Extensions of Poisson algebras by derivations

Dedicated to the memory of Professor Shigeaki Tôgô

Fujio KUBO and Fumitake MIMURA* (Received January 13, 1989)

Introduction

The alternating Schouten product was studied in a totally algebraic way in Bhaskara and Vismanath [3]. In this paper we shall be first concerned with this product and show that $[P, \hat{Q}] = 0$ if and only if [P, Q] = 0 and (p-1) Alt $(P \otimes Q) = 0$ for alternating multiderivations P and Q of degree p and q-1 respectively, where $\hat{Q} = \text{Alt}(q\bar{Q})$ is an alternating multilinear map of degree q (Theorem 2).

We shall then study an extension of a Poisson algebra by an derivation which is the abstract concept of a generalized Poisson algebra introduced by Berezin [2], while Kubo and Mimura [4] and Kubo [5] worked on abstract Poisson algebras, especially Poisson Lie structures on some polynomial algebras and their factor algebras. Let F be a Poisson algebra with bracket [,] and D a derivation of the associative algebra F. We define a D-extension (F, \langle , \rangle) of F whose bracket \langle , \rangle on F is given by $\langle a, b \rangle = [a, b] + D(a)b - aD(b)$ for $a, b \in F$. By using Theorem 2 we give an equivalent condition to that an algebra (F, \langle , \rangle) is a Lie algebra. Then we consider an extension of a Poisson algebra constructed from the three dimensional split simple Lie algebra.

Throughout this paper let f be a field of characteristic zero and F a commutative associative algebra over f with unit.

We would like to thank Dr. N. Kawamoto and Dr. T. Ikeda for their valuable comments.

Alternating Schouten products of multiderivations

Notations and terminology are based on Bhaskara and Viswanath [3]. For the sake of convenience we list the terms that we use here.

For $p \ge 1$, we denote by $L_p(F)$ the set of all multilinear maps of F into itself of degree p. We define $L_0(F) = F$ and $L_{-1}(F) = 0$.

^(*) Author is partially supported by Grand-in-Aid for Scientific Research (No. 63540059), Ministry of Education of Japan.

Let $u, v \in F$, $P \in L_p(F)$ and $Q \in L_q(F)$ $(p, q \ge 1)$. The compositions of these multilinear maps are defined as follows: (a) $u \cdot v = 0$. (b) $u \cdot P = 0$, and $P \cdot u(v_1, \ldots, v_{p-1}) = P(u, v_1, \ldots, v_{p-1})$ for $v_i \in F$. (c) $P \cdot Q(v_1, \ldots, v_{p-1}, w_1, \ldots, w_q) = P(Q(w_1, \ldots, w_q), v_1, \ldots, v_{p-1})$ for $v_i, w_j \in F$. (d) $P_i(v_1, \ldots, v_p) = P(v_2, \ldots, v_i, v_1, v_{i+1}, \ldots, v_p)$. The tensor product $P \otimes Q \in L_{p+q}(F)$ is defined by $(P \otimes Q)(v_1, \ldots, v_p, w_1, \ldots, w_q) = P(v_1, \ldots, v_p)Q(w_1, \ldots, w_q)$ for $v_i, w_j \in F$.

Suppose $p \ge 1$, $P \in L_p(F)$ and σ is a permutation of *p*-elements. $U_{\sigma}P \in L_p(F)$ is defined by $(U_{\sigma}P)(v_1, \ldots, v_p) = P(v_{\sigma(1)}, \ldots, v_{\sigma(p)})$ for $v_i \in F$. The alternating operator Alt is defined by Alt $P = (1/p!) \sum_{\sigma} \operatorname{sgn} \sigma U_{\sigma}P$ for $P \in L_p(F)$ $(p \ge 1)$ and Alt v = v for $v \in F$. Obviously we have Alt $(U_{\sigma}P) = \operatorname{sgn} \sigma$ Alt *P*. When Alt P = P, we call *P* an alternating map. We state the following

