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Consider the regression problem on a set of p response variables y =
(yi,..-,ypy and a set of q explanatory variables x = (x l 9 . . . , xq)'. Let (yt =
(yn>'~>yiP)''9 x i = { x i l 9 . . . 9 x i q ) ' ) 9 i = l , . . . , n , b e t h e n o b s e r v a t i o n s o n ( y ; x ) .
The regression model assumed is

(1.1) yt = f W + «* >

where t/ = (rjl9..., rjp)': R
q -• Rp is a function of x whose shape is unknown but

its smoothness is presumed, and the errors et = (eil9..., eip)\ i = 1, . . . , n, are
independently and identically distributed with mean 0 and unknown covariance
matrix E = [o}7]pXp. Writing this model in matrix form, we have

(1.2)

where

= H+E,

Y =

H =

.1'..
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and E =

The measurements xh i = 1, . . . , n, which are called the design points, are
expressed as

X =

It is assumed that xfl = 1, for i = 1, . . . , n, i.e., JC(1) = ln and rank (X) = q <n.
The regression analysis usually involves two important problems; making

inferences about the regression surface J/ and estimating the covariance matrix
27. These problems are closely related. It is easily seen that a good estimator
of i/ immediately yields a good one of E. Conversely, once an adequate
estimator of 27 is available, it will provide helpful information to explore a good
estimator of J/. When a valid parametric model for J/ is at hand, some least
squares technique will yield a good result. However, in practical situation of
data analysis it is often difficult to chose a valid parametric model especially
when q or p is large (see, e.g., Cleveland and Devlin [4], Silverman [20], Rice
[16], Ohtaki [13]). For such a situation, it may be a good strategy to start
the analysis by estimating 27 rather than t\ nonparametrically.

The simplest nonparametric estimator of 27 may be constructed by making
use of replicated observations. Suppose that there are g distinct sets of re-
plicated observations {(ylt9 xt)\l < t < m j , 1=1, . . . , g, in data. Then, an
unbiased estimator of 27 is given by

(1.3) = (If=i (mf - I)} i (ylt - yu){yu -

where yu = ml
 1 Yj=\yn- This estimator £P E is refered to as (Multivariate) Pure

error mean square (PEMS) estimator (see, e.g., Draper and Smith [7, Section
1.5], Weisberg [23, Section 4.3]). Unfortunately, this estimator often loses its
effectiveness because no or very few replicated observations are available in
most data. Daniel and Wood [5] suggested the use of an approximate PEMS
estimator. Their idea is to use a clustering algorithm to find the cases that are
almost replicates, and use the variation of the responses for the almost replicates.
An interesting application of their idea to logistic regression was given by
Landwehr et al. [12]. Recently, Gasser et al. [8] and Ohtaki [14] have
proposed a class of estimator of variance in univariate one-dimensional non-
parametric regression model, i.e., the case of p = 1 and q = 2. Some properties
of the estimators have been studied by Gasser et al. [8], Ohtaki [14] and
Buckley et al. [3]. In this paper these results in univariate cases are extended
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to ones in multivariate situations. The outline of this paper is as follows: In
Section 2 we introduce a class of nonparametric estimators. The biases of
those estimators are studied and their upper bounds are given in Section 3. In
Section 4 we derive the exact formulas of covariance matrices of the estimators,
and assess the efficiency by comparing with the best linear unbiased estimator
under the linear regression model. In Section 5 we investigate some asym-
ptotic behaviors of the estimators and show the sufficient conditions for con-
sistency or asymptotic normality. In Section 6 we consider the case when
q = 2 in detail; we provide a multivariate extention of the estimators which
were proposed in univariate regression model by Gasser et al. [8] and by
Ohtaki [14], and show that the newly obtained estimators become a natural
extention of PEMS estimator. In Section 7 we propose a new type of test
statistics for assessing goodness of fit of linear models, and prove that the
asymptotic null distribution of the criterion is Af(O, 1) under some mild reg-
ularity conditions. In Section 8, using the idea due to Rousseeuw [17], we
construct a robust alternative to the diagonal elements of covariance matrix,
and show that the robust estimator will have a positive breakdown point in
some situation.

2. A class of estimators

Suppose that there is a subset K of { 1 , . . . , n} such that every member i of
K has an index-set Nt which specifies a neighborhood of the design point xh

{Xj\j e JVj}. Here it is assumed that i$ N(. This means that our estimation is
based on the cross-varidation technique which will make the resulting estimate
of covariance matrix more stable. Let yt {i e K) be a linear predictor of
yi = (yil9...9yip)' which is based only on the neighborhood {(y^ Xj)\j e ATJ.
We write such a predictor as

(2.1) y{ = Y'wt

where wt is an n-component vector whose yth component wtj is nonzero only
when j G JVj. As for the errors rt= y{ — yh it is easily seen that

(2.2) E [ i v ; ] = cT2£ + tft , ieK9

where &r = E[ r J = H'(wt — St)9 Si = (5il9...98iH)'9 6tj is the Kronecker delta,
cf = 1/(1 + M 2 ) and | |Wl . | |=(W> f)

1 /2 .
The result (2.2) suggests that an estimator of E may be obtained through

averaging cf#•,•#•/, ieK. Adopting the set of weights {c2}, we propose the
following class of estimators of E\

(2.3) ^rMEi.rcfrincfor;.
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The (j, /)-element of Ejr is expressed as

(2.4) 6Ah I) = CLieK Of)'1 ZieK cff^ , 1 < J, / < P .

REMARK 2.1. The estimator Z > of (2.3) is expressed in a matrix notation
as

(2.5) ^ = (trV^)-1Y'V^Y,

where

(2.6) *> = £ l e r cf(wt - <*,)(*, - <5J.

The matrix Vjr is non-negative definite and its (a, /?)-element vafi is expressed as

where 1^ = 1 if the statement £ is true, and 0 otherwise.

It is possible to use another set of weights instead of {cf} in averaging
cfrpl (i e K). For example, homogeneous weight n^1 (nK is the total number of
elements of K) was adopted by Gasser et al. [8]. An advantage for using {cf}
as a set of weights is that the resulting estimator of E becaomes a natural
extension of PEMS estimator. This will be shown in Example 2.1.

Two important special cases of the estimator (2.3) are given in the follow-
ing examples.

