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1. Introduction 

In this paper, we are  concerned with a real system of 7 2 f  1 nonlinear 
differential equations of the form as follows: 

where 

lo E i s  a parameter  such  tha t  / E / (( 1, 

2" X,(x, 8, t, E )  ( i=l ,  2 , .  . ., n), O(x, 8, E) and  K(x, 8, t, E )  are  tw ice  con- 
t i nuous l y  d i f e ren t iab le  w i t h  respect t o  (x, 8, &) in the  d o m a i n  

3" Xi(x, 8, t, E) ( i=l ,  2,. . ., r z )  a n d  K(x, 8, t, E )  a r e  cont inuous  w i t h  respect 
t o  t in the  d o m a i n  D and  are  periodic in 1 w i t h  period To > 0, 

4" XI(%, 8, t, E )  ( i= l ,  2,. .., IZ), O(X, 8, &) a n d  P(x, 8, t, E) are  periodic in 8 
w i t h  period 2s,  

5" O(x, 8, 0)f 0 f o r  a n y  (x, 8) E D. 

The system of the form (1.1) cannot have any periodic solution of the 
proper sense, because 8(t) is monotonous due to the assumption 5". But i t  may 
have a solution such that  

, x,(t + ZTo) =x,(t) ( i=l ,  2, .., n), 
(1.2) 

8(t + 1To) = 0(t) f 2mz, 

where 1 and In are integers. Such a solution represents a closed curve in the 
cylindrical phase space, namely the space consisting of the points (x, 8), 8 
being considered modulus 2s.  So the solution satisfying the condition (1.2) 
can be called a periodic solution in the cylindrical phase space. In the sequel, 
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for brevity, we shall call a periodic solution in the cylindrical phase space 
simply a periodic solution. 

The problem as to seeking a periodic solution of (1.1) and deciding its 
stability can be solved by extending the so-called stroboscopic method due to  
N. Minorsky [3, 4, 5, 71. 

In this paper, the method to seek a periodic solution of (1.1) and to decide 
its stability will be described. And the two-dimensional case will be dis- 
cussed more in detail and, from its consequence, there will be derived the 
results of A. M. Kau [I] and W. S. Loud [2] as the special cases of our results. 

2. Existence of a periodic solution 

Let 

be the solution of (1.1) such that  

I XZ(U, cp, 0, E)=uL ( i=l ,  2,. . . ,  n), 

I d(u, cp, 0, E)=cp, 

where / u / = 2 j ui j < M. Then, as is seen from the form of (1.1), such a solution 
i = l  

exists in any finite interval containing t = O  provided I & /  is sufficiently small. 
Further, by the assumption 2", in such an interval, for any sufficiently small 
j ~ j ,  the functions xi(u, 9, t, E) ( i=l ,  2, . . . ,  n) and d(u, cp, t, E) can be written as 
follows : 

where pi(u, cp, t ,  E)=o(E) ( i=l ,  2,. .., ra) and ?(u, cp, t, E)=o(E) as E+O. 
In this expression, by the initial condition (2.2), i t  must be that 

x,(O)(u, cp, O)=u, ( i=l ,  2,. . . ,  72), 

I Qo(u, q, O)=cp, 

On the other hand, the substitution of (2.3) into (1.1) yields the differential 
equations as follows : 
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( i=l ,  2 , . . . ,  n), 

an an dB1 -=j-(x(", do, 0)x1(:,r" -I- ( d o ) ,  do, 0)dl 1 XF-~=I ax] a0 

These equations can be solved successively by quadrature under the initial 
conditions (2.4) and (2.5). 

In fact, from the first equations follows 

xi(0)(u, cp, t)=ui ( i=l ,  2,. . ., 72). 

Consequently, substituting this into the second, we have 

(2.7) Z(ZI,, do) = t + E(U, cp), 

where 

- 
z (u, d) = 1 "6' ' 

0 @(u, df, 0) ' 

. a: #O,  (2.7) can be solved as Since --(u, 8) = -- ad @(u, d, 0) 

which is a desired solution of the second of (2.6). Then the third equations 
of (2.6) are readily solved as 

Since O(u, do(u, 9, t ) ,  0) is a solution of the linear homogeneous equation 

the fourth equation of (2.6) is solved by the method of variation of constants 
as follows: 
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Now let us seek a periodic solution of the form (2.1). 
As is readily seen from the periodicity of the right-hand sides of (1.1), the 

necessary and sufficient condition that  the solution (2.1) may be periodic is 

where L=lTo. This condition can be written by (2.3), (2.4) and (2.5) as follows: 

When &=O, the above condition is reduced to 

The latter condition is rewritten by (2.7) as follows 
- = (u, q f 2mz) - E(u, q )  = L, 

which can be rewritten as 

where 

Thus the condition (2.12) can be replaced by 

Then, from derivation of (2.12), i t  is evident that, if there exists no real value 
of (u, F) satisfying (2.15), there exists no real value of (u, p )  satisfying (2.11), 
or, in other words, there exists no periodic solution of the initial equation 
(1.1). 

