Finding disjoint incompressible spanning surfaces for a link

Osamu Kakimizu

(Received January 17, 1991)

Introduction

In this paper we shall consider the problem of finding disjoint non-equivalent incompressible spanning surfaces for a link. It is known that there are many links in the 3 -sphere which have plural non-equivalent incompressible spanning surfaces ([1], [10], [3], [8] etc.). We shall associate to each link L a certain simplicial complex $I S(L)$ whose vertex set is the set $\mathscr{I} \mathscr{S}(L)$ of the equivalence classes of incompressible spanning surfaces for L. We also introduce a 'distance' on $\mathscr{I} \mathscr{S}(L)$. Using this distance, we prove that the complex $I S(L)$ is connected. As an application of this result, the complexes $I S(L)$ for composite knots are determined under some additional conditions.

Let L be an oriented link in the 3 -sphere S^{3}, and let $E(L)=S^{3}-$ Int $N(L)$ be its exterior where $N(L)$ is a fixed tubular neighborhood of L. We shall use the term "spanning surface" for L to denote a surface $S=\Sigma \cap E(L)$ where Σ is an oriented surface in S^{3} such that $\partial \Sigma=L, \Sigma$ has no closed component and is possibly disconnected and that $\Sigma \cap N(L)$ is a collar of $\partial \Sigma$ in Σ. Two spanning surfaces for L are said to be equivalent if they are ambient isotopic in $E(L)$ to each other. A spanning surface S is incompressible (resp. of minimal genus) if each component of S is incompressible in $E(L)$ (resp. the Euler number $\chi(S)$ is maximum among all spanning surfaces for L). Let $\mathscr{S}(L)$ denote the set of equivalence classes of spanning surfaces for L, and $\mathscr{I} \mathscr{S}(L)$ and $\mathscr{M} \mathscr{S}(L)$ the subsets of $\mathscr{S}(L)$ consisting of those classes of incompressible and of minimal genus ones respectively.

Now we associate to each non-split oriented link L a simplicial complex $I S(L)$ as follows: The vertex set of $I S(L)$ is $\mathscr{I} \mathscr{S}(L)$, and vertices $\sigma_{0}, \sigma_{1}, \ldots, \sigma_{k}$ $\in \mathscr{I} \mathscr{S}(L)$ span a k-simplex if there are representatives $S_{i} \in \sigma_{i}, 0 \leq i \leq k$, so that $S_{i} \cap S_{j}=\emptyset$ for all $i<j$. Replacing $\mathscr{I} \mathscr{S}(L)$ with $\mathscr{M} \mathscr{S}(L)$, we obtain another simplicial complex $M S(L)$, and $M S(L)$ becomes a full subcomplex of $I S(L)$. In $\S 1$ we define a 'distance' on $\mathscr{S}(L)$, and in $\S 2$ we prove the main theorem (Theorem 2.1) which is formulated in terms of the distance. The main theorem implies the following

Theorem A. Let L be a non-split oriented link. Then both $I S(L)$ and $M S(L)$ are connected.

Scharlemann and Thompson [12, Prop. 5] proved the connectedness of $M S(L)$ in the case when L is a knot. We have a feeling that Theorem A is useful for the classification of the incompressible spanning surfaces for a given link. For example, Eisner [3] proved that a composite knot of two non-fibred knots has infinitely many non-equivalent minimal genus spanning surfaces. In §3 we prove the following theorem by using Theorem A.

Theorem B. Let K be a composite knot of two knots K_{1} and K_{2}. Suppose that, for each $i=1$ and $2, K_{i}$ is not fibred and the incompressible spanning surfaces for K_{i} are unique. Then $I S(K)=M S(K)$ and this complex is in the form of

In Theorem B the vertices $\sigma_{i}(i \in Z)$ are represented by the surfaces constructed by Eisner [3]: See §3.

Recently we have gotten the classification of the incompressible spanning surfaces for each prime knot of ≤ 10 crossings [9]; Theorem A is extensively used in its proof.

1. Distance on $\mathscr{P}(L)$

Let $L \subset S^{3}$ be an oriented link, $E=E(L)$ its exterior and $\mathscr{S}(L)$ the set of equivalence classes of spanning surfaces for L. In this section, we will define a distance on $\mathscr{S}(L)$.

Consider the infinite cyclic covering $p:\left(\tilde{E}, a_{0}\right) \rightarrow(E, a)$ such that $p_{*} \pi_{1}\left(\tilde{E}, a_{0}\right)$ is the augmentation subgroup of $\pi_{1}(E, a)$ where $a \in E$ is a base point (cf. [2]), and let τ denote a generator of the covering transformation group. Let $S \subset E$ be a spanning surface for L, and let E_{0} denote the closure of a lift of $E-S$ to \tilde{E} (note that $E-S$ is connected since S has no closed component). Put $E_{j}=\tau^{j}\left(E_{0}\right)$ and $S_{j}=E_{j-1} \cap E_{j}(j \in Z)$. Then we see that

$$
\begin{equation*}
\widetilde{E}=\bigcup_{j \in Z} E_{j}, p^{-1}(S)=\bigcup_{j \in \mathbf{Z}} S_{j} \text { and } p \mid S_{j}: S_{j} \longrightarrow S \text { is a homeomorphism. } \tag{1.1}
\end{equation*}
$$

Let $S^{\prime} \subset E$ be another spanning surface for L. Then we have a similar description of \tilde{E} :

$$
\begin{equation*}
\tilde{E}=\bigcup_{k \in \mathbf{Z}} E_{k}^{\prime}, E_{k-1}^{\prime} \cap E_{k}^{\prime}=S_{k}^{\prime}, p^{-1}\left(S^{\prime}\right)=\bigcup_{k \in \mathbb{Z}} S_{k}^{\prime} \quad \text { and } \quad E_{k}^{\prime}=\tau^{k}\left(E_{0}^{\prime}\right) . \tag{1.2}
\end{equation*}
$$

We set

$$
\begin{aligned}
& m=\min \left\{k \in Z \mid E_{0} \cap E_{k}^{\prime} \neq \emptyset\right\}, r=\max \left\{k \in Z \mid E_{0} \cap E_{k}^{\prime} \neq \emptyset\right\} \text { and } \\
& d\left(S, S^{\prime}\right)=r-m .
\end{aligned}
$$

It is easy to see that
(a) $d\left(S, S^{\prime}\right) \geq 1$,
(b) $d\left(S, S^{\prime}\right)=1$ if and only if $S \cap S^{\prime}=\emptyset$,
(c) $E_{j} \cap E_{k}^{\prime} \neq \emptyset$ if and only if $m \leq k-j \leq r$, and
(d) $E_{0} \subset \bigcup_{m \leq k \leq r} E_{k}^{\prime}, S_{1} \subset \bigcup_{m+1 \leq k \leq r} E_{k}^{\prime}$.