EXAMPLE 2.1 (locally uniform weight (LUW) estimator). Let the weight-
vector w( in (2.1) be an n-component vector having the jth element

(2.8) w0- =

where nt denotes the number of elements in Nt. Then y{ = y(i) = Y,jeNtyj/ni9 s o

that the resulting estimator can be expressed as

= {lieK (i + nr1)"1 y1 YUK fa. - ydiyu - jtf,

where yi% = (yt + Eiejv, J/)/(wi + 1), ieK. This estimator will be refered to as a
locally uniform weight (LUW) estimator.

Consider the situation where every ith set {xj\jeNi or j = i} (ieK) con-
sists of mt replicates and there are g distinct design points. Then, using the
notation in (1.3), we have

I = Zu ZS (w i)M = Z? (m 1)
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and

Lie* CFI - yiMyi - yJ = L?=i L % to* - Ji.Ktt* - ^ - ) ' •

This implies that Z<% = 27PE. Thus, we see that the PEMS estimator defined by
(1.3) is a special case of LUW estimator. Even though PEMS estimator is
generally biased unless underlying regression function is exactly constant, it has
a computational convenience and may also provide satisfactory information on
27 in some practical regression situations.

EXAMPLE 2.2 (locally linear weight (LLW) estimator). It is noted that the
locally linear model may reduce effectively the possible bias in the resulting
estimator of 27, as Stone [22] has suggested in general context of nonparametric
regression. Let yt = B[xh where B{ = [b}P~\ is the q x p matrix which minimizes

tr [(Y - XBJDAY - XB,)1 = ^ « » , O'j " W O " . * " *»*«)'

where D, = diag [df, . . . , d<°] and

J [0, i f ;* AT,.

This linear predictor is based on the least squares estimators in fitting a linear
regression model to the data {(yy Xj)\j e JVJ. Then the predictor is written in
the form yt = Y'wh and its weight-vector is given by

where i4"" denotes a general inverse of A. We note that w l̂w = 1, since
JC(1) = \n. The resulting estimator of 27will be refered to as a locally linear weight
(LLW) estimator and denoted by E&. Using a few algebras, we obtain that
Eg — ZPE when every ith set {Xj\jeNi or j = i} consists of only replicated
design points which are identical to xt (i e K). Thus, we see that the LLW
estimator is also a natural extension of PEMS estimator.

3. Upper bounds for biases

Let Zjr be a nonparametric estimator of 27 defined by (2.3). A few calcu-
lations yield the following formula for the expectation of ty.

(3.1) E[Z>] = 27 +

where

(3.2) Si = Elri]

It is easy to see that the second term of (3.1) is a non-negative definite matrix,
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and hence the estimator tjr of 27 is always positively biased unless & = 0 for all
ieK. The following Lemmas 3.1 and 3.2 are fundamental in obtaining upper
bounds for biases of two estimators £<% and E#.

LEMMA 3.1. Suppose that a function f: Rq -+ R1 is differentiable. Let At =
w'if—f(xi\ where f = (f(x1)9 ...9f(xn))f and the weight-vector w{ is given by
(2.8). Then

(3.3) |4I

( (d V I 1 / 2

where 0y = supA^Ui (^r/(*)L=*) > and dt = maxieN<

PROOF. Using the Taylor expansion of / about xh we have

\f(x)-f(xi)\<il/f\\x~xi\\.

Since At = ( 1 / ^ ) ^ 6 ^ {/(f/) - /(**)}, we have

LEMMA 3.2. Suppose that a function f: Rq -> R1 is twic^ differentiable. Let
J. = w[f — f(xt), where f = (/(JCJ, ...,/(*„))' and rfe weight-vector wt is given
by (2.9).

(3.4)

y = supz supII/ll=1 |«7Jzir|, Hz is tfe Hessian of f at x = z9 and n{ is the
number of elements in Nt.

PROOF. Using the Taylor expansion of / about xi9 we have

fix) = /(*,) + (x - xd'bt + 2~\x - xtfHAx - xt),

where b[ = (df/dxl9..., df/dxq)\x=X{9 H( = HZ{ and z£ = T£X + (1 - T^)^ for some
Tj in (0, 1), i = 1, . . . , n. Let

/?;• = 2 " 1 ( ( J C 1 - x d ' H ^ x , - x t \ . . . , ( x n - xtYHm(xH - x t ) ) .

Since / = f(xt)ln + (X - lnjc;)Af + Rt and w;iB = 1, we have

Hence, At = w'J-f(xt) = x^X'D^yX'D.R^ ieK. Note that the largest
eigenvalue of Dji?ji?|-Z)j can be evaluated as follows:

< 4"1 tr A sup r t = 1 ^jeNi uf{(xj - xJHjiXj - xt)}
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^ p , > = 1 (v'Hkv)2

X Eje*, uf(Xj - xtfiXj - Xt)}

< 4~1nI- sup* supJIII=1 {u'Hxu)2df

Hence, we obtain

A? = xliX'Di

< A-1y}nidtx'iiX'DiX)-xi

Applying Lemmas 3.1 and 3.2 to (3.1), we obtain the following theorems:

THEOREM 3.1. Let £<% = [&<%{j, /)] be an LUW estimator of E. Suppose
that the jth and the Ith components rjj and nl of the regression function rj are
differentiable, and that

f / d Y l 1 / 2

<A« = sup, |X?=i ( —i,a(x)|x_ rJ V < +00 , a = 7, / .

Then

(3.5) |E[(Mj, 0] - 0>il < Wfa ,

(3.6) ^ = &UK (i + ^r1)"1}-1 E i .* K/(i + ^

COROLLARY 3.1. The (;, l)-element &<%(j, I) of £<% is unbiased if the jth or
the Ith component of the regression function t\ is exactly constant; therefore, L<% is
unbiased ifq is a constant function with respect to x.

THEOREM 3.2. Let £% = [6&(j9 /)] be an LLW estimator of I. Suppose
that the jth and the Ith components rjj and rjt of the regression function t\ are twice
differentiate, and that

ya = supx s u p ^ ! |w'Hia)i#| < +00 , a = j , I,

where H(*] is the Hessian of na for a = 7, /. Then

where

(3-8)
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COROLLARY 3.2. The (y, l)-element d^(j, /) of £% is unbiased if the jth or
the Ith component of the regression function i\ is exactly linear; therefore, Z%> is
unbiased ifrj is a linear function with respect to x.

4. Efficiency

In this section, we assume that the distribution of £f (i = 1, . . . , n) has finite
fourth moments about 0. To give an unified expression for all third or fourth
moments, we use the following notation:

(4.1) nz(h K 1) = E[_eijeikeil'] ,

(4.2) ii4(j, K I, m) = Eleijeik8ileim] ,

for i = 1, . . . , n, and 1 < ;, k, I, m < p. First we give a general expression for
the covariances of linear functions of Z>.