When there exists a set of real values of (u, q )  satisfying (2.15), let i t  be 
(u('), qO). Then (u(O), qO)  evidently satisfies (2.12). Now, by the assumption 2", 
the left-hand sides of (2.11) are continuously differentiable with respect to u, 
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g and E. Therefore, if the Jacobian J of the functions 

x;(~)(zL, g, L) and Ku, 9, L)=tlo(u, g ,  L) - 9 - 2rrejz 

does not vanish for u = u ( O )  and p=po, there exists a unique set of real values 
(c, +) satisfying (2.10) such that  

or in other words, there exists a periodic solution of the initial equation (1.1) 
lying near the periodic solution 

Xi=Ui (0 )  ( i=l ,  2, . . . ,  n), tl=tlo(u(O), po, t )  

of the unperturbed system. 
For the derivatives of Bo(u, p, L) with respect to ui ( i=l ,  2 , .  ., r z )  and p, 

we can derive the simple formulas from (2.7) as follows. 
In fact, from (2.7), we have: 

From (2.16), i t  readily follows that  

which implies 

The relation (2.17) evidently implies 

Thus we see that  

J= I axicl) 
a u j  (u(O), go, L) 

I 
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The above results are summarized as 

Theorem 1. G i v e n  a real  sys tem 

I d ~ i  
-- -EXL(%, 0, t, E) ( i=l ,  2 , . . . ,  n), 

dt 
(1.1) 

-- do - --o(x, e, E) + EP(%, o, t, E), 
dt 

s u c h  tha t  the  r ight -hand sides s a t i s f y  the  a s sumpt ions  lo ,  2", 3", 4" a n d  5" o f  $1. 
W h e n  there ex is t s  n o  real  value of  (u, s a t i s f y i n g  (2.15), there ex is t s  n o  periodic 
so lu t ion  of  (1.1). W h e n  there  ex is t s  a set o f  real  va lues  (u, T)=(~(0) ,  T ~ )  s a t i s f y -  
i n g  (2.15), i f  J g i ven  by  (2.21) does not  v a n i s h ,  there ex is t s  a periodic solut ion 
.of (1.1) l y i n g  n e a r  the  periodic solut ion 

o f  the  unper turbed sys tem.  

Remark In our problem, due to the presence of the equation 

there appears the additional condition (2.13) compared with the case for which 
the  usual stroboscopic method can be applied directly. 

3. Stability of the periodic solution 

As is well known, the periodic solution obtained in the preceding para- 
graph is stable if the iteration of the transformation 

converges for sufficiently small i r and o I .  
But, since (ii, +) is a value satisfying (2.11), the above transformation can 

be written as follows: 

n 

w h e r e p = C j r i l +  ]p i .  Since 
a = l  
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by the assumption 2" of $1, i t  readily follows from (2.3) that  

ad  a~ 1 -(ii, +, L, E)= -miJ(u(O), 90, 01 -(N(o)) + ~ ( t )  
I ~ Z L ,  aul 

(i, j=1, 2,. , n). 

a d  The expression for -(a, @, L, E) is obtained in the following way. 
a~ 

In fact, from (2.17), 

Differentiating both sides of this relation, we have 

aw a8  a28 -(u, 9, 0) 2 +@(a, 9 ,  0)- 
au, a9 auLay 

a 9 a FI a00 = L ( u ,  do, 0) + -(u, 00, 0)-- 
ad ( i= l ,2 ,  , n )  auz au,  

and 

ae a8 a28 a@ 800 -(u, Y, 0 ) O f  O(u, rp, O)-O-= -(zL, do, 0)-. 
ad acp ay2 8% a9 

Then, since 19, =F, +2mz for (u, 9 ) =  (u(O1, and t= L, we see from (2.19) and 
(2.20) that  

I a20o (do), 90, L)= - aH 
1 -  

a(2 m-(u(O), 9 0 ,  0)--(u(O1) auLao as au ,  ( i= l ,2 ,  , n ) ,  

7 

1 7 ( .  (O) ,  Po, L)=O. 
a? 

