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Introduction

In this paper we shall consider the problem of finding disjoint
non-equivalent incompressible spanning surfaces for a link. It is known that
there are many links in the 3-sphere which have plural non-equivalent
incompressible spanning surfaces ([1], [10], [3], [8] etc.). We shall associate
to each link L a certain simplicial complex IS(L) whose vertex set is the set
e/5^(L) of the equivalence classes of incompressible spanning surfaces for
L. We also introduce a 'distance' on J^^(L). Using this distance, we prove
that the complex IS(L) is connected. As an application of this result, the
complexes IS(L) for composite knots are determined under some additional
conditions.

Let L be an oriented link in the 3-sphere S3, and let E(L) = S3 - Int N (L)
be its exterior where N(L) is a fixed tubular neighborhood of L. We shall
use the term "spanning surface" for L to denote a surface S = ΣnE(L) where
Σ is an oriented surface in S3 such that <9Σ = L, Σ has no closed component
and is possibly disconnected and that ΣflΛΓ(L) is a collar of dΣ in Σ. Two
spanning surfaces for L are said to be equivalent if they are ambient isotopic
in E(L) to each other. A spanning surface S is incompressible (resp. of minimal
genus) if each component of S is incompressible in E(L) (resp. the Euler number
χ(S) is maximum among all spanning surfaces for L). Let ^(L) denote the
set of equivalence classes of spanning surfaces for L, and J^(L) and Jί£f(L)
the subsets of Sf (L) consisting of those classes of incompressible and of minimal
genus ones respectively.

Now we associate to each non-split oriented link L a simplicial complex
IS(L) as follows: The vertex set of IS(L) is J>^(L), and vertices σ0, σl9...,σk

€J>£f(L) span a fc-simplex if there are representatives S^a^ 0 < i < fc, so that
Si^\Sj = 0 for all i<j. Replacing J^(L) with Jί^(L), we obtain another
simplicial complex MS(L), and MS(L) becomes a full subcomplex of IS(L). In
§1 we define a 'distance' on ^(L), and in §2 we prove the main theorem
(Theorem 2.1) which is formulated in terms of the distance. The main theorem
implies the following
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THEOREM A. Let L be a non-split oriented link. Then both IS(L) and

MS(L) are connected.

Scharlemann and Thompson [12, Prop. 5] proved the connectedness of

MS(L) in the case when L is a knot. We have a feeling that Theorem A is

useful for the classification of the incompressible spanning surfaces for a given

link. For example, Eisner [3] proved that a composite knot of two non-fibred

knots has infinitely many non-equivalent minimal genus spanning surfaces. In

§3 we prove the following theorem by using Theorem A.

THEOREM B. Let K be a composite knot of two knots K^ and

K2. Suppose that, for each i = 1 and 2, Kt is not fibred and the incompressible

spanning surfaces for Kt are unique. Then IS(K) = MS(K) and this complex
is in the form of

In Theorem B the vertices σ^ϊ'eZ) are represented by the surfaces

constructed by Eisner [3]: See §3.

Recently we have gotten the classification of the incompressible spanning

surfaces for each prime knot of < 10 crossings [9] Theorem A is extensively

used in its proof.

1. Distance on

Let L c S3 be an oriented link, E = E(L) its exterior and ^(L) the set

of equivalence classes of spanning surfaces for L. In this section, we will
define a distance on ^(L).

Consider the infinite cyclic covering p: (E, a0) -> (£, a) such that

p^π^E, α0) is the augmentation subgroup of π1(E.) a) where αe£ is a base

point (cf. [2]), and let τ denote a generator of the covering transformation

group. Let S c: E be a spanning surface for L, and let £0 denote the closure

of a lift of E — S to E (note that E — S is connected since S has no closed

component). Put Ej = τj'(£0) and Sj = Ej,1Γ\Ej (jeZ). Then we see that

(1.1) E = (j EJ, p 1(S) = (j Sj and p\Sj'. Sj >S is a homeomorphism.
eZ jeZ

Let S' c E be another spanning surface for L. Then we have a similar
description of E:
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(1.2) E = U £*, £ί-ι Π£ί = S ,̂ p-'ίS') = U S; and £ί = τ»(£i).
(ceZ JteZ

We set

m = min {keZ\E0f)Eί φ 0}, r = max {keZ\E0f)Eί =έ 0} and

d(S, S') = r- m.