Now, for $\sigma, \sigma^{\prime} \in \mathscr{S}(L)$, we define $d\left(\sigma, \sigma^{\prime}\right) \in Z_{+}$(the set of non-negative integers) by

$$
d\left(\sigma, \sigma^{\prime}\right)=\left\{\begin{array}{cc}
0 & \text { if } \sigma=\sigma^{\prime}, \\
\min _{S \in \sigma, S^{\prime} \in \sigma^{\prime}} d\left(S, S^{\prime}\right)
\end{array} \quad \text { if } \sigma \neq \sigma^{\prime}\right.
$$

Proposition 1.4. The function $d: \mathscr{S}(L) \times \mathscr{S}(L) \rightarrow Z_{+}$satisfies the axioms of distance, i.e. for every $\sigma, \sigma^{\prime}, \sigma^{\prime \prime} \in \mathscr{S}(L)$,
(i) $d\left(\sigma, \sigma^{\prime}\right)=0$ if and only if $\sigma=\sigma^{\prime}$,
(ii) $d\left(\sigma, \sigma^{\prime}\right)=d\left(\sigma^{\prime}, \sigma\right)$ and
(iii) $d\left(\sigma, \sigma^{\prime \prime}\right) \leq d\left(\sigma, \sigma^{\prime}\right)+d\left(\sigma^{\prime}, \sigma^{\prime \prime}\right)$.

Proof. (i) follows from $(1,3)(a)$.
(ii) Suppose that $\sigma \neq \sigma^{\prime}$ and $d\left(\sigma, \sigma^{\prime}\right)=d\left(S, S^{\prime}\right)$ for some $S \in \sigma, S^{\prime} \in \sigma^{\prime}$. By (1.3) (c), $E_{0}^{\prime} \cap E_{j} \neq \emptyset$ if and only if $-r \leq j \leq-m$. Hence $d\left(\sigma^{\prime}, \sigma\right) \leq d\left(S^{\prime}, S\right)$ $\leq(-m)-(-r)=d\left(\sigma, \sigma^{\prime}\right)$. Similarly we have $d\left(\sigma^{\prime}, \sigma\right) \geq d\left(\sigma, \sigma^{\prime}\right)$, and hence $d\left(\sigma, \sigma^{\prime}\right)=d\left(\sigma^{\prime}, \sigma\right)$.
(iii) It suffices to verify the inequality in the case that $\sigma \neq \sigma^{\prime}$ and $\sigma^{\prime} \neq \sigma^{\prime \prime}$. Suppose that $d\left(\sigma, \sigma^{\prime}\right)=d\left(S, S^{\prime}\right)$ for $S \in \sigma$, and $S^{\prime} \in \sigma^{\prime}$. Then we can take $S^{\prime \prime} \in \sigma^{\prime \prime}$ so that $d\left(\sigma^{\prime}, \sigma^{\prime \prime}\right)=d\left(S^{\prime}, S^{\prime \prime}\right)$, and \tilde{E} has the following description associated with $S^{\prime \prime}$:

$$
\tilde{E}=\bigcup_{i \in \mathbf{Z}} E_{i}^{\prime \prime}, E_{i-1}^{\prime \prime} \cap E_{i}^{\prime \prime}=S_{i}^{\prime \prime}, p^{-1}\left(S^{\prime \prime}\right)=\bigcup_{i \in \mathbb{Z}} S_{i}^{\prime \prime} \quad \text { and } \quad E_{i}^{\prime \prime}=\tau^{i}\left(E_{0}^{\prime \prime}\right) .
$$

Now suppose that $E_{j} \cap E_{k}^{\prime} \neq \emptyset$ if and only if $m \leq k-j \leq r$, and that $E_{k}^{\prime} \cap E_{i}^{\prime \prime} \neq \emptyset$ if and only if $m^{\prime} \leq i-k \leq r$. This implies that $d\left(\sigma, \sigma^{\prime}\right)=r-m$ and
$d\left(\sigma^{\prime}, \sigma^{\prime \prime}\right)=r^{\prime}-m^{\prime}$. If $E_{0} \cap E_{i}^{\prime \prime} \neq \emptyset$, by (1.3) (c) there is $k_{0}\left(m \leq k_{0} \leq r\right)$ so that $E_{k_{0}}^{\prime} \cap E_{i}^{\prime \prime} \neq \emptyset$. Since $m^{\prime} \leq i-k_{0} \leq r^{\prime}$, and $m+m^{\prime} \leq i \leq r+r^{\prime}$. This implies that $d\left(\sigma, \sigma^{\prime}\right) \leq d\left(S, S^{\prime \prime}\right) \leq\left(r+r^{\prime}\right)-\left(m+m^{\prime}\right)=d\left(\sigma, \sigma^{\prime}\right)+d\left(\sigma^{\prime}, \sigma^{\prime \prime}\right)$.

2. Main theorem

The following Theorem 2.1 is the main theorem in this paper, from which Theorem A follows directlt. For a spanning surface S, its equivalence class will be denoted by $[S] \in \mathscr{S}(L)$.