- LEMMA 1 ([3; Proposition 1.4]). Let $P \in L_p(F)$, $Q \in L_q(F)$. Then
- (1) Alt $(P \cdot (\text{Alt } Q)) = \text{Alt } (P \cdot Q)$ $(p, q \ge 0)$ and
- (2) $p \operatorname{Alt} ((\operatorname{Alt} P) \cdot Q) = \sum_{i=1}^{p} (-1)^{i+1} \operatorname{Alt} (P_i \cdot Q) \quad (p \ge 1, q \ge 0).$

The alternating Schouten product of $P \in L_p(F)$ and $Q \in L_q(F)$ $(p, q \ge 0)$ is defined by

$$[P, Q] = \operatorname{Alt} \left(p(\operatorname{Alt} P) \cdot Q + (-1)^{pq} q(\operatorname{Alt} Q) \cdot P \right).$$

In [3] the following results are proved: (1) If P, Q and R are alternating maps of degree p, q and r respectively, then $(-1)^{pr}[[P, Q], R] + (-1)^{qp}[[Q, R], P] + (-1)^{rq}[[R, P], Q] = 0$ ([3; Theorem 2.7]). (2) If P and Q are multiderivations, so is [P, Q].

For $Q \in L_{q-1}(F)$ $(q \ge 1)$, we define \overline{Q} , $\widehat{Q} \in L_q(F)$ by $\overline{Q}(v_1, \ldots, v_q) = v_1 Q(v_2, \ldots, v_q)$ for $v_i \in F$ and $\widehat{Q} = \operatorname{Alt}(q\overline{Q})$. We denote by $A_p(F)$, $AD_p(F)$ the set of all alternating multilinear maps, alternating multiderivations of F of degree p respectively.

The purpose of this section is to prove the following

THEOREM 2. Let P and Q be alternating multiderivations of degree p and q-1 (p, $q \ge 1$) respectively. Then $[P, \hat{Q}] = 0$ if and only if [P, Q] = 0 and (p-1) Alt $(P \otimes Q) = 0$.

To prove this theorem we need some lemmas.

LEMMA 3. (1) If $P \in L_p(F)$ and $Q \in A_{q-1}(F)$ $(p \ge 0, q \ge 1)$, then $((-1)\sqrt{Q \cdot P})$ if i > 2

$$(\overline{Q})_j \cdot P = \begin{cases} (-1)^j Q \cdot P & \text{if } j \ge 2 \\ U_{\sigma}(P \otimes Q) & \text{if } j = 1 \end{cases},$$

where sgn $\sigma = (-1)^{p(q-1)}$.

(2) If
$$P \in AD_p(F)$$
 and $Q \in L_{q-1}(F)$ $(p, q \ge 1)$, then
 $P \cdot \overline{Q} = U_{\sigma} \overline{P \cdot Q} + (-1)^{p-1} P \otimes Q$,

where sgn $\sigma = (-1)^{p-1}$.

(3) If $Q \in L_{q-1}(F)$ $(q \ge 1)$, then for $u_1, \ldots, u_q \in F$,

Alt
$$\overline{Q}(u_1, ..., u_q) = \frac{1}{q} \sum_{j=1}^q (-1)^{j+1} u_j$$
 Alt $Q(u_1, ..., \hat{u}_j, ..., u_q)$.

PROOF. Let
$$u_1, \ldots, u_{p+q-1} \in F$$
. (1): If $j \ge 2$, then
 $(\overline{Q})_j \cdot P(u_1, \ldots, u_{p+q-1}) = (\overline{Q})_j (P(u_q, \ldots, u_{p+q-1}), u_1, \ldots, u_{q-1})$
 $= \overline{Q}(u_1, \ldots, u_{j-1}, P(u_q, \ldots, u_{p+q-1}), u_j, \ldots, u_{q-1})$
 $= (-1)^{j-2} u_1 Q(P(u_q, \ldots, u_{p+q-1}), u_2, \ldots, u_{q-1})$
 $= (-1)^j \overline{Q} \cdot \overline{P}(u_1, \ldots, u_{p+q-1}).$

