An elementary proof of the rationality of the moduli space for rank 2 vector bundles on $P^{\mathbf{2}}$

Takashi MaEda

(Received March 2, 1989)
0. Introduction. Let k be an algebraically closed field of characteristic zero and let $M(0, n)$ be the moduli space of stable vector bundles of rank 2 with chern classes $c_{1}=0$ and $c_{2}=n$ on the projective plane \boldsymbol{P}_{k}^{2} over k. W. Barth showed that the function field of $M(0, n)$ over k is rational (= purely transcendental) of dimension $2 n$ over a certain field F which is rational of dimension $2 n-3$ over k and hence $M(0, n)$ is a rational variety of dimension $4 n-3$ over k for all $n \geq 2$ [1]. However, M. Maruyama pointed out later that there was a gap in his proof of the rationality of the field F [4]. For an odd integer n, the rationality of $M(0, n)$ is proved by G. Ellingsrud and S. Strømme by a different method [2]. As for an even integer n, I. Naruki showed that when $n=4$, the field F is rational over k and hence $M(0,4)$ is a rational variety over k [5]. For even integer $n \geq 6$, many people have pointed out that the rationality of F is reduced to that of the moduli space $M_{g, h y}$ of hyperelliptic curves of genus $g=(n-2) / 2$ [3] by the descent theory of vector bundles.

However, in this paper we shall give an elementary proof of the rationality of the field F for all integers $n \geq 3$.

The author heartily thanks Professor M. Maruyama for introducing him to this subject.

1. Now we shall explain the above field F. Let $K=k\left(x_{1}, \ldots, x_{n}\right.$, y_{1}, \ldots, y_{n}) be a field of $2 n$ variables $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}$ and let W_{n} be the group of semi-direct product of S_{n} and $H_{n}=\bigoplus^{n}(\boldsymbol{Z} / 2 \boldsymbol{Z})$:

$$
1 \rightarrow H_{n} \rightarrow W_{n} \rightarrow S_{n} \rightarrow 1
$$

where S_{n} is the symmetric group of degree n which acts on H_{n} as permutations of direct factos.

Let $G=S L(2, k) \times W_{n}$ act on K as follows:

$$
\begin{gathered}
x_{i}^{g}=\alpha x_{i}+\beta y_{i}, \quad y_{i}^{g}=\gamma x_{i}+\delta y_{i} \quad \text { for } \quad g=\binom{\alpha \beta}{\gamma \delta} \in S L(2, k), \\
x_{i}^{\varepsilon}=\varepsilon_{i} x_{i}, \quad y_{i}^{\varepsilon}=\varepsilon_{i} y_{i} \quad \text { for } \quad \varepsilon=\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right) \in H_{n} \quad\left(\varepsilon_{i}= \pm 1\right), \\
x_{i}^{\sigma}=x_{\sigma(i)}, \quad y_{i}^{\sigma}=y_{\sigma(i)} \quad \text { for } \quad \sigma \in S_{n} .
\end{gathered}
$$

Then we put F to be the fixed field K^{G} by the above action [1, 4]. We shall prove that $F=K^{G}$ is rational of dimension $2 n-3$ over k.
2. We see that

$$
K^{H_{n}}=k\left(\xi_{1}, \ldots, \xi_{n}, \eta_{1}, \ldots, \eta_{n}\right),
$$

where $\xi_{i}=y_{i} / x_{i}$ and $\eta_{i}=x_{i}^{2}(1 \leq i \leq n)$. We shall find a system of generators of $K^{W_{n}}=k\left(\xi_{1}, \ldots, \xi_{n}, \eta_{1}, \ldots, \eta_{n}\right)^{S_{n}}$. Let $a_{i}(1 \leq i \leq n)$ be the elementary symmetric polynomial of degree i in ξ_{1}, \ldots, ξ_{n} and for every integer m,

$$
b_{m}=\sum_{i=1}^{n} \xi_{i}^{m+1} \eta_{i}
$$

Putting $L=k\left(\xi_{1}, \ldots, \xi_{n}, \eta_{1}, \ldots, \eta_{n}\right)$, we have the following diagram:

Lemma 1. $L^{S_{n}}=k\left(a_{1}, \ldots, a_{n}, b_{0}, \ldots, b_{n-1}\right)$.
Proof. Let A be the $n \times n$-matrix $\left(\xi_{j}^{i}\right)_{1 \leq i, j \leq n}$. By definition of b_{0}, \ldots, b_{n-1}, we have ${ }^{t}\left(b_{0}, b_{1}, \ldots, b_{n-1}\right)=A^{\cdot t}\left(\eta_{1}, \eta_{2}, \ldots, \eta_{n}\right)$. Since $\operatorname{det} A=\xi_{1} \xi_{2} \cdots \xi_{n}$. $\prod_{i<j}\left(\xi_{i}-\xi_{j}\right)$ is non-zero, $\eta_{1}, \ldots, \eta_{n}$ are contained in the field $k\left(\xi_{1}, \ldots, \xi_{n}\right.$, $\left.b_{0}, \ldots, b_{n-1}\right)$, and hence $L=k\left(\xi_{1}, \ldots, \xi_{n}, b_{0}, \ldots, b_{n-1}\right)$. On the other hand,

$$
n!=\left[L: L^{S_{n}}\right]=\left[k\left(\xi_{1}, \ldots, \xi_{n}, b_{0}, \ldots, b_{n-1}\right): k\left(a_{1}, \ldots, a_{n}, b_{0}, \ldots, b_{n-1}\right)\right]
$$

Thus we see that $L^{S_{n}}=k\left(a_{1}, \ldots, a_{n}, b_{0}, \ldots, b_{n-1}\right)$.
The above proof shows that for any integer d, we have

$$
\begin{equation*}
L^{S_{n}}=k\left(a_{1}, \ldots, a_{n}, b_{d+1}, b_{d+2}, \ldots, b_{d+n}\right) . \tag{2.1}
\end{equation*}
$$

We assume $n=2 s$ an even integer (for an odd n, see Remark in the final part of this paper) and let $d=-s$ in (2.1) to obtain

$$
L^{S_{n}}=k\left(a_{1}, \ldots, a_{n}, b_{-s+1}, \ldots, b_{s}\right)=k\left(a_{1}, \ldots, a_{n}, b_{-s}, b_{-s+1}, \ldots, b_{s}\right) .
$$

Lemma 2. $\quad \sum_{j=0}^{n}(-1)^{j} a_{j} b_{s-j}=0\left(a_{0}=1\right)$.
Proof. Since a_{j} is the j-th elementary symmetric polynomial in ξ_{1}, \ldots, ξ_{n}, we have the identity

$$
\sum_{j=0}^{n}(-1)^{j} a_{j} \xi_{i}^{n-j}=a_{0} \xi_{i}^{n}-a_{1} \xi_{i}^{n-1}+\cdots+a_{n}=0 .
$$

Multiplying by $\xi_{i}^{s+1-n} \eta_{i}$ and summing them up from $i=1$ to n, we obtain:

$$
\begin{aligned}
0 & =\sum_{i=1}^{n} \sum_{j=0}^{n}(-1)^{j} a_{j} \xi_{i}^{n-j} \xi_{i}^{s+1-n} \eta_{i} \\
& =\sum_{i=1}^{n} \sum_{j=0}^{n}(-1)^{j} a_{j} \xi_{i}^{s+1-j} \eta_{i} \\
& =\sum_{j=0}^{n}(-1)^{j} a_{j} \sum_{i=1}^{n} \xi_{i}^{s+1-j} \eta_{i} \\
& =\sum_{j=0}^{n}(-1)^{j} a_{j} b_{s-j} .
\end{aligned}
$$

3. Since

$$
\begin{aligned}
b_{-1} & =\sum_{i=1}^{n} \eta_{i}=\sum_{i=1}^{n} x_{i}^{2}, \\
b_{0} & =\sum_{i=1}^{n} \xi_{i} \eta_{i}=\sum_{i=1}^{n} x_{i} y_{i}, \\
b_{1} & =\sum_{i=1}^{n} \xi_{i}^{2} \eta_{i}=\sum_{i=1}^{n} y_{i}^{2},
\end{aligned}
$$

the action of $\operatorname{SL}(2, k)$ on $\left\{b_{-1}, b_{0}, b_{1}\right\}$ is as follows:

$$
\left[\begin{array}{l}
b_{-1}^{g} \tag{3.1}\\
b_{0}^{g} \\
b_{1}^{g}
\end{array}\right]=\left[\begin{array}{ccc}
\alpha^{2} & 2 \alpha \beta & \beta^{2} \\
\alpha \gamma & \alpha \delta+\beta \gamma & \beta \delta \\
\gamma^{2} & 2 \gamma \delta & \delta^{2}
\end{array}\right]\left[\begin{array}{l}
b_{-1} \\
b_{0} \\
b_{1}
\end{array}\right] \quad \text { for } \quad g=\binom{\alpha \beta}{\gamma \delta} \in S L(2, k)
$$

Let N be the normalizer of the diagonal maximal torus T of $S L(2, k)$:

$$
1 \rightarrow T \rightarrow N \rightarrow\left\langle\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right)\right\rangle \rightarrow 1
$$