Theorem 2.1. Let $L \subset S^{3}$ be a non-split link and $S, S^{\prime} \subset E(L)$ two incompressible (resp. minimal genus) spanning surfaces for L. Suppose that $n=d\left([S],\left[S^{\prime}\right]\right) \geq 1$. Then there is a sequence of incompressible (resp. minimal genus) spanning surfaces $S=F_{0}, F_{1}, \ldots, F_{n}$ such that
(1) $\left[F_{n}\right]=\left[S^{\prime}\right]$,
(2) $F_{i-1} \cap F_{i}=\emptyset$ for each $1 \leq i \leq n$, and
(3) $d\left([S],\left[F_{i}\right]\right)=i$ for each $0 \leq i \leq n$.

Proof. We prove the theorem by induction on $n=d\left([S],\left[S^{\prime}\right]\right)$. In the case of $n=1, S^{\prime}$ is equivalent to F with $S \cap F=\emptyset$ by (1.3) (b), and the conclusion is clear. Thus we assume that the theorem holds for $n \leq q-1$ $(q \geq 2)$ and then will prove it for $n=q$. Moving S^{\prime} by an ambient isotopy of $E=E(L)$, we may assume that

$$
\begin{equation*}
d\left(S, S^{\prime}\right)=q, \partial S \cap \partial S^{\prime}=\phi \text { and } S \text { intersects } S^{\prime} \text { transversely. } \tag{2.2}
\end{equation*}
$$

Note that E is irreducible since L is non-splittable. From this together with the incompressibility of S and S^{\prime} we can further assume that
(2.3) each circle of $S \cap S^{\prime}$ is essential on S and S^{\prime}.

We will find an incompressible (resp. minimal genus) spanning surface $S^{\prime \prime} \subset E$ which satisfies the condition

$$
\begin{equation*}
S^{\prime \prime} \cap S^{\prime}=\emptyset \text { and } d\left([S],\left[S^{\prime \prime}\right]\right)=q-1 . \tag{2.4}
\end{equation*}
$$

We use the same notation \widetilde{E}, (1.1), (1.2), etc. for E, S, S^{\prime} as in the beginning of §1. Consider E_{r}^{\prime} where $r=\max \left\{k \in Z \mid E_{0} \cap E_{k}^{\prime} \neq \emptyset\right\}$. We note that $E_{0} \cap S_{r+1}^{\prime}=\emptyset$ and $E_{q} \cap S_{r}^{\prime}=\emptyset$ by (1.3). By (2.2) and (2.3), S_{j} intersects S_{k}^{\prime} transversely and each circle of $S_{j} \cap S_{k}^{\prime}$ is essential on S_{j} and S_{k}^{\prime}. Hence
each component of $S_{1} \cap E_{r}^{\prime}$ and $S_{q} \cap E_{r}^{\prime}$ is incompressible in E_{r}^{\prime}.
Let X be a regular neighborhood of $S_{r}^{\prime} \cup\left(E_{0} \cap E_{r}^{\prime}\right)$ in E_{r}^{\prime} with $X \cap E_{q}=\emptyset$. Let Y be the closure of the component of $E_{r}^{\prime}-X$ containing S_{r+1}^{\prime}, and put
$R=X \cap Y$. Then R is a surface in E_{r}^{\prime} which is disjoint from $E_{0}, E_{q}, S_{r}^{\prime}$ and $S_{r+1}^{\prime} . \quad R$ inherits the orientation from S_{1} and S_{r}^{\prime}, and $p(R) \subset E$ is a spanning surface for L with $p(R) \cap S^{\prime}=\emptyset$. Now we consider the two cases that both S and S^{\prime} are of minimal genus and that both S and S^{\prime} are incompressible separately.

CASE 1: Both S and S^{\prime} are of minimal genus. We see that $p(R)$ is also of minimal genus as follows. Put $Z=\left(E_{0} \cup E_{1}\right) \cap\left(\bigcup_{k \leq r-1} E_{k}^{\prime}\right)$. Let V be a regular neighborhood of $\left(E_{1} \cup S_{r}^{\prime}\right) \cap Z$ in Z, and W the closure of the component of $Z-V$ containing S_{0} (note that $S_{0} \subset Z$). Put $Q=V \cap W$. Then Q inherits the orientation from S_{1} and $S_{r}^{\prime} . \quad p: Q \rightarrow E$ is an embedding since $Q \subset E_{0}$ $-\left(S_{0} \cup S_{1}\right)$, and hence $p(Q)$ is a spanning surface for L. By the constructions of Q and R together with (2.3), we see that $\chi(Q)+\chi(R) \geq \chi\left(S_{1}\right)+\chi\left(S_{r}^{\prime}\right)=\chi(S)$ $+\chi\left(S^{\prime}\right)=2 \chi(S)$. This implies that $\chi(Q)=\chi(R)=\chi(S)$ and $p(R)$ is of minimal genus since so is S. We put $S^{\prime \prime}=p(R)$.

Case 2: Both S and S^{\prime} are incompressible. In this case R is not necessarily incompressible in E_{r}^{\prime}. We will modify R to be incompressible.

Put $X^{\prime}=\mathrm{Cl}\left(E_{r}^{\prime}-Y\right)$. By applying a finite number of simple moves due to McMillan [11] to X^{\prime} in E_{r}^{\prime}, we obtain a 3-submanifold $X^{\prime \prime}$ so that each component of $\mathrm{Cl}\left(\partial X^{\prime \prime} \cap \operatorname{Int} E_{r}^{\prime}\right)$ is incompressible in E_{r}^{\prime}. This means that there is a finite sequence of 3 -submanifolds of $E_{r}^{\prime}, X^{\prime}=X_{0}, X_{1}, \ldots, X_{k}=X^{\prime \prime}$ such that, for each $1 \leq i \leq k$, one of the following conditions (i)-(iv) holds:
(i) X_{i} is obtained from X_{i-1} by adding a 2-handle whose core is a 2-disk $D \subset \operatorname{Int} E_{r}^{\prime}$ such that $D \cap X_{i-1}=\partial D \subset \mathrm{Cl}\left(\partial X_{i-1} \cap\right.$ Int $\left.E_{r}^{\prime}\right)$ and ∂D is essential in $\mathrm{Cl}\left(\partial X_{i-1} \cap \operatorname{Int} E_{r}^{\prime}\right)$.
(ii) There is a 3-ball $C \subset \operatorname{Int} E_{r}^{\prime}$ such that $X_{i}=X_{i-1} \cup C$ and $X_{i-1} \cap C$ $=\partial C \subset \mathrm{Cl}\left(\partial X_{i-1} \cap \operatorname{Int} E_{r}^{\prime}\right)$.
(iii) X_{i} is obtained from X_{i-1} by splitting at a 2-disk $D \subset X_{i-1}$ such that $\partial D=D \cap \mathrm{Cl}\left(\partial X_{i-1} \cap\right.$ Int $\left.E_{r}^{\prime}\right)$ and ∂D is essential in $\mathrm{Cl}\left(\partial X_{i-1} \cap\right.$ Int $\left.E_{r}^{\prime}\right)$.
(iv) There is a component C of X_{i-1} such that C is a 3-ball and $X_{i}=X_{i-1}-C$.

