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1. Introduction

The purpose of this paper is to show that given a pair of solutions ul9 u2

in Wίo<; *(((), °°); H) of the time-dependent evolution equation

(1.1) (d/dt)u(t) + 3^(ιι(ί))9θ, a.e. t > 0,

the strong convergence

(1.2) s - lim^a, {tt^f) - tι2(f)} = const. εH

is valid, where H is a real Hubert space, and for each ίe[0, oo), ψ* is a proper

lower semi-continuous (l.s.c.) convex functional defined in H and dψ* denotes

the subdifferential of t/Λ

A typical example of (1.1) is the following parabolic equation:

(d/dt)u(t, x) - Σ,Π=ι(d/δx;)/, fe x, Vιι) + g(t9 x, u) = 0,

(1.3)

Here, for each fixed (ί, x), the family {//£, x, y)} is supposed to be completely
integrable with respect to yeR" and an ellipticity condition

(!.4) ΣM-I (3/ Wife x' y) ίjί* > r(t)a(x)\ξ\2, ξeRn

holds for some positive smooth functions r on [0, oo) and a on Rn. For each
ίe[0, oo), the set Q(i) denotes a domain in R" with smooth compact boundary

Γ(i). In most of our results, we do not assume the boundedness of Q(t). By

means of the zero-extension, we formulate equation (1.3) in the real Hubert

space L2(RW).
The convergence (1.2) is interesting, for example, if dψt+τ = dψl with some

T>0 and w2( ) is a T-periodic solution of (1.2). The existence of periodic

solutions of our example (1.3) is obtained in [5] (see also [7]).

As mentioned in the Introduction of our previous paper [4], to get the

strong convergence (1.2) we need the following lemma.



238 Hiroko OKOCHI

LEMMA 1.1. Let u2 be a solution of (1.1). For any t > 0 such that u2(t)

satisfies the relation (1.1), put

(1.5) φ'(vv) = lAV + u2(t)) + ((d/dt)u2 (ί), w) - ^f(ιι2(ί)), wetf,

(.,.) stands for the inner product of H. Then the family [φ*; a.e. t > 0}

has the following properties (i) and (ii).

(i) φl are proper l.s.c. convex functionals on H satisfying

(1.6) φt(0) = τmnHφt = 0.

(ii) ul(.) is a solution of (1.1) if and only if u(.) = u1(.) — u2(.) is a
solution of the equation

(d/dt)u(t) + 3φ'(ιι(ί))3θ, a.e. ί > 0.

By Lemma 1.1, the problem of finding the strong convergence (1.2) for
solutions u1 and u2 of (1.1) turns into the problem to show the strong
convergence

(1.7) s - ]imt^aou(t) = const, e H

for a solution u of the equation

(1.8)

under the condition (1.6) on {φ*}.
In the case where φω is independent of t (i.e., φ* = φ), the strong

convergence stated in (1.7) and similar problems on the weak convergence
were studied by many authors (e.g. the references listed in [3]). Typical
conditions as stated in (I) and (II) below are known to be sufficient for the

strong convergence (1.7).

( I ) (Compactness condition)
(a) The minimum set of φ is nonempty.

(b) For each ε, R > 0, the set {w; φ(w) < minHφ + ε, | |w| |<#} is

relatively compact.

( II ) (Evenness condition in a generalized sense, [3] )
There is a constant c > 0 such that

φ(— cw) < φ(w), weD(φ).

As seen from our example (1.3) subject to the ellipticity condition (1.4), the
compactness condition (I) is usually useful for the case in which the space
domain of R" is bounded, but condition (I) need not be fulfilled if the domain
is unbounded. On the other hand, the evenness condition (II) can be
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formulated without imposing any restrictions on the domain. Now both of
the conditions (I) and (II) are special cases of the following condition (III).

(Ill) ([3; Theorem 1])
(a) The minimum set of φ is nonempty.
(b)' There is a Frechet differentiable operator A such that for each

ε, R > 0 the set

{v4w; φ(w) < minHφ + ε, || w| | < R}

is relatively compact.
(c)' There exists a constant c > 0 such that

φ(— cw + (1 + c)Aw) < φ(w), weT)(φ).

In the previous paper [4], we established the convergence (1.7) in the
case where φl depends upon ί and generalized each of (I), (II) and (III) to
the time-dependent case (see [4; Theorem 2.1], [4; Theorem 2.2] and
[4; Theorem 6.1], respectively).

In this paper, we show that the strong convergence (1.2) holds for the
constant 0 for any pair of solutions uί9 u2e W^1 ((0, + oo); L2(RΠ)) of equation
(1.3), and that the results obtained in the previous paper [4] can be supplied
to get the strong convergence (1.2) or a similar type of convergence result for
any pair of solutions of (1.3). For this purpose, we first review [4; Theorem
6.1]. It is expected that our results can be applied to many other problems,
although the results are stated in fairly general forms. Next, in Section 4,
we show that equation (1.3) subject to some natural conditions is written in
the form (1.1) defined in the real Hubert space L2(R"). Finally, in Section 5,
we apply our abstract result, Theorem 2.1, to equation (1.3) to get the
convergence (1.2) with the constant 0. See Theorem 5.1. We also verify that
all other results of [4] are applied to get the convergence (1.2) or a weak
convergence for any pair of solutions of (1.3). See Remarks 5.1, 5.2 and 5.3.