It is easy to see that

(1.3) (a) d(S,S')>l,

(b) d(S, S') = 1 if and only if SnS' = 0,

(c) Ej n E'k + 0 if and only if m < k - j < r, and

(d) £0c u £ί, Sι<= u £ί
m<k<r m+l<k<r

Now, for σ, σ'e^(L), we define d(σ, σ')eZ+ (the set of non-negative
integers) by

0 if σ = σ',

min d(S, SO if σ ̂  σ'.
Seσ,S'eσ'

PROPOSITION 1.4. 77κ? function d: &(L) x ^(L)->Z+ satisfies the axioms
of distance, i.e. for every <τ, σ', σ"

( i ) d(σ, σ') = 0 if and only if σ = σ1,
(ii) d(σ, σ1} = d(σ\ σ) and

(iii) d(σ, σ"} < d(σ, σ') + d(σ\ σ"}.

PROOF, (i) follows from (1, 3) (a).
(ii) Suppose that σ Φ σ' and d(σ, σ') = d(S, S') for some Seσ, S'ea*. By

(1.3) (c), E'0nEj φ 0 if and only if - r <j < - m. Hence d(σ'9 σ) < d(S', S)
< (— m) — (— r) = d(σ, σf). Similarly we have d(σ\ σ) > d(σ, σf), and hence

d(σ, σ') = d(σ', σ).
(iii) It suffices to verify the inequality in the case that σ / σ' and

σ' Φ σ". Suppose that d(σ, σ') = d(S9 Sf) for Seσ, and S'eσ'. Then we can
take S"eσ" so that d(σ', σ") = d(Sf, S"), and E has the following description

associated with S":

E = U £f , £Γ-! Π£Γ = SΓ, p-x(SO = U SΓ and £/' = τ«.
teZ ieZ

Now suppose that £7 n £fc ^ 0 if and only if m < k — j < r, and that E£ n E " 7^ 0
if and only if rri <i — k <r. This implies that d(σ, σ') = r — m and
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\ σ") = r' - m'. If E 0 f i£f Φ 0, by (1.3) (c) there is k0(m <k0<r) so that
E'kQ n E' + 0. Since m' < i - k0 < r', and m + w' < i < r + r'. This implies

that d(σ, σ') < d(S, S") < (r + r') - (m + m') = d(σ, σ') + d(σ', σ"). Π

2. Main theorem

The following Theorem 2.1 is the main theorem in this paper, from which

Theorem A follows directlt. For a spanning surface 5, its equivalence class

will be denoted by [S]

THEOREM 2.1. Let Lc S3 be a non-split link and S, S' c: E(L) ίwo

incompressible (resp. minimal genus) spanning surfaces for L. Suppose that

n = rf([5], [S']) > 1. Then there is a sequence of incompressible (resp. minimal

genus) spanning surfaces S = F0, Fi9...,Fn such that

a)
(2) F;_ ! n F£ = 0 /or £?αcA 1 < i <

(3) d([5], [FJ) = i for each 0 < i < n.

PROOF. We prove the theorem by induction on n = <f([S], [S']). In the

case of n = l , S' is equivalent to F with SnF = 0 by (1.3) (b), and the

conclusion is clear. Thus we assume that the theorem holds for n < q — 1

(q > 2) and then will prove it for n = q. Moving S' by an ambient isotopy

of E = E(L), we may assume that

(2.2) d(S, S') = q, dSn dS' = φ and S intersects S' transversely.

Note that E is irreducible since L is non-splittable. From this together with

the incompressibility of S and S' we can further assume that

(2.3) each circle of SfiS' is essential on S and S".

