} \cdots dx_{n-2} dx_{n-1} ds = \infty,
$$

\n(C'_{6})
\n
$$
\int_{\mathscr{A}_{r}} a_{r}(s) \int_{g_{r}(s)}^{s} p_{n-1}(x_{n-1}) \int_{g_{r}(s)}^{x_{n-1}} p_{n-2}(x_{n-2}) \cdots
$$

\n
$$
\times \int_{g_{r}(s)}^{x_{2}} p_{1}(x_{1}) dx_{1} \cdots dx_{n-2} dx_{n-1} ds = \infty.
$$

The following corollaries are immediate consequences of Theorem 1 and Theorem 3.

COROLLARY 1. Let $n \geq 3$, $n + \lambda$ be odd and the assumptions (A_1) , (A_2) , (A_4) , (A_5) *hold.* Suppose that there are integers j, k and r: $1 \le j$, k, $r \le N$ and *some positive numbers* K_0 , k_0 *such that the conditions* (C'_1) , (C'_2) , (C'_3) , (A_7) , (C_4) , (C_5) are satisfied. Then all proper solutions of (E_4) with $n + \lambda$ odd are *oscillatory.*

COROLLARY 2. Let $n \geq 3$, $n + \lambda$ be even and the assumptions (A_1) , (A_2) , (A_4) , (A_5) *hold.* Suppose that there are integers j, k and r: $1 \le j$, k, $r \le N$ and *some positive numbers* K_0 , k_0 such that the conditions (C_1) , (C_2) , (C_6) , (A_7) , (C_4) *and* (C_5) *are satisfied. Then all proper solutions of* (E_1) *with* $n + \lambda$ *even are oscillatory.*

3. Proofs of theorems

To obtain main results we need the following lemmas.

LEMMA 1 [2]. Let the conditions (A_1) – (A_5) hold and let $y = (y_1, \ldots, y_n)$ *be a regular nonoscillatory solution of* (S_{λ}) *on the interval* $[0, \infty)$ *.*

I) Then there exist $t_0 \ge 0$ and an integer $l \in \{1, 2, ..., n\}$ with $n + \lambda + l$ *odd or* $l = n$ *such that for* $t \geq t_0$

(N_i)
$$
y_i(t)y_1(t) > 0
$$
, $i = 1, 2, ..., l$,

 $(-1)^{i+j} y_i(t) y_1(t) > 0, \qquad i = l + 1, \ldots, n$.

Differential systems with deviating arguments 201

II) In addition let
$$
\lim_{t\to\infty} y_i(t) = L_i, 0 \le L_i \le \infty
$$
. Then

(1)
$$
l > 1
$$
, $L_l > 0 \Rightarrow \lim_{t \to \infty} |y_i(t)| = \infty$, $i = 1, 2, ..., l - 1$;

$$
l < n \,, \qquad L_l < \infty \Rightarrow \lim_{t \to \infty} y_i(t) = 0 \,, \qquad i = l + 1, \ldots, n \,.
$$

LEMMA 2 [4]. Let the conditions (A_1) - (A_5) hold. Let $y = (y_1, \ldots, y_n)$ be *f a* regular solution of (S_{λ}) such that $y_k(t) \neq 0$ on $[t_0, \infty)$ for some $k \in \{1, 2, ..., n\}.$

Then there exists a $t_1 > t_0$ such that each component y_i of y is on $[t_1, \infty)$ *different from zero, monotone and the limit* $\lim_{t\to\infty} y_i(t) = L_i$ *exists (finite or infinite).*

