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§1. Introduction

There has been considerable and theoretical interest in how well the
Poisson distribution approximates the distribution of the sums of arbitrary
indicator (zero-one) variables. Results of this type, either limit theorems or
quantitative estimates of the distance to a Poisson distribution, have been
shown under various conditions by many authors. Janson [14] gave a suffi-
cient condition (not of mixing type) for convergence to Poisson distribution of a
sequence of sums of dependent indicator (zero-one) random variables. Chen
[5] gave a general method of obtaining and bounding the error in approxi-
mating the distribution of the sums of dependent Bernoulli random variables by
the Poisson distribution. Dobrushin and Sukhov [9], gave necessary and
sufficient conditions for convergence to a Poisson process of infinite particle
systems under the action of free dynamic (see also Willms [22] and Zessin
[23]). The other investigations in this direction were conducted within the
rapidly developing field of symmetric statistics. Silverman and Brown [20]
have obtained Poisson limit theorems for certain sequences of symmetric
statistics

(1.1) I W , ^),

based on a sample of identically distributed independent random variables
Xu , Xn, where hk is a symmetric zero-one function and the summation is
extended over all sets {*i,...,ik} of distinct integers drawn from {1, . . . ,w}.
Barbour and Eagleson [2], [3] gave a general Poisson approximation theorem
for symmetric statistics (1.1) from a sample of independent but not necessarily
identically distributed random variables and with a symmetric zero-one function
of k variables.

The Poisson limit theorems in the more general setting of symmetric
statistics have been obtained by Mustafid and Kubo [18]. They have obtained
the asymptotic distribution of the sums of symmetric statistics

(1.2) £ hk(XHtMl9...9XHtJ,
l£< <
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in terms of multiple Poisson-Wiener-Ito integrals, where the symmetric statistics
(1.2) is based on samples of identically distributed independent random elements
XHtl9 , XHin, and hk is a symmetric function. The results also still hold,
even if random elements are not identically distributed, provided that random
elements are infinitesimal (see Mustafid [17]). An alternative approach to
limiting distribution due to Avram and Taqqu [1] in a simple case when the
symmetric statistics (1.2) is symmetric polynomials. They have expressed the
asymptotic distribution of symmetric polynomials in terms of a multiple integral
with respect to a Levy process. In the case of central limit theorems, the
limiting distributions of symmetric statistics (1.2) have been obtained by several
authors. See Dynkin and Mandelbaum [10], Mandelbaum and Taqqu [16],
Dehling [6], Dehling, Denker and Philipp [7], Denker and Keller [8] and
Teicher [21].

The aim of this paper is the following. First we establish a method of the
Poisson approximation for sequences of dependent p-dimensional Bernoulli
arrays, while secondly we extend the Poisson limit theorems in [17] to depen-
dent random elements case. In Section 2, we will discuss convergence of
Radon measures and a mixing condition of sequences of random elements.
The results are stated in Sections 3 and 4.

§2. Dependent random elements

Let X be a locally compact second countable Hausdorff space. Let s/
denote the topological Borel field in X and 38 the ring of all bounded (i.e.
relatively compact) sets in s/. Let Jf(X) be the family of all Radon measures
on (3E, <$/) with vague topology. For a given X e Jf{X\ a random measure
{PX(B) = FA(co, B), B e &} is called a Poisson random measure with intensity X if
for any natural number p, any disjoint sets Bx, ..., Bpe@ and any non-
negative integers ql9 ..., qp,

exp l-
HI ' H

We define a class of bounded sets 0&x by

= 0} ,

where dB denotes the boundary of B.
By a random element X in the space X we mean a measurable mapping

from some fixed probability space (Q, # , Pr) into (£, s/). A sequence of random
elements Xn converges to X in distribution sense and is denoted as Xn -• X, if
the distribution vn of Xn converges weakly to the distribution v of X as /t -» oo.
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Let Xnl9 — , Xnfkn (1 < kn < oo), n = 1, 2, , be sequences of dependent
random elements on X with marginal distributions vn>1, , vnkn e Jf(X\
respectively. Denote by j£j} the a-algebra of events generated by {XnJ; a <
j < b}, 1 < a < b < kn. We assume the following:
(A.I) Xn = YJ=\ vn,i converges vaguely t o a l e M{%) without atoms as n -> oo,
(A.2) lim max vni(K) = 0 for any compact set K9

n-+ao i

(A3) for a n y even t s A e 0$ a n d B e ##„,,*„> n>l,

\Pr(AB) - PT(A)PT(B)\ < (p(m)?r(A)Pr(B),

with <p(m)|0 and cp(l) < oo.

We denote a = <p(l) + 1. We refer to Philipp [19] for a detailed treatment of
such mixing condition (A.3).

