Extensions of Poisson algebras by derivations

Dedicated to the memory of Professor Shigeaki Tôgô
Fujio Kubo and Fumitake Mimura*
(Received January 13, 1989)

Introduction

The alternating Schouten product was studied in a totally algebraic way in Bhaskara and Vismanath [3]. In this paper we shall be first concerned with this product and show that $[P, \widehat{Q}]=0$ if and only if $[P, Q]=0$ and $(p-1)$ Alt $(P \otimes Q)=0$ for alternating multiderivations P and Q of degree p and $q-1$ respectively, where $\hat{Q}=\operatorname{Alt}(q \bar{Q})$ is an alternating multilinear map of degree q (Theorem 2).

We shall then study an extension of a Poisson algebra by an derivation which is the abstract concept of a generalized Poisson algebra introduced by Berezin [2], while Kubo and Mimura [4] and Kubo [5] worked on abstract Poisson algebras, especially Poisson Lie structures on some polynomial algebras and their factor algebras. Let F be a Poisson algebra with bracket [,] and D a derivation of the associative algebra F. We define a D-extension $(F,\langle\rangle$, of F whose bracket \langle,$\rangle on F$ is given by $\langle a, b\rangle=[a, b]+D(a) b-a D(b)$ for $a, b \in F$. By using Theorem 2 we give an equivalent condition to that an algebra $(F,\langle\rangle$,$) is a Lie algebra. Then we consider an extension of a Poisson$ algebra constructed from the three dimensional split simple Lie algebra.

Throughout this paper let \mathfrak{f} be a field of characteristic zero and F a commutative associative algebra over \mathfrak{f} with unit.

We would like to thank Dr. N. Kawamoto and Dr. T. Ikeda for their valuable comments.

Alternating Schouten products of multiderivations

Notations and terminology are based on Bhaskara and Viswanath [3]. For the sake of convenience we list the terms that we use here.

For $p \geqq 1$, we denote by $L_{p}(F)$ the set of all multilinear maps of F into itself of degree p. We define $L_{0}(F)=F$ and $L_{-1}(F)=0$.

[^0]Let $u, v \in F, P \in L_{p}(F)$ and $Q \in L_{q}(F)(p, q \geqq 1)$. The compositions of these multilinear maps are defined as follows: (a) $u \cdot v=0$. (b) $u \cdot P=0$, and $P \cdot u\left(v_{1}, \ldots, v_{p-1}\right)=P\left(u, v_{1}, \ldots, v_{p-1}\right)$ for $v_{i} \in F$. (c) $P \cdot Q\left(v_{1}, \ldots, v_{p-1}\right.$, $\left.w_{1}, \ldots, w_{q}\right)=P\left(Q\left(w_{1}, \ldots, w_{q}\right), v_{1}, \ldots, v_{p-1}\right)$ for $v_{i}, w_{j} \in F$. (d) $P_{i}\left(v_{1}, \ldots, v_{p}\right)=$ $P\left(v_{2}, \ldots, v_{i}, v_{1}, v_{i+1}, \ldots, v_{p}\right)$. The tensor product $P \otimes Q \in L_{p+q}(F)$ is defined by $(P \otimes Q)\left(v_{1}, \ldots, v_{p}, w_{1}, \ldots, w_{q}\right)=P\left(v_{1}, \ldots, v_{p}\right) Q\left(w_{1}, \ldots, w_{q}\right)$ for $v_{i}, w_{j} \in F$.

Suppose $p \geqq 1, P \in L_{p}(F)$ and σ is a permutation of p-elements. $U_{\sigma} P \in L_{p}(F)$ is defined by $\left(U_{\sigma} P\right)\left(v_{1}, \ldots, v_{p}\right)=P\left(v_{\sigma(1)}, \ldots, v_{\sigma(p)}\right)$ for $v_{i} \in F$. The alternating operator Alt is defined by Alt $P=(1 / p!) \sum_{\sigma} \operatorname{sgn} \sigma U_{\sigma} P$ for $P \in L_{p}(F)(p \geqq 1)$ and Alt $v=v$ for $v \in F$. Obviously we have $\operatorname{Alt}\left(U_{\sigma} P\right)=\operatorname{sgn} \sigma$ Alt P. When Alt $P=P$, we call P an alternating map. We state the following

Lemma 1 ([3; Proposition 1.4]). Let $P \in L_{p}(F), Q \in L_{q}(F)$. Then
(1) \quad Alt $(P \cdot($ Alt $Q))=\operatorname{Alt}(P \cdot Q) \quad(p, q \geqq 0) \quad$ and
(2) p Alt $(($ Alt $P) \cdot Q)=\sum_{i=1}^{p}(-1)^{i+1}$ Alt $\left(P_{i} \cdot Q\right) \quad(p \geqq 1, q \geqq 0)$.