2. Abstract results

Let H be a real Hubert space with inner product ( . , . ) and norm || . || . Let
be a family of proper l.s.c. convex functionals on H and put

F(φt) = {weH; φ'(w) = minHφ'}.

We show the strong convergence

for each solution of
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(E) (d/dt)u(t) + dφ\u(t))^ ί>0,

where we say that u(.) is a solution of (E) if (i) u(.)eW^(09 oo; H); and
(ii) the relations u(t)eΐ)(dφt) and -(d/dήuφedφ'Mt)) hold for a.e. ί > 0.

In this section we extend the basic reselt in the previous paper [4] and
apply the extended version to the equation (1.3) without assuming the

boundedness of Uί>o6W
The result is stated as follows:

THEOREM 2.1. Suppose that there are proper l.s.c. convex functionals ψi9

i = 1, 2, on H, an operator A in H and constants αe(0, oo), ί?eR, and ce(0, oo)
satisfying the five conditions below;

(Dl) F(φ<) = FOAi) (= F)aO, φ'(0) = ^(0) = 0, t > 0, i = 1, 2.

(D2) { - au + bAu u e £(<?')} c $(<PS) if s ̂  ί.
(D3) Γter^ w α positive measurable function r(.) defined on all of [0, oo)

such that

(2.1) fJo

(2.2) φf(- αw + bAu) < r(ί)^ι(- αw + i"M < φ^ti), ί > 0, we

(2.3) r(ί)ιAι(^M) < cφ^ii), ί > 0, M

(2.4) r(ί)^2(w) < 9r(w), ί > 0, u 6

(D4) For eαc/z ε > 0 there is a positive constant δ = δ(ε) such that

dist(y4w, F) < ε for u with ψι(Au) < δ.

(D5) The inclusion -F+fQ<=-d(F- /0) holds for some /0 e F and d>\.

Then every solution u(.) of (E) converges strongly to some point of F as

t -> oo, namely

(2.5) s-l im

By Lemma 1.1, the family {φ*} defined by (1.5) has the property

Φr(0) = 0, ί>0,

which is a pair of assumption (Dl).
For the moment we consider an example of the operator A as mentioned

in Theorem 2.1 to illustrate the above-mentioned condition. Let

H = L2(Ω)9 Ω a domain of R", and
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φf(ιι) = I F(ί, x, iφc), Vιι(x))Λc for ueD(φ),
Jβ

where, for each (f, x)e[0, oo) x Ω, the function F(ί, x,.,.) is supposed to be
convex on R x Rπ and

F(ί, x, 0, 0) = minRxRMF(ί, x,.,.) = 0.

Suppose that there is a subdomain Ω1 of Ω with the following conditions.

(2.6) (generalized evenness condition on Ω\Ωι) There is ε > 0 such that

F(ί, x, - εw(x), - ε Vu(x)) < F(ί, x, u (x), Vtι(x))

for xeΩ\Ωi and we

(2.7) (generalized compactness condition on Ω^

F(ί, x, «(x), Vu(x))dx > g(\\u\\L>(Ωύ) for ue ϊ>(φ<)
l

hold for some continuous function g satisfying 0(0) = 0 and g(r) > 0

for r > 0.
If we put

(2-8)

then it follows from (2.7) that condition (D4) holds for any ψ± satisfying

On the other hand, by (2.6), one has

φ\- εu + (1 + ε)A1u) < φ^u) provided that - εu + (1 + s)A1u9 ueΐ)(φt).

This estimate is condition (2.2) with a = ε and b = 1 + ε. But the inclution

{— εw + (1 +ε)A 1 u; ueT)(φt)} c T)(φf) stated in condition (D2) does not hold
since the relation ueW^l(Ω) does not yield - εu + (1 + ε)A1ueWl^

1(Ω) in
general. To overcome this difficulty we put

(2.9) (A2u) (x) = α(x)u(x) for xeΩ,

where α(.)eC?(ί3) and α(x) = 1 on Ω^.

In Section 5, we employ this operator A2 to apply Theorem 2.1 to the

nonlinear parabolic equation (1.3). Clearly, the operator A2 is not a projection

operator. In our previous result [4; Theorem 6.1] we assumed that A was

an orthogonal projection onto a closed linear subspace of H. This is the

first reason why we necessiate to relax the assumptions of [4; Theorem 6.1].