Claim 2.6. We can take $X^{\prime \prime}$ so that $X^{\prime \prime} \cap E_{q}=\emptyset$ and $E_{0} \cap E_{r}^{\prime} \subset X^{\prime \prime}$.
Consider the above sequence $X^{\prime}=X_{0}, X_{1}, \ldots, X_{k}=X^{\prime \prime}$. We will show that each X_{i} can be taken so that $X_{i} \cap E_{q}=\emptyset$ and $E_{0} \cap E_{r}^{\prime} \subset X_{i}$ by induction on i. By the definition of X^{\prime}, X_{0} satisfies the condition. We suppose that X_{i-1} satisfies the desired condition, and consider X_{i}. If X_{i} is obtained by a simple move of type (ii), the added 3-ball C is disjoint from E_{q} since $C \subset$ Int E_{r}^{\prime} and since there is no component of $E_{q} \cap E_{r}^{\prime}$ which is contained in Int E_{r}^{\prime}. Hence
X_{i} satisfies the desired condition. Similarly, if X_{i} is obtained by a simple move of type (iv), then the removed 3-ball is disjoint from E_{0}, and X_{i} satisfies the condition. In the case that X_{i} is obtained by a simple move of type (i), we can modify the 2 -disk D, a core of the added 2 -handle, so that $D \cap E_{q}=\emptyset$. In fact since each component of $S_{q} \cap E_{r}^{\prime}$ is incompressible in E_{r}^{\prime} by (2.5), this modification can be done by using the standard cut and paste argument. Hence we can take X_{i} to be satisfy the desired condition. Similarly, in the case that X_{i} is obtained by a simple move of type (iii), we can take the splitting 2-disk D to be disjoint from E_{0} by (2.5). Hence we can take X_{i} to be satisfy the desired condition. Thus Claim 2.6 follows.

Let Z be the union of the components of $X^{\prime \prime}$ containing some components of S_{r}^{\prime} and put $F=\mathrm{Cl}\left(\partial Z \cap \operatorname{Int} E_{r}^{\prime}\right)$. Clearly $Z \cap E_{q}=\emptyset$ by Claim 2.6. Claim 2.6 further implies that $E_{0} \cap E_{r}^{\prime} \subset Z$ since there is no component of $E_{0} \cap E_{r}^{\prime}$ which is disjoint from S_{r}^{\prime}. Moreover F is incompressible in E_{r}^{\prime} and $p(F)$ becomes an incompressible spanning surface for L which is disjoint from S^{\prime}. In this case we put $S^{\prime \prime}=p(F)$.

Now we consider the two cases together, and show the following assertion

$$
\begin{equation*}
d\left([S],\left[S^{\prime \prime}\right]\right)=q-1 \tag{2.7}
\end{equation*}
$$

We have $d\left(\left[S^{\prime}\right],\left[S^{\prime \prime}\right]\right) \leq 1$ by $S^{\prime} \cap S^{\prime \prime}=\emptyset$. From this and by the assumption that $d\left([S],\left[S^{\prime}\right]\right)=q$ together with Proposition 1.4 (iii), we have $d\left([S],\left[S^{\prime \prime}\right]\right)$ $\geq d\left([S],\left[S^{\prime}\right]\right)-d\left(\left[S^{\prime}\right],\left[S^{\prime \prime}\right]\right) \geq q-1$. On the other hand, we consider the description of \tilde{E} associated with $S^{\prime \prime}$ as (1.1) in §1:

$$
\tilde{E}=\bigcup_{i \in \mathbf{Z}} E_{i}^{\prime \prime}, E_{i-1}^{\prime \prime} \cap E_{i}^{\prime}=S_{i}^{\prime \prime} \quad \text { and } \quad p^{-1}\left(S^{\prime \prime}\right)=\bigcup_{i \in \mathbf{Z}} S_{i}^{\prime \prime}
$$

By the construction of $S^{\prime \prime}$, we may assume that $S_{r}^{\prime \prime}=F$ in Case 2 (resp. $S_{r}^{\prime \prime}=R$ in Case 1). Then we see that $E_{0} \subset \underset{r-q \leq i \leq r-1}{\bigcup} E_{i}^{\prime \prime}$. Hence $d\left([S],\left[S^{\prime \prime}\right]\right)$ $\leq d\left(S, S^{\prime \prime}\right) \leq q-1$, and $(2,7)$ follows. Thus $S^{\prime \prime} \subset E$ is an incompressible (resp. minimal genus) spanning surface for L satisfying the condition (2.4).

Now we will define the desired sequence of incompressible (resp. minimal genus) spanning surfaces $S=F_{0}, F_{1}, \ldots, F_{q}$. Since $S^{\prime \prime}$ satisfies (2.4), by the inductive assumption, there is a sequence of incompressible (resp. minimal genus) spanning surfaces $S=F_{0}, F_{1}, \ldots, F_{q-1}$ such that
(1') $\left[F_{q-1}\right]=\left[S^{\prime \prime}\right]$,
(2') $F_{i-1} \cap F_{i}=\emptyset$ for each $1 \leq i \leq q-1$, and
(3') $d\left([S],\left[F_{i}\right]\right)=i$ for each $0 \leq i \leq q-1$.
Let $\left\{h_{t}\right\}$ be an isotopy of E such that $h_{0}=$ id and $h_{1}\left(S^{\prime \prime}\right)=F_{q-1}$. Put
$F_{q}=h_{1}\left(S^{\prime}\right)$. Then $\left[F_{q}\right]=\left[S^{\prime}\right], F_{q-1} \cap F_{q}=\emptyset$ since $S^{\prime \prime} \cap S^{\prime}=\emptyset$, and $d([S]$, $\left.\left[F_{q}\right]\right)=d\left([S],\left[S^{\prime}\right]\right)=q$ by the assumption. Thus the theorem holds for $n=q$.