Let σ be the permutation of (p+q-1)-elements given by $\sigma(1) = q, \ldots, \sigma(p) = p+q-1, \sigma(p+1) = 1, \ldots, \sigma(p+q-1) = q-1$. Then sgn $\sigma = (-1)^{p(q-1)}$ and

$$(\overline{Q})_1 \cdot P(u_1, \dots, u_{p+q-1}) = \overline{Q}(P(u_q, \dots, u_{p+q-1}), u_1, \dots, u_{q-1})$$
$$= P(u_q, \dots, u_{p+q-1})Q(u_1, \dots, u_{q-1})$$
$$= U_{\sigma}(P \otimes Q)(u_1, \dots, u_{p+q-1}).$$

(2): Let σ be the permutation of (p+q-1)-elements given by $\sigma(1) = p$, $\sigma(2) = 1, \ldots, \sigma(i) = i-1, \ldots, \sigma(p) = p-1, \sigma(j) = j \ (p+1 \le j \le p+q-1)$. Then sgn $\sigma = (-1)^{p-1}$. For $u_1, \ldots, u_{p+q-1} \in F$, we have

$$(P \cdot Q)(u_1, \dots, u_{p+q-1}) = P(u_p Q(u_{p+1}, \dots, u_{p+q-1}), u_1, \dots, u_{p-1})$$

= $u_p P(Q(u_{p+1}, \dots, u_{p+q-1}), u_1, \dots, u_{p-1})$
+ $Q(u_{p+1}, \dots, u_{p+q-1})P(u_p, u_1, \dots, u_{p-1})$
= $\overline{P \cdot Q}(u_p, u_1, \dots, \hat{u}_p, \dots, u_{p+q-1})$
+ $(-1)^{p-1}(P \otimes Q)(u_1, \dots, u_{p+q-1})$
= $(U_{\sigma} \overline{P \cdot Q} + (-1)^{p-1} P \otimes Q)(u_1, \dots, u_{p+q-1})$

(3): For a permutation σ of q-elements with $\sigma(1) = j$, we denote by $\overline{\sigma}$ the permutation of q-1 elements such that $\overline{\sigma}(1) = \sigma(2), \ldots, \overline{\sigma}(j-1) = \sigma(j), \overline{\sigma}(j+1) = \sigma(j+1), \ldots, \overline{\sigma}(q) = \sigma(q)$. Then sgn $\overline{\sigma} = (-1)^{j+1}$ sgn σ . Now we have

Fujio KUBO and Fumitake MIMURA

Alt
$$\overline{Q}(u_1, \dots, u_q) = \frac{1}{q!} \sum_{\sigma} \operatorname{sgn} \sigma \overline{Q}(u_{\sigma(1)}, \dots, u_{\sigma(q)})$$

$$= \frac{1}{q!} \sum_{\sigma} \operatorname{sgn} \sigma u_{\sigma(1)} Q(u_{\sigma(2)}, \dots, u_{\sigma(q)})$$

$$= \frac{1}{q!} \sum_{j=1}^{q} \sum_{\sigma(1)=j} \operatorname{sgn} \sigma u_j Q(u_{\sigma(2)}, \dots, u_{\sigma(q)})$$

$$= \frac{1}{q!} \sum_{j=1}^{q} u_j \sum_{\sigma} (-1)^{j+1} \operatorname{sgn} \sigma U_{\sigma} Q(u_1, \dots, \hat{u}_j, \dots, u_q)$$

$$= \frac{1}{q} \sum_{j=1}^{q} (-1)^{j+1} u_j \operatorname{Alt} Q(u_1, \dots, \hat{u}_j, \dots, u_q).$$
 Q.E.D.

LEMMA 4. If
$$P \in AD_p(F)$$
 and $Q \in A_{q-1}(F)$ $(p, q \ge 1)$, then
 $[P, \hat{Q}] = (-1)^{p-1}q\{p \text{ Alt } \overline{P \cdot Q} + (-1)^{p(q-1)}(q-1) \text{ Alt } \overline{Q \cdot P} + (p-1) \text{ Alt } (P \otimes Q)\}.$

PROOF.