LEMMA 3. Let the conditions (A_1) - (A_5) hold. Let $y = (y_1, \ldots, y_n)$ be a *regular solution of* (S_{λ}) *on* $[t_0, \infty)$ *. Then there exist a* $t_1 \ge t_0$ *and an integer* $l \in \{1, 2, ..., n\}$ with $n + l + \lambda$ odd or $l = n$, such that

$$
(2_{i}) \qquad |y_{i}(t)| \geq \int_{t}^{s_{i}} p_{i}(x_{i}) \int_{h_{i+1}(x)}^{s_{i+1}} p_{i+1}(x_{i+1}) \dots \int_{h_{n-2}(x_{n-3})}^{s_{n-2}} p_{n-2}(x_{n-2})
$$

$$
\times \int_{h_{n-1}(x_{n-2})}^{s_{n-1}} p_{n-1}(x_{n-1}) |y_{n}(h_{n}(x_{n-1}))| dx_{n-1} dx_{n-2} \dots dx_{i+1} dx_{i}
$$

for $t_1 \leq t \leq s_i$;

$$
(3_i) \qquad |y_i(t)| \ge \int_{t_i}^t p_i(x_i) \int_{t_{i+1}}^{h_{i+1}(x_i)} p_{i+1}(x_{i+1}) \dots \int_{t_{l-2}}^{h_{l-2}(x_{l-3})} p_{l-2}(x_{l-2})
$$

$$
\times \int_{t_{l-1}}^{h_{l-1}(x_{l-2})} p_{l-1}(x_{l-1}) |y_i(h_l(x_{l-1}))| dx_{l-1} dx_{l-2} \dots dx_{i+1} dx_i
$$

for $t \geq t_{l-1}$, $i = 1, 2, ..., l-1$.

PROOF. Integrating the k-th equation of (S_{λ}) , $k = l, l + 1, ..., n - 1$, from *t* to $s_k(t \leq s_k)$ and using (N_i) , we get

$$
(4_k) \t\t |y_k(t)| \geq \int_t^{s_k} p_k(x) |y_{k+1}(h_{k+1}(x))| dx.
$$

Putting (4_{n-1}) into (4_{n-2}) and it into (4_{n-3}) , using nearby (B_3) , then repeating this method $n - l - 3$ times, we have (2_l) .

Integrating the k-th equation of (S_{λ}) , $k = 1, 2, ..., l$, from t_k to t and using (N_i) , we get

$$
(5_k) \t |y_k(t)| \geq \int_{t_k}^t p_k(x) |y_{k+1}(h_{k+1}(x))| dx, \t t \geq t_k.
$$

Putting (5_{i-1}) into (5_{i-2}) and it into (5_{i-3}) , using nearby (B_3) , then repeating this method $l - k - 3$ times, we get (3_i) .

PROOF OF THEOREM 1. Suppose that (S_1) **has a weakly nonoscillatory** regular solution $y = (y_1, \ldots, y_n)$. Then by Lemma 2 y is nonoscillatory. Without loss of generality we may suppose that $y_1(g_m(t)) > 0$ for $m = 1, 2, ..., N$, $t \ge t_0 > 0$. Then the *n*-th equation of (S_{λ}) implies that $(-1)^{\lambda} y_n'(t) \ge 0$ for $t \ge \overline{t}_0$ and it is not identically zero on any infinite interval of $[\bar{t}_0, \infty)$. Then by Lemma 1 and Lemma 3 there exist a $t_1 \geq \overline{t}_0$ and an even integer $l: 2 \leq l \leq n$, or $l = n$ such that (N_l) , (1) , (2) , (3_i) hold for $t \ge t_1$. Let $T_0 \ge t_1$ be so large that $g_m(t) \ge t_1$ for $t \ge T_0$, $1 \le m \le N$.

1. Let $l = n$. Replacing t with $h_2(t)$ and l with n in (3₂), we get

(6)
$$
y_2(h_2(t)) \ge \int_{t_2}^{h_2(t)} p_2(x_2) \int_{t_3}^{h_3(x_2)} p_3(x_3) \dots \int_{t_{n-1}}^{h_{n-1}(x_{n-2})} p_{n-1}(x_{n-1}) \times |y_n(h_n(x_{n-1}))| dx_{n-1} \dots dx_3 dx_2 \quad \text{for } t \ge \gamma(t_{n-1}).
$$

