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Introduction 

Let k be an  algebraically closed field of arbitrary characteristic and let 
CL(n, k) be the group of all automorphisms of an n-dimensional vector space 
V over k. As usual, we introduce the Zariski topology on the space of all endo- 
morphisms of V. For a subgroup G of GL(n, k), we denote by G* the closure of 
G in GL(72, k). Then G* is the smallest algebraic subgroup of GL(rz, k) containing 
G. In L81, by considering the fact that, for any connected complex linear Lie 
group H, the derived group of a group H* is contained in H, we introduced 
the notions of D"-subgroups and C"-subgroups of GL(n, k) in the following 
way. A subgrup G of GL(rz, k) is called a D"-group (resp. C"-group) provided 

where D"G* (resp. C"G*) is the intersection of all members of the series of 
the derived groups D G* (resp. the descending central series CG*) of a group 
G 6 .  

In [7 and 81, we introduced two kinds of "splittability" into subgroups 
of GL(n, k). I t  is well known that  an element x of GL(n, k) can be decomposed 
into the Jordan product, that  is, x is uniquely expressed as x=x,x, in such a 
way that  x, is semisimple, xu is unipotent and x,x,=x,,x,. A subgroup G of 
GL(r2, k) is called splittable [7] provided every element of G can be decomposed 
into the Jordan product in G. Then a connected Dm-subgroup of GL(n, k) is 
splittable if and only if one of its maximal solvable connected subgroups is 
splittable [8, Theorem 4.91. A D"-subgroup of GL(n, k) is called to have the 
(S)-property provided one of its maximal solvable connected subgroups, say R, 
satisfies the condition that  R=TR, for any maximal torus (that is, any maxi- 
mal connected commutative subgroup consisting of semisimple elements) T 
and for the invariant subgroup R, of all unipotent elements of R (see 18, 
Definitions 7.1 and 7.21). These two kinds of "splittability" are  possessed by 
an algebraic linear group [I, (9.2) and (12.9)] and a re  equivalent for a con- 
nected C"-group [8, Theorem 11.41. But each of them does not imply the 
other for a connected D"-group generally C9, Examples 1 and 21. 

A Cartan subgroup of a group G is a maximal nilpotent subgroup H such 
that  any invariant subgroup of finite index of H is of finite index in its nor- 
malizer in G r3, p. 1991. C. Chevalley [3, Chapitre VII and A. Bore1 [I, 
Chapitre V] investigated Cartan subgroups of a connected algebraic linear 
group and, in [8, Sections 9 and 121, we studied more generally Cartan sub- 
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groups of a connected Dm-group having the splittability and the (S)-property. 
The main purpose of this paper is to study Cartan subgroups of a con- 

nected D"-subgroup of GL(n, k) satisfying two conditions which are respec- 
tively weaker than the splittability and the (S)-property. 

In Section 1, we shall give some definitions and some fundamental proper- 
ties of subgroups of GL(n, k). In Sections 2 and 3, we shall generalize the 
fundamental results, known as the structure theorems, on a connected 
nilpotent and a connected solvable algebraic subgroups of GL(n, k) given in 
[I, Theorems 11.1 and 12.91 to a connected nilpotent splittable subgroup and a 
connected solvable splittable CW-subgroup of GL(n, k). Namely, a connected 
nilpotent splittable group is the direct product of a unique maximal torus 
and the invariant subgroup of all its unipotent elements (Theorem 2.4), and 
a connected solvable splittable C--group has the (S)-property (Theorem 3.5). 
In [8] we proved these results by using the corresponding results of alge- 
braic linear groups, but we shall give the proofs of these results which cover 
the proofs of the algebraic cases. 

In Section 4, being based on the results of Sections 2 and 3, we shall 
show the conjugacy of maximal solvable connected subgroups of a connected 
Dm-group G and a result on the connection of the maximal solvable connected 
subgroups of G and those of G* (Theorem 4.3), and we shall also show the 
conjugacy of maximal tori of a connected C"-group H (Theorem 4.6) and the 
connectedness of the centralizer of a torus of H (Theorem 4.8). In Section 5, 
we shall recall some known facts on the relation of the splittability and the 
(S)-property (Theorem 5.3). 

In Section 6, we shall introduce the following two conditions for a con- 
nected D "-subgroup G of GL(rz, k): 
(a) For one of the maximal solvable connected subgroups R of G, the closure 
of any maximal torus of R is a maximal torus of R*. 

(b) All maximal nilpotent connected subgroups of G are splittable. 
The (S)-property implies (a) but not conversely. The splittability implies (b) 
and, if G is a connected C"-group, (b) implies the splittability (Proposition 
6.15). We shall prove that, for a connected Dm-group G satisfying (a) and (b), 
a subgroup H of G is a Cartan subgroup of G, if and only if H is the centralizer 
of a maximal torus of G, and only if H is the intersection of G and a Cartan 
subgroup of G" (Theorem 6.9), which is a generalization of [I, Theorem 20.4 
and 8, Theorem 9.31. We shall also prove that, for a connected Cm-group G 
satisfying (a), a subgroup H of G is the centralizer of a maximal torus of G, 
if and only if H is the intersection of G and a Cartan subgroup of G*, and 
only if H is a Cartan subgroup of G (Theorem 6.12), which is a generalization 
of [8, Theorem 12.21. 

1. Preliminaries 

We here recall some definitions and fundamental properties of linear 
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groups given in [I and 81, and we note some lemmas and notations which 
will be used through the paper. 

1.1. Let k be an  algebraically closed field of arbitrary characteristic and 
let GL(n, k) be the group of all automorphisms of an n-dimensional vector space 
V over k. Let ,%f(12, F ; )  be the space of all endomorphisms of V, which may be 
considered as the space of all square matrices of degree 72 with coefficients 
in k. The elements of GL(~L, k) a re  the non-singular matrices of ilf(~z, k). We 
introduce the Zariski topology on Jf(rz, k) as usual. For a subgroup 4; of 
GL(rz, k), the closure of G in GL(72, k) is the smallest algebraic subgroup of 
GL(72, F ; )  containing G. We call the closure of G in GL(r2, k )  the closure of G for 
simplicity and denote i t  by G*. We mean by the dimension of G' the dimension 
of 6%. We always denote by e the identity automorphism in CL(r2, k). 

1.2. F o r  a subgroup G of GL(72, k), w e  denote by Go the  connected component 
of  the  i d e n t i t y  element e of  G. T h e n  Go i s  a n  i n v a r i a n t  closed subgroup of 
f ini te  i n d e x  o f  G'. Go i s  the  u n i q u e  closed connected s u b g ~ o u p  of  f ini te  i n d e x  of  
G. 

G i s  connected i f  and  only  i f  G i s  irreducible,  and  i f  a n d  only i f  G* i s  con- 
nected. 

In fact, as  is well known, G is the union of a finite number of the ir- 
reducible closed subsets of G. If we denote by dl, (i-1, 2, , m )  the irreducible 
components of G such that  h1,f &?/II for if 1, and if we denote by A%- the closure 
of &Ic in GL(n, k), then 

is the irredundant decomposition into the irreducible closed subsets of G* and 
i l J&=Gn  nfL- (e.g., see [5, pp. 35-361). By using the fact that  G (resp. G") is 
a group, i t  can be easily seen that  these 11f> (resp. ?I,-) are disjoint (see r10, 
(2.1)). Therefore C is connected if and only if 12 is irreducible, and if and 
only if G' is connected. Let Illl contain e. Then i t  is immediate that  A l ,  is 
invariant by %--.%-I, ~- fyxy- l  with y in G, z+xz and x + z ~  with z in M I .  Hence 
,V1 is an  invariant subgroup of G and M,'s with i-1 are  the cosets of fill. 
Thus Ill=G, and J1l--(GC)o. Finally, if M is a connected closed subgroup of 
finite index of G, then IICGo and V is of finite index in Go, whence M-Go. 

1.3. I f  hl a n d  i\; are  subgroups of  GGL(rz, k) and  i f  91 normal i z e s  ( resp .  cen- 
t ra l i zes)  1V, t h e n  !PIx normal izes  ( r e sp .  centralizes)  ~7~'::. 

In fact, if ~ l h - ' = N  for any x in Al, then x N"x-l=N" since y - .xy~-~  
(r E GL(r2, k)) is continuous. The normalizer of 1IT" is algebraic, whence f l y - '  
=iV" for any y in M*. If M centralizes AT, let J be the mapping (x, y)+xy.x-ly-l 
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of GL(n, k) x GL(72, k) into GL(72, k). Then f-'(e) is algebraic and contains M x  N, 
whence i t  contains the closure M* x N*. Therefore M* centralizes N*. 

1.4. Let G be a subgroup of GL(72, k). For any x and y in G, we denote 
by [x, y] the commutator xyx-'y-l of x and y, and for subsets M and N of G, 
we denote by [M, N] the group generated by the commutators [x, y] with x 
in M and y in AT. We define inductively the series of derived groups 

and the descending central series 

Ci4;= [G, Ci-lG] (COG=G, i=O, 1, 2, . . . )  . 

P u t  

DsG= n DiG and C"G= n C G .  

G is called solvable (resp. nilpotent) provided there exists j such that  DjG= {e) 
(resp. CjG= {e)). 

If G is algebraic, then we have 

DwG=DIG and C"G=CjG 

for a sufficiently large integer j. This is immediate by considering the dimen- 
sion of D G and CG. 

(1) G is  solvable (resp, nilpotent, commutative) if and only if G* is  solvable 
(resp. nilpotent, commutative). 

(2) If G is  connected, then D G and C G for i> 0 are all connected. 
In fact, if H a n d  L are invariant subgroups of G, let f be a mapping of 

GL(t2, k) x GL(n, k) into GL(77, k) defined by f(x, y)=[x, y]. Then f l ( [H,  LI*) is 
algebraic and contains N Y L, whence i t  contains the closure H* x L". Hence 
EH*, I;*] < [H, LI*. Since H w  and L* are invariant subgroups of G* by (1.3), 
i t  is known that  [HA, L"] is algebraic (see C4, 3-04]). Therefore [H*, L*]= 
[H, L]' . If H and L are furthermore connected, then H* and L" are irreducible 
by (1.2). Then i t  is known 12, p. 1221 that  IIH*, L*] is irreducible. By (1.2) 
we see that  [ H ,  LT,1 is connected. (1) and (2) are immediate from these facts. 