LEMMA 2.1 ([19]). / / the condition (A.3) is satisfied, and if X and Y are
bounded measurable over &$ and &rn+m,kn respectively. Then

\E(XY) - E(X)E(Y)\ < <p(m)E\X\E\Y\ .

LEMMA 2.2. Suppose that the family of a-fields {&l"\ 1 < i < j < kn) satis-
fies the mixing condition (A.3). Let Mo be a natural number such that cp(M0) < 1.
Then there exists a constant p such that for any m > Mo and any bounded ran-
dom variables X, Y, Z measurable over &$, 0Sf$9 J ^ respectively, with c — b >
m, e — d > m and c < d,

\E(XZY) - E(XZ)E{Y)\ < pcp{m)E\XZ\E\ Y\ .

PROOF. Let A e #<;>, B e @%] and C e &?}. By (A.3), we have inequalities

PT(ABC) < {1 + (p(m)}Pv(A)Pr(BC) < {1 + <p(m)}2Pr(A)Pr(B)Pr(C),

{1 - <p(m)}Pr(i4)Pr(C) < Pr(AC).

Therefore, we see

Pr(̂ lBC) - Pr(B)Pv(AC) < J3.+ ^ ^ X cp(m)Pr(B)Pr(AC).

Similarly, we see

- PT(B)PT(AC) > - h + ^ ^ X <p(m)T>r(B)Pr(AC).

. Then

\Pr(ABC) - Pr(B)Pr(AC)\ < pq>(m)Pr{B)Pr{AC), for any m>M0.
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Therefore, for any D e 0f$ v &$ and B e Jff, we have

\Pr(BD) - Pr(J?)Pr(D)| < p<p(m)Pr(£)Pr(D), for any m> Mo.

The assertion of the lemma follows from Lemma 2.1.

§3. Poisson approximation for dependent Bernoulli arrays

In this section, we discuss the case when {X^}^ is a sequence of depen-
dent p-dimensional Bernoulli arrays, i.e. for each n and i, XnJ is a random p-
vector of the form Xnti = {X{

n)l ...,X
{
n% where X$ = 0 or 1 and such that

\ = 0 except for at most one, 1 < j < p. In other words,

u = 0 , . . . , ^ > = 0)

where Y.U P& + Prffl = 0,..., *# = 0) = 1.
We will prove the convergence of the distribution of Ysi^nj t o a P"

dimensional Poisson distribution under the assumptions:
(A.1)' hm X?=i P ^ = h J = 1,2,..., p,

(A.2)' lim max p ^ = 0
n -*• oo 7, i

and the mixing condition (A. 3).
We denote W™ = ^ X$u XnJ = ^hi P $ , 1 < J < P and

A = sup ]T?=i p{j\ .

We extend Chen's method (cf. [5]) to prove the following lemma.

LEMMA 3.1. Under the mixing condition (A.3), let Mo and p be as in Lemma
2.2. Then for any q < p and m > Mo, there exist constants C^m, p, q) and C2{q)
such that

(3.1) \E{(W}1K..W*-e»^1ty
2K..WW

< C^m, p, q) sup p # + C2(q)<p(m + 1).

PROOF. We have

(3.2) i2 «

i * i

x (EUXJ& ... JfJJ - ftle**X£}2... XM) exp [i Sj-i
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where the sum £ * is extended over il9 . . . , iq with \ik — ii\ > 2m, for any k
and /, 1 < k, I < q, k ^ /, and the sum £** is extended over il9 . . . , iq with
\ik — it\ < 2m, for some fc, /, 1 < fe, / < q, k # /.

Let V£y~"iq) = Ylxy\> w h e r e t h e s u m Z ' i s extended over all k with
\k-iz\ >m, z= 1 , . . . , 4. Let

ff(ilf..., g = exp [i X?=i t j exp [i Xj=i O^ ' i 1 - 1 ^] •

The first sum on the right-hand side of (3.2) can be rewritten as

(3.3) X* E{(XH ... Xftq - ftle^Xgl... Xj$q) exp [1 ̂ =1 tjW

'1 ''a

x {exp [i£l

We know that \H(il9...9iq)\ < 1. By Lemma 2.1 and Lemma 2.2, the third
sum on the right-hand side of (3.3) can be estimated as

< 2ptxq~2Aq(p(m + 1),

for any m > Mo.
Take Jf^ to be identically zero when i < 0 or i> kn. For a = 1, . . . ,

5 = 1, . . . , /? , we define

Y(a,s9l)=Y(il9...,iq9a;s9l)

«»)
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for ia — m < I < ia + m and

Y(a, s, j . - m - 1) = exp p £ # i-?-

for / = ia — m — 1. We write 7 ' (a, 5, /) and 7 ' (a, s,ia — m — 1) for the sums of
^ over ft # z'a, a = 2 , . . . , g, in the above definition. Furthermore, we define

A Y(a, 5, /) = exp[i £j=i ^ {7(fl, 5, /) - Y(a, 5, / - 1)} ,

AT {a, 5, /) = exp [i £ j = 1 ty] { r (a , 5, /) - y'(o, 5, / - 1)} .