The alternating Schouten product of $P \in L_{p}(F)$ and $Q \in L_{q}(F)(p, q \geqq 0)$ is defined by

$$
[P, Q]=\operatorname{Alt}\left(p(\operatorname{Alt} P) \cdot Q+(-1)^{p q} q(\text { Alt } Q) \cdot P\right)
$$

In [3] the following results are proved: (1) If P, Q and R are alternating maps of degree p, q and r respectively, then $(-1)^{p r}[[P, Q], R]+(-1)^{q p}[[Q, R], P]+$ $(-1)^{r q}[[R, P], Q]=0$ ([3; Theorem 2.7]). (2) If P and Q are multiderivations, so is $[P, Q]$.

For $Q \in L_{q-1}(F) \quad(q \geqq 1)$, we define $\bar{Q}, \hat{Q} \in L_{q}(F)$ by $\bar{Q}\left(v_{1}, \ldots, v_{q}\right)=$ $v_{1} Q\left(v_{2}, \ldots, v_{q}\right)$ for $v_{i} \in F$ and $\hat{Q}=\operatorname{Alt}(q \bar{Q})$. We denote by $A_{p}(F), A D_{p}(F)$ the set of all alternating multilinear maps, alternating multiderivations of F of degree p respectively.

The purpose of this section is to prove the following
Theorem 2. Let P and Q be alternating multiderivations of degree p and $q-1(p, q \geqq 1)$ respectively. Then $[P, \widehat{Q}]=0$ if and only if $[P, Q]=0$ and $(p-1) \operatorname{Alt}(P \otimes Q)=0$.

To prove this theorem we need some lemmas.
Lemma 3. (1) If $P \in L_{p}(F)$ and $Q \in A_{q-1}(F) \quad(p \geqq 0, q \geqq 1)$, then

$$
(\bar{Q})_{j} \cdot P=\left\{\begin{array}{ll}
(-1)^{j} \overline{Q \cdot P} & \text { if } j \geqq 2 \\
U_{\sigma}(P \otimes Q) & \text { if } j=1
\end{array},\right.
$$

where $\operatorname{sgn} \sigma=(-1)^{p(q-1)}$.
(2) If $P \in A D_{p}(F)$ and $Q \in L_{q-1}(F) \quad(p, q \geqq 1)$, then

$$
P \cdot \bar{Q}=U_{\sigma} \overline{P \cdot Q}+(-1)^{p-1} P \otimes Q,
$$

where $\operatorname{sgn} \sigma=(-1)^{p-1}$.
(3) If $Q \in L_{q-1}(F)(q \geqq 1)$, then for $u_{1}, \ldots, u_{q} \in F$,

$$
\operatorname{Alt} \bar{Q}\left(u_{1}, \ldots, u_{q}\right)=\frac{1}{q} \sum_{j=1}^{q}(-1)^{j+1} u_{j} \operatorname{Alt} Q\left(u_{1}, \ldots, \hat{u}_{j}, \ldots, u_{q}\right) .
$$

Proof. Let $u_{1}, \ldots, u_{p+q-1} \in F$. (1): If $j \geqq 2$, then

$$
\begin{aligned}
(\bar{Q})_{j} \cdot P\left(u_{1}, \ldots, u_{p+q-1}\right) & =(\bar{Q})_{j}\left(P\left(u_{q}, \ldots, u_{p+q-1}\right), u_{1}, \ldots, u_{q-1}\right) \\
& =\bar{Q}\left(u_{1}, \ldots, u_{j-1}, P\left(u_{q}, \ldots, u_{p+q-1}\right), u_{j}, \ldots, u_{q-1}\right) \\
& =(-1)^{j-2} u_{1} Q\left(P\left(u_{q}, \ldots, u_{p+q-1}\right), u_{2}, \ldots, u_{q-1}\right) \\
& =(-1)^{j} \overline{Q \cdot P}\left(u_{1}, \ldots, u_{p+q-1}\right) .
\end{aligned}
$$

Let σ be the permutation of $(p+q-1)$-elements given by $\sigma(1)=q, \ldots, \sigma(p)=$ $p+q-1, \sigma(p+1)=1, \ldots, \sigma(p+q-1)=q-1$. Then $\operatorname{sgn} \sigma=(-1)^{p(q-1)}$ and

$$
\begin{aligned}
(\bar{Q})_{1} \cdot P\left(u_{1}, \ldots, u_{p+q-1}\right) & =\bar{Q}\left(P\left(u_{q}, \ldots, u_{p+q-1}\right), u_{1}, \ldots, u_{q-1}\right) \\
& =P\left(u_{q}, \ldots, u_{p+q-1}\right) Q\left(u_{1}, \ldots, u_{q-1}\right) \\
& =U_{\sigma}(P \otimes Q)\left(u_{1}, \ldots, u_{p+q-1}\right)
\end{aligned}
$$