We will find an incompressible (resp. minimal genus) spanning surface

S" c= E which satisfies the condition

(2.4) S" n S' = 0 and d([S], [S"] ) = q - 1.

We use the same notation £, (1.1), (1.2), etc. for E, S, S' as in the beginning

of § 1 . Consider E'r where r = max {k e Z\ E0 n E'k + 0} . We note that

£ 0 ΠS; + 1 =0 and £βnS; = 0 by (1.3). By (2.2) and (2.3), S, intersects ^

transversely and each circle of SjΓlSί is essential on S, and S£. Hence

(2.5) each component of S1Γ\E^ and Sq{]E, is incompressible in E'r.

Let AT be a regular neighborhood of S'r{](EQ[\Ef

r) in E'r with X[\Eq = 0.

Let Y be the closure of the component of E'r — X containing Sr'+1? and put
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R = Xr\ Y. Then R is a surface in E'r which is disjoint from E0, Eq, S'r and
S'r+ί. R inherits the orientation from S^ and S ,̂ and p(R) c= E is a spanning

surface for L with p(R) n S' = 0. Now we consider the two cases that both

S and S' are of minimal genus and that both S and S' are incompressible
separately.

CASE 1 : Both S and S' are of minimal genus. We see that p(R) is also

of minimal genus as follows. Put Z = (E0\jE1)r\( U EΆ Let V be a
fc<r-l

regular neighborhood of (E1 U S'r) n Z in Z, and VΓ the closure of the component
of Z - V containing S0 (note that 50 c Z). Put β = Fn Wί Then Q inherits
the orientation from S^ and SJ. p:Q-+E is an embedding since β c £0

— (S0llSι), and hence p(Q) is a spanning surface for L. By the constructions
of β and R together with (2.3), we see that χ(β) + χ(R) > χ ( S i ) + χ(SrO = χ(S)

+ χ(S') = 2χ(S). This implies that χ(β) = χ(Λ) = χ(S) and p(K) is of minimal
genus since so is S. We put S" = p(R).

CASE 2: Both S and 5' are incompressible. In this case R is not

necessarily incompressible in E'r. We will modify R to be incompressible.

Put X' = C λ ( E ' r — Y ) . By applying a finite number of simple moves due
to McMillan [11] to X' in E;, we obtain a 3-submanifold X" so that each

component of C1(5X" flint E'r) is incompressible in E'r. This means that there

is a finite sequence of 3-submanifolds of E'r, X' = XQ, Xί9...9Xk = X" such

that, for each 1 < i < k, one of the following conditions (i)-(iv) holds :

( i ) Xi is obtained from X^^ by adding a 2-handle whose core is a 2-disk

D c Int E'r such that D { ] X i _ ι = dD ad (ax^ nlnt£r') and dD is essential in

(ii) There is a 3-ball Cc=Int£; such that Jίr

ί = J ί ί _ 1 uC and

(iii) Jίj is obtained from Jίf-i by splitting at a 2-disk DcA^ such
that dD = D n Cl (<3Xf_ x n Int E'r) and 5D is essential in Cl (dXi,1 n Int E'r).

(iv) There is a component C of J^-! such that C is a 3-ball and

Xt = Xi-i — C.

CLAIM 2.6. We can take X" so that X"n£ g = 0 and E0n£; c= X".

Consider the above sequence X' = X0, Xl9...,Xk = X". We will show that

each Xi can be taken so that Xt^Eq = 0 and £0 Π E'r c jrf by induction on

i. By the definition of X\ XQ satisfies the condition. We suppose that X^^

satisfies the desired condition, and consider Xt. If Xi is obtained by a simple

move of type (ii), the added 3-ball C is disjoint from Eq since C a Int E'r and

since there is no component of Eqϊ\E'r which is contained in Int E^. Hence
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Xι satisfies the desired condition. Similarly, if Xt is obtained by a simple

move of type (iv), then the removed 3-ball is disjoint from £0, and Xt satisfies

the condition. In the case that Xt is obtained by a simple move of type

(i), we can modify the 2-disk D, a core of the added 2-handle, so that

D Π Eq = 0. In fact since each component of Sq n E'r is incompressible in E'r
by (2.5), this modification can be done by using the standard cut and paste

argument. Hence we can take Xt to be satisfy the desired condition.