Integrating the *n*-th equation of (S_{λ}) from t_n ($\geq T_0$) to $h_n(t)$ and using (N_1) , (A_2) , (A_5) , we have

$$
|y_n(h_n(t))| \ge \int_{t_n}^{h_n(t)} \sum_{m=1}^N a_m(s) f_m(y_1(g_m(s))) ds
$$

$$
\ge \int_{t_n}^{h_n(t)} a_j(s) f_j(y_1(g_j(s))) ds.
$$

Putting the last inequality into (6), we obtain

(7)
$$
y_2(h_2(t)) \ge \int_{t_2}^{h_2(t)} p_2(x_2) \dots \int_{t_{n-1}}^{h_{n-1}(x_{n-2})} p_{n-1}(x_{n-1}) \int_{t_n}^{h_n(x_{n-1})} \times a_j(x_n) f_j(y_1(g_j(x_n))) dx_n dx_{n-1} \dots dx_2.
$$

Interchanging the order of integration in (7), we get

$$
(8) \quad y_2(h_2(t)) \ge \int_{t_n}^{H_n(t)} a_j(x_n) f_j(y_1(g_j(x_n))) \int_{h_n^{-1}(x_n)}^{H_{n-1}(t)} p_{n-1}(x_{n-1}) \dots \int_{h_n^{-1}(x_3)}^{H_2(t)} p_2(x_2) dx_2 \dots
$$

$$
\times dx_{n-1} dx_n \quad \text{for } t \ge \gamma(t_n) .
$$

Take any $T \ge t_n$ and let $T_j = \sup_{t_n \le t \le T} \max \{g_j(t), t\}$. Multiplying (8) by $p_1(t)/f_j(y_1(t))$ and then integrating from t_n to T_j , using the first equation of (S_λ) and the monotonicity of f_j , y_1 , g_j and (A_6) , we have

Differential systems with deviating arguments 203

$$
(9) \quad \int_{t_n}^{T_j} \frac{y_1'(t) dt}{f_j(y_1(t))} \ge \int_{t_n}^{T_j} \frac{p_1(t)}{f_j(y_1(t))} \int_{t_n}^{H_n(t)} a_j(x_n) f_j(y_1(g_j(x_n))) \int_{h_n^{-1}(x_n)}^{H_{n-1}(t)} p_{n-1}(x_{n-1}) \dots
$$

\n
$$
\times \int_{h_3^{-1}(x_3)}^{H_2(t)} p_2(x_2) dx_2 \dots dx_{n-1} dx_n dt
$$

\n
$$
\ge \int_{t_n}^{H_n(T_j)} a_j(x_n) \int_{H_n^{-1}(x_n)}^{T_j} p_1(t) \frac{f_j(y_1(g_j(x_n)))}{f_j(y_1(t))} \int_{h_n^{-1}(x_n)}^{H_{n-1}(t)} p_{n-1}(x_{n-1}) \dots
$$

\n
$$
\times \int_{h_3^{-1}(x_3)}^{H_2(t)} p_2(x_2) dx_2 \dots dx_{n-1} dt dx_n
$$

\n
$$
\ge \int_{t_n}^{H_n(T_j)} a_j(x_n) \int_{H_n^{-1}(x_n)}^{T_j} p_1(t) \frac{f_j(y_1(g_j(H_n^{-1}(x_n))))}{f_j(y_1(t))}
$$

\n
$$
\times \int_{h_n^{-1}(x_n)}^{H_{n-1}(t)} p_{n-1}(x_{n-1}) \dots \int_{h_3^{-1}(x_3)}^{H_2(t)} p_2(x_2) dx_2 \dots dx_{n-1} dt dx_n.
$$

Since $l = n \geq 3$, $\lim_{t \to \infty} y_1(t) = \infty$, we may choose t_n so large that $y_1(t) \geq K_0$ for $t \ge t_n$. Because the functions f_j , y_1 , g_j are nondecreasing on $[t_0, \infty)$, $f_j(y_1(g_j(H_n^{-1}(x_n))))/f_j(y_1(t)) \ge 1$ for $u = H_n^{-1}(x_n) \le t \le g_j(u), u \in \mathcal{A}_j$.