The second reason for extendig the result is the following; For the family
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{φ*} associated with (1.3), the inclusion relation Q(t) a Q(s) is required to

impose the condition £>(<?') c T)(φs), but it does not necessary for the condition
{- au + bAu; we £((?')} c T)(φs) (see Section 5). Therefore in Theorem 2.1
we assume the condition as (D2). It should be noted that in [4; Theorem 6.1]
we assumed D(φO c= ΐ)(φs) for s < t.

REMARK 2.1. The typical example (2.9) of the oparator A appearing in
Theorem 2.1 is linear and smooth. But none of the linearity and the
smoothness of A and the compactness of the level sets of φ* are assumed in
Theorem 2.1.

THEOREM 2.2. Assume the following condition (D6) in Theorem 2.1 instead
o f ( D 5 ) :

(D6) For each R > 0 the set {Au: ueDtfψJ, ψ^Au) < δ and \\u\\ < R}
is relatively compact in H for some δ = δR > 0.

Then the convergence (2.5) holds for solution u(.) of (E).

3. Proofs of Theorem 2.1 and Theorem 2.2.

Let u(.) be a solution of (E). Put

/ = {ί > 0: -(d/A)ιι(ί)eδφ'(ιι(f)) holds}.

In what follws, u'(t) stands for the derivative (d/dt)u(t). We first prepare three
lemmas.

LEMMA 3.1 ([4; Lemma 3.1]). Suppose (Dl). Then
(i) For each /eF, ||w(ί)— f\\ is nonincreasing in t and converges as ί->oo.
(ii) There is a nonnegative function jSeL1^, + oo) such that

0 < φ'(ιι(ί)) < β(t)9 a.e. t > 0.

LEMMA 3.2. Suppose (Dl) and (D5). Then

lim,,^ sup/eF| || fi(t) -/||2 - ||ιι(Γ) -/||2| = 0.

PROOF. Let /eF. Then one has

(- ιι'(5), / - u(s)) < φs(f) - φs(u(s)) < 0 for sel.

Let /o be an element of F given by condition (D5). Then
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ΓT

(3.1) (w(ί)-M(T),/-/0) = (-n'(s), f~fo)ds
Jt

= (- u'(s), / - u(s))ds + (- w'(s), u(s) - f0)ds
Jt Jt

< Γ(-ιι'(s), «(s)-/o)ds
Jr

-/oi l 2 } , o < ί < τ :

On the other hand, by (D5), there is geF such that / — /0 = d(— g +/0). In
the same way as in (3.1) one has

(3.2) - (u (ί) - u(Γ), / - /„ ) = d (u(t) - u(T ),g- f0)

<2-1

ί/{||u(ί)-/oll2-||"(T)-/0 | |
2}, 0 < t < T .

Estimates (3.1) and (3.2) together imply that

(3.3) K«(ί)-tι(Γ),/-/0)|<2-1

<i{||M(t)-/oll2-||u(Γ)-/0 | |
2}.

Hence one has

(3.4) |||M(ί)-/||2-||w(T)-/||2|

= I I I "W -/oil2 - I I u(T) -/oil 2 - 2(tι(ί) - ιι(T), /-/0)|

for each feF. Lemma 3.1 (i) then implies that the right side of (3.4) converges
to 0 as ί, T-> oo. This completes the proof.

LEMMA 3.3. Suppose that (D1)-(D3) are satisfied, and that for each n > 1
there are sequences (T(n)} and {tn} in I satisfying

(3.5) T(n)>tn, neN,

(3.6) ^"'("(ΓM^n-'rCΠn)), neN,

(3.7) φs(u(s)) > n"xr(s) for a.e. se[0, tj, neN,

where r ( . ) is a positive measurable function on [0, oo) provided by condition

(D3). Then there is a constant C > 0 such that

(3.8) ||«(ί)-M(Γ(n))||2

+ |(u(ίπ) - u(ί), Au(T(n)) -y)\} + ||u(tn) -

holds for each n > 1, te[0, tj and yeH.
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PROOF. Let n> ί and yeH. By (D2), (2.2), (3.6) and (3.7) one has

φs(- au(T(n)) + bAu(T(n))) < r(s)^(- au(T(n)) + bAu(T(n)))

< φ)<pΓ">(Γ(n)))/r(T(n)) < n'1^) < φ*(u(s))

for se[0, tn). Hence we see from the definition of subdifferential dφs

( - u' (s), - au(T(n)) + bAu (T(n)) - u(s))

< φ*(- au(T(n)) + bAu(T(n))) - φ*(u(s)) < 0,

and so

(- tι'(s), - «(T(n))) < α-H(- u'(s), u(s)) + b(u' (s), Au(T(n)))}

for a.e. se[0, tn). Therefore we have

||u(ί)-u(T(n))||2

dsnu(s) - u(T(n))\\2ds + \\u(Q - u(Γ(n))||2

(T(n)))ds + \\u(tn) - u(T(n))\\2

< 2 {(- u'(s), u(s)) + a~\- u'(s), u(s))
Jt

+ β-^ίii'ίs), Au(T(n)))}ds + ||u(ίπ) - u(Γ(n))||2

= 2 Γ" {α-1^- «'(s), «(s) - 3>) + α-1^ (- «'(s), y - Au(T(n))

+ (l+a~ί-a-lb)(- u'(s), u(s))}ds

+ ||u(tJ-u(Γ(n))||2

< C{\ \\u(t) -y\\2- ||u(ίn) - y\\2\ + \ (u(tn) - u(t), Au(T(n)) - y)\

= Γ" - (d/dsn

= 2 Γ"(- u'(s), u(s) - u
Jt

for te[0, tn). From this the aimed estimate (3.8) is obtained.