Similarly, in the case that Xi is obtained by a simple move of type (iii), we
can take the splitting 2-disk D to be disjoint from E0 by (2.5). Hence we

can take Xt to be satisfy the desired condition. Thus Claim 2.6 follows.
Let Z be the union of the components of X" containing some components

of S; and put F = Cl (δZnlnt E'r). Clearly Zt]Eq = 0 by Claim 2.6. Claim
2.6 further implies that E0 Π E'r a Z since there is no component of E0Γ\E,
which is disjoint from Sr'. Moreover F is incompressible in E'r and p(F)

becomes an incompressible spanning surface for L which is disjoint from S'. In
this case we put S" = p(F).

Now we consider the two cases together, and show the following assertion

(2.7)

We have d([S'], [S"]) < 1 by S'nS" = 0. From this and by the assumption
that d([S], [S']) = q together with Proposition 1.4 (iii), we have d([S], [S"])

> d ( [ S ] , [S']) - d([S'], [S"]) >q-l. On the other hand, we consider the
description of E associated with S" as (1.1) in §1:

E = U E?9 EΓ-! n£/ = SΓ and p-l(S") = \J S?.
ieZ ieZ

By the construction of S", we may assume that Sr" = F in Case 2 (resp. SΓ" = R

in Case 1). Then we see that £0 c (J E . Hence d([S], [S"])

< d(S9 S") < q — 1, and (2, 7) follows. Thus S" a E is an incompressible (resp.
minimal genus) spanning surface for L satisfying the condition (2.4).

Now we will define the desired sequence of incompressible (resp. minimal

genus) spanning surfaces S = F0, Fl9...,Fq. Since S" satisfies (2.4), by the

inductive assumption, there is a sequence of incompressible (resp. minimal
genus) spanning surfaces 5 = F0 , F1 , . . . , Fq _ 1 such that

(10 [Vι] = [Sα
(Z) F,.-! nF£ = 0 for each 1 < i < q - 1, and
(3') d([S],'[FJ) = i for each 0 < i < q - 1.

Let {ht} be an isotopy of E such that Λ0 = id and Λ1(S") = F ί_1. Put
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= hι(Sr). Then [FJ = [S'], Fq_^Fq = 0 since S"nS' = 0, and
J) = d([S]9 [S']) = <? by the assumption. Thus the theorem holds for n = q.

The proof of Theorem 2.1 is now completed. Π

3. Simplicial complexes IS(L) and MS(L)

In this section we first note some properties of the complexes IS(L) and

MS(L), and then prove Theorem B. Let L be a non-split oriented link. Then
the dimension of IS(L) is finite by Haken's finiteness theorem [5, p. 48].
However the example described in [8] shows that IS(L) is not necessarily
locally finite in general. By Theorem A we can define *fj(σ, σ') (resp. SM(σ, σ'))
for σ, σ'ei/^L) (resp. Jί^(L}) by the minimum length of edge paths in

(resp. MS(L)) connecting σ to σ'. Then we have

PROPOSITION 3.1. (1) *f,(σ, σ') = d(σ, σ') for σ,
(2) ίM(σ, σ1) = d(σ, σ') for σ, σ'

PROOF. We give the proof of (1) only because the proof of (2) is

similar. First note that /7(σ, σ') = 1 is equivalent to d(σ, σ') = 1. Also
Theorem 2.1 shows that /7(σ, σ') < d(σ, σ'). Conversely, if /7(σ, σ') = n, then
by the definition there is a finite sequence σ = σ0, σ1,...,σπ = σ/ in </y(L)
so that ^(σj-u σt) = 1 for all 1 < i < n. Hence

tj(σ, σ') = ί j ( σ θ 9 σ^ + '" + fI(σn.l9 σn)

= d(σ0, σι) + ~ + d(σn_l9 σn)

> d(σθ9 σn) = d(σ, σ').