The proof of Theorem 2.1 is now completed.

3. Simplicial complexes $I S(L)$ and $M S(L)$

In this section we first note some properties of the complexes $I S(L)$ and $M S(L)$, and then prove Theorem B. Let L be a non-split oriented link. Then the dimension of $I S(L)$ is finite by Haken's finiteness theorem [5, p. 48]. However the example described in [8] shows that $I S(L)$ is not necessarily locally finite in general. By Theorem A we can define $\ell_{I}\left(\sigma, \sigma^{\prime}\right)$ (resp. $\ell_{M}\left(\sigma, \sigma^{\prime}\right)$) for $\sigma, \sigma^{\prime} \in \mathscr{I} \mathscr{S}(L)$ (resp. $\mathscr{M} \mathscr{S}(L)$) by the minimum length of edge paths in $\mathscr{I} \mathscr{S}(L)$ (resp. $M S(L)$) connecting σ to σ^{\prime}. Then we have

Proposition 3.1. (1) $\ell_{I}\left(\sigma, \sigma^{\prime}\right)=d\left(\sigma, \sigma^{\prime}\right)$ for $\sigma, \sigma^{\prime} \in \mathscr{I} \mathscr{S}(L)$.
(2) $\ell_{M}\left(\sigma, \sigma^{\prime}\right)=d\left(\sigma, \sigma^{\prime}\right)$ for $\sigma, \sigma^{\prime} \in \mathscr{M} \mathscr{S}(L)$.

Proof. We give the proof of (1) only because the proof of (2) is similar. First note that $\ell_{I}\left(\sigma, \sigma^{\prime}\right)=1$ is equivalent to $d\left(\sigma, \sigma^{\prime}\right)=1$. Also Theorem 2.1 shows that $\ell_{I}\left(\sigma, \sigma^{\prime}\right) \leq d\left(\sigma, \sigma^{\prime}\right)$. Conversely, if $\ell_{I}\left(\sigma, \sigma^{\prime}\right)=n$, then by the definition there is a finite sequence $\sigma=\sigma_{0}, \sigma_{1}, \ldots, \sigma_{n}=\sigma^{\prime}$ in $\mathscr{I} \mathscr{S}(L)$ so that $\ell_{I}\left(\sigma_{i-1}, \sigma_{i}\right)=1$ for all $1 \leq i \leq n$. Hence

$$
\begin{aligned}
\ell_{I}\left(\sigma, \sigma^{\prime}\right) & =\ell_{I}\left(\sigma_{0}, \sigma_{1}\right)+\cdots+\ell_{I}\left(\sigma_{n-1}, \sigma_{n}\right) \\
& =d\left(\sigma_{0}, \sigma_{1}\right)+\cdots+d\left(\sigma_{n-1}, \sigma_{n}\right) \\
& \geq d\left(\sigma_{0}, \sigma_{n}\right)=d\left(\sigma, \sigma^{\prime}\right) .
\end{aligned}
$$

Thus we get $\ell_{I}\left(\sigma, \sigma^{\prime}\right)=d\left(\sigma, \sigma^{\prime}\right)$.
Now let K be a composite knot of two non-fibred knots K_{1} and K_{2}. We will determine the simplicial complexes $I S(K)$ and $M S(K)$ under the assumption that the incompressible spanning surfaces for K_{i} are unique for $i=1$ and 2. We note that there are many non-fibred 2-bridge knots whose incompressible spanning surfaces are unique (cf. [6]). Also there are many non-fibred and non-2-bridge prime knots of ≤ 10 crossings whose incompressible spanning surfaces are unique ([9]).

In [3] and [4] Eisner constructed infinitely many non-equivalent minimal genus spanning surfaces for K. We review the construction. We may assume that $E(K)=E\left(K_{1}\right) \cup E\left(K_{2}\right)$ and the intersection $A=E\left(K_{1}\right) \cap E\left(K_{2}\right)=\partial E\left(K_{1}\right)$ $\cap \partial E\left(K_{2}\right)$ is an annulus. Let $S \subset E(K)$ be a minimal genus spanning surface for K such that so is $R_{i}=S \cap E\left(K_{i}\right)$ for $K_{i}(i=1,2)$. Note that $S=R_{1} \cup R_{2}$ and the intersection $I=R_{1} \cap R_{2}=S \cap A$ is an arc. We fix an identification

$$
A=\left\{\left(e^{2 \pi i \theta}, s\right) \mid 0 \leq \theta \leq 1,0 \leq s \leq 1\right\}
$$

so that $I=\{(1, s) \mid 0 \leq s \leq 1\}$ and the loop $m:[0,1] \rightarrow E(K), \theta \mapsto\left(e^{2 \pi i \theta}, 1\right)$ represents a meridian element $\mu \in \pi_{1}(E(K), a)$ where $a=(1,1) \in \partial I \subset E(K)$. Let $A \times[0,1] \subset E\left(K_{1}\right)$ be an embedding such that $A=A \times\{1\}$ and $(A \times[0,1])$ $\cap \partial E(K)=\partial A \times[0,1]$. We define a homeomorphism $f: E(K) \rightarrow E(K)$ by

$$
\begin{align*}
& f\left|E\left(K_{2}\right)=\mathrm{id}, f\right|\left(E\left(K_{1}\right)-(A \times[0,1])\right)=\mathrm{id} \text { and } \tag{3.2}\\
& f\left(e^{2 \pi i \theta}, s, t\right)=\left(e^{2 \pi i(\theta+t)}, s, t\right) \text { on } A \times[0,1]
\end{align*}
$$

Now we put $S^{(n)}=f^{n}(S)$ for each $n \in Z$. Then we see that each $S^{(n)}$ is a minimal genus spanning surface for K which satisfies the following properties:
(a) $S^{(n)} \cap A=I$.
(b) $S^{(n)} \cap E\left(K_{2}\right)=R_{2}$.
(c) $S^{(n)} \cap E\left(K_{1}\right)$ is a minimal genus spanning surface for K_{1} and equivalent to R_{1}.
(d) $S^{(k)}=f^{k-n}\left(S^{(n)}\right)$ for each $k \in \boldsymbol{Z}$.