1.5. Let M and N be subgroups of GL(t2, k) such that M i s  contained i n  the 
normalixer of N. Then MN i s  a group and (AIAi\:):"=hf*N*. If M and N are 
connected, then JflV is connected. 

In fact, i t  is clear that  MN forms a group. First suppose that  M and N 
are  connected. Then they are irreducible, whence M x  N is irreducible. Let j 
be a mapping of GL(12, k )  x GL(72, k) into GL(12, k )  defined by f (x, y) =xy. As the 
image of M x  N by f, we see that  A!lN is irreducible and therefore connected. 
Next suppose that  M and AT are not necessarily connected. Since M* is in the 
normalizer of N* by (1.3), (M*)o is in the normalizer of (N*),. Since (M")O(N*)o 
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is the image of (M*),  x (N*)o by f and forms a group, i t  is known that  (M*),(N*), 
is algebraic. (M*)o(N*)O is connected by the first case. But M*N* is a group 
which is the union of a finite number of the sets X(M*),(N*),~ with x in M* 
and y in N*. Therefore M*N* is algebraic, whence (.UfhT)*=M*N". 

1.6. Let G be a subgroup of GL(rz, k). G is called [8, Definitions 4.1 and 
6.21 a D"-group (resp. Ca-group) provided 

D"G* < G (resp. CaG* < G). 

If G is a D"-group, then we have D"G" =LPG* < G for some integer j ,  whence i t  
follows that  

An element x of GL(n, k) can be urliquely expressed as x=x,x,, where x, is 
semisimple, x ,  is unipotent, and x,x,,=x,x, [2, p. 71 and p. 1841. x ,  and xu are  
called the semisimple and unipotent components of x respectively, and x , ~ ,  is 
called the Jordan product decomposition of x. G is called splittable C7, p. 2991 
provided the semisimple and unipotent components of any element of G belong 
to G. 

We call a subgroup G of GL(rz, k) a torus provided G is commutative, is 
connected and consists of semisimple elements. By using Zorn's lemma, we 
see that  any subgroup of GL(r2, k) has maximal tori. 

1.7. Let G be a connected subgroup of GL(72, k). Let A be a connected 
subgroup of G and let B be a connected invariant subgroup of G. G is called 
the semi-direct product of B by A provided G=AB, A*nB*= {e} and the map- 
ping 7 :  (a, b)+ab of A* x B" into G* is birational. If A is furthermore an in- 
variant subgroup of G, then G is called the direct product of A and B. 

1.8. Let Jf be a commutative subset of h1(7z, k). Then there exists an 
element x of GL(n, L) such that  

where each iV, has the unique characteristic root and the coefficients 0 under 
the principal diagonal. All semisimple elements of x J ~ x - '  a re  diagonal [6, 
Lemma 1 or 1, (6.4)]. 

1.9. Let D(Iz) denote the set of all diagonal elements of GL(71, k). Then 
a connected algebraic subgroup of D(n) of dimension nz is isomorphic to the 
direct product of m copies of the group consisting of all elements of k except 
0 C1, (7.5)]. By making use of this fact and (1.8), i t  can be proved that, for an  
element x of GL(72, k), the semisimple and unipotent components of x belong to 
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the  smallest algebraic group containing x [I, (8.4)]. Therefore every algebraic 
subgroup of GL(n, k) is splittable. If a subgroup G of GL(n, k) is splittable, then 
every closed subgroup of G is splittable as the intersection of two splittable 
groups. 

1.10. Let G be a connected solvable algebraic subgroup of GL(rz, k). Let 
a complete subvariety 17 of k"9e  a space of transformations for G, that  is, let 
there exist an everywhere defined rational mapping F: (x, P)+x(P) such that  

x(xt(P)) = (xxf)(P) and e(P) = P 

for any x, xt in G and any P in It7. Then there exists a point of 18 fixed by G 
[I, (15.7) or 4, 5-14]. 

As an immediate consequence of this fact, we have Lie-Kolchin's theorem 
that ,  for a connected solvable algebraic subgroup G of GL(rz, k), there exists an 
element x of GL(rz, k) such that  is in triangular form [I, (16.4)j. The 
theorem is true for any connected solvable subgroup of GL(72, k), since its 
closure is a connected solvable algebraic group by (1.2) and (1.4). 

1.11. Let G be a subgroup of GL(rz, k). We call a representation f of G 
rational provided there exists a representation f * of G* whose restriction to G 
is f and whose restriction to (G*)o is an  everywhere defined rational mapping. 
For simplicity, we shall sometimes write f in place off". 

Let f be a rational representation of G. Then i t  is known [2, p. 1221 that, 
if G is especially an algebraic group, then f(G) is an  algebraic group. From 
this fact and the continuity off ,  we have generally 

If G is a Dm-group (resp. Cx-group), then f(G) is a Dm-group (resp. Cm-group). 
Indeed, if G is a D"-group, then by (1.4) there exists an integer j such that  

Dxe* =DjG* and D" f (G*) = DjJ(G*), 

whence 

that  is, ,,'(4;) is a D"-group. Similarly we have the statement for Cm-groups. 
If x is a semisimple (resp. unipotent) element of $1, then f(x) is a semi- 

simple (resp. unipotent) element of j (G)  [I, (9.5)]. Therefore, if C is splittable, 
then f(G) is splittable. 

I t  is well known that, for an  algebraic subgroup H of GL(r7, k) and an 
invariant closed subgroup N of H, there exists a rational representation of H 
with ili as its kernel [I, (5.10)]. 

1.12. Let G be a subgroup of GL(n, k) and let f be a rational representation 
of G. If G is connected, then f(G) is connected. Indeed, G* is irreducible by 
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(1.2), whence f(G*) is irreducible [2, p. 1211. Since f(G*)= f(G)" by (1.11), i t  
follows from (1.2) that  f(G) is connected. 

Le t  f *  be a ra t ional  representat ion  o f  G" whose res tr ic t ion  to  G i s  f, and  let 
N1 a n d  N be respectively the kernels o f f  * and  f. I f  f(G) i s  connected, a n d  i f  

(1) iV i s  connected and  N=hTf, or  
(2) N i s  connected and  N" = N  or 
(3) N' i s  connected, 

t h e n  G i s  connected. 
In fact, (1) implies (2) and (2) implies (3). Suppose that  f(G) is connected 

and that  ( 3 )  N1 is connected. Since f (G k, = f (G)", f (6") is a connected algebraic 
group. But f((G*)o) is a connected closed subgroup of finite index of f(G"). 
Hence, by (1.2), we have 

f (G") =j((G*)o). 

Since N'C  (G*)o, i t  follows that  G*=(G")o, that  is, 6" is connected. Hence, by 
(1.2), C; is connected. 

1.13. For a subgroup G of GL(77, k), the set of all semisimple (resp. uni- 
potent) elements of G is called the semisimple (resp. unipotent) part  of G and 
is denoted by G, (resp. G,,). We denote by Z(G) the center of G. Let 39 be a 
subset of GL(rz, k).  We denote by 7~(J1) (resp. rz"(Jf)) the normalizer of JI in G 
(resp. G") and by z(A4) (resp.  ill)) the centralizer of Jf in C (resp. G"). Their 
connected components of the identity element e a re  called respectively the 
connected normalizer and the connected centralizer of Jf in G (resp. G"). 

1.14. Le t  G be a t r iangu lar  subgroup o f  GL(7r, k).  Le t  H be a subgroup o f  
G consist ing o f  semis imple  elements.  T h e n  H i s  commuta t i ve  and  72(H)=z(H). 

In fact, if x is in 72(H), then, for any y in H, ~ ~ x - ~ ~ - ~  is in H and therefore 
semisimple. Since 6; is triangular, i t  is unipotent. Therefore xY.3,x-ly-l=e, 
whence x is in z(H). I t  is now evident that  H is commutative. 

2.  Nilpotent groups 

We begin by generalizing [I, Theorem 9.11: 

LEMMA 2.1. Le t  G be a connected commuta t i ve  splittable subgroup o f  GL(77, k). 
T h e n  6, and  G:, a r e  connected closed subgroups o f  G, and  G i s  the direct  product 
o f  G3 and  G,. (G,)"=(G"), a n d  (G,)"=(G'YU. 

PROOF. I t  is immediate that  G, and G, a re  subgroups of G, G , n G , =  {e), 

and G=G,G,,. Since the fact tha t  a matrix is unipotent can be expressed by 
algebraic condition, (G,,)" consists of unipotent elements. Therefore (C,,)"n 

G=G,, and G,, is a closed subset of G. By (1.8), there exists an element x of 
GL(7z, k) such that  Gf=xG'x-I is in triangular form in such a way that  G', < D(7z). 
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Therefore 

(G',)" r\ G' < D(rz) r\ G' = G',, 

whence G', is a closed subset of G'. Since G,=x-'G',x, i t  follows that  G, is a 
closed subset of G. By (1.5), we have G*=(G,)*(G,,)*. Since G* is splittable 
and commutative by (1.4) and (1.9), (G*), and (G*), are  closed subgroups of G* 
and G*=(G*),(G"),. Hence (G,)* < (G*), and (G,,)" C (G*),, from which i t  follows 
that  

(G,)* = (G*), and (GJ* = (G*),. 

Since G'* =xG"x-' and since 

y, =x-'(xyx-'),x and y,=x-l(xyx-l),x (y E G*), 

y+y, and y-ty, are  rational representations of GX. As their images of a con- 
nected group G, G, and G, are  connected. I t  is now immediate that  G is the 
direct product of G, and G,L, completing the proof. 

As an immediate consequence of the lemma, we have 

COROLLARY 2.2. A subgroup o f  GL(n, k )  i s  a t o rus  i f  a n d  on ly  i f  i t s  closure 
i s  a torus .  

L E ~ I ~ ~ A  2.3. Le t  G be a t r i a n g u l a r  subgroup o f  GL(n, k). T h e n  G, i s  a closed 
i n v a r i a n t  subgroup of  G. I f  G i s  connected a n d  splittable, t h e n  G, i s  connected. 