Thus we get *f7(σ, σ'} = d(σ, σ'). Π

Now let K be a composite knot of two non-fibred knots K1 and K2. We
will determine the simplicial complexes IS(K) and MS(K) under the assumption
that the incompressible spanning surfaces for Kt are unique for i = 1 and
2. We note that there are many non-fibred 2-bridge knots whose incompressi-
ble spanning surfaces are unique (cf. [6]). Also there are many non-fibred
and non-2-bridge prime knots of < 10 crossings whose incompressible spanning

surfaces are unique ([9]).
In [3] and [4] Eisner constructed infinitely many non-equivalent minimal

genus spanning surfaces for K. We review the construction. We may assume

that £(K) = £(K1)U£(K:2) and the intersection A = E(Kί){]E(K2) = dE(K1)
ϊ]dE(K2) is an annulus. Let S <= E(K) be a minimal genus spanning surface

for K such that so is Rt = SnF(Xf) for Kt (i = 1, 2). Note that 5 = R^ UR2

and the intersection I = RίftR2 = SftA is an arc. We fix an identification
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so that / = {(!, s ) |0<s<l} and the loop m: [0, 1] -+ E(K)9 0h-φ2πίβ, 1)
represents a meridian element μeπ^E^), a) where a = (1, l)ed/ c= E(K). Let
A x [0, 1] c: £(1 )̂ be an embedding such that A = A x {1} and (A x [0, 1])
HdE(K) = dA x [0, 1]. We define a homeomorphism /: £(£)->£(£) by

(3.2) f \ E ( K 2 ) = id, f\(E(KJ -(Ax [0, 1])) = id and

f(e2πi\ s, ί) = (e2πi(θ+t\ 5, ί) on A x [0, 1].

Now we put S ( n ) = f n ( S ) for each neZ. Then we see that each S(n) is a
minimal genus spanning surface for X which satisfies the following properties :

(3.3) (a)
(b)
(c) S(B)n£(Kι) is a minimal genus spanning surface for Kl and

equivalent to Rίt

(d) 5(fc) = /* ~ Π(5(w)) for each k e Z.

PROPOSITION 3.4 ([3], [4]). S(k) is not equivalent to S(n) for all kφn.

Moreover we show the following proposition; Theorem B in the
introduction follows from this together with Proposition 3.1.

PROPOSITION 3.5. Let K be a composite knot of two non-fibred knots K1

and K2, and let {S(n)}neZ be the spanning surfaces for K constructed
above. Suppose in addition that, for i = 1, 2, the incompressible spanning
surfaces for Xf are unique. Then

(i) any incompressible spanning surface for K is equivalent to some S(n\ and
(ii) d([5(n)], [S(k)]) = n-k for all n> k.

PROOF. By the construction of {5(fc)}, we can move S(k+1) by a tiny
isotopy of E(K) so that S(k+1) is disjoint from 5(fc). Hence d([S(fe)], [S(fc+1)])
= 1. It follows from this together with Proposition 3.4 that IS(K) contains
the following complex as a subcomplex :

If there is an incompressible spanning surface for K which is not equivalent
to any S(k\ then by Theorem A, there is an incompressible spanning surface
which is not equivalent to any S(k} and disjoint from some S(n}. Thus we
prove (i) by showing the following assertion for each neZ.