Proposition 3.4 ([3], [4]). $S^{(k)}$ is not equivalent to $S^{(n)}$ for all $k \neq n$.
Moreover we show the following proposition; Theorem B in the introduction follows from this together with Proposition 3.1.

Proposition 3.5. Let K be a composite knot of two non-fibred knots K_{1} and K_{2}, and let $\left\{S^{(n)}\right\}_{n \in \mathbf{Z}}$ be the spanning surfaces for K constructed above. Suppose in addition that, for $i=1,2$, the incompressible spanning surfaces for K_{i} are unique. Then
(i) any incompressible spanning surface for K is equivalent to some $S^{(n)}$, and
(ii) $d\left(\left[S^{(n)}\right],\left[S^{(k)}\right]\right)=n-k$ for all $n \geq k$.

Proof. By the construction of $\left\{S^{(k)}\right\}$, we can move $S^{(k+1)}$ by a tiny isotopy of $E(K)$ so that $S^{(k+1)}$ is disjoint from $S^{(k)}$. Hence $d\left(\left[S^{(k)}\right],\left[S^{(k+1)}\right]\right)$ $=1$. It follows from this together with Proposition 3.4 that $I S(K)$ contains the following complex as a subcomplex:

If there is an incompressible spanning surface for K which is not equivalent to any $S^{(k)}$, then by Theorem A, there is an incompressible spanning surface which is not equivalent to any $S^{(k)}$ and disjoint from some $S^{(n)}$. Thus we prove (i) by showing the following assertion for each $n \in \boldsymbol{Z}$.
(3.6) Let F be an incompressible spanning surface for K which is disjoint from
$S^{(n)}$. Then F is equivalent to $S^{(n-1)}, S^{(n)}$ or $S^{(n+1)}$.
Moreover it suffices to show (3.6) for $n=0$ by (3.3).
Let F be an incompressible spanning surface for K which is disjoint from $S^{(0)}$. We can move F by an isotopy of $E(K)$ so that F intersects A transeversely in an arc J since F is incompressible. Note that J is properly embedded in A and parallel to I in A. Hence $F_{i}=F \cap E\left(K_{i}\right)$ becomes an incompressible spanning surface for $K_{i}(i=1,2)$. We may assume that $J=\{(-1, s) \mid 0 \leq s \leq 1\} \quad(\subset A)$. By the uniqueness of the incompressible spanning surfaces for K_{i}, F_{i} is parallel to R_{i} in $E\left(K_{i}\right)(i=1,2)$. Let $e^{(i)}: F_{i} \times[0,1] \rightarrow E\left(K_{i}\right)$ be an embedding such that $e^{(i)} \mid F_{i} \times\{0\}=$ id and $e^{(i)} \mid F_{i} \times\{1\}$ is a homeomorphism $F_{i} \rightarrow R_{i}(i=1,2)$. We can take $e^{(i)}$ so that $e^{(i)}(J \times[0,1])=A \cap e^{(i)}\left(F_{i} \times[0,1]\right)(i=1,2)$ in addition. Hence $e^{(i)}(J \times[0,1])$ $=A_{+}$or $=A_{-}$where $A_{+}=\left\{\left(e^{2 \pi i \theta}, s\right) \mid 0 \leq \theta \leq 1 / 2,0 \leq s \leq 1\right\}$ and $A_{-}=\left\{\left(\mathrm{e}^{2 \pi i \theta}, s\right) \mid\right.$ $1 / 2 \leq \theta \leq 1,0 \leq s \leq 1\}$. Thus there are four cases (1)-(4):
(1) $e^{(1)}(J \times[0,1])=e^{(2)}(J \times[0,1])=A_{+}$. In this case $F=F_{1} \cup F_{2}$ is parallel to $S=R_{1} \cup R_{2}$.
(2) $e^{(1)}(J \times[0,1])=e^{(2)}\left(J^{`} \times[0,1]\right)=A_{-} . \quad$ In this case F is also parallel to S.
(3) $e^{(1)}(J \times[0,1])=A_{+}$and $e^{(2)}(J \times[0,1])=A_{-}$. In this case we see that F is equivalent to $S^{(1)}=f(S)$.
(4) $e^{(1)}(J \times[0,1])=A_{-}$and $e^{(2)}(J \times[0,1])=A_{+}$. In this case F is equivalent to $S^{(-1)}=f^{-1}(S)$.

Thus (3.6) and hence (i) are proved.
Next we prove (ii). It follows from (i) that if $d\left(\left[S^{(k)}\right],\left[S^{(n)}\right]\right)<n-k$ for some $k<n$, then $d\left(\left[S^{(i)}\right],\left[S^{(j)}\right]\right)=1$ for some i, j with $j-i \geq 2$. Thus, to prove (ii) it suffices to show the following assertion

$$
\begin{equation*}
d\left(\left[S^{(k)}\right],\left[S^{(n)}\right]\right) \geq 2 \quad \text { for all } k, n \text { with } n-k \geq 2 . \tag{3.7}
\end{equation*}
$$