(2): Let σ be the permutation of $(p+q-1)$-elements given by $\sigma(1)=p$, $\sigma(2)=1, \ldots, \sigma(i)=i-1, \ldots, \sigma(p)=p-1, \sigma(j)=j(p+1 \leqq j \leqq p+q-1)$. Then $\operatorname{sgn} \sigma=(-1)^{p-1}$. For $u_{1}, \ldots, u_{p+q-1} \in F$, we have

$$
\begin{aligned}
(P \cdot \bar{Q})\left(u_{1}, \ldots, u_{p+q-1}\right)= & P\left(u_{p} Q\left(u_{p+1}, \ldots, u_{p+q-1}\right), u_{1}, \ldots, u_{p-1}\right) \\
= & u_{p} P\left(Q\left(u_{p+1}, \ldots, u_{p+q-1}\right), u_{1}, \ldots, u_{p-1}\right) \\
& +Q\left(u_{p+1}, \ldots, u_{p+q-1}\right) P\left(u_{p}, u_{1}, \ldots, u_{p-1}\right) \\
= & \overline{P \cdot Q}\left(u_{p}, u_{1}, \ldots, \hat{u}_{p}, \ldots, u_{p+q-1}\right) \\
& +(-1)^{p-1}(P \otimes Q)\left(u_{1}, \ldots, u_{p+q-1}\right) \\
= & \left(U_{\sigma} \overline{P \cdot Q}+(-1)^{p-1} P \otimes Q\right)\left(u_{1}, \ldots, u_{p+q-1}\right) .
\end{aligned}
$$

(3): For a permutation σ of q-elements with $\sigma(1)=j$, we denote by $\bar{\sigma}$ the permutation of $q-1$ elements such that $\bar{\sigma}(1)=\sigma(2), \ldots, \bar{\sigma}(j-1)=\sigma(j)$, $\bar{\sigma}(j+1)=\sigma(j+1), \ldots, \bar{\sigma}(q)=\sigma(q)$. Then $\operatorname{sgn} \bar{\sigma}=(-1)^{j+1} \operatorname{sgn} \sigma$. Now we have

$$
\text { Alt } \begin{aligned}
\bar{Q}\left(u_{1}, \ldots, u_{q}\right) & =\frac{1}{q!} \sum_{\sigma} \operatorname{sgn} \sigma \bar{Q}\left(u_{\sigma(1)}, \ldots, u_{\sigma(q)}\right) \\
& =\frac{1}{q!} \sum_{\sigma} \operatorname{sgn} \sigma u_{\sigma(1)} Q\left(u_{\sigma(2)}, \ldots, u_{\sigma(q)}\right) \\
& =\frac{1}{q!} \sum_{j=1}^{q} \sum_{\sigma(1)=j} \operatorname{sgn} \sigma u_{j} Q\left(u_{\sigma(2)}, \ldots, u_{\sigma(q)}\right) \\
& =\frac{1}{q!} \sum_{j=1}^{q} u_{j} \sum_{\sigma}(-1)^{j+1} \operatorname{sgn} \sigma U_{\sigma} Q\left(u_{1}, \ldots, \hat{u}_{j}, \ldots, u_{q}\right) \\
& =\frac{1}{q} \sum_{j=1}^{q}(-1)^{j+1} u_{j} \text { Alt } Q\left(u_{1}, \ldots, \hat{u}_{j}, \ldots, u_{q}\right) . \quad \text { Q.E.D. }
\end{aligned}
$$

Lemma 4. If $P \in A D_{p}(F)$ and $Q \in A_{q-1}(F) \quad(p, q \geqq 1)$, then

$$
\begin{aligned}
{[P, \hat{Q}]=} & (-1)^{p-1} q\left\{p \text { Alt } \overline{P \cdot Q}+(-1)^{p(q-1)}(q-1) \text { Alt } \overline{Q \cdot P}\right. \\
& +(p-1) \operatorname{Alt}(P \otimes Q)\} .
\end{aligned}
$$

Proof.

$$
\begin{aligned}
{[P, \widehat{Q}]=} & q[P, \bar{Q}] \\
= & q \operatorname{Alt}\left\{p(\operatorname{Alt} P) \cdot \bar{Q}+(-1)^{p q} q(\operatorname{Alt} \bar{Q}) \cdot P\right\} \\
= & q\left\{p \operatorname{Alt}(P \cdot \bar{Q})+(-1)^{p q} \sum_{j=1}^{q}(-1)^{j+1} \operatorname{Alt}\left((\bar{Q})_{j} \cdot P\right)\right\} \quad \text { (by Lemma 1) } \\
= & q\left\{p \operatorname{Alt}(P \cdot \bar{Q})+(-1)^{p q+1}(q-1) \operatorname{Alt}(\overline{Q \cdot P})\right. \\
& \left.+(-1)^{p} \operatorname{Alt}(P \otimes Q)\right\} \quad(\text { by Lemma } 3(1)) .
\end{aligned}
$$

Therefore by Lemma 3 (2), we have our formula.
Q.E.D.