From this together with (2.19) and (2.20), we find that  

ad a~ a~ ----(a, +, L, E) = 1 - nz-(u''', po, ~)Z:----(U(~))(Z, - u,(O)) 
a~ as = ~ Z L ,  

However, since (a, @)=(u(~),  9(t)) E Ci satisfy (2.11), i t  readily follows from 
the latter of (2.11) that  



Masataka YORINAGA 

Thus we see that  

Since (a, +) = (u(E), 9 ( ~ ) )  E Ct and (u(O), 9(O)) = (u(O), FO), the expressions 
(3.3) are rewritten as follows: 

1 ax. ax. "(a, @, L, E) =E'(u(O), 90, L) f o(E), 
1 a9 89 

(i, j = l , 2 , . . . , 7 ~ )  . 

Thus, substituting (3.4) and (3.5) into (3.2), we see that  the matrix A of 
the coefficients of the linear parts of the transformation (3.2) becomes 

for (u, 9 )  = (u(O), and t = L. 
Then, since the characteristic roots of A are the multipliers of the vari- 

ation equations, we have 

Theorem 2. The pericdic solution whose existence i s  afiirrned in Theorem 
1 i s  stable i f  the characteristic roots of the matrix  A are all less than uni ty  in 
absolute value. 

4. Two-dimensional case 

In this paragraph the two-dimensional case is discussed more in detail. 
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Let the given system of two equations satisfying all the assumptions of 
$1 be 

I 

dx -EX(%, 8, t, i )  dt- 
(4.1) 

-e=@(,, 0, t)+iYT(x, 8, i, i ) .  
( dt 

Then, by 5 2, the equations by which the first approximations (u(Oj, of 
the initial values of a periodic solution are determined become 

where 

( u ,  , L) = X[ZL, dO(u, q ~ ,  t), t, 01 clt. 1: 
Also the Jacobian J of (2.21) becomes 

ax (I )  
( " ( O ) ,  I p o ,  L) 
aqI 

But, by (4.2) and (2.17), 

a.dl) ax ad 
- ( L ,  , L) = -[u('), d0(u(O), 90, t), t ,  01- &(ZL('), 1p0, t)dt, 
a!ZJ So a8 a Ip 

- --- ax [u(O), B~(ZL(O), TO, t), t, 01 @[u(O), &(do), 90, t ) ,  0 1  dL -I :id fl(u(O', 90, 0) 

Consequently i t  follows that  

ax (4.3) J=~Q/(U(O)) do(~~(0), TO, t), 1, O]O[ZL(~), BO(U(O), TO, t), oldt. 

Thus, from Theorem 1 follows 

Theorem 3. The real system (4.1) has a periodic solution i f  (4.2) has a real 
solution (rs"', ~ p ~ )  and J given by (4.3) does not vanish. 

For detailed study of stability, the assumption 2" about the differ- 
entiability of the right-hand sides of (4.1) is not sufficient. So, for (4.1), the 
assumption 2" is replaced by the stronger assumption: 
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Then 

x(u, F ,  t, E l ,  B(u, P, t, E )  E C;.p,e, 

consequently (3.5) and (3.4) can be written as follows 

ad1) ' * ( a ,  +, L, t )  = 1 + t--(u(O), yo, L)  + 0(tZ), ~ au 
ax(') I * ( 3 ,  @, L, I )  = t - ( r r ' O ) ,  yo, L) + 0(t2), , a y  a9 

ae + -(u'~), yo, L ) )  + O(tZ) .  
a? 

Then the matrix A given by (3.6) becomes 

(4.4) A=E+ &a+ O ( E ~ )  i Eb f O(&Z) 

- (6 + O(E)) t d  -I- 0(t2) 

=E-tA, 

i 
where E is a unit matrix and 

e l ( ~ ( 0 ) ,  yo, L) ao d=-- - (u(O),  yo, 0 )  + 2 ( d 0 ) ,  a6 yo, L). 
\ ~ ( u ' o ) ,  0 )  ae a9  

As is readily seen from (4.4), the characteristic equation of A is of the 
form 

Solving this quadratic equation, we have 
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Consequently the characteristic roots x of the matrix A becomes 

Now, for the periodic solution affirmed in Theorem 3, 

consequently, from (4.6), i t  follows that  
lo when &b8<0, in their absolute values, one of X's is less than 1 and the 

other is greater than 1 provided j &  j is sufficiently small; 
2" when &b6>0, 

consequently, provided j & / is sufficiently small, 

(i) 1x1 >1 when ~(a+d+b8)>0 ,  

(ii) 1x1 <1 when &(a+d+b6)<0. 