PROOF OF THEOREM 2.1. By (D3), there is a positive function r(.) with

$™r(t)dt = oo. In view of Lemma 3.1 (ii), put

(3.9) ίπ = ess

Then we have

0 < tn < oo and Iπ < ίπ+1 for n = 1, 2,... .



Asymptotic behavior of solutions 245

With regard to the sequence {tn} so obtained there are two possible cases
below :

(a) {tn} is bounded, i.e., tn1 T for some T>0 as n-*oo;
(b) {ίπ} is unbounded, i.e., ίπt°° as n-^ao.

In case that (a) holds, (2.4) yields

φ2(u(T)) < lim inf^ooiMwω) < lim infn^r(g -><"("('„))

< lim inf^^^n"1 = 0.

This shows that u(T)eF, since mini^2 = 0 by (Dl). By Lemma 3.1 (i) we
see u(t) = u(T)eF for t > T, so that s - lim^iφ) = ιι(Γ)εF.

We next consider the second case (b). In view of (3.9) one can choose
a sequence {T(ή)} such that

(3.10) tn < T(n), M(T(n))eD(φΓ(n)), φ™(u(T(n))) < n~lr(T(n))9

(3.11) \\u(tn) - u(T(n))\\ < n-1 for n = 1, 2,...

Then by (3.10) and (3.11) the pair of the sequences {tn} and {T(n)} satisfies
the assumptions of Lemma 3.3. Hence by (3.8) and (3.11)

(3.12) ||M(ί)-w(T(n))||2

< inf/6F[C{| \\u(t) -f\\2 - \ \ u ( t n ) - f \ \ 2 \ + I | |u(OII2 - ||u(ί)||2|

+ \ \ u ( t n ) - u ( t ) \ \ \ \ A u ( T ( n ) ) - f \ \ } + n-2l

<2CsupfeF\\\u(t)-f\\2-\\u(tn)-f\\2\

+ C || u(tn) - u(t) || inf/6F || Au(T(n)) -f\\+n~2

holds for n > 1 and ίe[0, ίw), where we have used the condition (Dl), namely,
OeF.

By Lemma 3.2 we see that the first term of the right side of (3.12)
converges 0 as ί, tn -> oo. On the other hand by (2.3) and (3.10) one obtains

(3.13)

for n > 1. Hence it follows from (D4) that

Noting that \\u(tn) — u(t)\\ is bounded by Lemma 3.1, we see that the second
term on the right side of (3.12) converges 0 as ίn-»oo. Consequently, it
follows that

(3.14) s — lim, _> 3,11(0 (= z) exists.
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Finally, we see that zεF. In fact, by (2.4) and (3,6) (which holds for the
sequence {T(n)})9 one has

ψ2(z) < lim inf^^Mf)) < Mm mϊn^^2(u(T(n)))

< lim mϊn^^r(T(n)Γl <pT(n)(u(T(n)) < lim inf^n'1 = 0.

Since min ψ2 = 0, this shows that zeF. The proof is now complete.

PROOF OF THEOREM 2.2. Since (u(t)} is bounded, we see from (D6) and
(3.13) that there exists a subsequence [ri] of {n} and an element /i eF satisfying

(3.15) s - limn^^Au(T(n'))=f1 eF.

By the first inequality of (3.12) we have

||ιι(ί) - u(T(n))\\2 < C{\ ||κ(f) -Λ ||2 - HU -Λ ||2| + 1 1| u(tn)\\2 - \\y(t)\\2\

+ \ \ u ( t n ) - u ( t ) \ \ \ \ A u ( T ( n ) ) - f 1 \ \ } + n-2

for 0 < t < tn and n > 1. Lemma 3.1(i) for fl9 OeF and (3.15) together imply
the convergence (2.5). Hence we obtain the same conclution as in
Theorem 2.1.

4. An example of a subdifferential operator

The purpose of this section is to show that equation (1.3) is written in
the form (1.1) defined in the real Hubert space L2(Rn). To this end, we define
the following operator si.

(4.1) 3>(j/) = {weL2(Rπ): w e Hβ1 (R")> MW = °> a e *eRπ\β, and

(4.2) ^u = {heL2(Rn):h(x)=-Σn

j=1(d/dxj)fj(x, Vιι(x)) + g(x9 u(x))9

a.e. xeί2}

Here Ω is either R" or a domain of R" with smooth boundary dΩ. We
assume the following conditions on / and g.