PROOF. Since DIG < G,, G, is an invariant subgroup of G. Since (G,)" con- 
sists of unipotent matrices, we have G,=Gn(G,')*, that  is, G, is a closed subset 
of G. Now suppose that  G is connected and splittable. Let f* be a rational 
representation of G" with (DIG)* as its kernel, and let f be the restriction of 
f* to G. Then f(G) is connected, commutative and splittable by (1.11). There- 
fore i t  follows from Lemma 2.1 that  f(G), is connected. By (1.11) we have 
f (G,,) = f (G),,. The kernel of the restriction of f* to (G,)" is (DIG)" and there- 
fore connected by (1.4). Hence, by (1.12) we see that  G, is connected, com- 
pleting the proof. 

We can now prove the following theorem generalizing [I, Theorem 11.11: 

THEOREM 2.4. Le t  G be a connected splittable n i lpotent  subgroup o f  GL(rz, k). 
T h e n  G, i s  a connected central  closed subgroup o f  G, G, i s  a connected i n v a r i a n t  
closed subgroup o f  G, a n d  G i s  the  d irec t  product  o f  G, a n d  G,', a n d  w e  have 

(G,)" = (G*), a n d  (G,)" = (G*),. 

PROOF. If G is commutative, the theorem follows from Lemma 2.1. Hence 
we may assume that  G is not commutative. Suppose that  the theorem is 
proved for any connected splittable nilpotent group whose dimension is less 
than that  of G, and we prove that  G, is a connected central closed subgroup of 
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G. Let C be the connected component of the identity element of the center 
Z(G) of G. Then dim C >  0. By Lemma 2.1, C, and C,, a re  connected closed 
subgroups of C and C is the direct product of C, and C,,. If C,f {e) (resp. 
C,# {e)), then there exists a rational representation f " of G* with (C,)" (resp. 
(C,)") as its kernel since (C,)" (resp. (C,)") is a connected central subgroup of 
G" by (1.3). Let f be the restriction of f*  to G and put G'= f(G). Then the 
kernel of f is C, (resp. C,) and G' is a connected splittable nilpotent group 
whose dimension is less than dim G. Therefore, by our supposition, G' is the 
direct product of the connected invariant closed subgroups G', and GI,. 

In the case where C,f {e), f -'(Gf,) is an  invariant subgroup of G, which is 
a closed subset of G by the continuity of f. Since the kernel of f is C,, we 
have f -l(G",)=G,. Hence G, is an invariant subgroup of G. Since G can be put 
in triangular form (1.10), G, is central in G by (1.14). f(G,) is connected and 
the kernel of the restriction of f" to (G,)" is connected since i t  is equal to 
(C,)". Hence by (1.12) we see that  G, is connected. Thus G, is a connected 
central closed subgroup of G. 

In the case where C,f {e), let s be any semisimple element of G and let x 
be any element of G. Then J(s) is semisimple by (1.11). By our supposition, 
we see that  f(s) is central in G', whence 

X S X - ~ = S U  with u in C,'. 

Since su is clearly the Jordan product decomposition of xsz-l, we see that  
xsx-'=s, that  is, s is in Z(G). Thus G, is the semisimple part  of Z(G). It fol- 
lows that  G, forms a group. Since Z(G) can be triangulated in such a way that  
Z(G), < D(rz) by (1.8), (G,)" consists of semisimple elements. I t  follows that  G,$ 
is a closed subset of G. f(G,) is connected since i t  is equal to G', by (1.11), and 
the kernel of the restriction of f" to (G,)'Vs equal to {e). Hence, by (1.12), 
we see that  G, is connected. Thus G, is a connected central closed subgroup 
of 4;. 

Since G may be triangulated, by Lemma 2.3 we see that  G,, is a connected 
invariant closed subgroup of G. Since G is splittable, we have G=G,G,, and 
therefore G" = (G,)"(G,')" by (1.5). G" is connected, splittable and nilpotent by 
(1.2), (1.4) and (1.9). Therefore, as  proved above, (G"), is a central closed 
subgroup of G" and G* = (G"),(G"),. Hence (G,)" < (G*), and (C,,)" < (G"),,, from 
which i t  follows that  

(G,)" = (G"), and (6,)" = (G*),. 

Let T be a mapping of (G,)" x (G,)" into G" defined by ~ ( s ,  u)=su. Since 
(G,)" centralizes (G,,)'" i t  is immediate that  there exists an element x of GL(rz, F;) 
such that  x(G,)*x-l is diagonal and x(G,)"x-l is in triangular form with coef- 
ficients 1 on the principal diagonal. Then s is the diagonal part of ~ ( s ,  u)=g. 
Therefore u is rationally expressed by g,  whence T-I is a rational mapping. 
Hence G is the direct product of G, and G,,. Thus the theorem is proved. 
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COROLLARY 2.5. Le t  G be a connected nilpotent  subgroup of  GL(rz,'k). T h e n  
G, i s  a central  subgroup of G. G i s  splittable i f  and  only  i f  G contains  a t o r u s  
T such tha t  G = TG,'. 

PROOF. Let GI be the smallest splittable subgroup of GL(n, k) containing 
G. Since G < GI < G*, by (1.2) and (1.4) we see that  GI is connected and nilpotent. 
By Theorem 2.4, (GI), is central in GI. Hence G, is a central subgroup of G. 
If G=TG',, with T a torus, then i t  follows that  T is central in G. Hence i t  is 
immediate that  G is splittable. The converse is evident by Theorem 2.4. 

L E ~ ~ I A  2.6. Le t  G be a n  algebraic to rus  of GL(n, k) and  let H be a subgroup 
of  G. I f  a n  au tomorph i sm a of  j ini te order 7n o f  G induces  the  i d e n t i t y  o n  H 
and  G/H, t h e n  a i s  the i d e n t i t y  au tomorph i sm [I, (11.5)]. 

PROOF. AS a consequence of (1.9), we see that, for an  integer q which is 
prime to the characteristic of k, the set of all elements of order qi(i=l, 2,3,.  . .) 
of G is dense in G. Hence i t  suffices to prove that, for any integer r which is 
prime to nz, a induces the identity automorphism on the subgroup G, of G con- 
sisting of the elements of order r. If x is in G,, then a(x)=xz with z in HAG,. 
Therefore a'(x) =xz"i= 1 ,2 ,3 , .  . .), whence zm =e. Since n2 is prime to r, we have 
z=e,  that  is, a is the identity on G,. This completes the proof. 

By using Theorem 2.4 and Lemma 2.6, we prove the following 

PROPOSITION 2.7. Le t  G be a nilpotent  subgroup of  GL(n, k). T h e n  the  semi-  
s imple  part  of Go i s  in the center o f  G. 

PROOF. Since G* is nilpotent by (1.4), i t  suffices to prove the theorem 
when G is algebraic. Suppose that  G is algebraic and let x be any element of 
G. Since Go is splittable, by Theorem 2.4 Go, is a connected central closed 
subgroup of Go and therefore is invariant in G. Pu t  a(s)=xsx-'(s E Go,) If we 
denote by nt an integer such that  x"' is in Go, then a is an automorphism of 
order nz- of Go,. (CiG)o, is an algebraic torus by Theorem 2.4 and a induces the 
identity automorphism on (C'G)os/(Ci+lG)os. Hence, by using Lemma 2.6, we 
see that  a is the identity on Go,s. Thus x centralizes Go,, which shows that  
Go, C Z(G'). The proof is complete. 

3. Solvable groups 

PROPOSITION 3.1. Le t  G be a connected solvable subgroup of  GL(72, k). T h e n  
G, i s  a closed i n v a r i a n t  subgroup o f  G. I f  G i s  splittable, o r  i f  G contains a 
to rus  T such tha t  G= TG,L, t h e n  G, i s  connected and  (G,,)" =(G*),'. 

PROOF. By Lie-Kolchin's theorem (1.10) and (1.11), we may suppose that  
G is triangular. The first part follows from Lemma 2.3. Since G* is connected 
and triangular, (G*), is a closed subgroup of G*, whence (G,,)" < (G*),. 

If G is splittable, G, is connected by Lemma 2.3. By (1.3), (G,)* is a con- 
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nected invariant subgroup of G*, whence there exists a rational representation 
f of G* with (G,)* as its kernel. If we put G f =  f(G), then G' is a splittable con- 
nected solvable group. Therefore G' can be triangulated by (1.10) and consists 
of semisimple elements by (1.11), whence i t  follows from (1.14) that  G' is com- 
mutative. Thus G' is a torus and therefore GI* is a torus by Corollary 2.2. 
Now, for any element x of (G"),,, we have f(x)=e, whence x is in (G,)*. Thus 
(G*), < (Q;,)" and therefore (G"),=(G,)". 

If G =  TG,, with a torus T, by (1.5) we have G* = T*(G,,)*. Since (G,,)" < (G"),,, 
i t  follows that  

(G*), - (T*n  (G*),,)(G,)" = (G,)". 

Since G" is connected and splittable, Lemma 2.3 tells us that  (G*),, is connected. 
Hence, by (1.2), we see that  G, is connected, completing the proof. 

LEMMA 3.2. Le t  G be a subgroup o f  GL(n, k) and  let T be a t o r u s  of  G. T h e n  
the  set of  all elements o f  T whose centra l i zers  in G are  equal to  the  centra l i zer  
of  T in G conta ins  a non-empty  open subset of  T. 

PROOF. By (1.8) we may suppose that  T is diagonal. An element %=(xi,) 
of GL(Iz, k) centralizes an element t=(ti) of T if and only if xij=O for ti#tj. 

Let U be the set of all elements s=(si) of T such that  si# si if ti+ ti for some t 

in T. Then any element of U has the centralizer equal to that  of T in GL(n, k) 
and therefore in G. Thus we have the statement. 