From (9) we then have

$$
(10) \quad \int_{t_n}^{T_j} \frac{y_1'(t) dt}{f_j(y_1(t))} \ge \int_{\mathscr{A}_j \cap [t_n, T]} a_j(x_n) \int_{H_n^{-1}(x_n)}^{g_j(H_n^{-1}(x_n))} p_1(t) \int_{h_n^{-1}(x_n)}^{H_{n-1}(t)} p_{n-1}(x_{n-1}) \dots \int_{h_3^{-1}(x_3)}^{H_2(t)} \times p_2(x_2) dx_2 \dots dx_{n-1} dt dx_n.
$$

Letting $T \to \infty$ in (10) and using (C₄), we get

$$
\int_{\mathscr{A}_j \cap [t_n,\infty)} a_j(x_n) \int_{H_n^{-1}(x_n)}^{g_j(H_n^{-1}(x_n))} p_1(t) \int_{h_n^{-1}(x_n)}^{H_{n-1}(t)} p_{n-1}(x_{n-1}) \dots \int_{h_3^{-1}(x_3)}^{H_2(t)} \times p_2(x_2) dx_2 \dots dx_{n-1} dt dx_n < \infty,
$$

which contradicts (C_1) .

2. Let $3 \leq l < n$ and $k: 1 \leq k \leq N$ be fixed. Integrating the *n*-th equation of (S_{λ}) from $h_n(t)$ to s_n $(s_n > h_n(t))$, using (A_2) , (A_5) and (N_i) , we have

$$
|y_n(h_n(t))| \ge \int_{h_n(t)}^{s_n} a_k(x) f_k(y_1(g_k(x))) dx.
$$

Combining the last inequality with (2_t) , with *t* replaced by $h_t(t)$, we get

(11)
$$
y_{l}(h_{l}(t)) \geq \int_{h_{l}(t)}^{s_{l}} p_{l}(x_{l}) \dots \int_{h_{n-1}(x_{n-2})}^{s_{n-1}} p_{n-1}(x_{n-1}) \int_{h_{n}(x_{n-1})}^{s_{n}} y_{n-1}(x_{n-1}) \times a_{k}(x) f_{k}(y_{1}(g_{k}(x))) dx dx_{n-1} \dots dx_{l},
$$

where $s_k = \max\{s_{k-1}, h_k(s_{k-1})\}, k = l + 1, \ldots, n, s_n$ is sufficiently large. Putting (11) into (3_2) , in which we replace t with $h_2(t)$, we have

$$
(12) \qquad y_2(h_2(t)) \ge \int_{t_2}^{h_2(t)} p_2(x_2) \dots \int_{t_{l-1}}^{h_{l-1}(x_{l-2})} p_{l-1}(x_{l-1}) \int_{h_l(x_{l-1})}^{s_l} p_l(x_l) \dots
$$

$$
\times \int_{h_{n-1}(x_{n-2})}^{s_{n-1}} p_{n-1}(x_{n-1}) \int_{h_n(x_{n-1})}^{s_n} a_k(x) f_k(y_1(g_k(x)))
$$

$$
\times dx \, dx_{n-1} \dots dx_l \, dx_{l-1} \dots dx_2 \, .
$$

Interchanging the order of an integration in (12) we get

$$
(13) \quad y_2(h_2(t)) \ge \int_{\bar{t}_n}^{H_n(t)} a_k(x_n) f_k(y_1(g_k(x_n))) \int_{\bar{t}_{n-1}}^{h_n^{-1}(x_n)} p_{n-1}(x_{n-1}) \dots \int_{\bar{t}_{l-1}}^{h_l^{-1}(x_l)} p_{l-1}(x_{l-1})
$$

$$
\times \int_{h_{l-1}^{-1}(x_{l-1})}^{H_{l-2}(t)} p_{l-2}(x_{l-2}) \dots \int_{h_3^{-1}(x_3)}^{H_2(t)} p_2(x_2)
$$

$$
\times dx_2 \dots dx_{l-2} dx_{l-1} \dots dx_{n-1} dx_n,
$$

where $\bar{t}_{l-1} = t_{l-1}, \bar{t}_k = h_k(\bar{t}_{k-1}), k = l, ..., n - 1.$