THEOREM 4.1. Let 2 > be the estimator of E defined by (2.3). Suppose that
sl9 . . . , sn are independently distributed with finite third and fourth moments given
by (4.1) and (4.2). / / A = \_ajk] and B = [bjk] are any p x p symmetric matrices,
then

(4.3)

= (tr Vjr)-2\vbvAY*i Ik I i Em ajkblm^a K U m)

- tr (AS) tr [BE) - 2 tr {AEBE)} + 2(tr Vj) tr [AEBE)

where Vjr is given by (2.6) and Vjr is the column vector of the diagonal elements of

PROOF. Note that tr (AZjr) = (tr V» - 1 tr (AY'V^Y) and Vjr is symmetric.
Then the result follows from Theorem A.I in Appendix.

COROLLARY 4.1. Let 6jr{j, 0, 1 < j , I < P, be the (j, l)-element of"2>. Then,
under the same assumptions as in Theorem 4.1

(4.4) Cov \_6Ah k% 6Ah m)-]

= (tr V>)"2[v>v^{/i4(;, k, /, m) - ajkolm - GnGkm - ojmalk}

+ (tr
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PROOF. The result is obtained from (4.3) by letting A = (SjS'k + dk6j)/2,
B = (SJ'n + Sm3{)/2 and V = (tr P ^ ) " 1 ^ and using the identities if^'V^f/^ =

COROLLARY 4.2. If el9...9 sn are independently distributed according to

Np(0, 27),

(4.5) Cov [tr (AZ>), tr (B2>)] = 2(tr V^Y2[tr P^ tr {AZBZ)

for any p x p symmetric matrices A and B.

PROOF. The result is obtained from Corollary A.I by letting V =

It is interesting to compare Eg (or £<%) with the best linear unbiased
estimator £BLUE under the linear regression model. Let V& and V^ be the
matrices obtained from the matrix Vjr in (2.6) by using the weight-vectors (2.9)
and (2.8), respectively. To compare E& with £BLUE> consider the case when the
regression function t\ is exactly linear, and is given

where & is a q x p matrix of unknown parameters. Letting Px — X(X'X)~1X\
the best linear unbiased estimator is given by

As a criterion for the efficiency of E#9 we consider the ratio

pAA) = Var [tr (^BLUE:^)]/Var [tr (At*)] ,

where A is a p x p symmetric matrix. Note that

(4.6) V*X = ZieK ct{DiX(X'DiX)'xi - d,} {D.XiX'D.Xy x( - Styx

and (/„ — PX)X = OnXq. Using these properties and Corollary 4.2, we obtain
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Var [tr (A£<?ft = 2(tr V^)~2 tr F j tr (AE)2 ,

Var [tr (A£BLUEs*)] = 2(n - q)~l tr (A27)2 ,

if £f's are normally distributed. Thus the ratio p&(A) does not depend on the
choice of A in this situation and is given by

(n - q) = v<?/(n - q).

As for the range of p% we have the following theorem:

THEOREM 4.2. Let pc? = v#/(n — q\ v# = (tr F^)2/tr V&, gn = maxfeX |
and

(4.7) Un = maxaeJ,

Then

(4.8) (n - qr • max { ^ ^ f l} ̂  min

Theorem 4.2 is a direct consequence of the following lemma:

LEMMA 4.1. Let v^ = (tr V»2/tr VJ-, v<? = (tr F^)2/tr F j and v® = (tr V%)2/
tr K̂ . Then

(i) max
(̂1 +gn)Un*

(ii) v^ < n - q,

(iii) % < n - 1 .

PROOF. Since cf = (1 + HH^H2)"1 < 1 for i e K, we have

Ca

< min {(tr V»2 , C/» tr V » .

Therefore, it follows that v^ > 1 and

v^ > (tr *»2 /( l /n tr P » = Xiex cf/Un > nK/{(l + gn)Un}.

The remaining part of (i) is proved from the Cauchy-Schwarz inequality as



(4.10) tr Wh = (n - q)~2 tr (/„ - Px)
2 + (tr V^)'2 tr F j

Estimators of covariance matrix 73

follows:

(tr V^)2 = (£ieK cf)2 < (EteK l)(Zuz cf) = nK(£ieK cf) <nKtrVj.

For the proof of (ii), consider

(4.9) W<e = (n - q)'1 (/„ - Px) - (tr F*)"1 V* .

Since tr (Px V&) = 0 yields from (4.6), we have

(tr V)'2 tr F j

- 2(n - qy'itv V^y1 tr {(/„ - PX)V^}

= (n - qy1 + v*1 - 2(n - ^ ( t r K^)"1 tr K^

= v^1 - (n - qy1 .

Therefore, noting that tr W& > 0, we obtain v^ < n — q. Similarly (iii) is
proved by considering

(4.11) W« = (n - lyHln ~ PO ~ (tr * y - % ,

where Pln = n ^ l X

Similarly the efficiency of Ey may be measured by

p*(A) = Var [tr (ArBLUE:^)]/Var [tr (AE*y\ ,

where A is a p x p symmetric matrix and ^BLUE:^ = (w — l)"1!^/ , , — An)^- ^
is easily seen that if ££'s are normally distributed, p^(A) does not depend on A
and is given by

P*u = {(tr F^)2/tr V$\l(n - 1) = v^/(n - 1).

As for the range of p#, we have the following theorem:

THEOREM 4.3. Let p% = %/(n - 1) and % = (tr F^)2/tr V£. Then

(4.12) (n- l r ^ m a x i ^ - , 1> < / % < m i n i - ^ - , l i .

PROOF. The result follows from Lemma 4.1 and nf||wf||
2 = 1 (i e IC) for T^.

5. Asymptotic properties

It is easily expected that the asymptotic behaviors of Z> depend sensitively
on the design of the explanatory variables as well as on the error distribution.
We first postulate the following conditions on them.

CONDITION 1. v^ = (tr ^» 2 / t r Vj- -* +oo, asn-> +oo.
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CONDITION 2. There exists a positive number G such that

max i e K n i | |w / | |
2 <G< +00 .

CONDITION 3. The errors el9 £2>-- a r e independently distributed with
finite fourth moments.

REMARK 5.1. Condition 2 is fulfilled for an LUW estimator, since
nJlH^ll2 = 1 for all i e K in this case.