Thus we have 

Theorem 4. The periodic solution of (4.1) afirmed i n  Theorem 3 is  
(i) conditionally stable when &J< 0, 
(ii) stable when EJ> 0 and &(a +d f J) <0, 
(iii) unstable when&J>Oand&(a+d+J)>O. 

The stability i s  undecided when EJ> 0 and &(a+ d + b6) = 0. 

The quantities J and a + d + J are expressed in terms of do = eo(u(0), 90, t )  as 
follows : 

S ax 
(4.7) J= b6= - O, ----- (u'", 80, t, 0)dt . ae (do), do, t ,  O)dt, 

where 

In fact, the formula (4.7) is derived in the following way. 
From (2.8) and (2.17), i t  readily follows that  
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On the other hand, from (2.14), 

This can be rewitten as 

because ddo=@, dt and so is periodic in t modulus 2 m ~  with period L. Then, 
by the definition of 6, 

From (4.11) follows readily (4.7). 
The formula (4.8) is derived in the following way. 
First, from (2.8) and (2.18) follows 

where 

On the other hand, since 

for any 9 as is seen from (2.13), from (2.9), we see that  

(4.14) Bl(u'O', 9 ,  L) 
1 aH 

= ( u O  , 0 1 - ( u ( ' ) ,  00, 0) [ \ '  X(u(O', Bo(T), T, 0) d~]d t  ax 

but, here alone, do means 

do = dO(u(O), 9, i), 

1 N, =N(u(O), do, O)=N[U(O), eo ( ~ ( ~ 1 ,  9, L) ,  01. 
Then, making use of (2.17), we have: 
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where 

3 9  dfl = -(z&~), yo, 
a6 do, 0)lj" X(U(O), do(.), r. ~)dr]dt ,  - 0 

I 

1 ao ao 
- ( i . ' ~ ) ,  do, 0) ----G(O), do, o)[\' X(n(O), tlo(r), T ,  ~)ilr]i(i 

<I 1 ad ax 

dl3= s L  aeax (u(o), 00, o)[\' x (dO) ,  &(TI, T, o)dr]dt, 

1 ao "ax 
(4.16) ' df4 = -- --(u"', 60, 0) [\ H, -(u'", ~ o ( T ) ,  T, 0) d~]dt,  

H, ax ,I ad  

I 

Ho, 0) !?(u(O), do, t, O)dt, 
I 
1 ?f7 = l L  &(U(O), ae do, t, o)&. 

But, since 

&[A iiH(u(o), do, 011 
clt H,  ax 

- - 1 a61 ao a20 
- -- --(u('),  do, 0)-(do), Bo, 0) - I  , - ( d o ) ,  do, O), 

8, ad ax addx 

i t  readily follows by integration by parts that  

(4.17) S 1 a0 dl2 f df3= - -- --(u(O), do, 0) X(u(O), do, 1, 0) dt, 
61' a . ~  

for 

1: x ( ~ ( ' ) ,  do, t, ~ )d t=x '~) (n '~ ) ,  90 ,  L)==O 

by (2.15). 
Also, by integration by parts, i t  readily follows that 

Thus, by the definition of d, we have 
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This implies (4.8) evidently. 

5. Example 

As an example, let 3s apply our method to the second order differential 
equation 

(5.1) x'/ + g(x) = &f (x ,  x / ,  t ) ,  

where 
lo  E i s  a parameter such that I E 1 ( ( 1  ; 
2" g(x) and f ( x ,  x', t )  are four times continuously diferentiable with 

respect to (x ,x / )  i n  the domain: 

D:- <x, x', t< f m; 

3" f ( x ,  xt,t) i s  continuous with respect to t  i n  the domain D and i s  periodic 
i n  t with period To > 0 ; 

4" g(0) =0, gr(O)#O and xg(x) > 0 for any x f  0 ' ) ;  
The equation of the form (5.1) was discussed by A. M. Kau [ I ]  for the 

analytic case and also by W. S. Loud [2] in detail for special case where f= f(t). 
At first, by means of the transformation employed by M. Urabe 161 for 

discussion of the unperturbed equation 

we shall reduce the equation (5.1) to the system of the form (4.1). 
Writing (5.1) in a simultaneous form as 

we consider the transformation of ( x ,  y )  to ( X ,  y )  where 

For the function X(x) ,  i t  readily follows from the assumptions 2" and 4" that  