(3.6) Let F be an incompressible spanning surface for K which is disjoint from
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5(π). Then F is equivalent to S^"^, S(π) or S(n+ί\

Moreover it suffices to show (3.6) for n = 0 by (3.3).
Let F be an incompressible spanning surface for K which is disjoint from

S(0). We can move F by an isotopy of E(K) so that F intersects A
transeversely in an arc J since F is incompressible. Note that J is properly
embedded in A and parallel to / in A. Hence Fi = Fr\E(Ki) becomes an
incompressible spanning surface for Kt (ί = 1,2). We may assume that
J = {(— 1, s)|0 < s < 1} (c= A). By the uniqueness of the incompressible
spanning surfaces for Ki9 Ft is parallel to Rt in E(Kt) (i = 1,2). Let
e(ί): Ft. x [0, !]->£(*:;) be an embedding such that e( i) |Fj x {0} = id and
e(ί)|Fi x {1} is a homeomorphism F^Ri (/ = 1, 2). We can take e(i) so that
e(/)(J x [0, Y]) = A ne(ί)(Fi x [0, 1]) (i = 1, 2) in addition. Hence e(/)(J x [0, 1])
= A+ or =A_ where 4+ = {(<?2πίβ, s)|0<0< 1/2, 0<s<l} and ,4. = {(e2πίβ, s)|

1/2 < 0 < 1, 0 < s < 1}. Thus there are four cases (l)-(4):

(1) e(1)(J x [0, 1]) = e(2)(J x [0, 1]) = A + . In this case F = F1UF2 is

parallel to S = R1(jR2.
(2) e(1)(J x [0, 1]) = e(2)(J x [0, 1]) = A.. In this case F is also parallel

to S.

(3) e(1)(J x [0, 1]) = A+ and e(2)(./ x [0, 1]) = A_. In this case we see
that F is equivalent to S(1) =f(S).

(4) e(1)(J x [0, 1]) = A_ and e(2\J x [0, 1]) = A + . In this case F is
equivalent to 5(~υ =/~1(S).

Thus (3.6) and hence (i) are proved.
Next we prove (ii). It follows from (i) that if d([S(fc)], [S(rt)]) < n - k for

some fc < n, then d([S(ί)], [Sω]) = 1 for some 1,7 with j - i > 2. Thus, to
prove (ii) it suffices to show the following assertion

(3.7) d([S(k)], [S(n)]) > 2 for all fc, n with n - k > 2.

Moreover it suffices to show (3.7) for k = 0 by (3.3).
We now assume that, for some n > 2, there is an isotopy h: E(K) x [0, 1]

-+E(K) so that h0 = id and Λ^S^nS = 0, and then we will show that this
implies a contradiction. Let p: (£, α0) ->(£(£), α) be the infinite cyclic
covering. Putting F(Kf) = p"1^^-)), we see that the restriction p: E(Kt)

-+E(Ki) is the infinite cyclic covering for Kh E = E(Kl)\jE(K2) and

A = £(X1)nF(K2) = P~l(A) is homeomorphic to / x (- oo, oo). Also E has
the following description (see §1):

(3.8) £ = U Ek, Ek_^Ek = Sk9 p-^S) = \J Sh9
keZ fceZ

α0eS0 and (Ek9 Sk9 ak) = τfc(E0, 50, α0)
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where τ is the covering transformation corresponding to the meridian element
/ie^(£(X), a). Putting (Ek\ = Ekϊ\E(Kύ and (Sk\ = SknE(K^9 we have a
description of £(X f) (i = 1, 2):

(3.9) = U(
fceZ

= (SΛ and
fceZ

Now consider the lift (S$\ a0) of (S(n\ a). We can identify S£° with the

surface obtained as follows: Set H = ( \J (£k)1)nδ£(Xι) and R = H
0<k<n-l

U(5π)i. We push R into (J (Ek)1 by a tiny isotopy keeping dR = d(S0)ί
0<k<n-l

fixed so that the resulting surface R' satisfies the condition R'ftdE^i) = dR'
= θ(S0)ι Then by the definition of S(J} we can identify S^ with Λ'U(S0)2

(see Figure 1).