In this section the eigenvalues of several symmetric matrices will be fre-
quently operated; for simplicity, the eigenvalues of an m x m symmetric matrix
A will be denoted by kx(A) > A2(A) > > lm{A).

We now prove the consistency of Ejr which is given in the following
theorem:

THEOREM 5.1. Suppose that Conditions 1, 2, and 3 hold. Then the non-
parametric estimator 2jr of (2.2) is consistent if

(5.1) T.ieK^i = o(nK), as n-• +00,

where & = Bird for ieK.

PROOF. It is sufficient to show that tr (A£>) -> tr (AI) as n->+oo
in probability, for any symmetric p x p matrix A. First we show that
E[tr (v4Z>)] -» E[tr [Aiy] as n -• +00. Since |{fo| < max,- \Aj(A)\Sgi and
1/(1 + G) < cf < 1 for any i e K9 we obtain from (A.2) in Appendix that

|E[tr (AZjrf\ - tr (AZ)\ = |(tr ^ " ^ [ t r {ATV^Y)-] - tr {AL)\

= |(tr P ^ r f t t r P^) tr (A27) + tr

\Xj{A)\(l

Thus it follows from (5.1) that E[tr (AIjr)'] -• tr (AE) as n -» +00.
Next we show that Var [tr (AZjr)'] -• 0 as n ^ + 0 0 . Since cf < 1 and

tr ^ ,
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Letting A = [au..., a p ] ,

(5.2) |tr (AZAH'VJH)\ < Z,- Z* \a

Therefore, using (4.3) we obtain

Var [tr (A£)l < vj [|£,. Z* Z< Z-» ajkalmfi4( j , k, I, m) - {tr {AZ)}2

-2tr(Ai;)2\+2tT(A2;)2]

X Zj Zik Zl Z

+ 4(1 + G)2(X Z J Z ^

This implies that under Conditions 1, 2 and 3, Var [tr (AEjr)~\ -+ 0 as n -> +oo.
Finally, using the Chebychev inequality, we obtain that for any e > 0

} ^ V a r [ t r

as n -• H-oo. This completes the proof.

COROLLARY 5.1. Suppose that Conditions 1 and 3 ZioW and that the regres-
sion function tj is differentiable and satisfies

{ ( d \2)1/2

(5.3) iAa = sup, |X?=i I ̂ - I J « ( X ) | X , J > < +oo , a = 1, . . . , p .

Then an LUW estimator Em of E is consistent if

(5.4) YsteK df = o(nK) as n -> +oo .

PROOF. For an LUW estimator, Condition 2 is automatically fulfilled (see,
Remark 5.1), and it yields from Lemma 3.1 that under assumptions (5.3) and
(5.4)

0 < ZieK S'iSi/nK < (£>mi ti)(LfK dflnK) -> 0 ,

as n -> +oo. Hence the assertion follows from Theorem 5.1.

COROLLARY 5.2. Suppose that Conditions 1, 2 and 3 hold and that the
regression function tj is twice differentiate and has the Hessian satisfying

(5.5) ya = sup* s u p r . s l \u'H^u\ < +oo , a = 1, . . . , p .
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Then an LLW estimator £% of L is consistent if

(5.6) £ i e X d? = o(nK), as n -• +00 .

PROOF. For an LLW estimator, it yields from Lemma 3.2 that under the
assumptions (5.5) and (5.6)

0 < Lie* ««,/** < 4"1G(XS=i 7a
2)(Ztex # / "* ) -> 0 ,

as n -* +00. Hence the assertion follows from Theorem 5.1.

To derive the asymptotic normality of Z ^ , somewhat stronger conditions
are needed on the error distribution and on the design; we now postulate the
following conditions:

CONDITION 3 f. The errors ex, s2i ... are independently distributed accord-
ing to #,(0, 27).

CONDITION 4. ^(Vy) = o(n)[2\ as n -• +00.

THEOREM 5.2. Suppose that Conditions 1, 2, 3f and 4 fto/d. / /

(5.7) TJieK^i = o(nH2), asn

î  asymptotic distribution of Zjr = vj^2(Z^ — E) is normal with mean 0 and
covariances

(5.8) E[z,-kz,m] = (Tyi(7kw + a^aw .

PROOF. It is sufficient to show that every linear function of Zjr has an
asymptotic univariate normal distribution (see, e.g., Rao [15, Chapter 8a.2]).
Note that an arbitrary linear combination of Zjr can be written as

where A be a symmetric p x p matrix. A few algebras yield that the quantity
tr (AZjr) can be decomposed into the following three terms:

tr (AZjr) = tr (AZ%) +

where

Z% = v%2{(tr y'

= vj/2 tr

tr
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Then under Conditions 1, 2 and (5.7) we obtain

< max,. \kj(A)\(l + G) £ i e K ^M2 - 0 ,

as n -+ +00. Since (pjr(A) is a linear combination of e,'s, <p̂ -(i4) is normally
distributed with mean 0 and variance

Var

Since (1 + G)"1 < c? < 1 (i e K), it follows from (A.5) and (5.2) that

E[{tr (AH'V^E)}2^ = tr (AZAH'ViH) < (£, aj £ a^Wr) ^UK Hit •

Hence, under Conditions 1, 2, 4 and (5.7) we obtain

Var frpAA)! < 4(1 + GfiZj^^jHvjrM^^yn^CZuK S,W2) - 0,
as n -> +oo. This implies that (pjr(A) -* 0 as n -* +oo in probability.

Next we show that the asymptotic distribution of tr (AZ$) is normal with
mean 0 and variance 2 tr (AE)2. Let </>A(t) be the characteristic function of
tr (AZ}). Then

(5.9) ^(t)

= E[exp {ft(tr V}y^ tr \A(E'VjrE) - (tr P » tr

Using an orthogonal transformation of y#, we have

(5.10) tr

where ej's are independently distributed according to Np(0, E). Considering
the transformation «„ = E~1/2s*, a. = 1 , . . . , n, we can write

(5.11) sfAet = XJ-i ^ il2AE ^)u% ,

where w '̂s are independently distributed according to N(0, 1). Hence, from
(5.9), (5.10) and (5.11) we obtain that

= E[exp {it(tr Vt)-1'2 ^ a 4 ( ^ ) ^ A,(2: w 2 ^ " 2 ^ - ;tvJ/2 tr

= E[exp{-itv]/2tr(yir)}

{it(tr

II. H 0 - 2it • (tr
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Note that YjaUVr) = trVr, Z a R ( ^ - ) } 2 = t r ^ and £ i{^(271 'M2;1 '2)}2 =
tr (AX)2. Then, using the Taylor expansion of log <f>A(t), we obtain that for any
t e(—oo, +00)

log Ut) = - 1 2 tr

where

R ft)- COT

for some 6t in (0, 1). Since

\R,j(t)\ Z (4/3)t3(tr K i r ^ ^

it follows that under Conditions 1, 2 and 4

< (4/3)r3(l + GifaWryn^-maxj ^{E^AE^tv (AE)2 -> 0 ,

as n-> +00. Therefore we obtain that (j>A(t)-^Gxp [ — tr (AZ)2t2] as tt-> +00
for any £ e (—00, +00). This completes the proof.