Take any $T \ge \overline{t}_n$ and let $T_k = \sup_{t_n \le t \le T} (\max \{g_k(t), t\})$. Multiplying (13) by $p_1(t)/f_k(y_1(t))$, then integrating from \bar{t}_n to T_k , using the first equation of (S_λ) and the monotonicity of g_k , y_1 , f_k and (A_6) , we have

$$
(14) \quad \int_{\bar{t}_n}^{\bar{T}_k} \frac{y_1'(t) dt}{f_k(y_1(t))} \geq \int_{\bar{t}_n}^{\bar{T}_k} \frac{p_1(t)}{f_1(y_1(t))} \int_{\bar{t}_n}^{H_n(t)} a_k(x_n) f_k(y_1(g_k(x_n))) \int_{\bar{t}_{n-1}}^{h_n^{-1}(x_n)} p_{n-1}(x_{n-1}) \dots
$$

\n
$$
\times \int_{\bar{t}_{l-1}}^{h_l^{-1}(x_l)} p_{l-1}(x_{l-1}) \int_{h_l^{-1}(x_{l-1})}^{H_{l-2}(t)} p_{l-2}(x_{l-2}) \dots \int_{h_3^{-1}(x_3)}^{H_2(t)} p_2(x_2)
$$

\n
$$
\times dx_2 \dots dx_{l-2} dx_{l-1} \dots dx_{n-1} dx_n dt
$$

\n
$$
\geq \int_{H_n(\bar{t}_n)}^{H_n(\bar{T}_k)} a_k(x_n) \int_{H_n^{-1}(x_n)}^{T_k} p_1(t) \frac{f_k(y_1(g_k(H_n^{-1}(x_n))))}{f_k(y_1(t))}
$$

\n
$$
\times \int_{\bar{t}_{n-1}}^{h_n^{-1}(x_n)} p_{n-1}(x_{n-1}) \dots \int_{\bar{t}_{l-1}}^{h_l^{-1}(x_l)} p_{l-1}(x_{l-1}) \int_{h_l^{-1}(x_{l-1})}^{H_{l-2}(t)} p_{l-2}(x_{l-2}) \dots
$$

\n
$$
\times \int_{h_3^{-1}(x_3)}^{H_2(t)} p_2(x_2) dx_2 \dots dx_{l-2} dx_{l-1} \dots dx_{n-1} dt dx_n.
$$

Since $l \geq 3$, $\lim_{t \to \infty} y_1(t) = \infty$, we can take \overline{t}_n so large that $y_1(t) \geq K_0$ for $t \geq \overline{t}_n$. Because the functions $f_k(y_1(t))$, $g_k(t)$ are nondecreasing on $\left[\overline{t}_n, \infty\right)$, it is easy to see that $f_k(y_1(g_k(H_n^{-1}(x_n))))/f_k(y_1(t)) \ge 1$ for $u = H_n^{-1}(x_n) \le t \le g_r(u)$, $u \in \mathscr{A}_k$. The inequality (14) implies

Differential systems with deviating arguments 205

$$
(15) \quad \int_{\bar{t}_n}^{\bar{T}_k} \frac{y_1'(t) dt}{f_k(y_1(t))} \ge \int_{\mathscr{A}_k \cap [\bar{t}_n, H_n(T_k)]} a_k(x_n) \int_{H_n^{-1}(x_n)}^{g_k(H_n^{-1}(x_n))} p_1(t) \int_{\bar{t}_{n-1}}^{h_n^{-1}(x_n)} p_{n-1}(x_{n-1}) \dots
$$

$$
\times \int_{\bar{t}_{l-1}}^{h_l^{-1}(x_l)} p_{l-1}(x_{l-1}) \int_{h_{l-1}^{-1}(x_{l-1})}^{H_{l-2}(t)} p_{l-2}(x_{l-2}) \dots \int_{h_3^{-1}(x_3)}^{H_2(t)} p_2(x_2)
$$

$$
\times dx_2 \dots dx_{l-2} dx_{l-1} \dots dx_{n-1} dt dx_n.
$$

Letting $T \to \infty$ in (15) and using (C₄) we get a contradiction to (C₂).