Lemma 3. There is the following isomorphism

$$
\begin{equation*}
k\left(a_{1}, \ldots, a_{n}, b_{-s+1}, \ldots, b_{s}\right)^{S L(2, k)} \cong k\left(a_{1}, \ldots, a_{n}, b_{-s+1}, \ldots, b_{s}\right)^{N}, \quad b_{-1}=b_{1}=0 \tag{3.2}
\end{equation*}
$$

The meaning of this isomorphism is as follows: let $A_{k}^{2 n}$ be the $2 n$-dimensional affine space with affine coordinates $a_{1}, \ldots, a_{n}, b_{-s+1}, \ldots, b_{s}$. Then the linear subvariety $Y: b_{-1}=b_{1}=0$ with codimension 2 is N-invariant. Our assertion is that in the commutative diagram

ϕ is birational, where $A^{2 n} / S L(2, k)$ (resp. $\left.Y / N\right)$ is an algebraic variety over k whose function field is isomorphic to the left (resp. right) hand of (3.2).

Proof of Lemma 3. We shall represent general points of Y / N and $A^{2 n} / S L(2, k)$ by the orbit $O^{N}(y)$ and $O^{S L(2, k)}(x)$ of general points y of Y and x of $\boldsymbol{A}^{2 n}$ respectively. Then ϕ is the rational map which sends $O^{N}(y)$ to $O^{S L(2, k)}(y)$. Since the orbit map $\gamma: S L(2, k) \times Y \rightarrow A^{2 n}, \gamma(g, y)=g \cdot y$, is dominant, so is ϕ. We claim the following:

$$
\begin{equation*}
O^{S L(2, k)}(y) \cap Y=O^{N}(y) \quad \text { for all } \quad y=(a, b) \in Y \text { such that } b_{0} \neq 0 \tag{3.3}
\end{equation*}
$$

Let $y=\left(a_{1}, \ldots, a_{n}, b_{-s+1}, \ldots, b_{-2}, 0, b_{0}, 0, b_{2}, \ldots, b_{s}\right) \in Y$ with $b_{0} \neq 0$. We see from (3.1),

$$
g \cdot y=\left(a_{1}^{\prime}, \ldots, a_{n}^{\prime}, b_{-s+1}^{\prime}, \ldots, b_{-2}^{\prime}, 2 \alpha \beta b_{0},(\alpha \delta+\beta \gamma) b_{0}, 2 \gamma \delta b_{0}, b_{2}^{\prime}, \ldots, b_{s}^{\prime}\right)
$$

for $g=\binom{\alpha \beta}{\gamma \delta} \in S L(2, k)$. Hence if $g \cdot y$ is contained in Y, then $2 \alpha \beta b_{0}$ and $2 \gamma \delta b_{0}$ are equal to zero. The assumption $b_{0} \neq 0$ implies that g is a member of N. Thus

$$
O^{S L(2, k)}(y) \cap Y \subset O^{N}(y) .
$$

Since the converse inclusion is clear, (3.3) is proved. Then, (3.3) means that $\phi^{-1} \phi O^{N}(y)=O^{N}(y)$ for such a point y of Y, which completes the proof of Lemma 3.

By Lemma 2 and Lemma 3, we have the following isomorphism:

$$
\begin{aligned}
& k\left(a_{1}, \ldots, a_{n}, b_{-s+1}, \ldots, b_{s}\right)^{S L(2, k)} \\
& \quad \cong k\left(a_{1}, \ldots, a_{n}, b_{-s+1}, \ldots, b_{s}\right)^{N}, \quad b_{-1}=b_{1}=0 \\
& \quad \cong k\left(a_{1}, \ldots, a_{n}, b_{-s}, \ldots, b_{s}\right)^{N}, \quad b_{-1}=b_{1}=\sum_{j=0}^{n}(-1)^{j} a_{j} b_{s-j}=0, \\
& \\
& \cong k\left(a_{1}, \ldots, a_{n}, b_{-s}, \ldots, b_{s}\right)^{N}, \quad b_{-1}=b_{0}=b_{1}=0 .
\end{aligned}
$$

4. We look at the action of N on $\left\{a_{i}\right\}$ and $\left\{b_{m}\right\}$. Let

$$
g=\left(\begin{array}{cc}
t & 0 \\
0 & t^{-1}
\end{array}\right), \quad \tau=\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right) .
$$

Then we have

$$
x_{i}^{q}=t x_{i}, \quad y_{i}^{q}=t^{-1} y_{i}, \quad x_{i}^{\tau}=y_{i}, \quad y_{i}^{\tau}=-x_{i} .
$$