Proof of Theorem 2. Let $u_{1}, \ldots, u_{p+q-1} \in F$. By Lemma 3 (3) and Lemma 4 we have

$$
\begin{aligned}
{[P, \hat{Q}]\left(u_{1}, \ldots, u_{p+q-1}\right)=} & (-1)^{p-1} q\left\{p \operatorname{Alt} \overline{P \cdot Q}+(-1)^{p(q-1)}(q-1) \text { Alt } \overline{Q \cdot P}\right. \\
& +(p-1) \operatorname{Alt}(P \otimes Q)\}\left(u_{1}, \ldots, u_{p+q-1}\right) \\
= & (-1)^{p-1} \frac{q}{P+q-1} \sum_{j=1}^{p+q-1}(-1)^{j+1} u_{j}\{p \operatorname{Alt}(P \cdot Q) \\
& \left.+(-1)^{p(q-1)}(q-1) \operatorname{Alt}(Q \cdot P)\right\}\left(u_{1}, \ldots, \hat{u}_{j}, \ldots, u_{p+q-1}\right) \\
& +(-1)^{p-1} q(p-1) \operatorname{Alt}(P \otimes Q)\left(u_{1}, \ldots, u_{p+q-1}\right)
\end{aligned}
$$

$$
\begin{aligned}
= & (-1)^{p-1} \frac{q}{p+q-1} \sum_{j=1}^{p+q-1}(-1)^{j+1} u_{j}[P, Q]\left(u_{1}\right. \\
& \left.\ldots, \hat{u}_{j}, \ldots, u_{p+q-1}\right) \\
& +(-1)^{p-1} q(p-1) \operatorname{Alt}(P \otimes Q)\left(u_{1}, \ldots, u_{p+q-1}\right) .
\end{aligned}
$$

Put $u_{1}=1$. Since P, Q and $[P, Q]$ are multiderivations, we have

$$
[P, \hat{Q}]\left(1, u_{2}, \ldots, u_{p+q-1}\right)=(-1)^{p-1} \frac{q}{p+q-1}[P, Q]\left(u_{2}, \ldots, u_{p+q-1}\right)
$$

This shows that $[P, \hat{Q}]=0$ implies $[P, Q]=0$. Therefore we have $(p-1) \operatorname{Alt}(P \otimes Q)=0$.
Q.E.D.

We shall prove the following
Proposition 5. Let P and Q be alternating multiderivations of degree $p-1, q-1$ respectively $(p, q \geqq 1)$. If $p \neq q$, then $[\hat{P}, \hat{Q}]=0$ if and only if Alt $(P \otimes Q)=0$. If $p=q$, then $[\hat{P}, \hat{Q}]=0$.

Proof. Let $u_{1}, \ldots, u_{p+q-1} \in F$ and σ be the permutation given by $\sigma(1)=p, \sigma(2)=1, \ldots, \sigma(p)=p-1, \sigma(j)=j(p+1 \leqq j \leqq p+q-1)$. Then

$$
\begin{aligned}
\bar{P} \cdot \bar{Q}\left(u_{1}, \ldots, u_{p+q-1}\right) & =\bar{P}\left(u_{p} Q\left(u_{p+1}, \ldots, u_{p+q-1}\right), u_{1}, \ldots, u_{p-1}\right) \\
& =u_{p} Q\left(u_{p+1}, \ldots, u_{p+q-1}\right) P\left(u_{1}, \ldots, u_{p-1}\right) \\
& =\overline{P \otimes Q}\left(u_{p}, u_{1}, \ldots, \hat{u}_{p}, \ldots, u_{p+q-1}\right) \\
& =U_{\sigma} \overline{P \otimes Q}\left(u_{1}, \ldots, u_{p+q-1}\right)
\end{aligned}
$$

Therefore by Lemma 3 (3),

$$
\begin{aligned}
\operatorname{Alt}(\bar{P} \cdot \bar{Q})\left(u_{1}, \ldots, u_{p+q-1}\right)= & \operatorname{Alt}\left(U_{\sigma} \overline{P \otimes Q}\right)\left(u_{1}, \ldots, u_{p+q-1}\right) \\
= & (-1)^{p-1} \operatorname{Alt} \overline{P \otimes Q}\left(u_{1}, \ldots, u_{p+q-1}\right) \\
= & (-1)^{p-1} \frac{1}{p+q-1} \sum_{j=1}^{p+q-1}(-1)^{j+1} u_{j} \operatorname{Alt}(P \otimes Q)\left(u_{1}\right. \\
& \left.\ldots, \hat{u}_{j}, \ldots, u_{p+q-1}\right) .
\end{aligned}
$$