(/I) fj(x, OeC1 (Rπ), ft., tyεH^Ω) and /)(., z) is measurable on Ω for
each xeί2, zeRn and j = 1, 2,...,n.

(/2) For each xeΩ, the family {/) (x, .)} is completely integrable in the
sense that the equation

(d/dzk)fj(x, z) = (d/dzj)ft(x, z) ( Ξ ajk(x, z))

holds for zeR" and j, k = 1, 2,...,n.



Asymptotic behavior of solutions 247

(/3) There is a function a(.)eC(Ω) with a(x) > 0 for xeΩ such that

(4.3) a(x)\ξ\2 < Σ°,k = 1 ajk(x9 z)ξjξk9 (x, z)eR», (ξj) eRw.

(01) Both 0(x, .)eC1(R) and (d/ds)g(x, s) > 0 hold for each fixed xeίλ
#(., r) is measurable on Ω for each fixed reR and g(., Q)eL2(Ω).

Our result here is stated as follows:

PROPOSITION 4.1. There is a proper l.s.c. convex functional Φ on the real
Hilbert space L2(R") such that

To prove Proposition 4.1, we first define the functional Φ in the following
way: Fix any xeΩ. By (/2) there is a potential function F(x, .) on R" such

that

ϊ(d/dzj)F(x9z)=fj(x9z)9 zeR",

lF(x,0) = 0.

By (/3), the functions F(x, .), xeΩ, are convex on R". By (01) we define a
convex function G(x, .) on R by

G(x,r)= g(x,s)ds, reR.x;, r)= g(x, s)ds,
Jo

Now we define the convex functional Φ on the real Hilbert space L2(RΠ) by

(4.4) D(Φ) = {weL2(Rn): we W^1 (Rw), w(x) = 0, a.e. xeRn\Ω,

and {F(x, Vw(x)) + G(x, w(x))}dx < + oo},
JΩ

if {F(x, Vw(x)) + G(x,
ι= < JΩ

( + oo,

(4.5) Φ(w)
I

otherwise.

Since F(x, .), G(x, .), xeβ, are convex, the functional Φ is convex.
Next we see that Φ is l.s.c. in L2(R") in the following three lemmas.

LEMMA 4.1. Put

*i(w)= I F(x, Vw(x))dx, Φ2(w)= I G(x,w(x))Λc
JΩ JΩ

for weX)(Φ). Then
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(4.6) Φx(w + f?) > (F(x, Vw) + Σ"=1/;(x, Vw)— + a(x)\ Vv\2}dx

(4.7) Φ2(w + Ό) >\ {G (x, w) + g(χ9 w)t (x)} dx
JΩ

for w, υ satisfying w, w + veΐ)(Φ).

PROOF. Let w, w + veΐ)(Φ). By (/3) one has

™ dF ^«
F(x, V(w + t;)(x)) = F(x, Vw(x)) + Σ =ι—(Λ

= F(x, VW(X)) + Σ;.I/X*, Vw(x)Ax)

> F(x, Vw(x)) + ΣJ.i/X*. V w ( x ) ) ( x ) + β(x)| Vt;(x)|2

j

for a.e. xeβ, where 0 = 0(x, Vw, Vι?)e(0, 1). Hence (4.6) holds. In the same

way we have (4.7) by using (01).

LEMMA 4.2. Let Φl and Φ2 be as mentioned in Lemma 4.1. Then for

each veΐ)(Φ) one has

(4.8) Φi(v), i = 1, 2, are finitely valued,

(4.9) Φ(v) = Φ1(v) + Φ2(v),

(4.10) vεWU2(Rn)9

(4.11) Φ(ι;)> f {-χ;=1(δ/δx,)/,(x,0) + ̂ (x,0)}t;(x)dx+ ί α(x)| Vι;|2 dx.
JΩ JΩ

PROOF. First we show that

(4.12) Φ2(v) > - oo for ι eD(Φ).

Let ι eD(Φ). Put w = 0 in (4.7). Since G(x, 0) = 0, one has

(4.13) Φ2(v)> f g(x,0)υ(x)dx.
JΩ
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Since ι;eL2(R") and #(., 0)eL2(R") by (gl), the right side of this inequality is
finite. Hence (4.12) holds.

Next we show that

(4.14) Φi(ι;)e(- oo, + oo) for ι eD(Φ).

By (4.12) one has

Φi(υ) < + oo for ueT>(Φ).

To show that

&i(v) > - oo for υeT)(Φ),

we put w = 0 in (4.6), and recall that F(.,0) = 0 and /}(., Q)eHl(Ω) for

j = 1, 2...,n. Then one has

ίΣJ-i/Λ*. 0)τ-(x) + a(x)\ί
C ΐ\

ίΣJ-i/Λ*. 0)τ^-
Ί t Vχj

= ί {-ΣJ-itfW/A0)} »(*)<**+ ί
Jβ Jβ

and the first term on the right side of (4.15) is finite by condition (/I). Hence
(4.14) holds.