Moreover it suffices to show (3.7) for $k=0$ by (3.3).
We now assume that, for some $n \geq 2$, there is an isotopy $h: E(K) \times[0,1]$ $\rightarrow E(K)$ so that $h_{0}=$ id and $h_{1}\left(S^{(n)}\right) \cap S=\emptyset$, and then we will show that this implies a contradiction. Let $p:\left(\tilde{E}, a_{0}\right) \rightarrow(E(K), a)$ be the infinite cyclic covering. Putting $\tilde{E}\left(K_{i}\right)=p^{-1}\left(E\left(K_{i}\right)\right)$, we see that the restriction $p: \widetilde{E}\left(K_{i}\right)$ $\rightarrow E\left(K_{i}\right)$ is the infinite cyclic covering for $K_{i}, \tilde{E}=\tilde{E}\left(K_{1}\right) \cup \tilde{E}\left(K_{2}\right)$ and $\tilde{A}=\tilde{E}\left(K_{1}\right) \cap \tilde{E}\left(K_{2}\right)=p^{-1}(A)$ is homeomorphic to $I \times(-\infty, \infty)$. Also \tilde{E} has the following description (see §1):

$$
\begin{align*}
& \tilde{E}=\bigcup_{k \in \mathbf{Z}} E_{k}, E_{k-1} \cap E_{k}=S_{k}, p^{-1}(S)=\bigcup_{k \in \mathbf{Z}} S_{k}, \tag{3.8}\\
& a_{0} \in S_{0} \text { and }\left(E_{k}, S_{k}, a_{k}\right)=\tau^{k}\left(E_{0}, S_{0}, a_{0}\right)
\end{align*}
$$

where τ is the covering transformation corresponding to the meridian element $\mu \in \pi_{1}\left(E(K)\right.$, a). Putting $\left(E_{k}\right)_{i}=E_{k} \cap \tilde{E}\left(K_{i}\right)$ and $\left(S_{k}\right)_{i}=S_{k} \cap \tilde{E}\left(K_{i}\right)$, we have a description of $\tilde{E}\left(K_{i}\right)(i=1,2)$:

$$
\begin{equation*}
\tilde{E}\left(K_{i}\right)=\bigcup_{k \in \mathbf{Z}}\left(E_{k}\right)_{i},\left(E_{k-1}\right)_{i} \cap\left(E_{k}\right)_{i}=\left(S_{k}\right)_{i} \text { and } p^{-1}\left(R_{i}\right)=\bigcup_{k \in \mathbf{Z}}\left(S_{k}\right)_{i} \tag{3.9}
\end{equation*}
$$

Now consider the lift $\left(S_{0}^{(n)}, a_{0}\right)$ of $\left(S^{(n)}, a\right)$. We can identify $S_{0}^{(n)}$ with the surface obtained as follows: Set $H=\left(\underset{0 \leq k \leq n-1}{ }\left(E_{k}\right)_{1}\right) \cap \partial \tilde{E}\left(K_{1}\right)$ and $R=H$ $U\left(S_{n}\right)_{1}$. We push R into $\underset{0 \leq k \leq n-1}{\bigcup}\left(E_{k}\right)_{1}$ by a tiny isotopy keeping $\partial R=\partial\left(S_{0}\right)_{1}$ fixed so that the resulting surface R^{\prime} satisfies the condition $R^{\prime} \cap \partial E\left(K_{1}\right)=\partial R^{\prime}$ $=\partial\left(S_{0}\right)_{1}$. Then by the definition of $S_{0}^{(n)}$ we can identify $S_{0}^{(n)}$ with $R^{\prime} \cup\left(S_{0}\right)_{2}$ (see Figure 1).

Figure 1
We next consider the lift $g:\left(S^{(n)} \times[0,1], a_{0} \times\{0\}\right) \rightarrow\left(\tilde{E}, a_{0}\right)$ of the restriction $h:\left(S^{(n)} \times[0,1], a_{0} \times\{0\}\right) \rightarrow\left(E(K), a_{0}\right)$. Note that $g\left(S^{(n)} \times\{0\}\right)$ $=S_{0}^{(n)}$ and that $g\left(S^{(n)} \times\{1\}\right)$ is contained in E_{k} for some $k \in Z$ since $h\left(S^{(n)}\right) \cap S=\emptyset$. We move g if necessary so that g is transverse relative to \tilde{A}. Thus $A^{\prime}=g^{-1}(\tilde{A})$ is a properly embedded surface in $S^{(n)} \times[0,1]$ which satisfies the following
(3.10) There is a unique pair of component A_{0}^{\prime} of A^{\prime} and component C of ∂A_{0}^{\prime} so that $A^{\prime} \cap\left(S^{(n)} \times\{0\}\right)=A_{0}^{\prime} \cap\left(S^{(n)} \times\{0\}\right)=I \subset C$ and $\partial A^{\prime}-C \subset S^{(n)}$ $\times\{1\}$ (cf. (3.3)).

Since $\tilde{E}\left(K_{i}\right)(i=1,2)$ are aspherical and since $S^{(n)} \times[0,1]$ is irreducible, by the standard technique (cf. [7, Lemma 6.5]), we can modify g into a
homotopy $g^{\prime}: S^{(n)} \times[0,1] \rightarrow \tilde{E}$ such that $g^{\prime}\left|S^{(n)} \times\{0\}=g\right| S^{(n)} \times\{0\}, g^{\prime}\left(S^{(n)}\right.$ $\times\{1\}) \subset E_{k}$, and that $(3,10)$ remains valid for $A^{\prime}=g^{\prime-1}(\tilde{A})$ and each component of A^{\prime} is incompressible in $S^{(n)} \times[0,1]$ in addition. Hence, by Haken [5, Lemma in §8], A_{0}^{\prime} must be a disk, A^{\prime} has no closed component and each component of $A^{\prime}-A_{0}^{\prime}$ is parallel to a surface in $S^{(n)} \times\{1\}$. It follows from this that we can further eliminate all components of $A^{\prime}-A_{0}^{\prime}$ from $g^{\prime-1}(\tilde{A})$ by moving g^{\prime}. Thus the resulting g^{\prime} satisfies the condition that $g^{-1}(\tilde{A})$ is a disk which is isotopic to $I \times[0,1]$ in $S^{(n)} \times[0,1]$. Now we have two cases. Note that either $n-k \geq 2$ or $k \geq 1$ since $n \geq 2$.