3. Let $l = 2$ and $r: 1 \le r \le N$ be fixed. Integrating the *n*-th equation of (S_{λ}) over $\left[h_n(t), s_n \right]$, using (A_2) , (A_5) and (N_2) , we have

$$
|y_n(h_n(t))| \ge \int_{h_n(t)}^{s_n} a_r(x) f_r(y_1(g_r(x))) dx.
$$

Putting the last inequality into $(2₂)$ and replacing t with $h₂(t)$, we have

$$
(16) \quad y_2(h_2(t)) \ge \int_{h_2(t)}^{s_2} p_2(x_2) \dots \int_{h_{n-1}(x_{n-2})}^{s_{n-1}} p_{n-1}(x_{n-1}) \int_{h_n(x_{n-1})}^{s_n} a_r(x) f_r(y_1(g_r(x)))
$$

 $\times dx \, dx_{n-1} \dots dx_2$, $t \ge \gamma(T_0) = T_3$.

Interchanging the order of integration in (16), we get

$$
(17) \quad y_2(h_2(t)) \ge \int_{H_n(t)}^{\bar{s}_n} a_r(x_n) f_r(y_1(g_r(x_n))) \int_{H_{n-1}(t)}^{h_n^{-1}(x_n)} p_{n-1}(x_{n-1}) \dots \int_{H_2(t)}^{h_3^{-1}(x_3)} p_2(x_2) \times dx_2 \dots dx_{n-1} dx_n,
$$

where $\bar{s}_n = h_n(h_{n-1}(\ldots(h_3(s_2))\ldots)).$

Take any $T \geq T_3$ and let $T_r = \sup_{T_3 \leq t \leq T} \max \{g_r(t), t\}$. Multiplying (17) by $p_1(t)/f_r(y_1(t))$, then integrating from T_3 to T_r , using the first equation of (S_2) and the monotonicity of g_r , y_1 , f_r and (A_6) , we get

$$
(18) \quad \int_{T_3}^{T_r} \frac{y_1'(t) dt}{f_1(y_1(t))} \ge \int_{T_3}^{T_r} \frac{p_1(t)}{f_1(y_1(t))} \int_{H_n(t)}^{H_n(T_r)} a_r(x_n) f_r(y_1(g_r(x_n))) \int_{H_{n-1}(t)}^{h_n^{-1}(x_n)} p_{n-1}(x_{n-1}) \dots
$$

$$
\times \int_{H_2(t)}^{h_3^{-1}(x_3)} p_2(x_2) dx_2 \dots dx_{n-1} dx_n dt
$$

$$
\ge \int_{\mathscr{A}_r \cap [H_n(T_3), H_n(T_r)]} a_r(x_n) \int_{T_3}^{H_n^{-1}(x_n)} p_1(t) \frac{f_r(y_1(g_r(H_n^{-1}(x_n))))}{f_r(y_1(t))}
$$

$$
\times \int_{H_{n-1}(t)}^{h_n^{-1}(x_n)} p_{n-1}(x_{n-1}) \dots \int_{H_2(t)}^{h_3^{-1}(x_3)} p_2(x_2) dx_2 \dots dx_{n-1} dt dx_n.
$$

i) Let $\lim_{t\to\infty} y_1(t) = \infty$. Then proceeding analogously as in the corresponding part of the case 2, we obtain a contradiction to (C_3) .

