An elementary proof of the rationality of the moduli space for rank 2 vector bundles on P^2

Takashi MAEDA

(Received March 2, 1989)

0. Introduction. Let k be an algebraically closed field of characteristic zero and let M(0, n) be the moduli space of stable vector bundles of rank 2 with chern classes $c_1 = 0$ and $c_2 = n$ on the projective plane P_k^2 over k. W. Barth showed that the function field of M(0, n) over k is rational (= purely transcendental) of dimension 2n over a certain field F which is rational of dimension 2n - 3 over k and hence M(0, n) is a rational variety of dimension 4n - 3 over k for all $n \ge 2$ [1]. However, M. Maruyama pointed out later that there was a gap in his proof of the rationality of the field F [4]. For an odd integer n, the rationality of M(0, n) is proved by G. Ellingsrud and S. Strømme by a different method [2]. As for an even integer n, I. Naruki showed that when n = 4, the field F is rational over k and hence M(0, 4) is a rational variety over k [5]. For even integer $n \ge 6$, many people have pointed out that the rationality of F is reduced to that of the moduli space $M_{g,hy}$ of hyperelliptic curves of genus g = (n - 2)/2 [3] by the descent theory of vector bundles.

However, in this paper we shall give an elementary proof of the rationality of the field F for all integers $n \ge 3$.

The author heartily thanks Professor M. Maruyama for introducing him to this subject.

1. Now we shall explain the above field F. Let $K = k(x_1, ..., x_n, y_1, ..., y_n)$ be a field of 2n variables $x_1, ..., x_n, y_1, ..., y_n$ and let W_n be the group of semi-direct product of S_n and $H_n = \bigoplus_{n=1}^{n} (\mathbb{Z}/2\mathbb{Z})$:

$$1 \to H_n \to W_n \to S_n \to 1 ,$$

where S_n is the symmetric group of degree *n* which acts on H_n as permutations of direct factos.

Let $G = SL(2, k) \times W_n$ act on K as follows:

$$\begin{aligned} x_i^g &= \alpha x_i + \beta y_i , \quad y_i^g = \gamma x_i + \delta y_i \quad \text{for} \quad g = \begin{pmatrix} \alpha \beta \\ \gamma \delta \end{pmatrix} \in SL(2, k) , \\ x_i^\varepsilon &= \varepsilon_i x_i , \quad y_i^\varepsilon = \varepsilon_i y_i \quad \text{for} \quad \varepsilon = (\varepsilon_1, \dots, \varepsilon_n) \in H_n \quad (\varepsilon_i = \pm 1) , \\ x_i^\sigma &= x_{\sigma(i)} , \quad y_i^\sigma = y_{\sigma(i)} \quad \text{for} \quad \sigma \in S_n . \end{aligned}$$

Then we put F to be the fixed field K^G by the above action [1, 4]. We shall prove that $F = K^G$ is rational of dimension 2n - 3 over k.

2. We see that

$$K^{H_n} = k(\xi_1, \ldots, \xi_n, \eta_1, \ldots, \eta_n),$$

where $\xi_i = y_i/x_i$ and $\eta_i = x_i^2$ $(1 \le i \le n)$. We shall find a system of generators of $K^{W_n} = k(\xi_1, \ldots, \xi_n, \eta_1, \ldots, \eta_n)^{S_n}$. Let a_i $(1 \le i \le n)$ be the elementary symmetric polynomial of degree i in ξ_1, \ldots, ξ_n and for every integer m,

$$b_m = \sum_{i=1}^n \xi_i^{m+1} \eta_i$$

Putting $L = k(\xi_1, \ldots, \xi_n, \eta_1, \ldots, \eta_n)$, we have the following diagram:

LEMMA 1. $L^{S_n} = k(a_1, \ldots, a_n, b_0, \ldots, b_{n-1}).$

PROOF. Let A be the $n \times n$ -matrix $(\xi_j^i)_{1 \le i,j \le n}$. By definition of b_0, \ldots, b_{n-1} , we have ${}^t(b_0, b_1, \ldots, b_{n-1}) = A \cdot {}^t(\eta_1, \eta_2, \ldots, \eta_n)$. Since det $A = \xi_1 \xi_2 \cdots \xi_n \cdot \prod_{i < j} (\xi_i - \xi_j)$ is non-zero, η_1, \ldots, η_n are contained in the field $k(\xi_1, \ldots, \xi_n, b_0, \ldots, b_{n-1})$, and hence $L = k(\xi_1, \ldots, \xi_n, b_0, \ldots, b_{n-1})$. On the other hand,

$$n! = [L: L^{S_n}] = [k(\xi_1, \ldots, \xi_n, b_0, \ldots, b_{n-1}): k(a_1, \ldots, a_n, b_0, \ldots, b_{n-1})].$$

Thus we see that $L^{S_n} = k(a_1, ..., a_n, b_0, ..., b_{n-1})$.

The above proof shows that for any integer d, we have

(2.1)
$$L^{S_n} = k(a_1, \ldots, a_n, b_{d+1}, b_{d+2}, \ldots, b_{d+n}).$$

We assume n = 2s an even integer (for an odd *n*, see Remark in the final part of this paper) and let d = -s in (2.1) to obtain

$$L^{S_n} = k(a_1, \ldots, a_n, b_{-s+1}, \ldots, b_s) = k(a_1, \ldots, a_n, b_{-s}, b_{-s+1}, \ldots, b_s).$$

LEMMA 2.
$$\sum_{j=0}^{n} (-1)^{j} a_{j} b_{s-j} = 0$$
 $(a_{0} = 1)$.

PROOF. Since a_j is the *j*-th elementary symmetric polynomial in ξ_1, \ldots, ξ_n , we have the identity

Rationality of the moduli space

$$\sum_{j=0}^{n} (-1)^{j} a_{j} \xi_{i}^{n-j} = a_{0} \xi_{i}^{n} - a_{1} \xi_{i}^{n-1} + \dots + a_{n} = 0.$$

Multiplying by $\xi_i^{s+1-n}\eta_i$ and summing them up from i = 1 to n, we obtain:

$$\begin{aligned} 0 &= \sum_{i=1}^{n} \sum_{j=0}^{n} (-1)^{j} a_{j} \xi_{i}^{n-j} \xi_{i}^{s+1-n} \eta_{i} \\ &= \sum_{i=1}^{n} \sum_{j=0}^{n} (-1)^{j} a_{j} \xi_{i}^{s+1-j} \eta_{i} \\ &= \sum_{j=0}^{n} (-1)^{j} a_{j} \sum_{i=1}^{n} \xi_{i}^{s+1-j} \eta_{i} \\ &= \sum_{j=0}^{n} (-1)^{j} a_{j} b_{s-j} . \end{aligned}$$

3. Since

$$b_{-1} = \sum_{i=1}^{n} \eta_i = \sum_{i=1}^{n} x_i^2 ,$$

$$b_0 = \sum_{i=1}^{n} \xi_i \eta_i = \sum_{i=1}^{n} x_i y_i ,$$

$$b_1 = \sum_{i=1}^{n} \xi_i^2 \eta_i = \sum_{i=1}^{n} y_i^2 ,$$

the action of SL(2, k) on $\{b_{-1}, b_0, b_1\}$ is as follows:

(3.1)
$$\begin{pmatrix} b_{-1}^{g} \\ b_{0}^{g} \\ b_{1}^{g} \end{pmatrix} = \begin{pmatrix} \alpha^{2} & 2\alpha\beta & \beta^{2} \\ \alpha\gamma & \alpha\delta + \beta\gamma & \beta\delta \\ \gamma^{2} & 2\gamma\delta & \delta^{2} \end{pmatrix} \begin{pmatrix} b_{-1} \\ b_{0} \\ b_{1} \end{pmatrix} \text{ for } g = \begin{pmatrix} \alpha\beta \\ \gamma\delta \end{pmatrix} \in SL(2, k) .$$