CASE $1: n-k \geq 2$. In this case we will show that $\left(\left(E_{n-1}\right)_{1},\left(S_{n-1}\right)_{1},\left(S_{n}\right)_{1}\right)$ is homeomorphic to $\left(S_{n}\right)_{1} \times([0,1], 0,1)$: This contradicts the assumption that K_{1} is not fibred. Firstly, using the above homotopy g^{\prime}, we get a homotopy $\tilde{g}: R^{\prime} \times[0,1] \rightarrow \tilde{E}\left(K_{1}\right)$ such that
(3.11) $\tilde{g} \mid R^{\prime} \times\{0\}=\mathrm{id}, \tilde{g}\left(\partial R^{\prime} \times[0,1]\right) \subset \partial \tilde{E}\left(K_{1}\right), T=\tilde{g}\left(R^{\prime} \times\{1\}\right)$ is a properly embedded surface in $\widetilde{E}\left(K_{1}\right)$ and $T \subset\left(\widetilde{E}_{k}\right)_{1}-\left(\left(S_{k}\right)_{1} \cup\left(S_{k+1}\right)_{1}\right)$ (see Figure 2).

We also note that
(3.12) the surface $R^{\prime \prime}=R^{\prime} \cap\left(E_{n-1}\right)_{1}$ is parallel to $\mathrm{Cl}\left(\partial\left(E_{n-1}\right)_{1}-\left(S_{n-1}\right)_{1}\right)$ in $\left(E_{n-1}\right)_{1}$, and in particular $\partial R^{\prime \prime}$ is parallel to $\partial\left(S_{n-1}\right)_{1}$ in $\left(S_{n-1}\right)_{1}$.

We now move \tilde{g} to be transverse relative to $\left(S_{n-1}\right)_{1}$. Then $X=$ $\tilde{g}^{-1}\left(\left(S_{n-1}\right)_{1}\right)$ is a surface in $R^{\prime} \times[0,1]$, and there is only one component X_{0} of X so that $X \cap \partial\left(R^{\prime} \times[0,1]\right)=X_{0} \cap \partial\left(R^{\prime} \times[0,1]\right) \subset R^{\prime} \times\{0\}$. Moreover $X_{0} \cap \partial\left(R^{\prime} \times[0,1]\right)$ is the circle $\partial R^{\prime \prime} \times\{0\}$. We can further modify \tilde{g} so that each component of $X=\tilde{g}^{-1}\left(\left(S_{n-1}\right)_{1}\right)$ is incompressible in $R^{\prime} \times[0,1]$ by [7, Lemma 6.5]. Hence, by Haken [5, Lemma in §8], $X=X_{0}$ and X_{0} is parallel to $R^{\prime \prime} \times\{0\}$ in $R^{\prime} \times[0,1]$. Thus the region Z bounded by $\left(R^{\prime \prime} \times\{0\}\right) \cup X_{0}$ is homeomorphic to $R^{\prime \prime} \times[0,1]$. By using the restriction $\tilde{g} \mid Z$, we get a homotopy $\alpha: R^{\prime \prime} \times[0,1] \rightarrow \bigcup_{k \geq n-1}\left(E_{k}\right)_{1}$ so that $\alpha_{0}=$ id and $\alpha\left(\partial R^{\prime \prime}\right.$
$\left.\times[0,1] \cup R^{\prime \prime} \times\{1\}\right) \subset\left(S_{n-1}\right)_{1}$. Thus by Waldhausen [13, Lemma 5.3], $R^{\prime \prime}$ is parallel to the surface in $\left(S_{n-1}\right)_{1}$ bounded by $\partial R^{\prime \prime}$. From this together with (3.12) we see that $\left(\left(E_{n-1}\right)_{1},\left(S_{n-1}\right)_{1},\left(S_{n}\right)_{1}\right)$ is homeomorphic to $\left(S_{n}\right)_{1}$ $\times([0,1], 0,1)$; this contradicts the assumption that K_{1} is not fibred.

CASE 2: $k \geq 1$. In this case, by using similar argument as in the case 1 , we can show that $\left(\left(E_{0}\right)_{2},\left(S_{0}\right)_{2},\left(S_{1}\right)_{2}\right)$ is homeomorphic to $\left(S_{0}\right)_{2} \times([0,1], 0,1)$. This contradicts the assumption that K_{2} is not fibred.

Thus (3.7) and hence (ii) are proved. The proof of Proposition 3.5 is now completed.

References

[1] W. R. Alford, Complements of minimal spanning surfaces of knots are not unique, Ann. of Math. 91 (1970), 419-424.
[2] E. M. Brown and R. H. Crowell, The augmentation subgroup of a link, J. Math. and Mech. 15 (1966), 1065-1074.
[3] J. R. Eisner, Knots with infinitely many minimal spanning surfaces, Trans. Amer. Math. Soc. 229 (1977), 329-349.
[4] -, A characterization of non-fibered knots, Michigan Math. J. 24 (1977), 41-44.
[5] W. Haken, Some resurts on surfaces in 3-manifolds, Studies in Modern Topology Vol. 5 (edited by P. J. Hilton, MAA Studies in Math., Prentice-Hall, 1968), pp. 39-98.
[6] A. Hatcher and W. Thurston, Incompressible surfaces in 2-bridge knot complements, Invent. Math. 79 (1985), 225-246.
[7] J. Hempel, 3-Manifolds, Ann. of Math. Studies 86 (Princeton Univ. Press, Princeton N.J., 1976).
[8] O. Kakimizu, Doubled knots with infinitely many incompressible spanning surfaces, Bull. London Math. Soc. 23 (1991), 300-302.
[9] -, Classification of the incompressible spanning surfaces for prime knots of ≤ 10 crossings, preprint.
[10] H. C. Lyon, Incompressible surfaces in knot spaces, Trans. Amer. Math. Soc. 157 (1971), 53-62.
[11] D. R. McMillan, Jr., Compact, acyclic subsets of 3-manifolds, Michigan Math. J. 16 (1969), 129-136.
[12] M. Scharlemann and A. Thompson, Finding disjoint Seifert surfaces, Bull. London Math. Soc. 20 (1988), 61-64.
[13] F. Waldhausen, On irreducible 3-manifolds which are sufficiently large, Ann. of Math. 87 (1968), 56-88.

> Department of Mathematics, Faculty of Science, Hiroshima University

[^0]
[^0]: Present Adress: Department of Mathematics, Faculty of Education, Niigata University