Now by (4.12) and (4.14) we have

φ(t;) = Φ1(t;) + Φ», ι?eD(Φ).

Hence Φt(t;), ί= 1, 2, lie in (- oo, + oo) for each ι eD(Φ). Therefore (4.8)
and (4.9) hold.

We next verify (4.10). For each compact subdomain K of Ω there is a
positive constant c such that

a(x)>c, xeK,

since α(.)EC(R") and α(.)>0 by (/3). Hence by (4.8) and (4.15) one has
|Vz;|26L}oc(β). This means that (4.10) holds.

Finally, (4.13) and (4.15) together imply (4.11). This completes the proof
of Lemma 4.2.

LEMMA 4.3. Φ is l.s.c. on L2(R").

PROOF. Let {vm} be a sequence in I)(Φ) such that

(4.16) vm - n;00 in L2(R"),

(4.17) Φ(vm) <r for weN and some r > 0.
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In view of the definition of £(Φ), we see from (4.16) that

(4.18) t;°°(x) = 0, a.e. xεRn\Ω.

On the other hand, since - Σ"=1(δ/δx, )/;(x, 0) + g(x, 0)eL2(ί2) by (/I) and
(01), we infer from (4.16), (4.17) and (4.11) that

I*JΩ
(4.19) I a(x)\Vvm(x)\2dx<cί9 weN

with some constant c1.
From (4.16) and (4.19) it follows that vcoeWl

1

0^(Ω)9 and that there is a
sequence {w*} of convex combinations of [vm\ weN} such that

I-α(x)|Vw*(x)- Vt;°°(x)|2<ix - >0 as k — » o o ;

we recall at this point that α(.)eC(Rπ) and α ( . ) > 0 by (/3). Choosing a
subsequence {wk/} of {wk}, we have

(4.20) lim^aX'ίx) = t?°°(x), liπv^ Vw*'(x) = Vι;°°(x) a.e. xeί2.

Since wfc, feeN, are convex combinations of {vm; meN}, the convexity of
Φ as well as (4.17) implies that

(4.21) Φ(wk)<r, feeN.

Now, using (4.20), (4.21) and Fatou's lemma, we have

I
JΩ

{F(x, V !>»(*)) + G(x,ι>β(x))}Λc

< lim inffc^ I {F(x, Vw fc'(x)) + G(x,
JΛ

Therefore t;°°eD(Φ) and Φ(v°°) < r. Hence Φ is l.s.c. on L2(R").
Finally, we see that si = dΦ in the following two lemmas.

LEMMA 4.4. For ueΐ)(jtf)9 the integrals jβΣ"=1//x, Vύ)(du/dXj)dx and
§Ωg(x,u)u(x)dx are finite.

PROOF. Condition (/3) and condition (d/ds)g(x9 s) > 0 in (gl) yield that

^ du
Σ"=ι ί/Xx' V w W) -fj(x> 0)} — (x) > 0,

{^(x,w(x))-0(x,0)}W(x)>0
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for a.e. xeί2, respectively. Noting by (/I) and (01) that f j ( . , 0)eH1(Ω) and

0(.,0)eL2(ί2), and by (4.1) that - ΣJ-i^/δxy)//., Vιι(.)) + ̂ ( , «(.))!«
eL2(Ω) and u\dΩ = Q, we get Lemma 4.4.

LEMMA 4. 5. **/ = dΦ.

PROOF. Let w, w + ι eD(Φ). Then by (4.6), (4.7) and (4.8), the integrals

JβΣ"=ι//(x> Vw)(d/dXj)v(x)dx and jβ0 (x, w)v(x)dx are finite. By the
smoothness of fj(x, .) and g(x, .),

+ M - φW)

= f Σ;= ι/;(*> Vw)(S/ax>(x)dx + ί
JΛ JΛ

Since t;|aβ=0 by (4.4), we have

To show that Ώ(.β/) = T>(δΦ), we have only to see that $(.&/) c Ϊ>(Φ).
Let w e £(<$/). Since the convexity of the potential function F implies that

F(x, y) = F(x, y) — F(x, 0) < Σ"=ι —(*» 30.V/ = Σ"=ι// (χ' ̂ ^j

for yeR", we see from Lemma 4.4 that

—, ~~ " . < + °°

In the same way, we have

r
(x)dx < + oo.

Hence £(<$/) c X)(Φ) holds, and Lemma 4.5 is proved.

5. An application of Theorem 2.1

In this section we make an attempt to apply Theorem 2.1 and some other
results given in [4] to the following equation:

ί F(x, V W )dx< f -ΣJoi/X^ Vu)^
Jβ JH" ^j

ί G(x,u(x))dx< f 0(x,u(x))u(
Jβ JR"

(d/dt)υ(t9 x) - Σ j = ι ( d / d x j ) f j ( t > x' Vt;)

(5.1)

t;(ί,x) = 0, (ί,
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Here β(ί), f > 0, is an exterior or interior domain of Rn with smooth compact
boundary Γ(t). The functions fj9 j = 1, 2,..., n, and g satisfy the following
conditions (/!)-(/ 3) and (#1), which are parallel to the conditions (/l)-(/3)
and (01) of the ί-independent case discussed in Section 4.