Using the similar argument as in the proof of Corollary 5.1 or 5.2, we
obtain from Theorem 5.2 the following corollaries:

COROLLARY 5.3. Suppose that Conditions 1, 3f and 4 hold and that the
regression function a/ is differentiate and satisfies (5.3). Then the asymptotic
distribution of Zm = Vqj2(£% — E) is normal with mean 0 and covariances given by
(5.8) if"Zi€Kd? = o(nj[2) as n^ +00.

COROLLARY 5.4. Suppose that Conditions 1, 2, 3 f and 4 hold and that
the regression function i\ is twice differentiable and satisfies (5.5). Then the
asymptotic distribution of Z& = v^2(E^ — E) is normal with mean 0 and co-
variances given by (5.8) if YjisK^t = °(nk2) as n-> +00.

6. Some special cases when q — 1

We will now consider in more detail the case when q = 2. The data may
be described as {(yh xt)\l <i <n) with xt = (1, xf)'. Without loss of generality
we assume that xx < x2 < ••• < xn and the number of repeated observations
at xt is mh i.e., m l = #{j\Xj = xh 1 <j < n}. For simplicity, we denote the
observations by (yh xt) instead of (#,*,•) hencefoth. Let KM = \i\mi > 2},
Ky> = {2, . . . , n — 1} ~ X^. First we define a practical index set Nt for each
ie K = Kjf u X ^ which specifies a neighborhood of xt. Let
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(61) Nmss
1 \{j\Xj = xt- or Xj = xi+}, if i e X y ,

where i~ = max^^^. / and i+ = minX/>Jc. /. For i e K#>, let iVf~ = {j\Xj = x t-},
^i+ = {j\xj = xi+}, mt- = #Nf~ and mi+ = #iYf

+. It is possible to consider
a general estimator Z> of 2* based on ATf, i e K. However, it is natural to
consider a simple class of estimators which reflects on the characteristic of two
types of neighborhoods as follows: For ieK = KMuK#> and given 6t e [0, 1],
let

(6.2) $. = (/i\..

f j . - yt )l{mt - 1), if i

where for i e K^, yt. = m,"1^ + Zjeiv,.^) and for i e K<?, yr = mp XieJvrJi a n d

yi+ =m;+
1Yaje*tyy

Using rf = yt — yt as in (2.3), we define a class of estimators of 27 by

(6-3) ZG
\ieK

where cf = (1 4- W/M^)"1 and is given by

{1 — m,"1 , if i e .

f Of (1
1 ™r

A special case of this estimator was introduced by Gasser et al. [8] and by
Ohtaki [14], and a slightly different estimator was proposed by Rice [16] in
univariate regression model. A simple algebra yields that
(6.5) EG = TjfZpE + (1 — Tj^Zcf ,

where xjg = (Zie^c?)/(S»exc?X ^PE *S the PEMS estimator (1.3) based on the
data {(yi9 xt)\i e KJI}, and

Zy = ( Z

Thus we can see that EG is a natural extension of PEMS estimator. Note
that EG includes two important estimators as special cases; adopting 9t =
nii/inti- + mi+) yields an LUW estimator, which will be denoted by ZG%,
and adopting 9t = (xt — xf-)/(xi+ — x r) yields an LLW estimator, which will be
denoted by tGcg.
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REMARK 6.1. The estimator LG is expressed in a quadratic form, EG =
(tr VQY1Y'VQY9 where the (a, /?)-element of VG can be expressed as follows:

(6.6)
c4

a + Ma")c4-(1 - 0a-)2 -

(ma - l)/ma, if a = p e Kji ,

- m ; 1 + m;2{/^(a-)c4-(l - 0a-)
2 + V(a+)c4

+0a
2

+}, if xa = xfi9 and a # ft,

0 , otherwise,

where for TJT = Jt9 &9 V = 1 if i e X ^ and 0 if i ^ X ^ .

Since 2"G (or ZG<%, £G&) is a special one of Ejr (or X1^, E#\ we can apply
the general theory of Zjr in Sections 3 ~ 5 to LG (or £G<%, EG^). However,
EG is based on a special index-set Nt and a special predictor yh and so we can
expect that the assertions and the conditions in the general theory of Zjr can be
more strengthened and simplified. We shall look these in the following.

LEMMA 6.1. Let ZG<% = [oG<%{j, /)] be an LUW estimator. Suppose that
the jth and the Ith components rjj and r\l of the regression function tj are
differentiate, and that

(6.7) i//a =

Then

where

(6.8)

;, 0] - tyl

Cf(xi+ - Xt-)
2 .

LEMMA 6.2. Let ZGg> = [<tG^( j , /)] be an LLW estimator. Suppose that
the jth and the Ith components rjj and rjt of the regression function t\ are twice
differentiable, and that

d2

(6.9) ya = sup, < +oo , a = ; , / .

Then

where

(6.10)

» ')] - fyl
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LEMMA 6.3. Let VG be the matrix given in Remark 6.1 and let vG =
(tr FG)2/tr Fd. Then it holds that

( 6 H ) *

PROOF. Note that

(6.12) vG = (ZI.K cfffcuK cf j l + 2/y(i
+)cf+(l - 0,

mi+l

Since 2"1 < cf < 1 for all i e X , a straightforward calculation yields that

6K c? + 5») « ( Z , K c

Hence we obtain the desired result.

From Lemma 6.3 it follows that vG-> +oo asn-> +oo, and Condition 1 in
Section 5 is satisfied; therefore, we obtain from Theorem 5.1 the following
results:

THEOREM 6.1. Suppose that Conditions 2 and 3 in Section 5 hold. If
YjieK%i€i = °(n) as n^ +°°> tnen the nonparametric estimator EG defined by
(6.3) is consistent.