Since each A ^ , 1 < j < p, l<i<kn, is 0 or 1, and |zf7(a, s, Z)| and
\AY'(a, 5, /)| < 2, (3.3) can be estimated as

(3.4) ...X$q - pi'Xe^XiX... XftJ exp p ̂ =1 t , ^

. Z* Zf-i ZJ-i Z{"-J;-»
1 '
. Z
11 '_ y * yp_ y«_ yia+m

, ^ 0}

ftJY'(a, z, I)}

£ .Xj,%H(iu ..., iq)}

< 2 V* Yp Yq y^+m
S Z L Lz=l La=l Ll = ia-m

-^ l + «)(2m + 1)
ii >a

2pocq~2Aq(p(m

4- l)a«-1(a + I)y4€ sup p{
n
j\

hi

by using Lemma 2.1. Furthermore, since for r ^ s, 1 < r, s < p,

EX#X£>. = iV(Jf«, = 1, Xft = 1) = 0 ,

the second sum on the right-hand side of (3.2) can be estimated as
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(3.5) I**
*1 *«

ftJ exp [i

a)(2m ^ sup

.i^.2---^.,-i supply

p(j\

again by Lemma 2.1. Summarizing (3.4) and (3.5) in sup p{j\ and cp(m + 1), we

have (3.1), and the proof of lemma is completed.

THEOREM 3.2. Under the assumptions (A.l)', (A.2)' and (A.3),

(3.6) ( X k JfJJ/,..., Xfci Jf?l) ^ W , ^AP)

as n —• oo, where PXj are independent Poisson distributed random variables with
means hj9 j = 1, . . . , p, respectively.

PROOF. The proof of the theorem bases on Lemma 3.1. To prove (3.6),
we shall show the convergence of the characteristic functions of

(3.7) E exp [i £7=1 tj exp [ £ j = 1 Xj{e* - 1)] as n - oo ,

by induction. From the assumptions (A.2)' and (A.3), for any s > 0, there exists
an m0 > Mo such that

C2(q)(p(m0 + 1) < e/2 , for any 1 < q < p ,

and for the fixed m0, we can choose NE such that

C^mo, r, q) max pJ/\ < 6/2 , for any n> Ne and any r, q,l<q<r<p.

Then we have

(3.8) Q K , r, q) max p # + C2(^)^(m0 + 1) < £ ,
hi

for any n> Ne and any r, q9 1 < q < r < p.
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First, we shall prove for p = 1, i.e.,

(3.9) E expptW™] -> exp [^(e* - 1)]

as n -* oo. By Lemma 3.1 for p = g = 1 and (3.8), we have

< C^m, 1, 1) max p $ + C2(l)(p(m + 1) < e .
i

Whence by integration

(3.10) lim £{exp |W n
( 1 ) ]} exp [/Ln>1(l - 6fr)] -

n-*oo

Consequently, by (A.l)', we have (3.9).
Furthermore, we assume that (3.7) is valid for p — 1.

1 = 0 .

Then

C\ 1 \\ Fiexn Vi V*7"1 <st W^~\\ PYI-»

as n -• oo, for any s and tp j = 1, ..., p — 1. Let

<pM(t, s) = £{exp [*WM
(P) + is Xj

Note that we can apply Lemma 3.1 for

- cltpXn pW^) exp [i

KiP) exp

Then by Lemma 3.1 and (3.8),

d2

(3.12) ;<pn(£, s) exp [An,p(l - e»)

= KZP1 h

x i2 exp

M p, 2) max p<A

+ fa

exp

1)

(m, p, 1) max p«>( + C2(l)<p(m + 1)1 ^=i
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Furthermore, by (3.10) and (3.11),

Jo Jo Wfs 9m{tt S) CXP [A">p(I " e"] + Z# W ~ e'StJ)] dt ds

= ^{t, s) exp [A,,,(l - e") + £ # 1/1 - e*>)1

- £{exp [itW™]} exp [AB,p(l - e*)]

- £{exp [i £ # s t , ^ ] } exp [ £ # A/l - e"')l + 1

-»lim <h(t, s) exp [A,,p(l - e") + ^-x1 A/l - e"*)] - 1 .

By (3.12), the left hand side of the above relation converges to 0 as n -> oo.
Hence, by (A.I)',

lim cpn{u s) exp [Ap(l - eu) + ^J-i1 W ~ e^'ft - 1 = 0 .
n-*ao

Replacing t = tp and s = 1, we have (3.7), and the proof of the theorem is
completed.