LEMMA 3.3. Le t  G be a n  algebraic subgroup of  GL(n, k).  Le t  N be a connected 
commuta t i ve  closed i n v a r i a n t  subgroup of  G consist ing o f  un ipo ten t  elements,  
a n d  let x be a s emi s imp le  element o f  G. Le t  F, be the  set of  all elements o f  AT 
c o m m u t i n g  w i t h  x, a n d  let M, be the  i m a g e  of  N by the  m a p p i n g  f, : y+ [x, y]. 
T h e n  N=F,M,, F,nhfz= {e), F, i s  connected, a n d  f, i s  a m a p p i n g  o f  Af, onto Af, 

[I, (9.8)1. 

PROOF. ,f, is a rational representation of N whose kernel is F,. Suppose 
that  [x, a ]  with a in AT is an  element of F,nlMx. Then, if we put fl(y)=[y, a ]  
for y in the smallest algebraic group H containing x, i t  can be seen that  f" is a 
rational representation of H into F,. Hence ff(x) is semisimple and therefore 
f '(x) =e. Thus F,nAfz = {e) . Since is connected and f,(JL) < M,, we have 
f,(tfL)=AK by considering the dimension. (Fz)oAfr is a closed connected sub- 
group of finite index of Nand  therefore, by (1.2), we have N=(F,)odfz. I t  fol- 
lows that  F, = (F,),, whence F, is connected and hT= FzMz, completing the proof. 

LEMMA 3.4. Le t  G be a connected solvable subgroup of  GL(77, k) whose uni- 
potent par t  G,, i s  commuta t i ve .  Suppose  tha t  G conta ins  a t o rus  T such t h a t  
G=TG,', a n d  let x be a s emi s imp le  element of  G. T h e n  there ex is t s  a n  element u 
o f  (G*), such tha t  uxu - I  i s  in T. 

PROOF. Since G" is connected and solvable, by Proposition 3.1 we see that  
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(G*), is a connected closed invariant subgroup of G* and (G,)*=(G*),. I t  fol- 
lows from (1.4) that  (G*), is commutative. We can write x=tz with t in T and 
z in G,. By applying Lemma 3.3 for t-l  and (G*),', we have 

and y+ [ t - l ,  y] is a mapping of MC-1 onto 111,-I. Therefore there exists an 
element u of (G*), such that  [t-l, u] =m-l. Now we have utu-l =tm-I, whence 

Since tf=,fi, if is the Jordan product decomposition of uxu-l, whence ZLXU-~=L.  
Thus uxzs-I is in T, completing the proof. 

We now generalize the structure theorem of connected solvable algebraic 
subgroups of GL(72, k) [I, Theorem 12.91 in the following 

THEOREM 3.5. Le t  G be a connected solvable splittable C"-subgroup o f  GL(r2, k). 
T h e n  m a x i m a l  t o r i  o f  G are  conjugate by the  elements of  CmG*. F o r  a n y  m a x i -  
m a l  t o r u s  T of  6, G i s  the  semi-direct  product of  G, by T. 

PROOF. If G is nilpotent, the statement is proved in Theorem 2.4. There- 
fore we suppose that  C"G*# {e) and G#G,. We prove the theorem by in- 
duction on dim G. Let f* be a rational representation of G* with C"G* as its 
kernel and let f be the restriction of f *  to G. Then f(G) is a connected nil- 
potent splittable group. By Theorem 2.4, we see that  f(G) is the direct product 
of f(G), and f (G'),,. Let T ,  and T2 be maximal tori of G. Then f (T,) C f (G), 
(;=I, 2). 

Suppose that  j(G),f {e) . Put  H = f -l(f(G),). Since f (G), is a connected 
central closed subgroup of f(G), H is connected by (1.12) and is obviously a 
connected closed C"-subgroup of G. H is splittable as a closed subgroup of a 
splittable group 4;. And dim H<dim G. Hence, by induction hypothesis, TI 
and T2 are conjugate by an element of C"H* and therefore of C"G*. Since 
f(G,,)=f(G), by (1.11), we have G=HG,, and therefore 

Now suppose that  f(G),= {e). Then ;(G) is a torus by (1.14) and therefore 

C"G * = G,, . 
We shall first prove that, for any maximal torus T of G, J(T) is dense in f(G). 
Assume that  [(T) is not dense in f(G). Pu t  M=S-'(j(T)). Then Al is con- 
nected by (1.12) and is obviously a solvable C"-subgroup of C. Since G is split- 
table, i t  is immediate that  M is splittable. For any element x of G, we have 
x-lTx < M since f(G), is central in f (G) and contains f (T). Thus T and 
are maximal tori of ilF. Since dim M<dim G, by induction hypothesis there 
exists an element m of M such that  
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whence x m  belongs to 7 4 7 ' ) .  Since n(7') =z(l') by (1.10) and (1.14), i t  follows 
that  xm is in ~(2'). Therefore C;=z(l')M. Since M-TM,, by induction hypothe- 
sis, we have 

Since ~ ( 7 ' ) ~  is a closed subset of z(T) by (1.2) and ~(7 ' )  is a closed subset of C; by 
(1.3), z(T), is a closed subset of C. Since G ,  is algebraic, i t  is immediate that  
z(7'),C, is a closed subgroup of finite index of G, whence by (1.2) we have 

z(T), is splittable as a closed subgroup of a splittable group C. By (1.3) we 
have 

that  is, z(T),, is a Cx-group. If dim z(T), <dim G, we have ~ ( 7 ' ) ~ )  -= T(z(T),,),, by 
induction hypothesis, whence G =  TG, and therefore ,j"(G)-f(T), which is a con- 
tradiction. Therefore dim z(T),===dim C. We have (z(T),)*=C"'. Since z ( T ) ~  
is a closed subset of C, i t  follows that 

Then 7'* is an invariant subgroup of G*. Hence there exists a rational re- 
presentation g* of G* with T* as its kernel. Let g be the restriction of g* to 
C and put C'-g(G). Then dim G'<dim G. By induction hypothesis, we have 

Gr=S'(G'), for a maximal torus S' of G'. 

(g-l(S'))o is a subgroup of G and consists of semisimple elements since the 
kernel of g is T. I t  follows from (1.14) that (g-l(S'))o is a torus of G, which 
obviously contains 1'. By the maximality of T, we have (g-'(S1)),-2'. S' is 
therefore a finite group, whence Sf=== {e') (e' the identity element of G'). There- 
fore we have 

G' = (G'), =g(G,,). 

I t  follows that  G = X,', whence f (C) -f(T), which contradicts our assumption. 
Thus we conclude that ,/(T) is dense in f(G). 

Now, since 1 is continuous, we see that 

Hence G* = T,*G, and therefore 

G - ( G n  Ti*)GUy= T;C, ( i=l ,  2). 
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To prove the conjugacy of Tl and TZ, we consider the following two cases 
separately. 

(1) In the case where G,=CmG* is not commutative, let g* be a rational 
representation of G* with DIG,, as its kernel, and let g be the restriction of g* 
t o  G. Then 

It follows that  g(Ti) is a maximal torus of g(G). Since g(G) is a connected 
solvable splittable Cm-group and since C"g(G)*=g(CmG*), by induction hy- 
pothesis there exists an element x of CmG* such that  

Hence x ~ ~ x - l  C ~ - ' ( ~ ( T ~ ) ) .  By (1.12) we see that  g-l(g(~,))  is connected. Thus 
it is a connected splittable C"-group which has smaller dimension than G. 
Therefore, by induction hypothesis, there exists an element y of C"G* such 
tha t  y ( ~ ~ l x - l ) y - l  = T2. Thus T, and T, are conjugate by an element of C"GX. 

(2) In the case where G,,=C"GX is commutative, by Lemma 3.2 we see 
tha t  there exists an element t1 of T1 such that  z(tl)===z(T1). Since G=T2G,, i t  
follows from Lemma 3.4 that  there exists an element u of G, such that  utlu-' 

is in T,. Therefore 

whence ZLT~U-' and TZ generate a torus of G. By the maximality of TI and Tz, 
we conclude that  uTl u-I = T, . 

Thus i t  remains only to prove that  G is the semi-direct product of G, by 
any maximal torus T. By Lie-Kolchin's theorem, we may suppose that  G is 
in triangular form. Since D(12) is a maximal torus of the triangular subgroup 
of GL(t2, k), by the fact proved above there exists an element a of GL(72, k) such 
that aG*a-l is triangular and aTXa-I C D(72). Since G=TG,,, we have 

by Proposition 3.1. The mapping 7: (i, rs)+iu of T*  x (G*), into G* is an in- 
jective rational mapping. I t  is clear that  7 is surjective. t is the diagonal 
part  of ~ ( t ,  U)=X and therefore u is rationally expressed by x. Hence T is an 
everywhere defined birational mapping. Thus G is the semi-direct product of 
G ,  by T. The theorem is completely proved. 

COROLLARY 3.6. L e t  G be a connected solvable Cm-subgroup  of GL(72, k) .  T h e n  
m a x i m a l  t o r i  of  G a r e  c o n j u g a t e  by t h e  e l e m e n t s  o f  C"GX. 

PROOF. Let GI be the smallest splittable group containing G. Since 
G < G1 < G*, G1 is a connected solvable splittable Cm-group. For maximal tori TI 
and TZ of G, let Q1 and Q2 be maximal tori of G1 containing T1 and T2 respec- 
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tively. Then we have 

Tl=(GnQl), and T2 =(GnQ&. 

By Theorem 3.5, there exists an element x of C"G* such that  xQlx-l=Qz. 
Therefore 

whence xTlxel= TZ. 

COROLLARY 3.7. Le t  G be a connected solvable splittable C"-subgroup of  
GL(r2, k) and  let f be a ra t ional  representat ion  of G. I f  T i s  a m a x i m a l  to rus  o f  
G, t h e n  f(T) i s  a m a x i m a l  to rus  of f(G); and  conversely. 

PROOF. If T is a maximal torus of G, then we have G= TG, by Theorem 
3.5, whence 

Since f(T) is a torus, i t  follows that  f (T) is a maximal torus of f (G). Con- 
versely, let T' be a maximal torus of f(G). Since f(G) is a connected solvable 
splittable C"-group and f(C"G*)=CXf(6;)*, i t  follows from Theorem 3.5 that  
there exists an element x of CXG* such that  

Hence Tf=f(xTx-l), where xTn-l is obviously a maximal torus of G, com- 
pleting the proof. 