COROLLARY 6.1. Suppose that Condition 3 holds, and that the regression
function q is differentiable and satisfies YJOL^I < +°°> where \jjjs are the quantities
given by (6.7). Then an LUW estimator £G<% is consistent if

T,ieKy (
xi+ - xi-)2 = o(n), as n -> +oo .

PROOF. Using 2"1 < cf < 1 (i e K\ we obtain from Lemma 6.1 that

(6.13) 0 < Y.I.K tlti

Hence the assertion follows.

COROLLARY 6.2. Suppose that Condition 3 holds, and that the regression
function tj is twice differ entiable and satisfies Yj^i < +°°> where ya's are the
quantities given by (6.9). Then an LLW estimator £Gy> is consistent if

Zie i^ (**+ - Xt)2(Xi - xt-)
2 = o(ri), as n -• +oo .



82 Megu OHTAKI

PROOF. Using a similar argument as in the proof of Corollary 6.2, we
obtain from Lemma 6.2 that

(6.14) o < £ i e K £& < 2-\Y?*=i y.2) S i . ^ (**• - *<)2(*.- - *<-)2 •

Hence the assertion follows.

COROLLARY 6.3. Suppose that Condition 3 holds, and that there exist two
numbers a and b such that — oo<a<xt<b< +oo for all i e K. Then J7G^ is
consistent if the regression function tj is differentiable on [a, b]; so is also tGSe if
tf is twice differentiate on [a, &].

PROOF. Let tj (j e K#>) be the y th design point on which no replicated
observation lies, and assume that tx < t2 < "' < ts and s = #K#> without loss
of generality. Then we have

(6.15) £ 1 . ^ (xi+ - xr)
2 < lp2 (tj+1 - t^)2

< 2 1 ; ^ {(tJ+1 - tj)2 + (tj - tj.,)2} < 4 £;=i (tj+1 - tj)
2

£4(tM- h)2 ^4(b - a)2 < +00,

and

(6.16) Y,t*K (*i+ - *i-)2(*i ~ *i)2 £ 2"4 ZieKy (*i+ ~ ^i~f

^ IP2 (tj+i ~ tj-!)4 <(b- af < +00 .

Hence the assertion follows from Corollaries 6.1 and 6.2.

Following similar lines as in the general theory in Section 5, we obtain the
following theorem:

THEOREM 6.2. Suppose that Condition 31" in Section 5 holds. Then the
asymptotic distribution of v$l2(£G — E) is normal with mean 0 and covariances
(5.8) if ZieKy Z'tti = o(n^2) as n -> +00.

In the proof of Theorem 6.2 the following lemma is essential.

LEMMA 6.4. Let VG be the matrix given by Remark 6.1, and let ^i(VG) be
the largest eigenvalue of VG. Then

(6.17) 2 - 1 - n - 1 < ^ 1 ( F G ) < 1 7 / 4 .

PROOF. Note that ^i{VG) = supu,u=1 YJ*YJPV*PUOLU^ where i;a/3's are given
in Remark 6.1. After some straightforward calculations, we can show that
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< 17/4. The left hand part of (6.17) follows from

2 - i _ n - i < 2~\n - 2)/n < £ l e J C <$/n = tr VG/n < kx(VG).

PROOF OF THEOREM 6.2. From Lemma 6.4, we see that Condition 4
in Section 5 is automatically satisfied. Hence, the assertion follows from
Theorem 5.2.

Using arguments similar to the ones in deriving Corollaries 6.1, 6.2 and 6.3
from Theorem 6.1, we obtain the following corollaries of Theorem 6.2:

COROLLARY 6.4. Suppose that Condition 3* holds, and that the same condi-
tions as in Corollary 6.1 hold. Then the asymptotic distribution of VG%(EG% — %)
is normal with mean 0 and covariances (5.8) if £ i e * (xi+ — x r ) 2 = o(n1/2) as
n-> +oo.

COROLLARY 6.5. Suppose that Condition 31" holds, and that the same condi-
tions as in Corollary 6.2 hold. Then the asymptotic distribution of VQSA^G^ — E)
is normal with mean 0 and covariances (5.8) if YJI^K (xt+ ~ xi)2(xi ~ xr)2 =
o(n1/2) as n-+ H-oo.

COROLLARY 6.6. Suppose that Condition 3̂  holds, and that there exist two
numbers a and b such that —co<a<xt<b< +oo for all i e K. Then the
asymptotic distribution of VQ%(£G<% — E) is normal with mean 0 and covariances
(5.8) if t\ is differentiable on [a, b]; so is also that of V^^EQ^ — E) if t\ is twice
differentiate on [a, b~\.

7. Testing goodness of fit of linear models

In this section we propose a criterion for testing goodness of fit of linear
models in multivariate regression. Assume that the regression relation can be
described as in the model (1.1) and that the errors el9 £ 2 - - a r e independently
distributed according to Np(0, E).

Suppose that a hypothesized model, say f-Model, is expressed as

(7.1) H=Xf0,

where Xf is an n x r design matrix induced by a function f=(fl9...,fr)'
m>

Rq -• Rr, that is,

(7.2) X, =
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where the function / is known, rank (Xf) = r and G is an unknown r x p
coefficient matrix. When there are enough replicated observations in data set,
it is possible to test the hypothesis Hf: "f-Model is true" by using Wilks'
^-statistics (Wilks [24]) derived below.

Let 27PE = Y'VPEY/(n - g) be the PEMS estimator defined by (1.3), where g
is the total number of distinct design points in the data. Here we assume that
n - g > p, and let Ef = Y'(In - Pf)Y/(n - r), where Pf = X^X'fX^X'f. From
the general theory of multivariate linear model (see, e.g., Anderson [1], Seber
[19], Siotani et al. [21]), the likelihood ratio criterion is based on

( 7 3 ) A = =

\(n- g)ZPE + {(n - r)Ef - (n - g)tPE}\ \£f\ n - r '

Under Hf9 (n — g)£PE and (n - r)Ef — (n — g)£PE have independent Wishart
distributions Wp(n — g, 27) and Wp(g — r, 27), respectively. Then A has a
^-distribution with degrees of freedom p, g — r, and n — g. For the tables of
the upper quantile values for the ^-distribution, see, e.g., Seber [19]. If the
ratio \£PE\/\£f\ is very smaller than the expected value under Hf, that is, if \£f\
is much greater than \ZPE\, we reject Hf and may suspect that there exists some
lack of fit in f-Model. It is noteworthy that the test based on the yl-statistic of
(7.3) is equivalent to the well-known classical F-test when p = 1 (see, e.g., Seber
[18, Section 4.4]).