Hence

$$
\begin{aligned}
{[\hat{P}, \hat{Q}]\left(u_{1}, \ldots, u_{p+q-1}\right)=} & p q\left\{p \operatorname{Alt}(\bar{P} \cdot \bar{Q})+(-1)^{p q} q \operatorname{Alt}(\bar{Q} \cdot \bar{P})\right\}\left(u_{1}, \ldots, u_{p+q-1}\right) \\
= & \frac{p q}{p+q-1} \sum_{j=1}^{p+q-1} u_{j}\left\{(-1)^{p+j} p \operatorname{Alt}(P \otimes Q)\right. \\
& \left.+(-1)^{p q+q+j} q \operatorname{Alt}(Q \otimes P)\right\}\left(u_{1}, \ldots, \hat{u}_{j}, \ldots, u_{p+q-1}\right)
\end{aligned}
$$

$$
\begin{aligned}
= & \frac{p q}{p+q-1} \sum_{j=1}^{p+q-1}(-1)^{p+j}(p-q) u_{j} \operatorname{Alt}(P \otimes Q)\left(u_{1},\right. \\
& \left.\ldots, \hat{u}_{j}, \ldots, u_{p+q-1}\right) .
\end{aligned}
$$

Then the proof will be done similarly to that of Theorem 2.
Q.E.D.

Extensions of Poisson algebras by derivations

Assume that F has a Lie bracket [,]. An algebra ($F,[$,$]) is called a$ Poisson algebra if $[a b, c]=a[b, c]+b[a, c]$ for $a, b, c \in F$. Let D be a derivation of an associative algebra F. Then we define a new bracket \langle,$\rangle on F$ by

$$
\langle a, b\rangle=[a, b]+D(a) b-a D(b) \quad \text { for } \quad a, b \in F .
$$

Let us denote by $(F,\langle\rangle$,$) the algebra F$ with a product given by \langle,$\rangle , and call$ this algebra a D-extension of a Poisson algebra ($F,[$,$]).$

It is easy to see the following two propositions.
Proposition 6. Let $(F,\langle\rangle$,$) be a D-extension of a Poisson algebra (F,[$,$]).$ Then for $u_{1}, \ldots, u_{n}, v \in F$,

$$
\left\langle u_{1} \ldots u_{n}, v\right\rangle=\sum_{i=1}^{n} u_{1} \ldots u_{i-1}\left\langle u_{i}, v\right\rangle u_{i+1} \ldots u_{n}+(n-1) u_{1} \ldots u_{n} D(v) .
$$

In particular for $a, b, c \in F$,

$$
\langle a b, c\rangle=\langle a, c\rangle b+a\langle b, c\rangle+a b D(c)
$$

Proposition 7. Let A_{D}, B_{d} be D, d-extensions of Poisson algebras A, B respectively and ϕ a Poisson isomorphism of A onto B. Then ϕ is an isomorphism of A_{D} onto B_{d} if and only if $d \phi=\phi D$.

We shall give an equivalent condition to that a D-extension $(F,\langle\rangle$,$) is$ a Lie algebra. Let $G \in A D_{2}(F)$ be defined by $G(a, b)=[a, b]$ for a, $b \in F$. Observing $\hat{D}(a, b)=a D(b)-b D(a)$, we have

$$
\langle a, b\rangle=(G-\hat{D})(a, b) \quad \text { for } \quad a, b \in F .
$$

Therefore $(F,\langle\rangle$,$) is a Lie algebra iff [G-\hat{D}, G-\hat{D}]=0([3 ;$ Proposition 2.9]) which is equivalent to $[G, \hat{D}]=0$ because $[\hat{D}, G]=(-1)^{4}[G, \hat{D}]$ and $[\hat{D}, \hat{D}]=0$ (Proposition 5). Now we shall prove the following

Theorem 8. Let $(F,\langle\rangle$,$) be a D-extension of a Poisson algebra (F, [,]).$ Then an algebra $(F,\langle\rangle$,$) is a Lie algebra if and only if for any elements$ $a, b, c \in F$ the following equations hold
(*)

$$
\begin{aligned}
& D([a, b])=[D(a), b]+[a, D(b)] \quad \text { and } \\
& {[a, b] D(c)+[b, c] D(a)+[c, a] D(b)=0 .}
\end{aligned}
$$