Λ' g(S™ x {0}) sn

JL

Figure 1

En-I

We next consider the lift g: (S(π) x [0, 1], α0 x {0} )->(£, α0) of the
restriction fc: (5(π) x [0, 1], α0 x {0})^(£(X), α0). Note that gf(S(w) x {0})
= S^ and that g(S(n) x {!}) is contained in Ek for some /ceZ since
h(S(n))Γ\S = 0. We move g if necessary so that g is transverse relative to
A. Thus 4' = g~1(A) is a properly embedded surface in S(n) x [0, 1] which
satisfies the following

(3.10) There is a unique pair of component A'Q of A' and component C of
dA'0 so that A'n(S(n) x {0}) = A'0n(S(n) x {0}) = / c C and 54' - C c S(n)

x {1} (cf. (3.3)).

Since £(Kf) (i = 1, 2) are aspherical and since S(n} x [0, 1] is irreducible,
by the standard technique (cf. [7, Lemma 6.5]), we can modify g into a
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homotopy gΊ S(n) x [0, 1] -+ E such that g'\S(n} x {0} = g\S(n} x {0}, g'(S(n)

x{l})cι£ k , and that (3,10) remains valid for A' = g'~1(Ά) and each
component of A' is incompressible in S(n} x [0, 1] in addition. Hence, by
Haken [5, Lemma in §8], A'0 must be a disk, A' has no closed component
and each component of A' — A'Q is parallel to a surface in S(n) x {!}. It
follows from this that we can further eliminate all components of A — A'0
from g'~1(A) by moving gr. Thus the resulting gr satisfies the condition that
gf~1(A) is a disk which is isotopic to / x [0, 1] in S(n) x [0, 1]. Now we
have two cases. Note that either n — fc > 2 or fc > 1 since n > 2.

CASE 1 : n - k > 2. In this case we will show that ((E^j}^ (Sn-ι)ι, (S )̂
is homeomorphic to (Sn)ί x ([0, 1], 0, 1): This contradicts the assumption
that K1 is not fibred. Firstly, using the above homotopy #', we get a
homotopy g'.R'x [0, 1] -+E(K^ such that

(3.11) g\R x {0} = id, g(dR x [0, 1]) c dE(KJ9 T= g(R x {!}) is a properly
embedded surface in E(XX) and T^(Ek)1 -((Sάί[)(Sk+1)1) (see Figure 2).

We also note that

(3.12) the surface R" = K'n (£M-ι)ι is parallel to Cl(d(En.l)l-(Sn-1)l) in
(En_1)l9 and in particular dR" is parallel to d(Sn.^ in (S^^.

R'

We now move ^ to be transverse relative to (Sπ_ι)ι. Then Jί =
g~1((Sn-ι)ι) is a surface in R x [0, 1], and there is only one component XQ

of X so that X[\d(R x [0, 1]) = X0(]d(Rf x [0, 1]) c R' x {0}. Moreover
JioniiR' x [0, 1]) is the circle dR" x {0}. We can further modify g so that
each component of X = g~1((Sn-ί)ί) is incompressible in R x [0, 1] by
[7, Lemma 6.5]. Hence, by Haken [5, Lemma in §8], X = X0 and X0 is
parallel to R" x {0} in R x [0, 1]. Thus the region Z bounded by
(R" x {0})U^o is homeomorphic to R" x [0, 1]. By using the restriction g\Z9

we get a homotopy α: R" x [0, 1] -> (J (E^ so that α0 = id and α(δ/Γ
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x [0, 1]UK" x {!}) <= (S^Oi- Thus by Waldhausen [13, Lemma 5.3], R" is
parallel to the surface in (Sπ_ι)ι bounded by dR". From this together with
(3.12) we see that ((£„_,),, (S^^, (SJJ is homeomorphic to (S^
x ([0, 1], 0, 1); this contradicts the assumption that K^ is not fibred.

CASE 2: k > 1. In this case, by using similar argument as in the case 1,
we can show that ((E0)2, (S0)2, (S^) is homeomorphic to (50)2 x ([0, 1], 0, 1).
This contradicts the assumption that K2 is not fibred.

Thus (3.7) and hence (ii) are proved. The proof of Proposition 3.5 is now

completed. Π
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