$$\begin{split} [P, \hat{Q}] &= q[P, \overline{Q}] \\ &= q \operatorname{Alt} \left\{ p(\operatorname{Alt} P) \cdot \overline{Q} + (-1)^{pq} q(\operatorname{Alt} \overline{Q}) \cdot P \right\} \\ &= q \left\{ p \operatorname{Alt} \left(P \cdot \overline{Q} \right) + (-1)^{pq} \sum_{j=1}^{q} (-1)^{j+1} \operatorname{Alt} \left((\overline{Q})_{j} \cdot P \right) \right\} \quad \text{(by Lemma 1)} \\ &= q \left\{ p \operatorname{Alt} \left(P \cdot \overline{Q} \right) + (-1)^{pq+1} (q-1) \operatorname{Alt} (\overline{Q \cdot P}) \\ &+ (-1)^{p} \operatorname{Alt} \left(P \otimes Q \right) \right\} \quad \text{(by Lemma 3(1))} \,. \end{split}$$

Therefore by Lemma 3 (2), we have our formula. Q.E.D.

PROOF OF THEOREM 2. Let $u_1, \ldots, u_{p+q-1} \in F$. By Lemma 3 (3) and Lemma 4 we have

$$\begin{split} [P, \hat{Q}](u_1, \dots, u_{p+q-1}) &= (-1)^{p-1}q\{p \text{ Alt } \overline{P \cdot Q} + (-1)^{p(q-1)}(q-1) \text{ Alt } \overline{Q \cdot P} \\ &+ (p-1) \text{ Alt } (P \otimes Q)\}(u_1, \dots, u_{p+q-1}) \\ &= (-1)^{p-1} \frac{q}{P+q-1} \sum_{j=1}^{p+q-1} (-1)^{j+1} u_j\{p \text{ Alt } (P \cdot Q) \\ &+ (-1)^{p(q-1)}(q-1) \text{ Alt } (Q \cdot P)\}(u_1, \dots, \hat{u}_j, \dots, u_{p+q-1}) \\ &+ (-1)^{p-1}q(p-1) \text{ Alt } (P \otimes Q)(u_1, \dots, u_{p+q-1}) \end{split}$$

40

Extensions of Poisson algebras by derivations

$$= (-1)^{p-1} \frac{q}{p+q-1} \sum_{j=1}^{p+q-1} (-1)^{j+1} u_j [P, Q] (u_1, \dots, \hat{u}_j, \dots, u_{p+q-1}) + (-1)^{p-1} q(p-1) \operatorname{Alt} (P \otimes Q) (u_1, \dots, u_{p+q-1}).$$

Put $u_1 = 1$. Since P, Q and [P, Q] are multiderivations, we have

$$[P, \hat{Q}](1, u_2, \dots, u_{p+q-1}) = (-1)^{p-1} \frac{q}{p+q-1} [P, Q](u_2, \dots, u_{p+q-1}).$$

This shows that $[P, \hat{Q}] = 0$ implies [P, Q] = 0. Therefore we have (p-1) Alt $(P \otimes Q) = 0$. Q.E.D.

We shall prove the following

PROPOSITION 5. Let P and Q be alternating multiderivations of degree p-1, q-1 respectively $(p, q \ge 1)$. If $p \ne q$, then $[\hat{P}, \hat{Q}] = 0$ if and only if Alt $(P \otimes Q) = 0$. If p = q, then $[\hat{P}, \hat{Q}] = 0$.

PROOF. Let $u_1, \ldots, u_{p+q-1} \in F$ and σ be the permutation given by $\sigma(1) = p, \sigma(2) = 1, \ldots, \sigma(p) = p - 1, \sigma(j) = j (p+1 \le j \le p+q-1)$. Then

$$\begin{split} \bar{P} \cdot \bar{Q}(u_1, \dots, u_{p+q-1}) &= \bar{P}(u_p Q(u_{p+1}, \dots, u_{p+q-1}), u_1, \dots, u_{p-1}) \\ &= u_p Q(u_{p+1}, \dots, u_{p+q-1}) P(u_1, \dots, u_{p-1}) \\ &= \overline{P \otimes Q}(u_p, u_1, \dots, \hat{u}_p, \dots, u_{p+q-1}) \\ &= U_\sigma \overline{P \otimes Q}(u_1, \dots, u_{p+q-1}) \,. \end{split}$$