Proof. Let $G \in A D_{2}(F)$ be given above. By Theorem 2, $[G, \hat{D}]=0$ iff $[G, D]=0$ and $\operatorname{Alt}(G \otimes D)=0$. This theorem follows from the following computation:

$$
\begin{aligned}
{[G, D](a, b) } & =\{2 \operatorname{Alt}(G \cdot D)+\operatorname{Alt}(D \cdot G)\}(a, b) \\
& =G(D(b), a)-G(D(a), b)+D(G(a, b)) \\
& =-[a, D(b)]-[D(a), b]+D([a, b]),
\end{aligned}
$$

$$
\text { Alt } \begin{aligned}
(G \otimes D)(a, b, c) & =3^{-1}(G(a, b) D(c)+G(b, c) D(a)+G(c, a) D(b)) \\
& =3^{-1}([a, b] D(c)+[b, c] D(a)+[c, a] D(b)) . \quad \text { Q.E.D. }
\end{aligned}
$$

Let $J(a, b, c)=[a, b] D(c)+[b, c] D(a)+[c, a] D(b)$ for $a, b, c \in F$. By the proof of Theorem $8, J=3$ Alt $(G \otimes D)$. This says that J is a multiderivation. Therefore to verify the condition that $J=0$ on F, it is enough to check this for only generators of an associative algebra F.

Proposition 9. Assume that F is associatively generated by S. If a derivation D of F satisfies the conditions (*) on S, then so does D on F.

Proof. We shall prove our assertion for the first condition of (*). The second one is already seen just above.

$$
\begin{aligned}
D([a b, c])= & D(a[b, c]+b[a, c]) \\
= & ([a, c] D(b)+a[D(b), c]+D(a)[b, c]+b[D(a), c]) \\
& +(a[b, D(c)]+b[a, D(c)]) \\
= & {[D(a b), c]+[a b, D(c)] \quad \text { for } a, b, c \in S . }
\end{aligned}
$$

By this formula and an induction the proof will be completed.
Q.E.D.

Example. Let L be a finite-dimensional Lie algebra over \mathfrak{f} with a basis $\left\{x_{1}, \ldots, x_{n}\right\}$ and R the polynomial algebra $\mathfrak{f}\left[x_{1}, \ldots, x_{n}\right]$. We consider the Possion algebra $G=\mathrm{L}\left(L ; R,\left\{\partial / \partial x_{i}\right\}\right)$ defined in [4], whose Poisson bracket [,] on R is given by

$$
[a, b]=\sum_{i, j}\left[x_{i}, x_{j}\right] \frac{\partial a}{\partial x_{i}} \frac{\partial b}{\partial x_{j}} \quad \text { for } \quad a, b \in R .
$$

Let D be a derivation of R and G_{D} its D-extension. Then an algebra G_{D} is
a Lie algebra by Theorem 8 and Proposition 9 if D satisfies the following conditions: For $i, j, k=1, \ldots, n$,

$$
\begin{gather*}
D\left(\left[x_{i}, x_{j}\right]\right)=\left[D\left(x_{i}\right), x_{j}\right]+\left[x_{i}, D\left(x_{j}\right)\right] \quad \text { and } \tag{**}\\
{\left[x_{i}, x_{j}\right] D\left(x_{k}\right)+\left[x_{j}, x_{k}\right] D\left(x_{i}\right)+\left[x_{k}, x_{i}\right] D\left(x_{j}\right)=0 .}
\end{gather*}
$$

We write $D\left(x_{i}\right)=\sum_{m} a_{i m}$, where $a_{i m}$ is homogeneous of degree m, and define a derivation D_{m} of R by $D_{m}\left(x_{i}\right)=a_{i m}$ for $i=1, \ldots, n$ and $m=0,1 \ldots$. We can easily see that D satisfies (**) iff D_{m} satisfies (**) for $m=0,1, \ldots$ Under this condition D_{1} is a derivation of the Lie algebra L. Therefore if L is split simple, there exists an element $z \in L$ such that $D_{1}(w)=$ ad $z(w)$ for $w \in L$.

For the three dimensional Lie algebras, Mimura and Ikushima [6] computed all of the D_{0}-extensions of the Poisson algebras of all C^{∞}-functions on C^{∞}-manifolds.