ii) Let $\lim_{t\to\infty} y_1(t) = y_{10}$. If $T\to\infty$, then from (18) in view of (C₅) we have

$$
\int_{\mathscr{A}_r \cap [H_n(T_3), \infty)} a_r(x_n) \int_{T_3}^{H_n^{-1}(x_n)} p_1(t) \int_{H_{n-1}(t)}^{h_n^{-1}(x_n)} p_{n-1}(x_{n-1}) \dots \int_{H_2(t)}^{h_3^{-1}(x_3)} p_2(x_2)
$$

 $\times dx_2 \dots dx_{n-1} dt dx_n \le \int_0^{y_{10}} \frac{du}{f_r(u)} < \infty,$

which contradicts (C_3) .

The proof of Theorem 1 is complete.

PROOF OF THEOREM 2. Suppose that (S_1) **has a weakly nonoscillatory** regular solution $y = (y_1, \ldots, y_n)$. Then by Lemma 2 y is nonoscillatory. Proceeding exactly as in the proof of Theorem 1, we find that (N_l) , (1) , (2_l) , (3_i) hold for $t \ge t_1$ and there exists an odd integer $l: 1 \le l \le n$ $(n + \lambda)$ is even) or $l = n$. Let $T_0 \ge t_1$ be so large that $g_m(t) \ge t_1$ for $t \ge T_0$, $m = 1, 2, ..., N$.

1. We suppose that $l = n$ and then $3 \le l < n$. The proofs in these cases are the same as in the corresponding parts of the proof of Theorem 1.

2. Now we consider $l = 1$. Let $r, 1 \le r \le N$, be fixed. Replacing t in $(2₁)$ with $h₂(t)$ and using $(N₁)$, we obtain

$$
(19) \quad -y_2(h_2(t)) \ge \int_{h_2(t)}^{s_2} p_2(x_2) \dots \int_{h_{n-2}(x_{n-3})}^{s_{n-2}} p_{n-2}(x_{n-2}) \int_{h_{n-1}(x_{n-2})}^{s_{n-1}} p_{n-1}(x_{n-1})
$$

$$
\times y_n(h_n(x_{n-1})) dx_{n-1} dx_{n-2} \dots dx_2 , \qquad T_3 = \gamma(t_1) \le t \le s_2 .
$$

Integrating the *n*-th equation of (S_{λ}) over $[h_n(t), s_n]$, $s_n = \max\{s_{n-1},$ $h_{n-1}(s_{n-1})$ } and using (A₂), (A₅), (N₁), we get

$$
|y_n(h_n(t))| \ge \int_{h_n(t)}^{s_n} a_r(x) f_r(y_1(g_r(x))) dx.
$$

Putting the last inequality into (19) we have

$$
(20) \quad -y_2(h_2(t)) \ge \int_{h_2(t)}^{s_2} p_2(x_2) \dots \int_{h_{n-1}(x_{n-2})}^{s_{n-1}} p_{n-1}(x_{n-1}) \int_{h_n(x_{n-1})}^{s_n} a_r(x) f_r(y_1(g_r(x)))
$$

$$
\times dx \, dx_{n-1} \dots dx_2
$$

$$
\ge \int_{H_n(t)}^{\bar{s}_n} a_r(x_n) f_r(y_1(g_r(x_n))) \int_{H_{n-1}(t)}^{h_n^{-1}(x_n)} p_{n-1}(x_{n-1}) \dots \int_{H_2(t)}^{h_3^{-1}(x_3)} p_2(x_2)
$$

$$
\times dx_2 \dots dx_{n-1} \, dx_n \,,
$$

where $\bar{s}_n = h_n(h_{n-1}(\ldots(h_3(s_2))\ldots)).$

Take any $T \geq T_3$ and let $T_r = \sup_{T_3 \leq t \leq T} \max \{g_r(t), t\}$. Multiplying (20) by $p_1(t)/f_r(y_1(g_r(t)))$, then integrating from T_3 to T_r , using the first equation of (S_{λ}) , the monotonicity of g_r , y_1 , f_r and (N_1) , we get