LEMMA 3.8. Le t  G be a connected solvable C"-subgroup of GL(72, k ) .  Le t  T be 
a m a x i m a l  to rus  of G. 

(1) Le t  J be a ra t ional  representat ion  of G. T h e n  f(z(T)) i s  the centralizer 
o f f  (T) in f (G). 

(2) G=z(T) (C-G*). 

PROOF. P u t  C=z(T) and let C' be the centralizer of j (T)  in f(G). Then i t  
is clear that  f (C) < C'. Conversely, let f(x) with x in G be an element of C'. 
P u t  H=(f-l(S(T)))o. Then i t  is immediate that  H is a C"-group. Since T< H, 
we have f (H) = f (T), whence H < TlV where N denotes the kernel of f .  We have 
xTx-l < H. Therefore, by Corollary 3.6, there exists an element Iz of H such 
that  xT~-l=h- lTl~.  If we write 

12 = L I Z  with t in T and 72 in AT, 

then ~Tx-l=ra-~Trz, whence (nx)T(rz.x)-l=T, that  is, 7zx normalizes T. I t  follows 
from (1.14) that  72x centralizes T. Since f (x)==~(~zx), f (x) is in f (C). Therefore 
we have C' C f (C), whence C'- f (C). 

Let g be a rational representation of G with C"G* as its kernel. Then 
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g(G) is nilpotent and connected. Therefore, by Corollary 2.5, the centralizer 

of g(T) in g(G) is g(G). By the first part, we have g(z(T))=g(G). Hence G =  
z(T) (CwG*), completing the proof. 

PROPOSITION 3.9. Le t  G be a connected solvable splittable C"-subgroup o f  
GL(72, k) a n d  let x be a s emi s imp le  element o f  G. T h e n  x i s  contained in a t o r u s  
o f  G. 

PROOF. We prove the proposition by induction on dim G. Let T be a 
maximal torus of G. Then G=TG, by Theorem 3.5. If G, is commutative, by 
Lemma 3.4 there exists an element u of G* such that  x is in u ~ u - l .  By using 
the formula in Lemma 3.8, we may suppose that  u is in C"G* and therefore in 
G. Thus UTU-' is a torus of G containing x. If G, is not commutative, let f *  
be a rational representation of G* with D1(G"), as its kernel and let f be the 
restriction o f f *  to G. Then f(G) is a connected solvable splittable C"-group 
whose unipotent part  is commutative. By induction hypothesis, f(x) is in a 
maximal torus of f (G), which we can write f (TI) with T I  a maximal torus of 
G by Corollary 3.7. Pu t  H= f -l( f (TI)). Then the kernel of the restriction of 
f *  to  H* is equal to D1(G*), and therefore connected by (1.4) and Proposition 
3.1. Hence, by (1.12), H is connected. I t  is immediate that  H is a splittable 
Cw-group. Therefore, by induction hypothesis, we see that  x is in a torus of 
H. The proof is complete. 

COROLLARY 3.10. Le t  G be a connected solvable splittable C"-subgroup of  
GL(7a, k). L e t  S be a t o rus  of  G a n d  let x be a s emi s imp le  element of  G centra l i z ing  
S. T h e n  there ex is t s  a t o r u s  o f  G conta in ing  x a n d  S. 

PROOF. Denote by H the connected component of e of the centralizer 
of x in G. Then H contains x by Proposition 3.9 and S by hypothesis. By 
using (1.3) we see that  the centralizer of x in G is a closed subset of G, from 
which i t  follows by (1.2) that  H is a closed subset of G. Hence i t  follows 
easily that  H is a splittable C"-group. By applying Theorem 3.5 to  H, we 
see that  x is contained in every maximal torus of H. Hence x is contained in 
any maximal torus of H containing S. 

LEMMA 3.11. Le t  G be a connected solvable C"-subgroup of  GL(r2, k )  a n d  let 
S be a t o r u s  of  G. T h e n  z*(S)=z*(S*)=z(S)*. 

PROOF. By using (1.3), i t  is immediate that  z*(S)=z*(S*). Let T be a 
maximal torus of G containing S. Then z(T) < z(S). By Lemma 3.8, we have 

whence 

G=z(S) (C" G*) and G* =z(S)* (CmG*). 

Since z(S)* < z*(S) by (1.3), we have 
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completing the proof. 

PROPOSITION 3.12. Le t  G be a connected solvable C"-subgroup o f  GL(n, k) a n d  
let S be a n y  t o r u s  of  G. T h e n  z(S) i s  connected. 

PROOF. First we consider the case where G is splittable and S is a maxi- 
mal torus of G. We prove the assertion by induction on dim G. Let m be 
the smallest integer such that  DmG= {e). P u t  N=Dn'-'G. Then N is connected 
by (1.4). Let f " be a rational representation of G* with AT* as  its kernel and 
let f be the restriction of f" to G. Then f(G) is a connected solvable split- 
table C"-group by (1.11). P u t  C=z(S). Then we see by Corollary 3.7 that  f(S) 
is a maximal torus of f(G) and by Lemma 3.8 that  f(C) is the centralizer of 
f(S) in f(G). Hence, by induction hypothesis, f(C) is connected. We have 
C"=zX(SX) by Lemma 3.11. Therefore, by Lemma 3.2, there exists an element 
x of S* whose centralizer in G" is equal to C". Hence, by Lemma 3.3, we see 
that  C*nN" is connected, that  is, the kernel of the restriction of I *  to C" 
is connected. By (1.12) we see that  C is connected. 

Secondly, we consider the case where G is splittable and S is any torus of 
G. Let T be a maximal torus of G containing S. Then, by Theorem 3.5, we 
have G=TG,,. Therefore z(S)=Tz(S),,. Since G, is closed and connected by 
Proposition 3.1, SG,, is a connected C"-group by (1.5). From the splittability 
of G, i t  is immediate that  SG, is splittable. I t  is clear that  S is a maximal 
torus of SG,, and that  the centralizer of S in SG, is Sz(S),'. Hence, by the first 
case above, Sz(S),, is connected. I t  follows from Proposition 3.1 that  its uni- 
potent part z(S),, is connected. Therefore, by (1.5), i t  is immediate that  z(S) 
is connected. 

Finally, suppose that  G is not splittable and S is any torus of C. Then, by 
Lemma 3.11, we have z*(S)=z(S)". By the second case above, we see that  z"(S) 
is connected. Therefore i t  follows from (1.2) that  z(S) is connected. The proof 
is complete. 

4 Some properties s f  maximal s~lvable connected s~abgronps 

and maximal tori 

L~iun1.4 4.1. Let  G be a connected algebraic subgroup of  GL(n, k )  a n d  let R be 
a m a x i m a l  solvable connected subgroup of  G. T h e n  GIR i s  a complete var i e t y .  

We omit the proof (see [I, (16. lo)]). 

LEMMA 4.2. Le t  G be a connected algebraic subgroup of  GL(72, k) a n d  let f be 
a ra t ional  representa t ion  of  G. I f  R i s  a m a x i m a l  solvable connected subgroup 
o f  G, t h e n  f(R) i s  a m a x i m a l  solvable connected subgroup o f  f(G) [1, (22.3)]. 

PROOF. Put Gr=f(G) and Rr=f(R). Let p be the projection of G' onto 
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G1/R'. Then pof is an everywhere defined rational mapping of G onto Gr/R' 
which is constant on the cosets of R in G. Hence pof induces an  everywhere 
defined rational mapping of G/R onto G1/R'. Since G/R is complete by Lemma 
4.1, G1/R' is complete. By (1.10), R' is a maximal solvable connected subgroup 
of G'. 

We now show some fundamental properties of maximal solvable connected 
subgroups of D"-groups in the following 

THEOREM 4.3. L e t  G be a connected Dm-subgroup o f  GL(n, k). T h e n :  

(1) M a x i m a l  solvable connected subgroups o f  G a r e  conjugate  by  t he  ele- 
m e n t s  o f  DD"G. 

(2) A n y  m a x i m a l  solvable connected subgroup o f  G i s  t he  in tersec t ion  o f  G 
a n d  a m a x i m a l  solvable connected subgroup o f  G*, a n d  i t s  closure i s  a m a x i m a l  
solvable connected subgroup o f  G* ; a n d  conversely. 

(3) F o r  a n y  m a x i m a l  solvable connected subgroup R o f  G, w e  have  G =  
R(D "G). 

PROOF. Since G is a connected Dm-group, D"G is equal to DmG* and there- 
fore is a connected invariant closed subgroup of G*. Take a rational represen- 
tation f of G* with D"G as its kernel. Then f(G") is solvable and connected. 
Let S be a maximal solvable connected subgroup of G*. Then, by Lemma 4.2, 
f(S) is a maximal solvable connected subgroup of f(G*), whence f(G*)= f(S) 
and therefore G* =S(D "G). Hence 

G=(GnS) (D "G) and G* =(GnS)*(DmG). 

Since (GAS)" CS, i t  follows that  

By (1.2) GAS is connected. It is now immediate that  GAS is a maximal 
solvable connected subgroup of G. Conversely, let R be a maximal solvable 
connected subgroup of G. Take a maximal solvable connected subgroup Sf of 
G" containing R. Then, as above, we see that  GAS' is connected, S'=(GnS1)* 
and G=(GnS')(DmG). By the maximality of R, we have R=GnSJ,  whence 
R* =S' and G=R(DmG). (2) and (3) are  proved. 

Let R1 and R2 be maximal solvable connected subgroups of G. Since R1* 
is a maximal solvable connected subgroup of G* by (2), G*/R1* is complete by 
Lemma 4.1. Hence, by (1.10), there exists a point of GY/R1", say xR1*, which 
is fixed by R2*, from which i t  follows that  xR1*x-l=R,*. By using (3), we 
may suppose that  x is in DmG. By taking the intersection with G, we have 
xRlx-l=Rz. Thus the theorem is proved. 