Let N be the normalizer of the diagonal maximal torus T of SL(2, k):

$$1 \to T \to N \to \left\langle \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \right\rangle \to 1 \; .$$

Lemma 3.	There	is the	following	isomorp	hism

(3.2)

$$k(a_1,\ldots,a_n,b_{-s+1},\ldots,b_s)^{SL(2,k)} \cong k(a_1,\ldots,a_n,b_{-s+1},\ldots,b_s)^N, \qquad b_{-1}=b_1=0.$$

The meaning of this isomorphism is as follows: let A_k^{2n} be the 2*n*-dimensional affine space with affine coordinates $a_1, \ldots, a_n, b_{-s+1}, \ldots, b_s$. Then the linear subvariety Y: $b_{-1} = b_1 = 0$ with codimension 2 is N-invariant. Our assertion is that in the commutative diagram

 ϕ is birational, where $A^{2n}/SL(2, k)$ (resp. Y/N) is an algebraic variety over k whose function field is isomorphic to the left (resp. right) hand of (3.2).

PROOF OF LEMMA 3. We shall represent general points of Y/N and $A^{2n}/SL(2, k)$ by the orbit $O^N(y)$ and $O^{SL(2,k)}(x)$ of general points y of Y and x of A^{2n} respectively. Then ϕ is the rational map which sends $O^N(y)$ to $O^{SL(2,k)}(y)$. Since the orbit map $\gamma: SL(2, k) \times Y \to A^{2n}$, $\gamma(g, y) = g \cdot y$, is dominant, so is ϕ . We claim the following:

(3.3)
$$O^{SL(2,k)}(y) \cap Y = O^N(y)$$
 for all $y = (a, b) \in Y$ such that $b_0 \neq 0$.

Let $y = (a_1, \ldots, a_n, b_{-s+1}, \ldots, b_{-2}, 0, b_0, 0, b_2, \ldots, b_s) \in Y$ with $b_0 \neq 0$. We see from (3.1),

$$g \cdot y = (a'_1, \ldots, a'_n, b'_{-s+1}, \ldots, b'_{-2}, 2\alpha\beta b_0, (\alpha\delta + \beta\gamma)b_0, 2\gamma\delta b_0, b'_2, \ldots, b'_s)$$

for $g = \begin{pmatrix} \alpha \beta \\ \gamma \delta \end{pmatrix} \in SL(2, k)$. Hence if $g \cdot y$ is contained in Y, then $2\alpha\beta b_0$ and $2\gamma\delta b_0$ are equal to zero. The assumption $b_0 \neq 0$ implies that g is a member of N. Thus

$$O^{SL(2,k)}(y) \cap Y \subset O^N(y)$$
.

Since the converse inclusion is clear, (3.3) is proved. Then, (3.3) means that $\phi^{-1}\phi O^N(y) = O^N(y)$ for such a point y of Y, which completes the proof of Lemma 3.

By Lemma 2 and Lemma 3, we have the following isomorphism:

(3.4)

$$k(a_{1}, ..., a_{n}, b_{-s+1}, ..., b_{s})^{SL(2,k)}$$

$$\cong k(a_{1}, ..., a_{n}, b_{-s+1}, ..., b_{s})^{N}, \quad b_{-1} = b_{1} = 0,$$

$$\cong k(a_{1}, ..., a_{n}, b_{-s}, ..., b_{s})^{N}, \quad b_{-1} = b_{1} = \sum_{j=0}^{n} (-1)^{j} a_{j} b_{s-j} = 0,$$

$$\cong k(a_{1}, ..., a_{n}, b_{-s}, ..., b_{s})^{N}, \quad b_{-1} = b_{0} = b_{1} = 0.$$

4. We look at the action of N on $\{a_i\}$ and $\{b_m\}$. Let

$$g = \begin{pmatrix} t & 0 \\ 0 & t^{-1} \end{pmatrix}, \qquad \tau = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}.$$

Then we have

$$x_i^g = tx_i$$
, $y_i^g = t^{-1}y_i$, $x_i^\tau = y_i$, $y_i^\tau = -x_i$.