The yl-test mentioned above, unfortunately, can not be applied if there are
few replicated observations in the data set. This is the situation we now
consider. One possible approach to such a situation is to use the ^-statistics
defined by replacing £PE by a nonparametric estimator 27 ;̂ however, no simple
expression of the exact distribution even when Hf is true is available for the
resulting statistics. We now consider the asymptotic distribution of 12} 1/127̂ 1
when n is large. It is seen that after multiplying a suitable normalizing
constant, log {|Z}|/|Z>|} and tr(£f£Jp

1) — p have the common asymptotic
distribution. So we study the distribution of the latter statistics.

THEOREM 7.1. Suppose that sl9 e2, . . . are independently normally distributed
with mean 0 and covariance matrix 27. Let

(7.4) /cr

where Vjr = (tr P^-)2/tr Vj-. Then under Hf the asymptotic distribution of

(7.5) Tf = K^{tr(tfZ^)-p}

is N(0, 1) if the following conditions are fulfilled:

(i) v^ = (tr ^»2/tr Vj -> +oo, as n -• +oo, and lim supM^+00 v^/(n - r) < 1.
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(ii) There exists a positive number G such that

maxieK H/IWI2 < G < +00 .

(iii) hiY/r) = °(nk2) asn-> +00 .

(iv) There exists a positive definite matrix Qf such that

XfXj/n —>Qj-, as n—> +00 .

(v) Lete^Xftwi-S&ieK. Then

TieK e'iti = o(nj[2), as n -• +00 .

PROOF. Note that 7} = /cr
1/2 tr [(2> - E^)E~l{Ip + (E^ - E)E~1}-1'] and

from Theorem 5.1 £#-->£ as n-> +00 in probability. Hence, the asymptotic
distribution of 7} is the same as that of 7}f = K}12 tr {E'1^ - E^)}. Letting

(7.6) Wf = (n - r ) " 1 ^ - P/) - (tr P^)"1 P> ,

we have tf = K}/2 tr (E^Y'WfY). When the null hypothesis is true, there
exists a n r x p matrix 0 such that / / = £ [ 7 ] = A}0, and hence Tj can be
expressed in terms of E = Y — Xf0 and decomposed as follows:

(7.7) T/ = 4 , + 2y + T/ ,

where Af = -/cr
1/2(tr P^)"1 tr

T / = - ^ 2 ( t r V^y1 tr (Z-t&X'jVjrE),

and 7}* = /cr
1/2 tr (21 ~lEWfE)

First we show that Af-+§ as n ^ +00 and ty-^O as « - • +00 in prob-
ability. Note that tr Vjr = ̂ i e ^ ( l + H^H2)"1 > nK/(l + G) from (ii). Using a
similar calculation as in (5.2), we obtain from (v) and Lemma 3.1 that

n-r V'2

\Af\ < (2Pyll2(l + G) X, 1 / l ^ - ^ l ^ _ r _ ̂ j (Z fex ^-^/4/2) - 0 ,

as n -> +00, where 6> = [0 1 ? . . . , ^J ' . We also obtain from (A.5) and (5.2) that
under (i), (ii), (iii) and (iv)

E[T2] = Mtr Vj,Y2 tr {£-*0'X'fVjXf0)

< (2p)"1(l + Gf&AVjMnDCEj Zi WjZ-'OMlieK eMnj!2) -> 0 ,

as n -• H-oo. This implies that Ty ̂ > 0 as n -> +00 in probability.
Finally we show that 7}* is asymptotically distributed according to iV(0, 1).

Let (j>n{t) be the characteristic function of 7}*. Then following similar lines as
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in (5.9), we can obtain

4,(0 = £[exp {UK}'2 tr (£-lEWfE)}2

Hence

log </>n(t) = -2-'p X a log {1 - 2itKl>2Xa(Wf)} .

Using the Taylor expansion, we have for any t e (—oo, +oo)

log {1 - 2itic^A,(W»} = -2xK^K{Wf)t + 2{Kl
ri

2K{Wf)}h

where
{ K 1 / 2 ^ ( W } ) } 3

3

for some 0a(t) in (0, 1). Note that tr Wf = 0 and

tr ^ 2 = v̂ -1 - (n - r)"1 + 2(n - r ) " 1 ^ P^

Letting QSn = X'fXf/n, we have

tr ( P , ^ ) = tr {{XW'X^Xf} = n"1 tr

= n"X Z i Z / <° H i K
where a>J

n
l is the (j, /)-element of the inverse of Qf n. Hence, we obtain from (i),

(ii), (iv) and (v) that

(7.8) K tr W/ -

as n ^ +oo. Therefore, letting <5n(t) = 2"1p^«Kj>)(0, we obtain

log 4,(0 = ipKr
1/2(tr W»t - Krp(tr W^2)t2 + «5n(t)

Since, under Conditions (ii) and (iii),

K?1 max, \k.{Wf)\ < K^i^V^/tx V^ + (n - r)'1}

P + K^l{n - r)
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as n -> +00, it follows from (7.8) that

= (4/3){p/cr(tr W/)}(KW maxa \Xa{Wf)\) - 0 ,

as w-> +00. Hence, we have that 4n(t)->exp'( — t2/2) for any fixed t. This
completes the proof.

COROLLARY 7.1. Suppose that every component of f= (fl9 . . . , / r ) ' is dif-
ferentiable and satisfies

< +oo , a = 1, . . . , r ,

and that Conditions (i), (iii) and (iv) in Theorem 7.1 are fulfilled. Let E^
be an LUW estimator of E, and let /%>r = (2p)-1%(n — r)/(n — r — v%) and v<% =
(tr F^)2/tr V£. If Yji^K^f = o(wi/2), as n ^ +oo, then the asymptotic distri-
bution of Tauj = /c4/2

r{tr (EfE^1) - p) is N(0, 1) when the hypothesis Hf is true.

PROOF. For an LUW estimator E<%, we have that njM^H2 = 1 for all i e K,
and obtain from Lemma 3.1 that

0 < E i e* elet/niP < (%ml tf)(ZieK dfln)[2) - 0,

as n -• +00. Hence the assertion follows from Theorem 7.1.