Thus

$$
\begin{array}{ll}
\xi_{i}^{g}=t^{-1} y_{i} / t x_{i}=t^{-2} \xi_{i}, & \xi_{i}^{\tau}=-x_{i} / y_{i}=-1 / \xi_{i} \\
\eta_{i}^{g}=\left(t x_{i}\right)^{2}=t^{2} \eta_{i}, & \eta_{i}^{\tau}=y_{i}^{2}=\left(y_{i} / x_{i}\right)^{2} x_{i}^{2}=\xi_{i}^{2} \eta_{i}
\end{array}
$$

Therefore

$$
\begin{aligned}
a_{i}^{g} & =\left(\sum_{j_{1}<\cdots<j_{i}} \xi_{j_{1}} \ldots \xi_{j_{i}}\right)^{g}=t^{-2 i} a_{i}, \\
a_{i}^{\tau} & =\left(\sum_{j_{1}<\cdots<j_{i}} \xi_{j_{1}} \cdots \xi_{j_{i}}\right)^{\tau}=\sum_{j_{1}<\cdots<j_{i}}\left(-1 / \xi_{j_{1}}\right) \ldots\left(-1 / \xi_{j_{i}}\right) \\
& =(-1)^{i} \sum_{q_{1}<\cdots<q_{n-i}} \xi_{q_{1}} \cdots \xi_{q_{n-i}} / \prod_{p=1}^{n} \xi_{p}=(-1)^{i} a_{n-i} / a_{n}, \\
b_{m}^{g} & =\left(\sum_{i=1}^{n} \xi_{i}^{m+1} \eta_{i}\right)^{g}=\sum_{i=1}^{n}\left(t^{-2} \xi_{i}\right)^{m+1} t^{2} \eta_{i}=t^{-2 m} b_{m}, \\
b_{m}^{g} & =\left(\sum_{i=1}^{n} \xi_{i}^{m+1} \eta_{i}\right)=\sum_{i=1}^{n}\left(-1 / \xi_{i}\right)^{m+1} \xi_{i}^{2} \eta_{i} \\
& =(-1)^{m+1} \sum_{i=1}^{n} \xi_{i}^{1-m} \eta_{i}=(-1)^{m+1} b_{-m} .
\end{aligned}
$$

This shows that the action of N on the field $k\left(a_{1}, \ldots, a_{n}, b_{-s}, \ldots, b_{s}\right)$ with $b_{-1}=b_{0}=b_{1}=0$, is as follows:
g acts on a_{i} and b_{m} diagonally.
τ transposes b_{m} with b_{-m} and transforms a_{i} to $(-1)^{i} a_{n-i} / a_{n}$.
Now it is not hard to prove the rationality of $k\left(a_{1}, \ldots, a_{n}, b_{-s}, \ldots, b_{s}\right)^{N}$. Hence $K^{G}=k\left(a_{1}, \ldots, a_{n}, b_{-s+1}, \ldots, b_{s}\right)^{S L(2, k)}$ is rational over k by (3.4).

Remark. For an odd integer $n=2 s+1$, we put $d=-s$ in (2.1) to obtain

$$
L^{S_{n}}=k\left(a_{1}, \ldots, a_{n}, b_{-s}, \ldots, b_{s}\right)
$$

By the same proof as in Lemma 3 we have an isomorphism

$$
k\left(a_{1}, \ldots, a_{n}, b_{-s}, \ldots, b_{s}\right)^{S L(2, k)}=k\left(a_{1}, \ldots, a_{n}, b_{-s}, \ldots, b_{s}\right)^{N}, b_{-1}=b_{1}=0 .
$$

The action of N on $k\left(a_{1}, \ldots, a_{n}, b_{-s}, \ldots, b_{s}\right)$ is not so complicated as in (4.1) and we see the rationality of the field.

References

[1] W. Barth, Moduli of vector bundles on projective plane, Invent. Math. 42 (1977), 63-91.
[2] G. Ellingsrud and S. A. Strømme, On the rationality of the moduli space for stable rank-2 vector bundles on P^{2}, Lecture Notes in Math. 1273, 363-371, Springer, Berlin-New York, 1987.
[3] P. I. Katsylo, The rationality of the moduli space of hyperelliptic curves, Math. USSR Izv. 25 (1985), 45-50.
[4] M. Maruyama, The rationality of the moduli space of vector bundles of rank 2 on \boldsymbol{P}^{2}, Advanced Studies in Pure Math. 10, Algebraic Geometry, Sendai, 399-414 (1985), Kinokuniya, Tokyo and North-Holland.
[5] I. Naruki, On the moduli space $M(0,4)$ of vector bundles, J. Math. Kyoto Univ. 27 (1987), 723-730.

Department of Mathematics,
Faculty of Science,
Hiroshima University