COROLLARY 4.4. L e t  G be a connected Ds-subgroup o f  GL(n, k). L e t  H be a 
connected solvable subgroup o f  G a n d  let x be a n  e lement  o f  G cen t ra l i z i ng  H. 
T h e n  there  ex i s t s  a m a x i m a l  solvable cennected subgroup o f  G con ta in ing  H a n d  
X. 
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PROOF. By Theorem 4.3, i t  suffices to prove the statement when G is 
algebraic. We write the proof given in [I, (18.2)]. Suppose that  G is algebraic. 
Then i t  is known [I, (17.6)] that  the union of all maximal solvable connected 
subgroups of G coincides with G. Let R be a maximal solvable connected 
subgroup of G. Since G/R is a complete variety by Lemma 4.1, the set F of all 
fixed points of x on G/R is closed and non-empty by (1.10) and the fact that  x 
is contained in a solvable closed subgroup of G. I t  follows that  F is invariant 
by H. Hence, by (1.10), there exists a fixed point, say yR, of H on G/R. Thus 
yR is fixed by H a n d  x, from which i t  follows that  H and x are  contained in 
yRy-l, completing the proof. 

COROLLARY 4.5. Le t  G be a connected Dm-subgroup of GL(rz, k )  and  let R be 
a m a x i m a l  solvable connected subgroup of  G. T h e n :  

(1) Z(G) = Z(R). 
(2) I f  R i s  ni lpotent ,  G=R. 

PROOF. By Theorem 4.3, (1.3) and (1.4), i t  suffices to prove the statement 
when 4; is algebraic. We write the proof given in [4, 6-10, 111. Let z be any 
element of Z(R). Put f(x)=zzx-'(x E G). Then f is constant on the cosets of 
R, whence f induces an  everywhere defined rational mapping of G/R into G. 
Since G/R is complete by Lemma 4.1, the image of G/R is a complete affine 
variety and therefore reduces to a point. Hence z is in Z(G). Thus we have 
Z(R) = Z(G). 

We prove (2) by induction on dim R. If dim R=O, then R= {e). Since G/R 
is complete by Lemma 4.1, G =  {e). If dim R>O, put H=Z(R),,. Then dim 
H>O. By (1) we have H=Z(G),, whence H is an  invariant closed subgroup of 
G. Take a rational representation f'of G with H as  its kernel. By Lemma 4.2, 
f (R) is a maximal solvable connected subgroup of f (G). Therefore f (R) - f (G) 
by induction hypothesis, whence R=G, completing the proof. 

By using these results, we show some properties of maximal tori of C"- 
groups : 

THEOREM 4.6. Let  G be a connected C"-subgroup o f  GL(rz, k ) .  T h e n :  

(1) M a x i m a l  t o r i  of G a r e  conjugate by the  elements o f  G. 
(2) A n y  m a x i m a l  to rus  o f  a n y  m a x i m a l  solvable connected subgroup o f  G 

i s  a m a x i m a l  to rus  o f  G. 

PROOF. Let TI and T2 be maximal tori of G. Take maximal solvable con- 
nected subgroups R1 and RZ of G containing T1 and Tz respectively. Then, by 
Theorem 4.3, we have 

xRlxe1=R2 with x in D"C. 

Hence %TI%-' is a maximal torus of R2. Since R2 is obviously a C"-group, 
Corollary 3.6 tells us that  
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y ( ~ T ~ x - ~ ) y - ~ =  Tz with y in CWR2*. 

Thus TI and T2 are  conjugate by an element of C"G*. 
Let R be a maximal solvable connected subgroup of G and let T be a max- 

imal torus of R. Take a maximal torus T' of G and a maximal solvable con- 
nected subgroup R' of G containing T'. Then, as above, by using Theorem 4.3 
and Corollary 3.6 we see that  T and T' are  conjugate by an element of G. 
Hence T is a maximal torus of G. Thus the theorem is proved. 

As an immediate consequence of the theorem we have 

COROLLARY 4.7. Le t  G be a connected C"-subgroup o f  GL(72, k). T h e n  a n y  
m a x i m a l  t o rus  o f  G" conta ins  a m a x i m a l  t o r u s  o f  G. 

THEOREM 4.8. Let  G be a connected C"-subgroup o f  GL(72, k )  a n d  let S be a 
t o r u s  o f  G. T h e n  z(S) i s  connected. 

PROOF. Let x be any element of z(S). Then, by Corollary 4.4, there exists 
a maximal solvable connected subgroup R of G containing x and S. Since R is 
a closed subset of G, R is a C"-group. I t  follows from Proposition 3.12 that  
the centralizer of S in R is connected and therefore contained in Z(S)~. Hence 
x is in z(S),,. Thus ~(S)=Z(S)~,  that  is, z(S) is connected. 

COROLLARY 4.9. Le t  6; be a connected splittable C"-subgroup o f  GL(72, k )  a n d  
let  T be a m a x i m a l  t o r u s  o f  G. T h e n  z(T) i s  n i lpotent  a n d  contained in a n y  
m a x i m a l  solvable connected subgroup o f  G conta in ing  T. 

PROOF. By Theorem 4.8, z(T) is connected. Let R be a maximal solvable 
connected subgroup of z(T) containing T. By using (1.3), i t  is immediate that  
z(T) is a closed C"-subgroup of G and therefore R is also a closed C"-subgroup 
of G. R is splittable as  a closed subgroup of a splittable group G. Therefore, 
by Theorem 3.5, we have 

R= TR,,= T x R,, 

whence R is nilpotent. By Corollary 4.5, we see that  z(T) is nilpotent. 
Now there exists a maximal solvable connected subgroup S of G containing 

z(T). Let S' be any maximal solvable connected subgroup of G containing T. 
Then, by Theorem 4.3, we have S=xS1x-l with x in G. Since S is a Cm-group, 
by Corollary 3.6 we have 

y ~ y - l  = X T X - ~  with y  in S. 

Hence 

completing the proof. 

COROLLARY 4.10. Le t  G be a connected C"-subgroup o f  GL(n, k) a n d  let S be 
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a n y  t o r u s  o f  G*. T h e n  z(S) i s  connected, 

z(S)" =z*(S) =z*(S*) a n d  G =z(S)(C"GX). 

PROOF. By using (l.3), i t  is immediate that  z"(S)=z*(S*). Let Q be a 
maximal torus of G* containing S. Then z*(Q) < z*(S). By Theorem 4.8 and 
Corollary 4.9, z*(Q) is connected and nilpotent. Take a maximal solvable con- 
nected subgroup R of G* containing z"(Q). Let ! be a rational representation 
of G" with CsG* as its kernel. Then, by Lemma 3.8, f(z*(Q)) is equal to the 
centralizer of f(Q) in f(R). But, since f(R) is connected and nilpotent, by 
Corollary 2.5 we see that  f (Q) is central in f (R). Therefore f (z"(Q)) = f (R), 
whence R < z*(Q) (CwG*). Since G* = R(DsG) by Theorem 4.3, i t  follows that  

Since CwG* < G, we have 

whence G* =z(S)*(CmG*). Since z(S)* < z*(S), we have 

Thus we have z(S)*=z*(S)=z*(S"). But, by Theorem 4.8, we see that  z*(S) is  
connected. Hence z(S) is connected by (1.2). This completes the proof. 

5. Splittabillity and (S)-property 

LEMMA 5.1. Le t  G =  HN be a subgroup of  GL(rz, k )  such  tha t  H i s  a subgroup 
o f  G a n d  N i s  a n  algebraic i n v a r i a n t  subgroup of  G. I f  H i s  splittable, t h e n  G 
i s  splittable. 

PROOF. By (1.3), N is an invariant subgroup of G". Hence there exists a 
rational representation f of G* with N as its kernel. Suppose that  H is split- 
table. For any element x of G, there exists an element y of H such that  f (x) = 

f (y), whence 

and therefore 

x, = y,z with z in N 

Since y, is in H, x, is in G. Thus G is splittable, completing the proof. 

5.2. A connected Ds-subgroup G of GL(r7, k) is splittable if and only if a 
maximal solvable connected subgroup of G is splittable. This follows from 
Lemma 5.1 by using the formula (3) in Theorem 4.3. Corresponding to the 
splittability, we introduced another kind of "splittability", the (S)-property, 
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for a Dm-group. Namely, a Dm-subgroup (resp. Cm-subgroup) G of GL(72, k) is 
called an  SDW-group (resp. SCw-group) [8, Definitions 7.2 and 11.11 or to have 
the (S)-property provided G satisfies the following condition: 
(S) There exists a maximal solvable connected subgroup R of G such that  

R=TR, for any maximal torus T and the invariant subgroup R, of all 
unipotent elements of R. 
We note that, on the definition of the (S)-property above, if R=TR, with 

T a torus of R, that  is, R is the semi-direct product of R,, by a torus T in the 
group-theoretic sense, then R is the semi-direct product of R,, by T in the 
sense of (1.7). This was verified in the last part of the proof of Theorem 3.5 
by using Lie-Kolchin's theorem. 

By virtue of Theorem 4.3 (I), i t  is clear that, if a Dm-group G has the (S)- 
property, then all the maximal solvable connected subgroups of G have the 
(S)-property. 

On the connection between the (S)-property and the splittability, i t  is 
known that, for a connected D"-group G, the (S)-property of G does not imply 
the splittability of G and conversely the splittability of G does not imply the 
(S)-property of G [9, Examples 1 and 21, but they are  equivalent for a con- 
nected C"-group or more generally for a connected Dm-group H such that  CmH* 
normalizes H, [S, Theorem 11.4 and 9, Theorem 5.11. For our convenience, we 
write the proof of the following 

THEOREM 5.3. Let C be a connected C"-subgroup of GL(77, k) .  Then G' has the 
(S)-property if and only if G' is  splittable. 

PROOF. If G is splittable, any maximal solvable connected subgroup of G 
is  a splittable C"-group as a closed subgroup of G. Hence i t  follows from 
Theorem 3.5 that  G has the (S)-property. 

Conversely, if G has the (§)-property, let R be a maximal solvable con- 
nected subgroup of G. For any element x of R, x ,  and xu are  in R*. By Pro- 
position 3.9, there exists a maximal torus Q of R" containing x,. Since R is 
a Cm-group, Q contains a maximal torus l' of R by Corollary 4.7. Since R=TR,, 
by the (S)-property, 

X = Z I L  with 6 in T and rr in R,,. 