Therefore by Lemma 3 (3),

Alt
$$(\overline{P} \cdot \overline{Q})(u_1, \dots, u_{p+q-1}) = \operatorname{Alt} (U_{\sigma} \overline{P \otimes Q})(u_1, \dots, u_{p+q-1})$$

$$= (-1)^{p-1} \operatorname{Alt} \overline{P \otimes Q}(u_1, \dots, u_{p+q-1})$$

$$= (-1)^{p-1} \frac{1}{p+q-1} \sum_{j=1}^{p+q-1} (-1)^{j+1} u_j \operatorname{Alt} (P \otimes Q)(u_1, \dots, \hat{u}_j, \dots, \hat{u}_{p+q-1}).$$

Hence

$$\begin{split} [\hat{P}, \hat{Q}](u_1, \dots, u_{p+q-1}) &= pq\{p \text{ Alt } (\bar{P} \cdot \bar{Q}) + (-1)^{pq} q \text{ Alt } (\bar{Q} \cdot \bar{P})\}(u_1, \dots, u_{p+q-1}) \\ &= \frac{pq}{p+q-1} \sum_{j=1}^{p+q-1} u_j\{(-1)^{p+j} p \text{ Alt } (P \otimes Q) \\ &+ (-1)^{pq+q+j} q \text{ Alt } (Q \otimes P)\}(u_1, \dots, \hat{u}_j, \dots, u_{p+q-1}) \end{split}$$

Fujio KUBO and Fumitake MIMURA

$$= \frac{pq}{p+q-1} \sum_{j=1}^{p+q-1} (-1)^{p+j} (p-q) u_j \operatorname{Alt} (P \otimes Q)(u_1, \dots, \hat{u}_j, \dots, u_{p+q-1}).$$

Then the proof will be done similarly to that of Theorem 2. Q.E.D.

Extensions of Poisson algebras by derivations

Assume that F has a Lie bracket [,]. An algebra (F, [,]) is called a Poisson algebra if [ab, c] = a[b, c] + b[a, c] for a, b, $c \in F$. Let D be a derivation of an associative algebra F. Then we define a new bracket \langle , \rangle on F by

$$\langle a, b \rangle = [a, b] + D(a)b - aD(b)$$
 for $a, b \in F$.

Let us denote by (F, \langle , \rangle) the algebra F with a product given by \langle , \rangle , and call this algebra a *D*-extension of a Poisson algebra (F, [,]).

It is easy to see the following two propositions.

PROPOSITION 6. Let (F, \langle , \rangle) be a D-extension of a Poisson algebra (F, [,]). Then for $u_1, \ldots, u_n, v \in F$,

 $\langle u_1 \dots u_n, v \rangle = \sum_{i=1}^n u_1 \dots u_{i-1} \langle u_i, v \rangle u_{i+1} \dots u_n + (n-1)u_1 \dots u_n D(v)$

In particular for $a, b, c \in F$,

$$\langle ab, c \rangle = \langle a, c \rangle b + a \langle b, c \rangle + abD(c).$$

PROPOSITION 7. Let A_D , B_d be D, d-extensions of Poisson algebras A, B respectively and ϕ a Poisson isomorphism of A onto B. Then ϕ is an isomorphism of A_D onto B_d if and only if $d\phi = \phi D$.

We shall give an equivalent condition to that a *D*-extension (F, \langle, \rangle) is a Lie algebra. Let $G \in AD_2(F)$ be defined by G(a, b) = [a, b] for $a, b \in F$. Observing $\hat{D}(a, b) = aD(b) - bD(a)$, we have

$$\langle a, b \rangle = (G - D)(a, b)$$
 for $a, b \in F$

Therefore (F, \langle , \rangle) is a Lie algebra iff $[G - \hat{D}, G - \hat{D}] = 0$ ([3; Proposition 2.9]) which is equivalent to $[G, \hat{D}] = 0$ because $[\hat{D}, G] = (-1)^4 [G, \hat{D}]$ and $[\hat{D}, \hat{D}] = 0$ (Proposition 5). Now we shall prove the following

THEOREM 8. Let (F, \langle , \rangle) be a D-extension of a Poisson algebra (F, [,]). Then an algebra (F, \langle , \rangle) is a Lie algebra if and only if for any elements $a, b, c \in F$ the following equations hold Extensions of Poisson algebras by derivations

(*)
$$D([a, b]) = [D(a), b] + [a, D(b)]$$
 and
 $[a, b]D(c) + [b, c]D(a) + [c, a]D(b) = 0$.