§4. The asymptotic distribution of symmetric statistics

In this section, we extend the Poisson limit theorems in [17] to the case of
dependent random elements. Let XnA, . . . , Xnkn(l <kn< oo), n = 1, 2, . . . , be
sequences of random elements on X as in Section 2 which satisfy the assump-
tions (A.I), (A.2) and (A.3). For a symmetric function hk(xl9..., xk), we define
symmetric statistics by

< s <Z< s < k M ^ y forfc</cn

0 for k> kn .

Let J^(X) be the family of sequences of continuous symmetric functions {hk}k>0

defined by Notation 1 of [17] and let ${X) be the family of sequences of
symmetric step functions of special form defined in §3 of [17]. We investigate
the asymptotic distribution of the symmetric statistics

for h = (h0, hu ...) e Jf{X). We show that the limiting distribution is expressed
in terms of multiple Poisson-Wiener-Ito integrals with respect to a Poisson
random measure Pk with intensity X;
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We denote

xk = (xi x j e l * and dkk{xk) = dkn{x,)...dXn{xk).

By Lemma 2.1 and the same way as in [17] (cf. [18]), we have the following
estimation of the covariance,

Z
<- -<sk<kn

2

y _ L_I
ZJ-0 (fc _ jy, ({ _ jy j ,

x

x f...

for kn>k,kn>l and

for kn< k or kn< /, where fc A / is the minimum of k and /, the sum Yf *s

extended over all different sf, 1 < i < k + / — 7 such that 1 < 5X < • • • < Sj < kn,
1 < sj+1 < ' •' < sk < kn9 1 < sk+1 <" < sk+l-j < kn. Then we have

(4.1)

xL. {\\hk(x
j,yk-J)g,(xJ,

As in [17] (cf. [18]), for a given Radon measure v, we define a norm ||fi||v of a
sequence of symmetric functions h = {^}*=0 by
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(4-2) Wl^I^oI^^^y

x f... f \hk(x\ /"')*,(x', z'-J)\ dv\xj) dv"-J(yk-J) rfv'-V) •

By (4.2), we have

(4-3) E\Yn(h)\2 < W\ZXn .

Furthermore, we define a norm || • || by

(4.4) l|/-|| = Urn" Hfcll.̂  (> lim ^ II " I I A

NOTATION 1. Denote by J^(X) the set of all sequences h = {hk}k>0 which
can be approximated by elements of S(X) with respect to the norm || • ||, that is,
for any h e 3&(£) and any e > 0, there exists an he e <f (3E) such that

\\h-h*\\<e.

LEMMA 4.1. For h e £(X),

Yn(h) -i W(h) = Jf-i h ^

as n -> oo.

PROOF. By 15.7.2 in [15] (cf. Lemma 2.1 in [17]), we know that for each
n > 1, Zw>i = (XBl(Xnti),...,XBp(XnJ)\ 1 < i < kn9 is a dependent p-dimensional
Bernoulli array which satisfies (A.I)' and (A.2)', i.e.

lim 5 > i Pr(xB ,(^, f) = 1) = Mm E?=i v . , ,^) = A ^ ) , j = 1, . . . , p ,

lim max Pr( / B (Xn>f) = 1) = lim max vnti(Bj) = 0 .
n-*oo j,i n-+ao j,i

Therefore, by Theorem 3.2,

as n^ oo, where P^^-) are independent Poisson random variables with means
X(Bj\ j = l , . . . , p . Then by Corollary 5.1 of [4], we have the assertion of the
lemma.

THEOREM 4.2. For hejf(X), Yn{h)^W{h) as n->oo. Particularly, for
h e J f (S), Yn(h) - i W(h) asn-^oo.
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PROOF. By Lemma 4.1, (4.3) and (4.4), the following estimation

M |£{exp[itr,(fc)]} -
w-*oo

< US |£{exp [itYn(h)1} ~
n-*ao

+ hm |£{exp [fty.(fcf)]}
n->oo

+ |£{exp DW(/.!)]} -

is shown, for he e $(X) with \\h — he\\ < e. Thus the first assertion is seen. To
prove the second assertion, it is sufficient to show that jf(X) <= jf(X). Define
h* s {he

k}k2:0 by (3.7) in §3 of [17]. Then we have

II* - h'Wi^
g.k + 1-j

Zoo y*Ai ~
k'l-oLjm°(k-j)l(l-j)\j\

f... J\(hk - hQ(xJ, yk-j)(h, - hf)(XJ, z'-J)\

A- \\~2Lrfk+l~i

(4

3a< (4e2 + s)e

Therefore, any /i 6 JT(3£) can be approximated by elements of <?(£) with respect
to the norm || • || defined by (4.4). Hence, Jf(X) a jf(X) is clear.
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