Hence t - l x , = r ~ ~ ~ , - l ,  which is semisimple and unipotent. Therefore t-lx,= 
-1 - ux, e ,  tha t  is, x ,=t  and x,,=u. Thus R is splittable. By using Theorem 4.3 

(3) and Lemma 5.1, we see that  G is splittable. The proof is complete. 

6. Cartan subgroups 

DEFINITION 6.1. Let G be a group. A subgroup H of G is  called a Cartan 
subgroup of G provided H is  maximal nilpotent and any invariant subgroup of 
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f ini te i n d e x  o f  H i s  o f  finite i n d e x  in i t s  normal ixer  [3, p. 1991. 
The following are  immediate from the definition: If H is a Cartan sub- 

group of a group G and if L is a subgroup of G containing H, then H is a 
Cartan subgroup of L. For groups GI and Gz, the Cartan subgroups of GI x G, 
are  the products of the Cartan subgroups of GI and the Cartan subgroups of 
Gz. A Cartan subgroup of G contains the center of G 1_3, pp. 200-2021. 

I t  is known that  a connected algebraic linear group, a connected splittable 
S T - g r o u p  and a connected C"-group have Cartan subgroups [3, p. 208 and 1, 
(20.5); 8, Proposition 8.10; 10, Theorem 5.41. I t  is also known that, if G is a 
connected algebraic linear group or a connected splittable SD"-group or, more 
generally, a connected splittable Dm-group satisfying the condition (a) (see 
(6.4) below), then a subgroup H of G is a Cartan subgroup of G if and only if 
H is the centralizer of a maximal torus of G [I, (20.8); 8, Theorem 9.3; 9, Theo- 
rem 4.81. We showed that, if G is a connected splittable Cm-group, a subgroup 
H of 6 is a Cartan subgroup of 4; if and only if H is the intersection of G and 
a Cartan subgroup of GX[8, Theorem 12.21. 

In this section, we generalize these results to a more general subgroup G 
of GL(n, k). Especially, we study the interrelation between the following three 
kinds of subgroups of G :  

(1) A Cartan subgroup of G. 

(2) The centralizer of a maximal torus of G. 

(3) The intersection of C: and a Cartan subgroup of 4;". 

We begin with the following 

LE\IXI.A 6.2. Le t  G be a subgroup o f  GL(72, k) and  let H be a closed subgroup 
o f  G. T h e n  the following condit ions are  equivalent :  

(1) A n y  subgroup M o f  finite i ndex  o f  H i s  o f  P n i t e  i n d e x  in n(1lf). 

(2) A n y  i n v a r i a n t  subgroup iV o f  finite i n d e x  o f  H i s  o f  finite i n d e x  in 
72(hT). 

(3) No i s  o f  finite i n d e x  in 7z(H0). 
(4) Ho i s  the connected component o f  the i d e n t i t y  element of 7z(Ho). 

PROOF. I t  is evident that  (1) implies (2) and (2) implies (3). Suppose that  
Ho is of finite index in rz(Ho). Since H is a closed subset of G and Ho is a closed 
subset of H by (1.2), No is a closed subset of 6. Hence Ho is a connected closed 
subgroup of finite index of n(H0). By (1.2) we have Ho171(Ho)0. Thus (3) im- 
plies (4). 

Suppose that  Ho=7~(HO)0, and let 111 be any subgroup of finite index of H. 
Then i t  is immediate that  Zf*nG is a closed subgroup of finite index of H. 
Therefore, by using (1.2), we see that  

whence by (1.3) we have 
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Since M is of finite index in H, MAN, is of finite index in H,. But, by our 
supposition, Ho is of finite index in 77(Ho). Hence M n H ,  is of finite index in 
7t(Ho) and therefore M is of finite index in rz(M). Thus (4) implies (I), com- 
pleting the proof. 

P ~ o i ~ o s ~ ~ r ~ o ~  6.3. L e t  C be a s u b g r o u p  of GI,(IL, k). A s u b g r o u p  I3 of G i s  a 

Cartan s u b g r o u p  of G' if and o n l y  if H i s  m a x i m a l  n i l p o t e n t  and H sat is f ies 
one of t h e  e q u i v a l e n t  c o n d i t i o n s  in L e m m a  6.2. 

PROOF. A maximal nilpotent subgroup of G is a closed subset of C since 
its closure is nilpotent by (1.4). Hence the proposition follows from Lemma 
6.2. 

6.4. We now introduce the following two conditions for a connected Dm- 
subgroup G of Gl,(~z, k), which are respectively weaker than the (S)-property 
and the splittability of G:  
(a) F o r  one of t h e  m a x i m a l  solvable connected subgroups  of G, s a y  R, t h e  c losure  

of a n y  m a x i m a l  t o r u s  of R i s  a m a x i m a l  t o r u s  of K". 
(b) All m a x i m a l  n i l p o t e n t  connected subgroups  of G a r e  s p l i t t a b l e  o r  e q u i v a -  

l e n t l y  have  t h e  ( S ) - p r o p e r t y .  
The equivalence of two kinds of "splittability" in the condition (b) follows 

from Theorem 5.3. 
I t  is to be noted that  there exists a connected Dm-group satisfying the 

condition (a) which does not have the (S)-property [9, Example I]. 

LEMMA 6.5. L e t  C be a connected Dm-subgroup  of GJJ(n, k) s a t i s f y i n g  t h e  con- 
d i t i o n  (a). T h e n ,  f o r  a n y  m a x i m a l  solvable connected s u b g r o u p  R of G, t h e  

c losure  of a n y  m a x i m a l  t o r u s  of R i s  a m a x i m a l  t o r u s  of R*. 

PROOF. Let R' be a maximal solvable connected subgroup of G satisfying 
the condition (a). Let 7' be any maximal torus of IZ. Then, by Theorem 4.3, 
there exists an element x of G such that  R-xR'x-l. If we write Tf-x-lfi, 
then 7" is a maximal torus of R'. I t  follows that  

Since 2"" is a maximal torus of R'", T* is a maximal torus of K*. 

PROPOSITION 6.6. L e t  G be a connected D m - s u b g r o u p  of GL,(n, k )  s a t i s f y i n g  
t h e  c o n d i t i o n  (a). T h e n :  

(I) A n y  m a x i m a l  t o r u s  of G i s  t h e  i n t e r s e c t i o n  of G and a m a x i m a l  t o r u s  
of (; k, and i t s  c losure  i s  a m a x i m a l  t o r u s  of G*. 

(2) A n y  m a x i m a l  t o r u s  of a n y  m a x i m a l  solvable connected s u b g r o u p  of C 
i s  a m a x i m a l  t o r u s  of G'. 

PKOOF. Let 7' be a maximal torus of C. Take a maximal solvable con- 
nected subgroup R of G containing T. By Lemma 6.5, 7'" is a maximal torus 
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condition (a). Then : 

(1) G has Cartan subgroups. The centralizer of a maximal torus of G i s  a 
Cartan subgroup of G, which i s  the intersection of G and a Cartan subgroup of 
G* and contained in one and only one Cartan subgroup of G". 

(2) Suppose that G furthermore satisjies the condition (b). Then a sub- 
group H of G i s  a Cartan subgroup of G, i f  and only i f  H i s  the centralizer 
of a maximal torus of G, and only i f  H i s  the intersection of G and a Cartan 
subgroup of G". 

PROOF. (1) Let T be a maximal torus of G. Then, by Proposition 6.6, T* 
is a maximal torus of G*. By Corollary 4.9, we see that  zV(T") is nilpotent. 
By using (1.3), we have z(T)=Gnz"(T*). Hence z(T) is nilpotent. Suppose 
that  H is a nilpotent subgroup of G containing z(T). Then, by Proposition 2.7, 
we see that  T <  Z ( H ) ,  whence HCz(T) and therefore H=z(T). Thus z(T) is 
maximal nilpotent. Now put C=Z(T)~. Then T is a unique maximal torus of 
C. Hence T is invariant in 7z(C). By Lemma 6.7, we see that  T is contained in 
the center of 72(C)0, which shows that  n(C)o CC, that  is, ~L(C)~=C. Thus, by 
Proposition 6.3, we conclude that  z(T) is a Cartan subgroup of G. 

Since z"(T*) is a Cartan subgroup of G* as proved above, z(T) is the in- 
tersection of G and a Cartan subgroup of G*. If M is a Cartan subgroup of 
G* containing z(T), then T* is contained in M since M is a closed subset of G". 
I t  follows from Proposition 2.7 that  T* is in the center of M, whence M is 
contained in z*(T*). By the maximal nilpotency of 41, we have M=z"(T*), 
which shows that  z(T) is contained in a unique Cartan subgroup z*(T*) of G". 

(2) Suppose that  G furthermore satisfies the condition (b). Let H be a 
Cartan subgroup of G. Then Ha is a maximal nilpotent connected subgroup 
of C. In fact, if Ho is properly contained in a connected nilpotent subgroup 
N of G, then i t  follows from Lemma 6.8 that  Ha is properly contained in the 
connected normalizer of H in N, which contradicts the second condition of a 
Cartan subgroup H by Proposition 6.3. By the condition (b), we now see that  
Ho is splittable. I t  follows from Theorem 2.4 that  (Ha), is a unique maximal 
torus of Ho. Pu t  S=(Ho),. Let R be a maximal solvable connected subgroup 
of G containing Ha and let T be a maximal torus of R containing S. Let M be 
the connected centralizer of S in a group TR,. Then we have 

M= T(Mn R,) = TMu. 

M, is connected by Proposition 3.1. By Theorem 2.4 we have 

Ho=S x (H"), < M= TM,. 

By using Lemma 6.8 and the second condition of Cartan subgroups (the con- 
dition (4) in Lemma 6.2), we see that  (Ho),=41,, and therefore that  S=T. 
Hence, by Proposition 6.6, S is a maximal torus of G and S" is a maximal torus 
of G". Since z"(S*) is nilpotent by Corollary 4.9, z(S) is nilpotent as its sub- 
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group. By Proposition 2.7, S is contained in the center of H, whence we have 
HCz(S). By the maximal nilpotency of H, we conclude that  H=z(S). The 
other parts of (2) are proved in (1). Thus the theorem is completely proved. 