$$
(21) \quad -\int_{T_3}^{T_r} \frac{y_1'(t) dt}{f_r(y_1(t))} \ge \int_{T_3}^{T_r} \frac{p_1(t)}{f_r(y_1(t))} \int_{H_n(t)}^{H_n(T_r)} a_r(x_n) f_r(y_1(g_r(x_n))) \int_{H_{n-1}(t)}^{h_n^{-1}(x_n)} p_{n-1}(x_{n-1}) \dots
$$

$$
\times \int_{H_2(t)}^{h_3^{-1}(x_3)} p_2(x_2) dx_2 \dots dx_{n-1} dx_n dt
$$

$$
= \int_{\mathscr{R}_r \cap [H_n(T_3), H_n(T_r)]} a_r(x_n) \int_{g_r(H_n^{-1}(x_n))}^{H_n^{-1}(x_n)} p_1(t) \frac{f_r(y_1(g_r(x_n)))}{f_r(y_1(g_r(H_n^{-1}(x_n))))}
$$

$$
\times \int_{H_{n-1}(t)}^{h_n^{-1}(x_n)} p_{n-1}(x_{n-1}) \dots \int_{H_2(t)}^{h_3^{-1}(x_3)} p_2(x_2) dx_2 \dots dx_{n-1} dt dx_n .
$$

Since $y_1(t) > 0$, $y_1'(t) < 0$ for $t \ge t_1$, there exists $\lim_{t \to \infty} y_1(t) = b \ge 0$. Let $\lim_{t\to\infty} y_1(t) = b > 0$. Then

(22)
$$
\lim_{t \to \infty} \frac{f_r(y_1(g_r(t)))}{f_r(y_1(g_r(H_n^{-1}(t)))} = 1.
$$

Letting $T \rightarrow \infty$ in (21), using (22) and (C₅), we obtain a contradiction to (C_6) .

If $\lim_{t\to\infty} y_1(t) = 0$, then by Lemma 2 $y_i(t)$, $i = 1, 2, \ldots, n$, tend monotonically to zero for $t \to \infty$.

The proof of Theorem 2 is complete.

PROOF OF THEOREM 3. To prove Theorem 3, in addition to the proof of Theorem 2 we must show that $\lim_{t\to\infty} y_1(t) = 0$ is impossible.

Let $H_n(t) \equiv t$. Then $f_r(y_1(g_r(t)))/f_r(y_1(g_r(H_n^{-1}(t)))) \equiv 1$. If $\lim_{t \to \infty} y_1(t) = 0$, we may choose \overline{T}_3 so large that $|y_1(t)| \leq k_0$ for $t \geq \overline{T}_3$.

Letting $T \to \infty$, from (21) in view of (C₅) we get a contradiction to (C₆) with $H_n^{-1}(t) \equiv t$.

The proof of Theorem 3 is complete.

References

- **[1] A. F. Ivanov, Y. Kitamura, T. Kusano and V. N. Shevelo, Oscillatory solutions of functional differential equations generated by deviation of arguments of mixed type, Hiroshima Math. J. 12 (1982), 645-655.**
- **[2] P. Marusiak, Oscillation theorems for nonlinear differential systems with general deviating arguments, Hiroshima Math. J. 16 (1986), 651-663.**
- **[3] P. Marusiak and V. N. Shevelo, On the relation between boundedness and oscillation of**

solutions of many-dimensional differential systems with deviating arguments, Czechoslovak Math. J. 37 (1987), 559-566.

- **[4] V. Seda, On nonlinear differential systems with deviating arguments, Czechoslovak Math. J. 36 (1986), 450-466.**
- **[5] N. V. Varech and V. N. Shevelo, Asymptotic properties of components of solutions of certain many-dimensional systems with deviating arguments (in Russian). In: Differential-functional equations and their applications, Inst. Math. Ukrainian Academy of Sciences, Kiev (1985), 108-124.**

Department of Mathematics, VSDS (010 88 Zilina, Czechoslovakia)