COROLLARY 7.2. Suppose that every component of f=(fl9...,fr)' is twice
differentiate and has the Hessian satisfying

ya = supx s u p , ^ |u'H^u\ < +00 , a = 1, . . . , r ,

and that Conditions (i), (ii), (iii) and (iv) in Theorem 7.1 are fulfilled. Let £&
be an LLW estimator of E and let K&r = (2p)~1v^(n — r)/(n — r — v^\ where
vy> = (tr KzO2/tr Kj. / / YaieK^t = °(nK2X as w-^+oo, then the asymptotic
distribution of T^^ = fcj^2

r{tr (EfE^) — p] is Af(O, 1) when the hypothesis Hf

is true.

PROOF. From Condition (ii) and Lemma 3.2 we obtain that

0 < L.r elejn? < ^G^Ui y.2)(L.^ d>¥2) - 0 ,

as n -• +oo. Hence the assertion follows immediately from Theorem 7.1.

8. Robust estimators of diagonal elements of L

A disadvantage of Zjr is that Ejr has a lack of robustness because one
single outlier may have an arbitrary large effect on the estimator. For diagonal
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elements of 27, i.e., variances of the components of y, using the 7th components
rtj of r{ = y( — y( (i e X), and applying the idea due to Rousseeuw [17], we may
construct a robust alternative estimator <J&(jJ). The derivation of the robust
estimator is based on an averaging procedure through taking the median
of cfrfrs (i e K) rather than the arithmetic mean of them (see, Hampel [10,
p. 380]). When errors are normally distributed, the robust alternative may be
given by

(8.1) ddJJ) = 2.198 medianl6Z(c?rj}).

Here (l/^~1(3/4)}2 ~ 2.198 is an asymptotic correction factor, because

medianieK(cjrjj) -• <rn median(^) = ^.{tf

as n -> +00, where 0 denotes the standard normal distribution function.
Another robust alternative may be given by an M-estimator which was

introduced by Huber [11]. The scale M-estimator for the 7th element of E is
defined in our case as follows. Let p be a real function satisfying the following
assumptions.

(i) p(0) = 0;
(ii) p(-u) = p(u);
(iii) 0 < u < v implies p(u) < p(v);
(iv) p is continuous;
(v) 0 < a = sup p(u) < +00;
(vi) if p(u) < a and 0 < u < v, then p(u) < p(v).

Then, the M-estimator of ajj2, say {djt(j\j)}1/2
9 is defined as the value of s

which is the solution of

where b may be defined by E^[p(w)] = b.
The degree of robustness of an estimator in the presence of outliers may be

measured by the concept of breakdown-point which was introduced by Hample
[9]. Donoho and Huber [6] gave a finite sample version of this concept which
will be used here. The finite sample breakdown-point measures the maximum
fraction of outliers which a given sample may contain without spoiling the
estimator completely.

THEOREM 8.1. Let &^(j,j) be the estimator given by (8.1). Let Un be the
quantity given by (4.7), and let g be the number of distinct design points in data.
Then the breakdown-point of 6&(jJ) is not less than
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where [t]+ and [t]~ denote the operations of rasing to a unit and of omitting
fractions on a real number t, respectively.

PROOF. Let m* be the total number of outliers. Then the number of
affected elements of {cfrf^i e K) is at most (1 + Un)nfl. From the definition we
see easily that &&{jj) can not take arbitray large value when (1 + Un)m* <
g/2 — 1 or (g — l)/2 according as g is even or odd. Now the assertion follows
immediately.

In one-dimensional regression, i.e., the case of q = 2, with no replicated
observations in the data, the breakdown-point of <J&{j,j) is [n*/6]+/n, where n*
is n — 2 if n is even, n — 1 if n is odd. Hence the asymptotic value is 1/6.

Appendix. Covariances of some quadratic forms

Let Y = [yl9 ...9yHJ be an n x p random matrix such that yl9 . . . , yn are
independently distributed with means j / l 5 . . . , tfn, common covariance matrix E
and common third and fourth moments about their means. The common
third and fourth moments are expressed by //3(y, fc, /) and jj,4(j, k, /, m) for
1 <j, k, l,m < p9 respectively, as in (4.1) and (4.2).

THEOREM A.I. If A = [aj7] and B = [fyj] are any p x p symmetric matrices,
V = [vap] is any n x n symmetric matrix, then

(A.1)
Cov [tr {AY'VY), tr {BY'KY)]

= ^ ( I J I * L Em ajkbtomU, K h m) - tr (AS) tr {BE) - 2 tr (AZBZ)}

+ 2(tr V2) tr {AZBZ) + 2 £,- £fc £, £„ ajkblm{^{k, /, m)̂ >

+ fi3{mj9 k)qil)f} Vv + 4 tr {AEBH'V2H),

H = {tjx,..., tjn)' and v is the column vector of the diagonal elements of V.

PROOF. Letting E = {el9.. . ,£„) '= Y — H9we have

tr (XFF7) = tr (>l(/7 + £")rF(/r + £ ) ]

= tr {AH'VH) + 2 tr {AH'VE) + tr {AE'VE).

Note that E[£] = OnXp and E ^ ^ ' ] = ^7,, for 1 < j , / < p, Eleas^ = 5apZ
for 1 < a, J? < n, and the third and fourth moments are given by (4.1) and (4.2),
respectively. The expectations are calculated in terms of E and their com-
putations are straightforward. Here we list some fundamental results in the
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following:

(A.2) E[tr (AY'VY)~] = (tr V) tr (AE) + tr (AH'VH).

(A.3) E[tt(VE'AE) tr (VEBEft = v'vfc £fc £ , £ „ ajkblm^(l fc, /, m)

- tr {AE) tr (527) - 2 tr (AEBE)}

+ 2(tr K2) tr (AEB27)

(A.4) E[tr (A/TK£) tr (BEVE)] = £ , £k L I * <to*

(A.5) E[tr (AH'VE) tr (BH'VE)] = tr (AEBH'V2H).

COROLLARY A.I. / / j i , . . . , j w are also normally distributed in Theorem A.I,
then n3(j9 k91) = 0, n4(j, k, /, m) = o)k(rIm + onokm + (Tim(TIk, and

Cov [tr (A Y'KY), tr (BYTY)] = 2(tr V2) tr (v4r5i7) + 4 tr (AEBH'V2H).

COROLLARY A.2. Let p = 1 in Theorem A.I. 77zen we obtain the following
well-known expression of variance of a quadratic form (see, e.g., Atiqullah [2],
Seber [18, Chapter 1.4]):

Var \Y'VY~\ = v'v(jx4 - 3<r4) + 2(tr V2)cr4 -h 4//3j/Tv + 4(72jy/K2i7.
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