(/I) fj(t, x, OeC^R"), //ί, ., 0)eHl(Q(t)) and //ί, ., z) are measurable
function on Ω for t > 0, xeβ(ί), zeR" and j = 1, 2,...,n.

(/2) For each (ί, x)eβ, the family {/)•(*, x, .)} is completely integrable,
that is, the equation

(d/dzjfj(t, x, z) = (d/dzj)fk(t, x, z) (= α,.fc(ί, x, z))

holds for zeR" and j, k = 1, 2,...,n.
(/3) There is a function α(.)eC(R") with α(x) > 0 for xeR" and a

function r(.) on [0, + oo) with r(t) > 0 for ί > 0 such that

(5.2) r(t)a(x)\ξ\2 < ̂ k=l ajk(t, x, z)ξjξk9

( ί ,x ,z)eβxR n , (^.)eRn.

(01) 0(ί, x, .)eCx(R) and (d/ds)g(t, x, s) > 0 for ί > 0 and xeίλ 0(ί, ., 0)
eL2(β(ί)) and 0(ί, ., r) is measurable for each ί > 0 and reR.

Hence, by Proposition 4.1, equation (5.1) considered on [0, + oo) x R" through
the zero-extension is written in the subdifferential form (E) in the real Hubert
space L2(R").

To apply Theorem 2.1 to the problem (5.1), we assume the following

conditions (HI) and (H2):

(HI) The function r(.) in (/3) satisfies

(5.3) r(ί)A=oo.
Jo

(H2) (cf. (2.6) and (2.7)) There is a domain Ω^ of Rπ such that

(5.4) Ω! is bounded and \Jt^0Γ(t) c β l9

(5.5) r(ί)α(x)|^|2 < ̂ k=, ajk(t, x, z)ξjξk < c0r(ί)α(x)|ξ|2,

(5.6) r(t)b(x) < (d/ds)g(t, x, s) <

x6R"\ί3!, ί >

where c0 > 1, ft(.) is a nonnegative measurable function on
and α(.) and r(.) are the functions stated in (/3).
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Then the application of Theorem 2.1. implies the following theorem.

THEOREM 5.1. Suppose (HI) and (H2). Then, for any two solutions

HI, "2e ̂ oV((0, + oo); L2(R")) of (5.1),

(5.7) lim^ + JlttΛί, .) - ι*2 (t, .)\\L*W = 0.

To prove Theorem 5.1 we note that for any fixed ί > 0 the functions

fj(t, ., .), j = 1, 2, ., n, and 0(ί, ., .) satisfy the assumptions (/l)-(/3) and (01)

of Proposition 4.1. Hence, in the same way as in the proof of Proposition

4.1, we can define the functionals Φ', ί > 0, by the following:

(5.8) X>(Φ') = {weL2(Rπ): we Hβ1 (Rw), w(x) = 0, a.e. xeR"\β(ί), and

(ί, x, Vw(x)) + G(ί, x, w(x))}dx < + oo}.
Jβ

{F(ί, x, Vw(x)) + G(ί, x,

otherwise,

Then equation (5.1) formulated in L2(R") by the zero-extension is equivalent

to the evolution equation

(5.10) υί(t) + dΦ(u(t))*Q9 t > 0.

Let u2 be any solution in W^((Q9 + oo);L2(Rπ)) of (5.10). We then

define a new family of functionals {φ^ a.e. t > 0} by

- ιι2(ί),

(5.11)

- <F(u2(t)),

for all ί at which (5.10) makes sense for u2. Then it follows from Lemma

1.1 that the proof of Theorem 5.1 is reduced to the proof of the statement that

(5.12) s-liπw + 00ιι(ί) = 0

for any solution u of (1.8).

We derive (5.12) by verifying that the new family {φ*} defined by (5.11)

satisfies F(φt) = {0} for ί > 0, and that all of the assumptions of Theorem 2.1.

The following lemma follows from definition (5.11) and Lemma 4.4.

LEMMA 5.1. φr(w) = $Q(t}y(t, x, Vw(x), w(x))dx, a.e. t > 0 holds with
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^w 5w
y(ί, x, Vw(x), w(x)) = Σlk=ιajA^ *> Vw2(ί, x) + 0Vw(x)) — —

+ -/(ί, x, ιι2(ί, x) + 0w(x))w(x)2}dx,
δs

a.e. t > 0, a.e. xeΏ,

where θ and θ denote some numbers of (0, 1) depending on (f, x, Vw2(ί, x),
Vw(x)) and (ί, x, w(ί, x), w(x)), respectively.