Consequently (5 .3)  can be solved reversely in x  as 

1) The assumption that xg(x) > O  for x i 0  implies g'(0) >O.  
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(5.6) 

Then, since 

by the definition (5.4), we see that  the system (5.3) is transformed to the 
system 

dy - - h ( X )  C &F(X, y, t), 17- 

where 

Further, let us put 

X=R cos 8, y=R sin 8, 

then, after simple calculations, we see that  the system (5.7) is reduced to the 
system 

I -- dR -&@(R, 8, I )  sin 8, 
j dt 

where 

@(R, 13, t) =F(R cos 0, R sin 8, t) E C i ,  s. 

But, from (5.7), 

C3X 
X 

and moreover, from the assumption 4" and (5.4), 

h(X) - g(%)>o for any X. x X(x> 

Thus we see that  the system (5.8) is the system of the form (4.1). 

For the system (5.9), Bo=Bo(u, p, t) is a solution of the equation 
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such that  

And the equations by which the first approximations (u(O), qo) of the initial 
values of the periodic solution are determined become 

[ 1: @[u, do(., Q, t) ,  t ]  sin e0di=O, 
, 

2" U cos e dB+ L=O. 
o h(u cos 0 )  

The quantities J and a+d+J are easily found by means of (4.7) and (4.8) 
after elementary calculations as follows: 

(5.13) J= 1' [h(R cos sin cos e R.u(o)dt 
R cos o ae )16=60 

7zf(R cos B)R cos 6'- h(R cos 6') 
RA(R cos d )  --I ~ = ~ ( o ) d t ,  e = o o  

(5.14) ac', 1 ac', a + d + ~ = \ :  [,sin a+- - 
R ae cos ~]~. ; . i~ ) i l t ,  a = 8 o  

where do means 

Now evidently the unperturbed system (5.2) has a periodic solution x=xo(i) 
with period Tl=L To such that  the values (u(O1, determined by 

( X[xo(O)] =do) cos Q o ,  

! x ' o ( ~ ) = u ( 0 )  sin po 

satisfy (5.12), if and only if there exists a real solution (u'", go) of (5.12) such 
that  u(O) > 0.  

Thus, from Theorms 3 and 4, we have 

Theorem 5. T h e  equat ion  (5.1) h a s  a periodic solut ion i f  the  unper turbed 
equat ion  (5.2) h a s  a periodic solut ion x=xo(t) w i t h  period Tl commensurable 
w i t h  To such tha t  the  values  (uiO)(>O), Q ~ )  de termined by (5.15) s a t i s f y  (5.12) a n d  
moreover i f  J g i ven  by  (5.13) does not  v a n i s h  f o r  these values  (u(O1, 9,). S u c h  a 
periodic solut ion i s  condit ionally stable w h e n  &J<O, a n d  i t  i s  stable or  unstable 
according a s  &(a+d+ J )  g iven  by  (5.14) i s  negat ive  o r  positive EJ>O. 

In the special case where f (x ,  x' t )=f ( t )  as in the case studied by W. S. 
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Loud 121, 

consequently the first equation of (5.12) turns out 

because 

(5.17) y=~'o(t)=u(0) sin do. 

Further, since 

xffo(t) = - 72(u(O) COS 80) 

follows from (5.17) and (5.10), in the present case, (5.13) and (5.14) turn out 

In the present case, for simplicity, let us assume further 

Then, as is seen from derivation of (4.11), (5.18) is equivalent to 

u ( O )  cos do hl(u(') cos do) 
- 1]dt#0, 

consequently the condition that  JS.0 is equivalent to 

Thus we have 

Theorem 6. The  equation (5.1) where f(x, x', t) = f ( t )  has  a periodic solution 
i f  the unper turbed sy s t em (5.2) has  a periodic solution x=xo(t) w i t h  period T 
commensurable w i t h  To such tha t  it satisfies (5.16), (5.18) and  (5.19) and  the  
values r.P" determined by (5.15) s a t i s f y  the la t ter  (5.12). S u c h  a periodic solution 
i s  condit ionally stable w h e n  &J<O. 

When &J>O, the stability of the periodic solution affirmed in this theorem 
is not yet decided by our theorems. For decision of the stability, the calcula- 
tion of the terms of the order higher than those calculated here will be 
needed. 

In conclusion, the author whishes to express his hearty gratitude to Prof. 
M. Urabe for his kind guidance and constant advice. 
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