PROOF. Let $G \in AD_2(F)$ be given above. By Theorem 2, $[G, \hat{D}] = 0$ iff [G, D] = 0 and Alt $(G \otimes D) = 0$. This theorem follows from the following computation:

$$[G, D](a, b) = \{2 \text{ Alt } (G \cdot D) + \text{ Alt } (D \cdot G)\}(a, b)$$

= $G(D(b), a) - G(D(a), b) + D(G(a, b))$
= $-[a, D(b)] - [D(a), b] + D([a, b]),$
Alt $(G \otimes D)(a, b, c) = 3^{-1}(G(a, b)D(c) + G(b, c)D(a) + G(c, a)D(b))$
= $3^{-1}([a, b]D(c) + [b, c]D(a) + [c, a]D(b)).$ Q.E.D.

Let J(a, b, c) = [a, b]D(c) + [b, c]D(a) + [c, a]D(b) for $a, b, c \in F$. By the proof of Theorem 8, J = 3 Alt $(G \otimes D)$. This says that J is a multiderivation. Therefore to verify the condition that J = 0 on F, it is enough to check this for only generators of an associative algebra F.

PROPOSITION 9. Assume that F is associatively generated by S. If a derivation D of F satisfies the conditions (*) on S, then so does D on F.

PROOF. We shall prove our assertion for the first condition of (*). The second one is already seen just above.

$$D([ab, c]) = D(a[b, c] + b[a, c])$$

= ([a, c]D(b) + a[D(b), c] + D(a)[b, c] + b[D(a), c])
+ (a[b, D(c)] + b[a, D(c)])
= [D(ab), c] + [ab, D(c)] for a, b, c \in S.

By this formula and an induction the proof will be completed.

Q.E.D.

EXAMPLE. Let L be a finite-dimensional Lie algebra over f with a basis $\{x_1, \ldots, x_n\}$ and R the polynomial algebra $f[x_1, \ldots, x_n]$. We consider the Possion algebra $G = L(L; R, \{\partial/\partial x_i\})$ defined in [4], whose Poisson bracket [,] on R is given by

$$[a, b] = \sum_{i,j} [x_i, x_j] \frac{\partial a}{\partial x_i} \frac{\partial b}{\partial x_j} \quad \text{for} \quad a, b \in \mathbb{R} .$$

Let D be a derivation of R and G_D its D-extension. Then an algebra G_D is

a Lie algebra by Theorem 8 and Proposition 9 if D satisfies the following conditions: For i, j, k = 1, ..., n,

(**)
$$D([x_i, x_j]) = [D(x_i), x_j] + [x_i, D(x_j)]$$
 and
 $[x_i, x_j]D(x_k) + [x_j, x_k]D(x_i) + [x_k, x_i]D(x_j) = 0$.

We write $D(x_i) = \sum_m a_{im}$, where a_{im} is homogeneous of degree *m*, and define a derivation D_m of *R* by $D_m(x_i) = a_{im}$ for i = 1, ..., n and m = 0, 1... We can easily see that *D* satisfies (**) iff D_m satisfies (**) for m = 0, 1, ... Under this condition D_1 is a derivation of the Lie algebra *L*. Therefore if *L* is split simple, there exists an element $z \in L$ such that $D_1(w) = \operatorname{ad} z(w)$ for $w \in L$.

For the three dimensional Lie algebras, Mimura and Ikushima [6] computed all of the D_0 -extensions of the Poisson algebras of all C^{∞} -functions on C^{∞} -manifolds.