Now we define the functionals ^t , i = 1, 2, and the operator >4: L2(R")
-^L2(R") employed in Theorem 2.1 by the following:

) = D(ιA2) = {weL2(Rπ)n^0

1e2(Rw): ί {«| V w | 2 + fcw2}dx < 4- oo},
JRΠ

= c0 f {α(x)| V«(x)|2

jRn

where c0, α(.) and b(.) are the constant and the functions, stated in (H2),
respectively.

(5.13) μ«)(x) =

with a fixed αeC^ίR") satisfying α|βl = 1, where βt is the domain stated in
(H2).

Since each functional is strictly convex, we have the folloeing lemma.

LEMMA 5.2. F(φt) = F(ψύ = {0}, '̂(0) = ,̂.(0) = 0, t > 0, i = 1, 2.

To choose the constants α, b and c in Theorem 2.1, we need the following
lemma.

LEMMA 5.3. Let a be a function appearing in (5.13). There is a constant
cί > 0 such that

(5.14) a(x)\^(u-Λu)\2dx^c1\ α(x) |V M | 2 dx for1\ α(
JR»

i a(x)\V(m)\2dx£cΛ
J Rπ J Rn

(5.15) a(x)\V(m)\2dx£cΛ α(x) |Vw| 2 ί/x for

PROOF. Let ί2 = supp(α). Since Ω^ is an open subset of Ω by α|βl = 1,
there is a constant c > 0 such that

Nlifitf) ^ c{|| Vιι||L2(β) + ||ιι||L2(Δ)},
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(See [8; Theoreme 7.4 in Chapitre 2].) On the other hand by the definition
of φl we have

ii|r(t) = 0 for ii e D (<?*)•

Since Γ(t) a Ω^ for ί > 0 and Ω± is bounded, one has

M\L2(Ωί)<cf\\ Vιι||L2(Λl) for u e U f c

Hence

l |M| | f l i ( A)^cΊ |Vu | | L 2 ( β l ) for u e U

Since aeC(Rn) and α > 0, we have

β(x) |V(w-αu)| 2 dx = α(x)|w
JR* Jώ\ί2ι

< C 4 f

JΩ
a(x)|Vu|2dx,

This is the aimed estimate (5.14). In the same way, we have (5.15).

Finally, we show the following lemma.

LEMMA 5.4. Put a = b = c = cl9 for the constant cί found in Lemma

5.3. Then all of (D2), (D3) and (D4) in Theorem 2.1 are satisfied.

PROOF. (D2) and (D3) are direct consequences of the definitions.
Condition (D4) follows from

{distμw, F)}2 = ||αM||i2 ( R W ) < const. || V(αιι)||22(r,) < const. <M4ιι).

Consequently, Theorem 2.1 can be applied and Theorem 5.1 is proved.

To end this section, we make three remarks on the application to equation
(5.1) of the results [4; Theorem 2.1], [4; Theorem 2.2] and [4; Theorem 7.1].

REMARK 5.1. Suppose all the assumptions imposed in this section except
(H2). Suppose either (H3) or (H4):

(H3) The set U>o6(0 is bounded in R".
(H4) There is a positive constant c such that (d/ds)g(t, x, s) > c for

(ί, x, s)eQ x R.

Then, by Lemma 5.1, the family {φ*} satisfies the assumptions of [4; Theorem

2.1], that is,

(Al) F(φt) = F + φ, t > 0, and min φ* = 0.
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(A2) There is a nonnegative measurable function r ( . ) satisfying (i)
$™r(t)dt = + oo and (ii) for each ε > 0 there is δ > 0 such that
dist(w, F) < ε for ue(Jt^0{uGΪ)(φt): qf(u) < δr(t)}.

Hence, by [4; Theorem 2.1], (5.7) holds for any two solutions u1 and u2 of (5.1).

REMARK 5.2. Suppose the following condition (H5) instead of (H2):

(H5) Both (5.5) and (5.6) hold on the whole space U>oM x 6(0 and
Q(t) ci Q(s) holds for each case of s < t.

Then the family {φ*} satisfies the assumptions of [4; Theorem 2.2]. Hence
(5.7) holds for all two solutions u1 and u2 of (5.1).

REMARK 5.3. Suppose all the assumptions imposed in this section except
for (H2). Then, by Lemma 5.1, the family {φ*} satisfies the assumptions of
[4; Theorem 7.1], that is,

there is a proper l.s.c. convex functional φ on L2(RΠ) such that F(φt)
= F(ψ) Φ φ and min φ* = mm ψ = 0 for t > 0, and such that ψ(u) < φ'(w)
for MeD(φO and t > 0.

Hence, by [4; Theorem 7.1], for any two solutions u^ and u2 of (5.1) we have
the following weaker result:

There is a measurable set A in [0, + oo) with limt_> + 00 meas (A n [ί, t + 1])
= 1 such that for any W6L2(R/I),

limλ^ + 00>λeΛ (uΛλ) - u2(λ), w)
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