We can give a Lie algebra L such that ad z does not satisfy ($* *$) on an ad z-extension of a Poisson algebra $L\left(L ; \mathfrak{f}\left[x_{1}, \ldots, x_{n}\right],\left\{\partial / \partial x_{i}\right\}\right)$ for some $z \in L$. Let L be the Lie algebra over \mathfrak{f} described in terms of a basis $\left\{x_{1}, \ldots, x_{5}\right\}$ by the following multiplication table:

$$
\begin{array}{lll}
{\left[x_{1}, x_{2}\right]=x_{2},} & {\left[x_{1}, x_{3}\right]=x_{3},} & {\left[x_{1}, x_{4}\right]=2 x_{4},} \\
{\left[x_{1}, x_{5}\right]=3 x_{5},} & {\left[x_{2}, x_{3}\right]=x_{4},} & {\left[x_{2}, x_{4}\right]=x_{5},}
\end{array}
$$

$\left[x_{i}, x_{j}\right]=0$ if it is not in the table above ([7; Example 2]). Then
$\left[x_{2}, x_{3}\right]$ ad $x_{1}\left(x_{4}\right)+\left[x_{3}, x_{4}\right]$ ad $x_{1}\left(x_{2}\right)+\left[x_{4}, x_{2}\right]$ ad $x_{1}\left(x_{3}\right)=2 x_{4}^{2}-x_{3} x_{5} \neq 0$.
$\mathrm{L}(S L(2, \mathfrak{f}) ; \mathfrak{f}[x, y, h],\{\partial / \partial x, \partial / \partial y, \partial / \partial h\})$. Let L be a Lie algebra over f with a basis $\{x, y, z\}$ and multiplications $[x, y]=h,[h, x]=2 x,[h, y]=-2 y$. Put $A=\mathfrak{f}[x, y, z]$. We consider the ad h-extension $(A,\langle\rangle$,$) of the Poisson algebra$ $\mathrm{L}(S L(2, \mathfrak{f}) ; A,\{\partial / \partial x, \partial / \partial y, \partial / \partial h\})$. We note that $(A,\langle\rangle$,$) is a Lie algebra because$ ad h satisfies (**).

Let A_{m} be a weight space $\{a \in A:[h, a]=m a\}, A_{*}=\sum_{m \neq 0} A_{m}$, and write $\left\langle a,{ }_{n} b\right\rangle=\langle a, b, \ldots, b\rangle$ where b appears n times in the right hand side. We have the following formulas:

1) $\langle x, y\rangle=h+4 x y,\langle h, x\rangle=2 x-2 h x,\langle h, y\rangle=-2 y+2 h y$.
2) $\left\langle h,{ }_{n} x\right\rangle=-2^{n}(n-2)!x^{n},\left\langle h,{ }_{n} y\right\rangle=2(-2)^{n-1}(n-2)!y^{n}(n \geqq 2)$.
3) $\langle a, h\rangle=m(a h-a),\langle a, x\rangle=[a, x]+(m-2) a x$, $\langle a, y\rangle=[a, y]+(m+2) a y \quad$ for $a \in A_{m}$.
4) $\left\langle h^{p} x^{q}, y^{r}\right\rangle=-2 p r h^{p-1} x^{q} y^{r}+q r h^{p+1} x^{q-1} y^{r-1}+2(q+r) h^{p} x^{q} y^{r}$.
5) $\left\langle h^{p} y^{r}, x^{q}\right\rangle=2 p q h^{p-1} x^{q} y^{r}-q r h^{p+1} x^{q-1} y^{r-1}-2(q+r) h^{p} x^{q} y^{r}$.
6) $\left\langle x^{q}, y^{r}\right\rangle=q r h x^{q-1} y^{r-1}+2(q+r) x^{q} y^{r}$.

Lemma 10. Assume that $a \in A_{m}$. Then $\langle a, x\rangle=A_{m+2},\langle a, y\rangle \in A_{m-2}$, $\langle a, h\rangle \in A_{m}$.

Let B be the subalgebra of the ad h-extension $(A,\langle\rangle$,$) generated by x, y, h$.
Proposition 11. A_{*}, B as above.
(1) $A_{*} \subseteq B$.
(2) $h^{2} \notin B$, hence $B \subsetneq A$.

Proof. (1): For $q, r \geqq 2, x^{q}$ and y^{r} belong to B by the formula 2). By $\left\langle h^{p} x^{q}, h\right\rangle=2 q\left(h^{p+1} x^{q}-h^{p} x^{q}\right)$ and induction on p we have $h^{p} x^{q} \in B(p \geqq 0$, $q \geqq 1)$. Similarly $h^{p} y^{r} \in B(p \geqq 0, r \geqq 1)$. By 4) and 5)

$$
\left\langle h^{p} x^{q}, y^{r}\right\rangle+\left\langle h^{p} y^{r}, x^{q}\right\rangle=2 p(q-r) h^{p-1} x^{q} y^{r} .
$$