We can give a Lie algebra L such that ad z does not satisfy (**) on an ad z-extension of a Poisson algebra $L(L; \mathfrak{t}[x_1, \ldots, x_n], \{\partial/\partial x_i\})$ for some $z \in L$. Let L be the Lie algebra over \mathfrak{t} described in terms of a basis $\{x_1, \ldots, x_5\}$ by the following multiplication table:

$$[x_1, x_2] = x_2, \qquad [x_1, x_3] = x_3, \qquad [x_1, x_4] = 2x_4,$$

$$[x_1, x_5] = 3x_5, \qquad [x_2, x_3] = x_4, \qquad [x_2, x_4] = x_5,$$

 $[x_i, x_i] = 0$ if it is not in the table above ([7; Example 2]). Then

$$[x_2, x_3]$$
 ad $x_1(x_4) + [x_3, x_4]$ ad $x_1(x_2) + [x_4, x_2]$ ad $x_1(x_3) = 2x_4^2 - x_3x_5 \neq 0$.

L(SL(2, f); f[x, y, h], $\{\partial/\partial x, \partial/\partial y, \partial/\partial h\}$). Let L be a Lie algebra over f with a basis $\{x, y, z\}$ and multiplications [x, y] = h, [h, x] = 2x, [h, y] = -2y. Put A = f[x, y, z]. We consider the ad h-extension (A, \langle , \rangle) of the Poisson algebra L(SL(2, f); A, $\{\partial/\partial x, \partial/\partial y, \partial/\partial h\}$). We note that (A, \langle , \rangle) is a Lie algebra because ad h satisfies (**).

Let A_m be a weight space $\{a \in A : [h, a] = ma\}$, $A_* = \sum_{m \neq 0} A_m$, and write $\langle a, b \rangle = \langle a, b, \dots, b \rangle$ where b appears n times in the right hand side. We have the following formulas:

- 1) $\langle x, y \rangle = h + 4xy, \langle h, x \rangle = 2x 2hx, \langle h, y \rangle = -2y + 2hy.$
- 2) $\langle h, x \rangle = -2^{n}(n-2)! x^{n}, \langle h, y \rangle = 2(-2)^{n-1}(n-2)! y^{n} \ (n \ge 2).$
- 3) $\langle a, h \rangle = m(ah a), \langle a, x \rangle = [a, x] + (m 2)ax,$ $\langle a, y \rangle = [a, y] + (m + 2)ay$ for $a \in A_m$.
- 4) $\langle h^{p}x^{q}, y^{r} \rangle = -2prh^{p-1}x^{q}y^{r} + qrh^{p+1}x^{q-1}y^{r-1} + 2(q+r)h^{p}x^{q}y^{r}.$
- 5) $\langle h^{p}y^{r}, x^{q} \rangle = 2pqh^{p-1}x^{q}y^{r} qrh^{p+1}x^{q-1}y^{r-1} 2(q+r)h^{p}x^{q}y^{r}.$
- 6) $\langle x^{q}, y^{r} \rangle = qrhx^{q-1}y^{r-1} + 2(q+r)x^{q}y^{r}$.

LEMMA 10. Assume that $a \in A_m$. Then $\langle a, x \rangle = A_{m+2}$, $\langle a, y \rangle \in A_{m-2}$, $\langle a, h \rangle \in A_m$.

Let B be the subalgebra of the ad h-extension (A, \langle, \rangle) generated by x, y, h.

PROPOSITION 11. A_* , B as above.

- (1) $A_* \subseteq B$.
- (2) $h^2 \notin B$, hence $B \subsetneq A$.

PROOF. (1): For $q, r \ge 2, x^q$ and y^r belong to B by the formula 2). By $\langle h^p x^q, h \rangle = 2q(h^{p+1}x^q - h^p x^q)$ and induction on p we have $h^p x^q \in B$ $(p \ge 0, q \ge 1)$. Similarly $h^p y^r \in B$ $(p \ge 0, r \ge 1)$. By 4) and 5)

$$\langle h^p x^q, y^r \rangle + \langle h^p y^r, x^q \rangle = 2p(q-r)h^{p-1}x^q y^r$$

Therefore if $p \ge 0$, $q, r \ge 1$ and $q \ne r$, then $h^p x^q y^r \in B$. These show that $A_* \subseteq B$.