Thus

$$\begin{aligned} \xi_i^g &= t^{-1} y_i / t x_i = t^{-2} \xi_i , \qquad \xi_i^\tau = -x_i / y_i = -1 / \xi_i , \\ \eta_i^g &= (t x_i)^2 = t^2 \eta_i , \qquad \qquad \eta_i^\tau = y_i^2 = (y_i / x_i)^2 x_i^2 = \xi_i^2 \eta_i . \end{aligned}$$

Therefore

Rationality of the moduli space

$$\begin{aligned} a_i^g &= (\sum_{j_1 < \cdots < j_i} \xi_{j_1} \cdots \xi_{j_i})^g = t^{-2i} a_i ,\\ a_i^r &= (\sum_{j_1 < \cdots < j_i} \xi_{j_1} \cdots \xi_{j_i})^r = \sum_{j_1 < \cdots < j_i} (-1/\xi_{j_1}) \cdots (-1/\xi_{j_i}) \\ &= (-1)^i \sum_{q_1 < \cdots < q_{n-i}} \xi_{q_1} \cdots \xi_{q_{n-i}} / \prod_{p=1}^n \xi_p = (-1)^i a_{n-i} / a_n ,\\ b_m^g &= (\sum_{i=1}^n \xi_i^{m+1} \eta_i)^g = \sum_{i=1}^n (t^{-2} \xi_i)^{m+1} t^2 \eta_i = t^{-2m} b_m ,\\ b_m^g &= (\sum_{i=1}^n \xi_i^{m+1} \eta_i) = \sum_{i=1}^n (-1/\xi_i)^{m+1} \xi_i^2 \eta_i \\ &= (-1)^{m+1} \sum_{i=1}^n \xi_i^{1-m} \eta_i = (-1)^{m+1} b_{-m} .\end{aligned}$$

This shows that the action of N on the field $k(a_1, \ldots, a_n, b_{-s}, \ldots, b_s)$ with $b_{-1} = b_0 = b_1 = 0$, is as follows:

g acts on a_i and b_m diagonally.

(4.1)

 τ transposes b_m with b_{-m} and transforms a_i to $(-1)^i a_{n-i}/a_n$.

Now it is not hard to prove the rationality of $k(a_1, \ldots, a_n, b_{-s}, \ldots, b_s)^N$. Hence $K^G = k(a_1, \ldots, a_n, b_{-s+1}, \ldots, b_s)^{SL(2,k)}$ is rational over k by (3.4).

REMARK. For an odd integer n = 2s + 1, we put d = -s in (2.1) to obtain

$$L^{\mathbf{S}_n} = k(a_1, \ldots, a_n, b_{-s}, \ldots, b_s).$$

By the same proof as in Lemma 3 we have an isomorphism

 $k(a_1, \ldots, a_n, b_{-s}, \ldots, b_s)^{SL(2,k)} = k(a_1, \ldots, a_n, b_{-s}, \ldots, b_s)^N, b_{-1} = b_1 = 0.$

The action of N on $k(a_1, \ldots, a_n, b_{-s}, \ldots, b_s)$ is not so complicated as in (4.1) and we see the rationality of the field.

References

- [1] W. Barth, Moduli of vector bundles on projective plane, Invent. Math. 42 (1977), 63-91.
- [2] G. Ellingsrud and S. A. Strømme, On the rationality of the moduli space for stable rank-2 vector bundles on P², Lecture Notes in Math. 1273, 363-371, Springer, Berlin-New York, 1987.
- [3] P. I. Katsylo, The rationality of the moduli space of hyperelliptic curves, Math. USSR Izv. 25 (1985), 45-50.
- [4] M. Maruyama, The rationality of the moduli space of vector bundles of rank 2 on P², Advanced Studies in Pure Math. 10, Algebraic Geometry, Sendai, 399-414 (1985), Kinokuniya, Tokyo and North-Holland.
- [5] I. Naruki, On the moduli space M(0, 4) of vector bundles, J. Math. Kyoto Univ. 27 (1987), 723-730.

Department of Mathematics, Faculty of Science, Hiroshima University