Therefore if $p \geqq 0, q, r \geqq 1$ and $q \neq r$, then $h^{p} x^{q} y^{r} \in B$. These show that $A_{*} \subseteq B$.
(2): Assume that $h^{2} \in B$ and write $h^{2}=\left\langle f_{1}, x\right\rangle+\left\langle f_{2}, y\right\rangle+\left\langle f_{3}, h\right\rangle, f_{i} \in A$. By Lemma 10 we may assume that $f_{1} \in A_{-2}, f_{2} \in A_{2}$ and $\left\langle f_{3}, h\right\rangle=0$. Then we put

$$
f_{1}=\sum_{p, n} a_{p, n} h^{p} x^{n} y^{n+1}, \quad f_{2}=\sum_{p, n} b_{p, n} h^{p} x^{n+1} y^{n}
$$

where $a_{p, n}, b_{p, n} \in \mathfrak{f} . \quad$ By 3) we have

$$
h^{2}=\sum_{p, n}\left(a_{p, n}-b_{p, n}\right)\left(2 p h^{p-1}(x y)^{n+1}-4 h^{p}(x y)^{n+1}-(n+1) h^{p+1}(x y)^{n}\right) .
$$

In this formula, putting $x y=0$, we have $h^{2}=\sum_{p}\left(b_{p, 0}-a_{p, 0}\right) h^{p+1}$ and $b_{1,0}-$ $a_{1,0}=1, b_{0,0}-a_{0,0}=0$. On the other hand, putting $h=0$, we have

$$
\sum_{n}\left\{2\left(b_{0, n}-a_{0, n}\right)-\left(b_{1, n}-a_{1, n}\right)\right\}(x y)^{n+1}=0 .
$$

Then $2\left(b_{0,0}-a_{0,0}\right)-\left(b_{1,0}-a_{1,0}\right)=0$, which is a contradiction.
Q.E.D.

Let h^{A} be the smallest ideal of a Lie algebra A containing h. We can write $h^{A}=\sum_{n}\left\langle h,{ }_{n} A\right\rangle([1 ; \mathrm{p} .29])$. We have the following

Corollary 12. (1) $A=B+\mathfrak{f}[h]$. (2) $B=h^{A}$.
Proof. (1): Put $C=B+f[h]$. Then

$$
\left\langle h^{p} x^{n}, y^{n}\right\rangle=n^{2} h^{p+1}(x y)^{n-1}-2 n p h^{p-1}(x y)^{n}+4 n h^{p}(x y)^{n} \in B \quad(n \geqq 1)
$$

by 4) and the proof of Proposition 11 (1). Putting $n=1$ and induction on p we have $h^{p} x y \in C$. Then by induction on n we see $h^{p}(x y)^{n} \in C(p \geqq 0, n \geqq 1)$. Therefore $A_{0} \subseteq C$. Hence by Proposition 11, $A=A_{0}+A_{*}=C$.
(2): Put $H=h^{A}$. Since $\left\langle h,{ }_{2} x\right\rangle$ and $\left\langle x^{2}, h\right\rangle$ belong to H, so do x^{2} and $h x^{2}$. Therefore $x^{2} y=\left(\left\langle h x^{2}, y\right\rangle+\left\langle h y, x^{2}\right\rangle\right) / 2 \in H$. Furthermore $\left\langle x^{2}, y\right\rangle=$ $2 h x+6 x^{2} y \in H$. Hence $h x \in H$. By 1), $x \in H$. Similarly we have $y \in H$.

Conversely by Lemma 2.3 in [1; Chapter 2] we have $h^{A}=\left(h^{[[h]}\right)^{B}=h^{B} \subseteq B$.
Q.E.D.

References

[1] R. K. Amayo and I. N. Stewart, Infinite-dimensional Lie Algebras, Noordhoff, Leyden, 1974.
[2] F. A. Berezin, Some remarks on the associative envelope of a Lie algebra (in Russian), Function. Anal. Priloz., 1 (1967), 1-14.
[3] K. H. Bhaskara and K. Viswanath, Poisson Algebras and Poisson Maniholds, Pitman Publishing, 1988.
[4] F. Kubo and F. Mimura, Lie structures on differential algebras, Hiroshima Math. J., 18 (1988), 479-484.
[5] F. Kubo, Lie structures on $\mathfrak{f}\left[x_{1}, \ldots, x_{n}, y\right] /\left(y^{3}-3 p y-q\right)$, Bull. Kyushu Inst. Tech. (Math. Natur. Sci.), 35 (1988), 1-6.
[6] F. Mimura and A. Ikushima, Structure of generalized Poisson algebras, Bull. Kyushu Inst. Tech. (Math. Natur. Sci.), 27 (1980), 1-10.
[7] S. Tôgô, On the derivation algebras of Lie algebras, Canad. Math. J., 13 (1961), 201-216.

> Department of Mathematics, Kyushu Institute of Technology

[^0]: ${ }^{(*)}$ Author is partially supported by Grand-in-Aid for Scientific Research (No. 63540059), Ministry of Education of Japan.