(2): Assume that $h^2 \in B$ and write $h^2 = \langle f_1, x \rangle + \langle f_2, y \rangle + \langle f_3, h \rangle$, $f_i \in A$. By Lemma 10 we may assume that $f_1 \in A_{-2}$, $f_2 \in A_2$ and $\langle f_3, h \rangle = 0$. Then we put

$$f_1 = \sum_{p,n} a_{p,n} h^p x^n y^{n+1}$$
, $f_2 = \sum_{p,n} b_{p,n} h^p x^{n+1} y^n$,

where $a_{p,n}, b_{p,n} \in \mathfrak{k}$. By 3) we have

$$h^{2} = \sum_{p,n} (a_{p,n} - b_{p,n}) (2ph^{p-1}(xy)^{n+1} - 4h^{p}(xy)^{n+1} - (n+1)h^{p+1}(xy)^{n}).$$

In this formula, putting xy = 0, we have $h^2 = \sum_{p} (b_{p,0} - a_{p,0}) h^{p+1}$ and $b_{1,0} - a_{1,0} = 1$, $b_{0,0} - a_{0,0} = 0$. On the other hand, putting h = 0, we have

$$\sum_{n} \left\{ 2(b_{0,n} - a_{0,n}) - (b_{1,n} - a_{1,n}) \right\} (xy)^{n+1} = 0.$$

Then $2(b_{0,0} - a_{0,0}) - (b_{1,0} - a_{1,0}) = 0$, which is a contradiction. Q.E.D.

Let h^A be the smallest ideal of a Lie algebra A containing h. We can write $h^A = \sum_n \langle h, A \rangle$ ([1; p. 29]). We have the following

COROLLARY 12. (1) A = B + t[h]. (2) $B = h^A$.

PROOF. (1): Put $C = B + \mathfrak{k}[h]$. Then

$$\langle h^{p}x^{n}, y^{n} \rangle = n^{2}h^{p+1}(xy)^{n-1} - 2nph^{p-1}(xy)^{n} + 4nh^{p}(xy)^{n} \in B$$
 $(n \ge 1)$

by 4) and the proof of Proposition 11 (1). Putting n = 1 and induction on p we have $h^p xy \in C$. Then by induction on n we see $h^p(xy)^n \in C$ $(p \ge 0, n \ge 1)$. Therefore $A_0 \subseteq C$. Hence by Proposition 11, $A = A_0 + A_* = C$. (2): Put $H = h^A$. Since $\langle h, {}_2x \rangle$ and $\langle x^2, h \rangle$ belong to H, so do x^2 and hx^2 . Therefore $x^2y = (\langle hx^2, y \rangle + \langle hy, x^2 \rangle)/2 \in H$. Furthermore $\langle x^2, y \rangle = 2hx + 6x^2y \in H$. Hence $hx \in H$. By 1), $x \in H$. Similarly we have $y \in H$. Conversely by Lemma 2.3 in [1; Chapter 2] we have $h^A = (h^{t[h]})^B = h^B \subseteq B$.

Conversely by Lemma 2.3 in [1; Chapter 2] we have $h^{n} = (h^{(n)})^{n} = h^{n} \subseteq B$. Q.E.D.

References

- [1] R. K. Amayo and I. N. Stewart, Infinite-dimensional Lie Algebras, Noordhoff, Leyden, 1974.
- F. A. Berezin, Some remarks on the associative envelope of a Lie algebra (in Russian), Function. Anal. Priloz., 1 (1967), 1-14.
- [3] K. H. Bhaskara and K. Viswanath, Poisson Algebras and Poisson Maniholds, Pitman Publishing, 1988.
- [4] F. Kubo and F. Mimura, Lie structures on differential algebras, Hiroshima Math. J., 18 (1988), 479-484.
- [5] F. Kubo, Lie structures on $f[x_1, ..., x_n, y]/(y^3 3py q)$, Bull. Kyushu Inst. Tech. (Math. Natur. Sci.), 35 (1988), 1-6.
- [6] F. Mimura and A. Ikushima, Structure of generalized Poisson algebras, Bull. Kyushu Inst. Tech. (Math. Natur. Sci.), 27 (1980), 1-10.
- [7] S. Tôgô, On the derivation algebras of Lie algebras, Canad. Math. J., 13 (1961), 201-216.

Department of Mathematics, Kyushu Institute of Technology