COROLLARY 6.10. Let G be a connected Dm-subgroup of GL(72, k) satisfying 
the conditions (a) and (b). Then any Cartan subgroup of G is  a Cartan subgroup 
of any maximal solvable connected subgroup R of G containing its maximal 
torus T and i s  the intersection of R and n(T). 

PROOF. By Theorem 6.9 and (1.14), i t  suffices to show that, if T is a max- 
imal torus of a maximal solvable connected subgroup R of G, then z(T) < R. 
If T is a maximal torus of R, then T* is a maximal torus of G* by Proposition 
6.6. Since R* is a maximal solvable connected subgroup of G" by Theorem 4.3, 
we have z*(T*) < R* by Corollary 4.9. Hence, by using (1.3) and Theorem 4.3, 
we have 

z(T)=Gnz*(T*) <GnR*=R. 

COROLLARY 6.11. Let G be a subgroup of GL(n, k). I n  each of the following 
cases, a subgroup H of G is  a Cartan subgroup of G if and only if H is  the cen- 
tralizer of a maximal torus of G: 

(1) G is  a connected algebraic group [I, (20.8)]. 
(2) G i s  a connected splittable SDm-group [8, Theorem 9.31. 
(3) G is  a connected splittable Dm-group satisfying the condition (a) [9, 

Theorem 4.81. 
(4) G is  a connected D"-group all of whose maximal solvable connected 

subgroups and maximal nilpotent connected subgroups have the (S)-property. 

PROOF. If G has the (S)-property, then G clearly satisfies the condition (a). 
Therefore the statement is immediate from Theorem 6.9. 

I t  is to be noted that  there exists a connected splittable D"-group sat- 
isfying the condition (a) which is not an SD"-group 19, Example 11. 

By making use of Theorem 6.9, we can now prove the following 

THEOREM 6.12. Let G be a connected Cm-subgroup of GL(rz, k). Then: 

(1) G has Cartan subgroups. The intersection of G and a Cartan subgroup 
of G* is  a connected Cartan subgroup of G, whose closure is  a Cartan subgroup 
of G*. These Cartan subgroups are conjugate by the elements of G. A Cartan 
subgroup of G* is  the closure of a Cartan subgroup of G [lo, Theorem 5.41. 

(2) Suppose that G satisfies the condition (a). Then a subgroup H of G is  
the centralizer of a maximal torus of G, if and only if H is  the intersection of 
G and a Cartan subgroup of G*, and only if H is  a Cartan subgroup of G. 

PROOF. (1) By Theorem 6.9, G* has Cartan subgroups. Let C be a Cartan 
subgroup of G*. Then, by Theorem 6.9, we have 

C=z*(Q) with Q a maximal torus of G*. 
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By Corollary 4.10, G n C  is connected and C=(GnC)*. Let H be a nilpotent 
subgroup of G containing GnC. Then 

C=(GnC)* < H*. 

Since H" is nilpotent by (1.4), by the maximal nilpotency of C we have C=H*. 
It follows that  HCGnC, whence H=GnC. Therefore G n C  is maximal nil- 
potent. Furthermore, since C=(GnC)*, by (1.3) we have 

Since n*(C)o=C and since GnC is connected, i t  follows that  

By Proposition 6.3, we see that  G n C  is a Cartan subgroup of G. 
Let C1 and CZ be Cartan subgroups of G*. Then 

Ci=z"(Qi) with Qi a maximal torus of G* (i=1,2). 

By Theorem 4.6, there exists an element x of CxG* such that  Q1=xQzx-l. 
Hence C1 =xC2xe1 and therefore 

(2) Suppose that  G satisfies the condition (a). Let H be the centralizer 
of a maximal torus T of G. Then, by (1.3), we have H=Gnz*(T*). By Pro- 
position 6. 6, T* is a maximal torus of G* and therefore, by Theorem 6.9, 
z*(T*) is a Cartan subgroup of G*. Thus H is the intersection of G and a 
Cartan subgroup of G*. Conversely, let H be the intersection of G and a 
Cartan subgroup C of G*. Then, by Theorem 6.9, we have 

C=z*(Q) with Q a maximal torus of G*. 

But Q contains a maximal torus T' of G by Corollary 4.7. Hence Q= T'* by 
Proposition 6.6. Therefore we have 

The other part of (2) is proved in (1). Thus the theorem is completely proved. 

COROLLARY 6.13. Let G be a connected C"-subgroup of GL(72, k) .  Let S be a 
torus of  G and let x be a semisimple element o f  G centralizing S.  Then there 
exists a Cartan subgroup of G containing x and S [lo, Proposition 5.51. 

PROOF. x and S are contained in a maximal solvable connected subgroup 
R of G by Corollary 4.4 and therefore in a maximal torus Q of R* by Corollary 
3.10. Since R* is a maximal solvable connected subgroup of G" by Theorem 
4.3, Q is a maximal torus of G* by Theorem 4.6. Hence z*(Q) is a Cartan sub- 
group of G* by Theorem 6.9. Therefore, by Theorem 6.12, Gnz*(Q) is a Cartan 
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subgroup of G, which contains x and S. 

COROLLARY 6.14. Let G be a connected complex linear Lie group. Then G 
has Cartan subgroups and the Cartan subgroups of G contain all semisimple 
elements of G. 

PROOF. We may suppose that  G is a subgroup of GL(rz, C) with C the field 
of complex numbers. As is well known, the Euclidean topology is finer than 
the Zariski topology in GL(n, C). Hence G is connected in the Zariski topology. 
As was shown in [8, Example 21, G is a Cs-subgroup of GL(rz, C). Therefore 
by Theorem 6.12 we see that  G has Cartan subgroups and by Corollary 6.13 
that  every semisimple element of G is contained in a Cartan subgroup of G. 

On the connection between the condition (b) and the splittability, we have 
the following 

PROPOSITION 6.15. Let G be a connected C"-subgroup of GL(r8, k ) .  Then G 
satisfies the condition (b) i f  and only i f  G i s  splittable, and only i f  C satisfies 
the condition (a). 

PROOF. Suppose that  G satisfies the condition (b). Take a maximal torus 
Q of G* and denote by H the centralizer of Q in G. Then H is a connected 
Cartan subgroup of G by Theorem 6.12. Hence H is a maximal nilpotent con- 
nected subgroup of G and therefore H is splittable by the condition (b). By 
Corollary 4.10, we have 

It follows from Lemma 5.1 that  G is splittable. Conversely, if G is splittable, 
then any maximal nilpotent connected subgroup of G is splittable since i t  is a 
closed subset of G by (1.2) and (1.4), whence G satisfies the condition (b). 

A connected splittable C"-group has the (S)-property by Theorem 5.3 and 
therefore satisfies the condition (a). Thus the proposition is proved. 

COROLLARY 6.16. Let G be a connected splittable C"-subgroup of GL(n, k) .  
Then G has Cartan subgroups. 

(1) Cartan subgroups of G are connected, are splittable, are conjugate by 
the elements of G, and contain all semisimple elements of G. 

(2) Any  Cartan subgroup of G i s  the centralizer of a maximal torus of G, 
and conversely. 

(3) A n y  Cartan subgroup of G i s  the intersection of G and a Cartan sub- 
group of G*, and conversely. The closure of any  Cartan subgroup of G i s  a 
Cartan subgroup of G", and conversely. 

(4) A n y  Cartan subgroup of a maximal solvable connected subgroup of G i s  
a Cartan subgroup of G, and any  Cartan subgroup of G i s  a Cartan subgroup of 
any  maximal solvable connected subgroup of G containing i t s  maximal torus. 

(5) A n y  Cartan subgroup of G i s  algebraic i f  and only i f  G i s  algebraic. 
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PROOF. By Proposition 6.15 we see that  G satisfies the conditions (a) and 
0)). 

We have (2) by Theorem 6.9 and we have (3) by Theorems 6.9 and 6.12. 
Any Cartan subgroup of G is splittable as a closed subgroup of a splittable 
group G. Hence we have (1) by (3), Theorem 6.12 (1) and Corollary 6.13. 

Let R be any maximal solvable connected subgroup of G. Then R is a 
splittable Cm-group as a closed subgroup of G. Hence, by (2), any Cartan sub- 
group H of R is the centralizer of a maximal torus T of R in R. But T is a 
maximal torus of G by Theorem 4.6. By Corollary 6.10 we see that  H is the 
centralizer of T in G. I t  follows from (2) that  H is a Cartan subgroup of G. 
Thus we have the first part of (4). The second part of (4) follows from Corol- 
lary 6.10. 

Any Cartan subgroup H' of G is the centralizer of a maximal torus of G 

by (2). Hence i t  follows from Corollary 4.10 that  

Therefore, if H' is algebraic, then G is algebraic by (1.5). The converse is 
immediate from (1.4) and we have (5). The proof is complete. 

REMARK 6.17. In Theorem 6.9 (2), we cannot assert that  (1) the inter- 
section of G and any Cartan subgroup of G* is a Cartan subgroup of G and 
also that  (2) every Cartan subgroup of G* is the closure of a Cartan subgroup 
of G. The statements (1) and (2) are not necessarily true even for a con- 
nected Dw-group having both the splittability and the (S)-property, although 
they are true for a connected Cw-group as was shown in Theorem 6.12. 

The goup in [9, Example 31 gives an example for these facts. Namely, 
let C be the field of complex numbers and let a be an element of C which is 
transcendental over the prime field. Let k l  be the subring of C consisting of 
all rational functions of a with integral coefficients. Let G be the group of 
all matrices of the following forms: 

Then G is a connected splittable solvable subgroup of GL(2, C). Furthermore 
&' has the (S)-property, since every maximal torus of G is generated by an 
element g with r = l .  Let H be the subgroup of G* which can be represented 
a s  

k x u(n-1) ) : x ( l o )  variable in C 
0 1 /  

I 
I 

with u an element of C which is not in k l .  Then i t  is easy to see that  H is a 
maximal torus of G*, H is equal to its centralizer in G* and G n  H= {e). There- 



On Cartan Subgroups of Linear Groups 93 

fore H is a Cartan subgroup of G* whose intersection with G is not a Cartan 
subgroup of G and which is not the closure of any Cartan subgroup of G. 
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